

Document Public

Elaboration de règles de gestion volumique de la ressource en eau pour les bassins versants de la Somme-Soude et de la Coole (51)

Rapport final

BRGM/RP-54178-FR Version finale corrigée octobre 2006

Étude réalisée dans le cadre des opérations de Service public du BRGM 2004-EAU-F10

C. SCHMIDT

Avec la collaboration de

M. CHABART et M. NORMAND

Vérificateur :

Nom: NORMAND Michel

Date:

Signature:

Original signé par Michel Normand

Approbateur:

Nom: MARTEAU Pascal

Date:

Signature:

Original signé par Pascal Marteau

Mots clés : Marne, Somme-Soude, Coole, Gestion, Ressource, Craie, Prélèvements, Modèle GARDENIA, Règle
En bibliographie, ce rapport sera cité de la façon suivante :
SCHMIDT C., CHABART M. et NORMAND M. et (2006) - Elaboration de règles de gestion volumique de la ressource en eau pour les bassins versants de la Somme-Soude et de la Coole (51). Rapport BRGM RP-54178-FR version finale corrigée, 166 p., 69 figures, 29 tableaux, 17 annexes.
© BRGM, 2006, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.
, .,

Synthèse

Le développement considérable de l'irrigation, conjugué aux problèmes de ressource en eau souterraine, rend nécessaire une gestion de la ressource plus adaptée qui prendrait à la fois en compte les besoins et le stock utilisable. En effet, de nombreux cours d'eau ont connu des périodes d'assec, notamment en 2003, 2004 et 2005. Les forages d'eau potable ont connu également des difficultés d'approvisionnement.

A la demande conjointe de la MISE de la Marne et de la DIREN Champagne-Ardenne le BRGM a réalisé une étude concernant l'élaboration de règles de gestion de la ressource en eau souterraine pour les bassins de la Somme-Soude et de la Coole (département de la Marne). L'étude est financée conjointement par la DIREN Champagne-Ardenne et le BRGM sur ses crédits de Service Public.

Le programme d'étude s'est décomposé en trois étapes : (1) collecte et traitement des données, (2) modélisation hydrodynamique et (3) propositions pour l'élaboration de règles de gestion. Le présent rapport fait état des résultats de cette étude.

Collecte des données

L'ensemble données (prélèvement, débits, niveaux de nappe, pratiques culturales...) a été collectée sur les bassins de la Somme-Soude et de la Coole auprès de différents partenaires associés au comité de pilotage : DIREN Champagne-Ardenne, Direction Départementale de l'Agriculture et de la Forêt de la Marne (DDAF 51), Agence de l'eau Seine Normandie (Direction Vallée de Marne), Direction Départementale des Actions Sanitaires et Sociales de la Marne (DDASS 51), DRIRE, chambre d'agriculture de la Marne, représentants de la profession agricole, des chambres consulaires et des élus locaux.

On dispose également de données d'altitude du sol et de pentes (IGN), de séries de pluie (METEO France), de chroniques de niveaux de nappe (MEDD/BRGM) et de cartes piézométriques de la nappe de la Craie en 2002 (DIREN/BRGM).

Traitement des données

Les données de prélèvements en nappe, de débits, de niveaux de nappe et d'altitude du sol ont été dépouillées, croisées et interprétées. Ces traitements ont permis de préparer les chroniques nécessaires à la modélisation et de juger de la qualité et de la pertinence des données.

Les traitements effectués ont mis en évidence le manque de données fiables, représentatives et synchrones ainsi que l'absence de chroniques suffisamment longues de prélèvements, de débits sur la Coole et sur la Somme-Soude ainsi que de niveaux de nappe à l'intérieur même des bassins versants étudiés.

Dans ces conditions, il est très difficile de modéliser l'impact des prélèvements sur les débits des rivières et l'approche développée ne pourra être qu'approximative.

Modélisation

La mise en œuvre du modèle global GARDENIA a été réalisée principalement sur le bassin versant de Soude qui dispose de la seule station hydrométrique en fonction sur le secteur ainsi que sur le bassin versant de la Coole pour illustrer les difficultés engendrées par le manque de données. En effet les données hydrologiques concernant la Coole se sont avérées insuffisantes pour la mise en oeuvre d'un modèle relativement fiable et pour dresser le bilan hydrologique.

Sur le bassin versant de la Soude, les termes du bilan hydrologique ont été estimés. Des simulations spécifiques ont permis d'établir l'impact de l'augmentation des prélèvements sur la ressource en eau (nappe et débit de la rivière) ainsi que les prévisions statistiques des débits et des niveaux de nappe sur les 8 prochains mois.

Règles de gestion

La règle de gestion proposée aux termes de la phase de modélisation repose sur la relation existant entre le niveau piézométrique enregistré aux Grandes-loges le 15 avril de chaque année (index représentatif de l'état de remplissage de l'aquifère en conditions non influencées) et le nombre de jour où le débit de la Soude à Soudron est inférieur au QMNA₅ (index représentatif du débit d'étiage constaté dans la rivière).

Il s'agit d'un d'outil d'aide à la gestion volumique des ressources en eau sur le bassin de la Soude, point de départ pour une réflexion concertée entre les administrations chargées de la Police de l'eau et les usagers de l'eau. Les seuils de vigilance et d'alerte définis pourront évoluer en fonction de nouvelles informations disponibles et des attentes respectives de chaque partenaire.

Recommandations

La règle de gestion est valable uniquement pour le bassin de la Soude. Pour étendre cet index de gestion à l'ensemble du bassin de la Somme-Soude (plus complexe et nettement plus grand que celui de la Soude - résultat de la confluence de la Somme, de la Soude et de la Berle) et de la Coole (plus sensible face à la pression liée aux prélèvements), il faudrait disposer de campagnes de jaugeages différentiels (hautes eaux et basses eaux) sur la Somme-Soude entre Soudron et l'aval du bassin ainsi que sur la Coole.

Dans le cas où ces mesures complémentaires pourraient être entreprises, il sera possible de réaliser des simulations complémentaires par analogie hydrologique et de reconstituer les débits en aval. A partir de ces débits reconstitués, la même méthodologie que celle appliquée sur le bassin versant de la Soude pourra être envisagée.

Il est recommandé pour conforter les règles de gestion proposées et tenter de les étendre à l'ensemble des bassins de la Somme-Soude et de la Coole de :

- Remettre en service au plus vite la station hydrométrique sur la Coole à Ecury-sur-Coole :
- Réaliser des jaugeages différentiels d'amont en aval des cours d'eau des bassins versants étudiés;
- Sélectionner un ou plusieurs ouvrages dans le secteur d'étude pour mettre en place un suivi régulier du niveau de la nappe;
- Améliorer la connaissance des prélèvements (volumes sous forme de chronique et localisation).

Sommaire

1	CARACTERISTIQUES DE LA ZONE D'ETUDE	13
	1.1 CONTEXTE GEOMORPHOLOGIQUE	13
	1.2 Contexte geologique	
	1.3 VEGETATION, SOLS ET CULTURES	
	1.4 CARACTERISTIQUES HYDROLOGIQUES	17
	1.5 CARACTERISTIQUES HYDROGEOLOGIQUES	17
	1.6 ALTITUDES DE LA ZONE D'ETUDE	20
	1.7 Profils topo-hydrogeologiques	
	1.7.1 Profil 1 : Ouest – Est (transversal)	
	1.7.2 Profil 2: Nord Nord Ouest – Sud Sud Est (le long de la Coole)	
	1.7.3 Profil 3 : Sud Ouest – Nord Est (le long de la Somme-Soude)	
	1.7.4 Profil 4: Nord Ouest – Sud Est (le long de la Somme)	
	1.8 LES COMMUNES CONCERNEES	21
2	DONNEES DE PRELEVEMENT	27
	2.1 LES DONNEES DE L'AGENCE DE L'EAU SEINE-NORMANDIE (TOUS USAGES)	
	2.1.1 Répartition par type d'usage	
	2.1.2 Prélèvements en eau de surface	
	2.1.3 Répartition géographique des prélèvements	
	2.1.4 Carte des pressions	30
	2.2 LES DONNEES DE LA DDAF DE LA MARNE (USAGE AGRICOLE)	
	2.2.1 Volumes des prélèvements agricoles	
	2.2.2 Répartition géographique des prélèvements agricoles	
	2.2.3 Surfaces irriguées	
	 2.2.4 Type de cultures irriguées 2.3 LES DONNEES DE LA CHAMBRE D'AGRICULTURE DE LA MARNE (USAGE AGRICOLE) 	
	2.3 LES DONNEES DE LA CHAMBRE D'AGRICULTURE DE LA MARNE (USAGE AGRICOLE)	
	2.3.2 Dose annuelle d'eau apportée à la culture de pomme de terre	
	2.3.3 Surface Agricole Utilisable irriguée	
	2.4 COMPARAISON DES VOLUMES PRELEVES POUR L'AGRICULTURE SUR LE SECTEUR D'ETUDE	
	2.4.1 Comparaisons des prélèvements pour 2003	
	2.4.2 Estimation du volume prélevé en 2000 par référence aux besoins en eau des plantes et d	
	surfaces irriguées	46
	2.5 LES DONNEES DE LA DDASS DE LA MARNE CONCERNANT L'AEP	
	2.6 LES PRELEVEMENTS INDUSTRIELS	50
3	DONNEES METEOROLOGIQUES	53
J		
	3.1 IDENTIFICATION DES SURFACES D'INFLUENCE DANS LES BASSINS VERSANTS	
	3.2 GRAPHIQUE DES PRECIPITATIONS MOYENNES ANNUELLES	
	3.3 Graphique de statistiques	
4	DONNEES DE DEBITS DES RIVIERES	59
5	DONNEES DE NIVEAU DE NAPPE	63
	5.1 LA PIEZOMETRIE DE LA NAPPE DE LA CRAIE EN 2002	64
	5.1.1 Carte des Hautes Eaux d'avril 2002	64
	5.1.2 Carte des Basses Eaux de septembre-octobre 2002	
	5.1.3 Piézométrie dans le secteur d'étude	
	5.2 LES PIEZOMETRES DE SUIVI DU RESEAU AESN	
	5.2.1 Piézomètres de Châlons-en-Champagne et de Matougues	
	5.2.2 Piézomètres de Morains, Sompuis et Songy	
	5.2.3 Piézomètre des Grandes-Loges	71

6 CORRELATIONS ENTRE LA PLUIE, LES DEBITS ET LES NIVEAUX DE 1 LA CRAIE	
6.1 LE BASSIN DE LA SOMME-SOUDE	73
6.1.1 Débits et niveaux de nappe	73
6.1.2 Débits et précipitations	
6.1.3 Niveaux de nappe et précipitations	73
6.2 LE BASSIN DE LA COOLE	76
6.2.1 Débits et niveaux de nappe	70
6.2.2 Débits et précipitations	76
MODELISATION SUR LES BASSINS VERSANTS ETUDIES	79
7.1 PRINCIPE DE FONCTIONNEMENT DU MODELE HYDROLOGIQUE GLOBAL GARDEN	IIA79
7.2 CALAGE DU MODELE SUR LE BASSIN VERSANT DE LA SOUDE	81
7.2.1 Données numériques initiales du modèle	81
7.2.2 Calage « pluie-débit » à Soudron	83
7.2.3 Calage « pluie-niveau » aux Grandes-Loges	80
7.2.4 Calage « pluie-niveau » à Sompuis et Songy	
7.2.5 Analyse des pluies efficaces sur la période hivernale	
7.3 CALAGE DU MODELE SUR LE BASSIN VERSANT DE LA COOLE	
7.3.1 Données numériques initiales du modèle	
7.3.2 Calage « pluie-débit » à Ecury-sur-Coole	92
8.1 CALCUL DU BILAN HYDROLOGIQUE	95
8.1.2 Pluie efficace	
8.1.3 Evapotranspiration réelle	
8.1.4 Ecoulement dans la rivière	
8.1.5 Prélèvements en nappe	
8.1.6 Ecoulements souterrains	
8.1.7 Conclusions sur le bilan hydrologique	
8.3 SIMULATION DE L'IMPACT D'UNE VARIATION DES PRELEVEMENTS EN NAPPE SUR	
RIVIERE SOUDE	
8.4 SIMULATIONS PREDICTIVES SUR LE BASSIN DE LA SOUDE	
8.4.1 Débits à 12 mois de la Soude à Soudron	
8.4.2 Niveaux de la nappe à 8 mois aux Grandes-Loges	
PROPOSITION DE REGLES DE GESTION VOLUMIQUE DE LA RESSOUI	
ASSIN DE LA SOUDE	
9.1 DEFINITION DU SEUIL DE REFERENCE	107
9.2 DEFINITION D'UN INDEX DE GESTION	107
9.3 DEFINITION DES REGLES DE GESTION	
9.4 CONCLUSIONS	110

Liste des figures

Figure 1 – Cartes et coupe de situation de la champagne crayeuse d'après le guide géologique régional "Lorraine-Champagne" (Hilly J. et al., 1979)	12
Figure 2 – Localisation des bassins versants étudiés	12
Figure 3 – Découpage des feuilles géologiques au 1/50 000	14
Figure 4 – Extrait de la carte géologique au millionnième du secteur d'étude	14
Figure 5 – Carte piézométrique de la nappe de la craie (octobre 1966)	19
Figure 6 - Les communes concernées par la collecte dans la zone d'étude	22
Figure 7 - Localisation des communes du bassin versant de la Somme-Soude	23
Figure 8 - Localisation des communes du bassin versant de la Coole	24
Figure 9 - Répartition des volumes prélevés par type d'usage (données AESN, 2002 et 2003)	26
Figure 10 – Répartition des types d'usages des prélèvements dans les bassins de la Somme-Soude et de la Coole (source : AESN, 2002 & 2003)	26
Figure 11 – Carte des prélèvements par commune (données AESN, 2002)	29
Figure 12 - Carte des prélèvements par commune (données AESN, 2003)	29
Figure 13 – Carte des pressions de la zone d'étude à partir des données AESN 2003	31
Figure 14 – Evolution des prélèvements agricoles annuels de 1998 à 2003 sur le secteur d'étude	33
Figure 15 – Localisation des forages d'irrigation et volumes prélevés par ouvrage en 1998 (source DDAF51 et BRGM)	35
Figure 16 – Localisation des forages d'irrigation et volumes prélevés par ouvrage en 2003 (source DDAF51 et BRGM)	36
Figure 17 - Répartition des forages par rapport à leur distance à la Coole	37
Figure 18 - Répartition des forages par rapport à leur distance à la Somme-Soude	37
Figure 19 - Evolution de la superficie irriguée globale annuelle dans les bassins de la Somme-Soude et de la Coole (source DDAF 51)	38
Figure 20 - Type de culture par surface irriguée en 1998, 1999 et 2003	40
Figure 21 - Volumes d'eau prélevés pour l'irrigation dans la zone d'étude (source : Chambre d'Agriculture de la Marne)	42
Figure 22 - Evolution de la dose annuelle d'eau apportée à la culture de pomme de terre de consommation (Source : Chambre d'agriculture de la Marne)	43
Figure 23 - Part de surfaces irriguées de la SAU dans le BV de la Coole (Source : Chambre d'agriculture de la Marne)	44
Figure 24 - Part de surfaces irriguées de la SAU dans le BV de la Somme-Soude (Source : Chambre d'agriculture de la Marne)	44
Figure 25 – Répartition des surfaces irriguées par type de culture. Source : Agreste – Recensement Agricole 2000	46
Figure 26 – Localisation des captages AEP dans le secteur d'étude (Sources : DDASS 51 & AESN, 2003)	48

Figure 27 – Carte des prélèvements industriels par commune en 2003 (données AESN)	51
Figure 28 – Localisation des stations pluviométriques et identification des surfaces d'influence dans les bassins versants étudiés	52
Figure 29 – Précipitations annuelles mesurées sur cinq stations (période 1975-2004)	55
Figure 30 – Précipitations maximale, moyenne et minimale annuelles mesurées sur les cinq stations (données METEO France - période 1975-2004)	56
Figure 31 – Carte de France des précipitations moyennes sur la période 1946 – 2001 (d'après MEDD)	57
Figure 32 - Localisation des stations hydrométriques dans le secteur d'étude	58
Figure 33 - Débits de la Coole à Ecury-sur-Coole	60
Figure 34 – Débits de la Soude à Soudron	60
Figure 35 – Comparaison entre les débits de la Coole et de la Soude sur la même période	61
Figure 36 – Réseau de surveillance de la nappe de la craie en région Champagne- Ardenne	62
Figure 37 – Nappe de la craie : carte piézométrique en situation de hautes eaux (avril 2002)	65
Figure 38 – Nappe de la craie : carte piézométrique en situation de basses eaux (octobre 2002)	65
Figure 39 - Localisation des piézomètres suivis par le BRGM dans le secteur d'étude	66
Figure 40 – Enregistrements du piézomètre de Châlons-en-Champagne	67
Figure 41 – Enregistrements du piézomètre de Matougues	67
Figure 42 – Enregistrements du piézomètre de Morains	69
Figure 43 - Enregistrements du piézomètre de Sompuis	69
Figure 44 – Enregistrements du piézomètre de Songy	70
Figure 45 - Enregistrement du piézomètre aux Grandes-Loges	70
Figure 46 - Double-cumul des niveaux piézométriques aux Grandes-Loges et à Sompuis	71
Figure 47 - Double-cumul des niveaux piézométriques aux Grandes-loges et à Songy	72
Figure 48 – Débits de la Soude à Soudron et niveaux de la nappe aux Grandes-Loges	74
Figure 49 – Débits de la Soude à Soudron et niveaux de la nappe aux Grandes-Loges	74
Figure 50 – Précipitations mensuelles et débits de la Soude à Soudron (1995 – 2004)	75
Figure 51 – Débits de la Coole à Ecury-Sur-Coole et niveaux de nappe aux Grandes- Loges	77
Figure 52 – Précipitations mensuelles et débits de la Coole à Ecury-Sur-Coole (1996- 1999)	77
Figure 53 - Schéma de principe du modèle hydrologique global GARDENIA	78
Figure 54 – Définition des débits spécifiques à l'échelle des bassins et sous-bassins versants (d'après DIREN CHA) et aire de représentativité des modèles GARDENIA	80
Figure 55 - Double cumul des pluies annuelles de Soudron et Reims (1975-2004)	82
Figure 56 - Calage pluie-débit de la Soude à Soudron	83
Figure 57 – Calage pluie-niveau aux Grandes-Loges	86
Figure 58 – Calage pluie-niveau à Sompuis	87

Figure 59 - Graphique des pluies efficaces par année hydrologique (d'après la modélisation sur le bassin versant de la Soude)	90
Figure 60 - Double cumul des pluies annuelles du BV de la Coole et Reims (1975-2004)	91
Figure 61 - Calage pluie-débit de la Coole à Ecury-sur-Coole	92
Figure 62 – Bilan hydrologique du bassin versant de la Soude (51) d'après les résultats de la modélisation GARDENIA	96
Figure 63 – Comparaison des simulations avec calage avant 1986 uniquement et le modèle influencé par l'irrigation entre 1990 et fin 2005	98
Figure 64 - Impact de Qfuite de 40, 150 et 300 L/s sur les débits de la Soude à Soudron entre 1985 et 1995	100
Figure 65 – Impact de Qfuite de 40, 150 et 300 L/s sur les débits de la Soude à Soudron entre 1995 et 2005	101
Figure 66 - Prévisions à 12 mois du débit de la Soude à Soudron	104
Figure 67 - Prévisions à 8 mois des niveaux piézométriques aux Grandes-Loges	106
Figure 68 – Corrélation entre le nombre de jour où le débit de la Soude est inférieur au QMNA5 et le niveau piézométrique aux Grandes-Loges	108
Figure 69 – Cartographie des mesures à entreprendre sur les bassins versants étudiés	116

Liste des tableaux

Tableau 1 – Caractéristiques des cours d'eau de la zone d'étude	17
Tableau 2 – Liste des communes concernées par la collecte dans la zone d'étude	21
Tableau 3 – Liste des communes du bassin de la Somme-Soude	23
Tableau 4 – Liste des communes du bassin de la Coole	24
Tableau 5 – Synthèse des prélèvements effectués sur le secteur d'étude (bassins versants de la Somme-Soude et de la Coole) en 2002 et 2003	27
Tableau 6 - Description des 4 catégories de pression	30
Tableau 7 – Synthèse des volumes prélevés pour l'usage agricole sur le secteur d'étude	33
Tableau 8 – Evolution de la superficie irriguée globale annuelle dans les bassins de la Somme-Soude et de la Coole (source DDAF 51)	38
Tableau 9 - Surfaces irriguées (d'après les données de la DDAF 51), volumes prélevés et calcul des doses par culture	41
Tableau 10 – Synthèse des volumes d'eau prélevés pour l'irrigation dans la zone d'étude (source : Chambre d'Agriculture de la Marne)	42
Tableau 11 – Comparaison des données 2003 pour les bassins de la Coole et de la Somme-Soude	45
Tableau 12 – Surfaces irriguées par type de culture et par commune. Source : Agreste – Recensement Agricole 2000	47
Tableau 13 – Synthèse des prélèvements AEP sur les bassins versants étudiés (Source : DDASS 51 et AESN, 2003)	49

Tableau 14 – Captages AEP et volumes prélevés (Sources : DDASS 51, AESN, 2002 et 2003)	49
Tableau 15 – Données de prélèvements industriels du secteur (Source AESN, 2003)	50
Tableau 16 – Liste des stations pluviométriques prises en compte pour l'étude	53
Tableau 17 – Surfaces d'influence et les précipitations de chaque station par bassin versant	54
Tableau 18 – Date et durée des assecs de la Soude	59
Tableau 19 - Calcul du débit de fuite sur le BV de la Soude - ajustement par GARDENIA	84
Tableau 20 - Calculs du débit d'écoulement souterrain de la Soude	85
Tableau 21 – Ensemble des données de prélèvements dans le bassin de la Soude	85
Tableau 22 – Tableau des pluies efficaces par année hydrologique (d'après la modélisation sur le bassin versant de la Soude)	89
Tableau 23 - Calcul du débit de fuite sur le BV de la Coole - ajustement par GARDENIA	93
Tableau 24 - Calculs du débit d'écoulement souterrain de la Coole	94
Tableau 25 – Ensemble des données de prélèvements dans le bassin de la Coole	94
Tableau 26 - Débits de fuites simulés pour visualiser l'impact de l'augmentation ou de la diminution des prélèvements dans le bassin de la Soude	99
Tableau 27 – Nombre de mois d'assec simulés par type de scénario et par année hydrologique	. 102
Tableau 28 – Nombre de jour entre mai et août où le débit de la Soude est inférieur au QMNA5 et niveau piézométrique correspondant de la nappe le 15 avril aux Grandes-Loges .	. 109
Tableau 29 – Recommandations des mesures à entreprendre sur les bassins versants étudiés	. 115

Liste des annexes

Annexe 1 – Profils hydrogéologiques des bassins de la Somme-Soude et de la Coole	119
Annexe 2 – Synthèse des données de l'Agence de l'Eau Seine-Normandie sur les prélèvements en 2002 et 2003	123
Annexe 3 – Cartes de répartition des prélèvements par type d'usage	127
Annexe 4 – Catégorie de pression par Commune	131
Annexe 5 - Synthèse des données de prélèvements agricoles fournies par la DDAF de la Marne	135
Annexe 6 – Synthèse des données de superficies irriguées fournies par la DDAF de la Marne	137
Annexe 7 – Distance estimée des forages par rapport à la rivière	139
Annexe 8 – Synthèse des données de la Chambre d'agriculture de la Marne	143
Annexe 9 - Les assecs recencés dans les bassins de la Somme-Soude et de la Coole en 2003, 2004 et 2005	147
Annexe 10 - Résultats du calage pluie-débit de la Soude à Soudron	151
Annexe 11 - Résultats du calage pluie-niveau au piézomètre des Grandes-Loges	153
Annexe 12 – Résultats du calage pluie-niveau au piézomètre de Sompuis	155
Annexe 13 – Résultats du calage pluie-niveau au piézomètre de Songy	157
Annexe 14 - Résultats du calage pluie-débit à la station d'Ecury-sur-Coole	159
Annexe 15 - Valeurs des quantiles de prévisions à 12 mois pour la Soude à Soudron (août 2005 – août 2006)	161
Annexe 16 - Valeurs des quantiles de prévisions à 8 mois pour les niveaux piézométriques aux Grandes-Loges (août 2005 – avril 2006)	163
Annexe 17 - Recensement des années où le niveau aux Grandes-Loges au 15 avril était inférieur à 94.7, 91, 92 et 93 m NGF	165

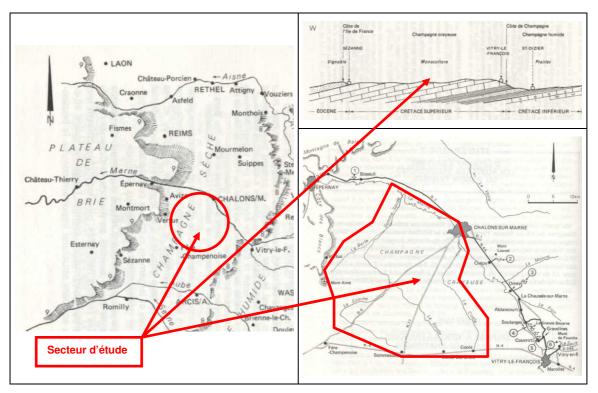
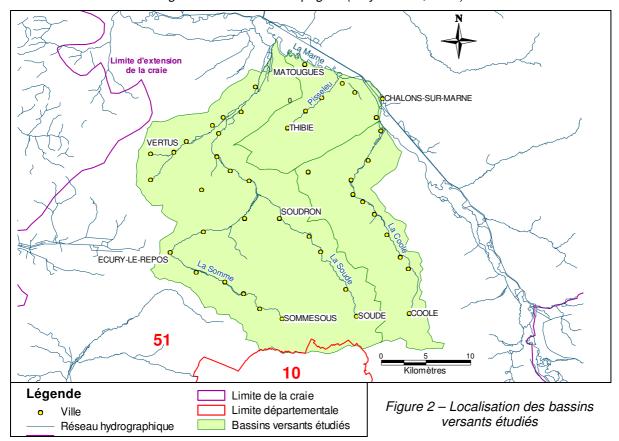



Figure 1 – Cartes et coupe de situation de la champagne crayeuse d'après le guide géologique régional "Lorraine-Champagne" (Hilly J. et al., 1979)

1 Caractéristiques de la zone d'étude

1.1 CONTEXTE GEOMORPHOLOGIQUE

Le secteur d'étude se situe dans la **Champagne crayeuse ou sèche** (dite autrefois « pouilleuse ») entre la Marne au Nord, Châlons-en-Champagne au Nord-Est, Vitry-le-François au Sud-Est, Fère-Champenoise au Sud-Ouest et Vertus à l'Ouest. Au Nord-Ouest se trouve la terminaison orientale de la plate-forme de la Brie et au Sud-Est la Champagne « humide » (Figure 1).

- Le Plateau de la Brie champenoise se caractérise par un sol limoneux humide couvert de forêts parsemées d'étangs. Le plateau tertiaire se termine à l'Est par une falaise qui domine la craie d'une soixante de mètres au-dessus de Vertus. Les pentes et le pied de la falaise recouverts en pente douce par les éboulis sont occupées par la vigne qui donne les premiers grands crus de Champagne (Côtes des Blancs).
- La Champagne humide se caractérise par un relief faible ou inexistant, un sous-sol imperméable, la présence de nombreux lacs et étangs et de larges vallées fluviales (Ornain, Marne, Aube, Seine). Traditionnellement, c'est un pays de bocage, d'élevage, de briqueteries et de tuileries, de peupleraies, gardant de larges surfaces boisées.
- La Champagne sèche se caractérise par un substratum crayeux (affleurement des terrains du Crétacé supérieur uniquement constitué de craie) friable et très perméable, des sols particulièrement pauvres, de larges étendues monotones à peine mamelonnée recoupées de routes rectilignes et un faible peuplement essentiellement concentré dans les vallées à proximité des cours d'eau également appelés « Somme ».

Les cours d'eau, dont les bassins versants situés entièrement dans le département de la Marne font l'objet de la présente étude, sont la **Somme-Soude** et la **Coole**, tous deux affluents de la rive gauche de la Marne, entre Châlons-en-Champagne et Condé-sur-Marne (Figure 2).

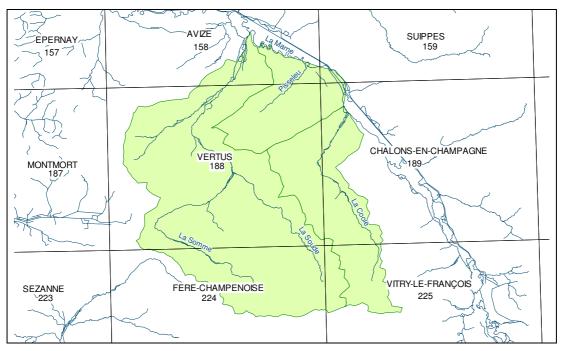


Figure 3 – Découpage des feuilles géologiques au 1/50 000

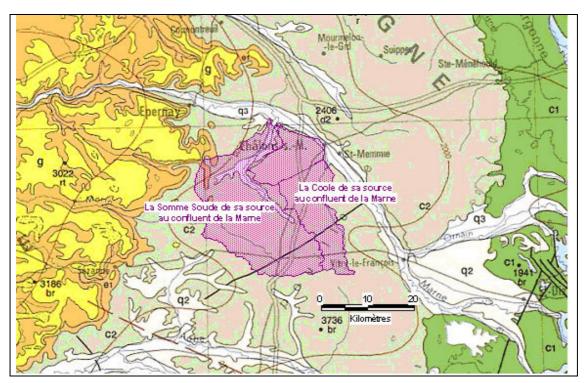


Figure 4 – Extrait de la carte géologique au millionnième du secteur d'étude

1.2 CONTEXTE GEOLOGIQUE

Les cartes géologiques à 1/50 000, correspondant au secteur d'étude, sont les suivantes (Figure 3) :

- ♦ Vertus (n°188);
- ♦ Châlons-sur-Marne (n°189);
- ♦ Fère-Champenoise (n°224);
- ♦ Vitry-le-Francois (n°225).

L'ensemble des formations à l'affleurement dans le secteur d'étude correspond à la craie du sénonien ou craie blanche du Crétacé supérieur (Figure 4). Les formations crayeuses plongent régulièrement vers le Nord-Ouest en direction du bassin de Paris (pendage faible de l'ordre de 0,5%).

Les formations alluviales anciennes sont représentées le long des principales vallées. Elles s'étendent en rive gauche quand l'axe de la rivière a une direction SE-NW : Somme-Soude en amont de Vouzy, Soude, Somme en amont d'Ecury-le-repos, ruisseau du Mont et Coole. L'épaisseur de ces formations varie de 2 à 8,5 m. Elles sont constituées de particules crayeuses dont la dimension est comprise entre les sables fins et les gravillons. Les dépôts sont formés de strates entrecroisées de graviers et de sables de craie de couleur jaunâtre.

Le long de la Marne (feuille de Châlons), les formations alluviales actuelles et subactuelles de la Marne occupent le fond de la basse vallée soit la totalité du lit majeur (2 km de large) et recouvrent les alluvions anciennes sur une épaisseur de 1 à 3 m. Les alluvions anciennes de la Marne sont constituées principalement par des graviers de calcaire dur auxquels se mêlent des éléments crayeux (épaisseur moyenne de 5 à 6 m). Les alluvions actuelles sont constituées par des limons jaunâtres, des argiles et des sables calcaires fins.

Les failles sur le territoire des feuilles de Vertus et de Châlons ont une orientation SW-NE marquant un compartiment NW abaissé. La plus importante semble être celle qui se situe un peu au Sud de Clamanges et d'Ecury-le-Repos, dans la vallée de la Somme-Soude (rejet d'une vingtaine de mètres). La présence de cette faille pourrait expliquer la capture du cours d'eau Somme-Petit-Morin par la Soude (Cf. paragraphe 1.4).

1.3 VEGETATION, SOLS ET CULTURES

La végétation « climatique » de la champagne crayeuse est le « savart », steppe de graminée avec quelques arbustes (genévriers) qui recouvrait les plaines dans les secteurs éloignés des villages. Au 18^{ème} siècle furent créées des plantations de pins (pins sylvestre puis pins noir d'Autriche). Depuis 1945, la quasi totalité des terres boisées a été défrichée et mise en culture, grâce à la mécanisation et l'emploi intensif des engrais.

Les sols sont représentés le plus généralement par une rendzine développée sur un paléosol cryoturbé, formé au cours des dernières périodes froides du Quaternaire sur la plaine champenoise. On distingue :

- Les rendzines « brunes » (teneur en calcaire de l'ordre de 60 à 70%; teneur en fer de 0,7 à 1%);
- Les rendzines « rouges » (teneur en calcaire de l'ordre de 40 à 60%; teneur en fer de 1 à 1,6%).

Ces sols ont une texture fine et le milieu calcaire sous-jacent leur confère une bonne teneur en matière organique (3 à 3,5%) même sous culture. Ils ont une bonne structure et une très bonne perméabilité et par suite présentent des conditions excellentes de ressuyage.

La craie sous-jacente constitue une très bonne réserve hydrique pour les cultures : elle est très poreuse (30 à 45% de vides) et fissurée. Cette fine porosité (de l'ordre du micron) conserve toujours une grande quantité d'eau à partir de 1 m de profondeur de 70% en été à 90% en hiver).

Les principales cultures sont les céréales (blé d'hiver, orge de printemps, avoine), la betterave sucrière, la luzerne et la pomme de terre, particulièrement bien adaptées du fait de la bonne réserve hydrique de la craie. Seule la pomme de terre peut souffrir du manque d'eau en surface durant les années sèches ; l'irrigation devient alors un recours indispensable. Les sols étant naturellement pauvres en potassium et en magnésium, des apports correctifs doivent être envisagés en fonction des cultures.

1.4 CARACTERISTIQUES HYDROLOGIQUES

Les deux bassins versants étudiés (Somme-Soude et Coole) correspondent à deux affluents en rive gauche de la Marne, dont les caractéristiques sont présentées dans le Tableau 1.

La ligne de partage des eaux entre le bassin de la Marne au Nord et le bassin de l'Aube au Sud se situe en limite sud de la zone d'étude.

Bassin versant de la Somme-Soude	Bassin versant de la Coole				
Superficie totale : 485 km²	Superficie totale : 171 km²				
Longueur rivière Somme-Soude : 28 km	Longueur rivière Coole : 40 km				
Longueur rivière Berle : 16 km	Bassin versant du Pisseleu				
Longueur rivière Soude : 22,5 km	Superficie totale : 109 km²				
Longueur rivière Somme : 33 km	Longueur rivière Pisseleu : 9 km				
Superficie totale (Somme-Soude, Coole et Pisseleu) : 765 km²					

Tableau 1 – Caractéristiques des cours d'eau de la zone d'étude

La Marne naît sur le plateau de Langres. Après avoir traversée les calcaires du Barrois, elle descend la dépression du Perthois (immense champ fertile d'anciennes alluvions formées par un faisceau d'affluents de la rive droite de la Marne qui constitue la partie Nord de la champagne humide). La Marne quitte ensuite la Champagne humide au Nord de Vitry-le-François pour entrer en Champagne crayeuse, se couder et traverser les autres auréoles successives du bassin parisien.

La Somme-Soude, naît de la confluence de trois cours d'eau respectivement La Soude, La Somme et la Berle.

A l'Ouest du secteur d'étude, on note la continuité des dépôts alluvionnaires entre ceux du Petit Morin en tête de bassin et ceux de la Somme en amont d'Ecury-le-Repos. Ils marquent l'ancien axe Somme-Petit-Morin avant le phénomène de capture de la Somme par la Soude. Entre le rebroussement de la Somme à Ecury-le-Repos et sa confluence avec la Soude à la ferme de Conflans, on n'observe aucune terrasse alluvionnaire. La capture serait donc récente postérieure au dépôt des alluvions anciennes. Cette capture a eu pour effet l'installation des marais de Saint-Gond dans le Haut bassin du Petit Morin.

Les cours d'eau de la région drainent la nappe de la craie, ce mode d'alimentation étant mis en évidence par les hydrogrammes journaliers. La nappe fournie plus de 80% de l'écoulement total, le ruissellement restant très faible.

Les fluctuations de débit des rivières sont soumises à des cycles rigoureusement saisonniers et synchrones avec les fluctuations des niveaux piézométriques de la nappe de la craie.

1.5 CARACTERISTIQUES HYDROGEOLOGIQUES

La craie du Sénonien et du Turonien, à l'affleurement dans la Champagne crayeuse, constitue le réservoir aquifère le plus important de la région Champagne-Ardenne. Le substratum de la nappe est théoriquement représenté par la craie marneuse du Turonien moyen (profondeur moyenne de 25 m pouvant atteindre 30 à 40 m dans les secteurs les

plus altérés); toutefois il semble qu'à l'affleurement ce niveau soit plus perméable que sous la couverture de craie du Sénonien et qu'il fasse en fait partie du réservoir de la nappe de la craie. La limite inférieure du réservoir se caractériserait donc par une réduction progressive de la fissuration de la craie avec la profondeur.

La nappe est libre sur la zone d'étude et les écoulements souterrains convergent vers la vallée de la Marne (Figure 5). La nappe de la craie fournit donc la plus grande part des débits des rivières, dont elle régularise dans une large mesure le régime. Dans les vallées, la nappe de la craie se raccorde insensiblement à celle des alluvions, formant alors avec cette dernière un ensemble unique.

La craie est par ailleurs très inégalement productive selon son degré de fissuration, lequel varie beaucoup entre les vallées et les plateaux :

- Dans les vallées, la dissolution intense créée par le rassemblement des eaux donne lieu à un réseau de fissures particulièrement développé. Les ouvrages donnent des débits importants pour de faibles rabattements;
- Sous les plateaux ou les buttes, la craie est compacte. Les débits sont faibles et les rabattements importants.

Si la perméabilité de la craie montre des variations verticales, elle présente en outre de fortes variations latérales. L'action érosive est en effet beaucoup plus forte au niveau des zones alluviales.

L'amplitude des fluctuations du niveau piézométrique varie en fonction inverse de la perméabilité de la craie : elle est faible dans les zones de vallées (de l'ordre du mètre) et forte sous les plateaux (de 10 à 15 m). Les variations essentiellement saisonnières peuvent être accentuées d'une année sur l'autre selon la pluviométrie (Cf. chapitre 5).

La nappe se comporte donc globalement comme une nappe libre se raccordant aux nappes alluviales, et est drainée par le réseau hydrographique, à l'exception des ruisseaux en provenance des formations tertiaires qui sont en position perchée au Nord-Ouest du secteur. A Vertus, on peut observer deux résurgences karstiques qui prennent naissance dans les terrains tertiaires et se développent dans la craie sous-jacente.

La nappe captive des sables verts de l'Albien existe sous toute l'étendue de la zone étudiée mais elle n'est pas exploitée. Quelques ouvrages ont été réalisés dans le secteur de Châlons, puis ont été abandonnés en raison de leur productivité insuffisante. Les sables verts ont été rencontrés à 380 m de profondeur près de Mailly-Le-Camps (Sud du bassin de la Somme) et 270 m de profondeur près de Pringy (dans la vallée de la Marne).

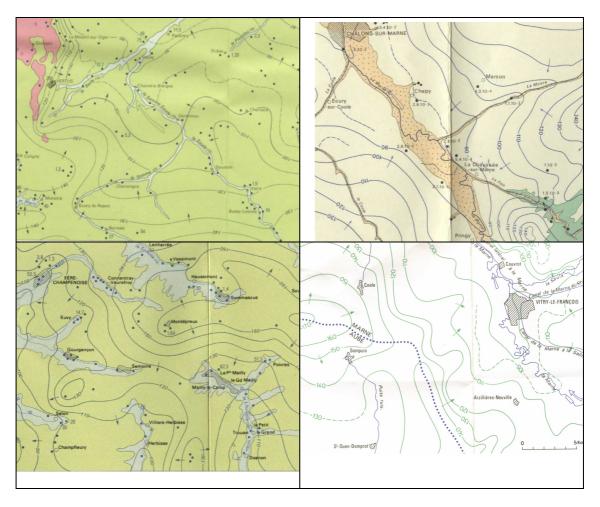


Figure 5 – Carte piézométrique de la nappe de la craie (octobre 1966). Extrait des cartes géologiques à 1/50 000 de Vertus, Châlon, Fère-Champenoise et Vitry. D'après la carte hydrogéologique à 1/100 000 (Duermael et al., 1967).

1.6 ALTITUDES DE LA ZONE D'ETUDE

La quasi totalité des bassins étudiés a une pente inférieur à 4 degrés. Le pendage est relativement faible. Des pentes de 2 à 6 degrés sont notées dans les chenaux des cours d'eau avec les valeurs supérieures en rive droite (annexe 1-1).

L'altitude de la zone d'étude est comprise entre 69 et 245 m NGF. Au Sud, les limites des bassins versants de la Somme-Soude et de la Coole sont constituées par des lignes de crêtes topographiques bien marquées en forme de "V", les extrémités se rejoignant au Sud (annexe 1-2).

Le bassin de la Somme-Soude est délimité à l'Ouest par la côte des Blancs. Cet obstacle topographique, d'où prend sa source la Berle (affluent de rive gauche de la Somme-Soude), oriente le cours dans sa partie aval vers le Nord-Est, vers la Marne.

1.7 PROFILS TOPO-HYDROGEOLOGIQUES

Quatre profils topo-hydrogéologiques ont été réalisés, à partir des cartes d'altitudes et des cartes piézométriques, le long des principaux cours d'eau (la Somme, la Somme-Soude, la Coole) et transversalement.

1.7.1 Profil 1 : Ouest – Est (transversal)

Ce profil met en évidence la relation entre la nappe de la craie et les cours d'eau de la Somme, la Soude et de la Coole (Annexe 1-3). La Somme présente un drainage de la nappe en hautes eaux.

1.7.2 Profil 2 : Nord Nord Ouest – Sud Sud Est (le long de la Coole)

Ce profil le long du bassin de la Coole médiane et amont met en évidence la pente régulière de la nappe en direction du Nord-Ouest (Annexe 1-4). Entre la vallée de la Coole et le Pisseleu, une crête piézométrique apparaît en période de hautes eaux mais n'est plus présente en basses eaux. La Coole draine la nappe de la craie en hautes et basses eaux.

1.7.3 Profil 3 : Sud Ouest – Nord Est (le long de la Somme-Soude)

Ce profil met en évidence la pente régulière de la nappe en direction du Nord-Est dans le bassin de la Somme-Soude, sur le cours de la Somme avant sa confluence avec la Soude (Annexe 1-5). Entre la vallée de la Somme-Soude et la Marne, une crête piézométrique apparaît en période de hautes eaux mais n'est plus présente en basses eaux. La Somme-Soude draine la nappe de la craie en hautes et basses eaux.

1.7.4 Profil 4 : Nord Ouest – Sud Est (le long de la Somme)

Ce profil le long du cours de la Somme met en évidence la pente régulière de la nappe en direction du Nord-Ouest (Annexe 1-6).

1.8 LES COMMUNES CONCERNEES

Même si la zone d'étude correspond aux bassins versants de la **Somme-Soude** et de la **Coole**, il paraît indispensable d'étendre la collecte des données à un domaine plus large (Tableau 2 et Figure 6). Il a notamment été intégré le petit bassin versant du ruisseau **la Gironde ou Pisseleu** se trouvant entre celui de la Coole et celui de la Somme-Soude.

On identifie donc pour la phase de recueil des données 93 communes qui se trouvent en majorité sur le versant gauche de la Marne et dans le département de la Marne. On compte néanmoins une dizaine de communes en rive droite et quelques unes au nord du département de l'Aube. 64 communes se situent intégralement ou en partie des bassins versants de la Somme-Soude (Figure 7 et Tableau 3) ou de la Coole (Figure 8 et Tableau 4).

COMMUNES	Dept	COMMUNES		COMMUNES	Dept
AIGNY	51	FLAVIGNY	51	SAINT-MARTIN-SUR-LE-PRE	51
ATHIS	51	GERMINON	51	SAINT-MEMMIE	51
AULNAY-SUR-MARNE	51	GIONGES	51	SAINT-PIERRE	51
AVIZE	51	GLANNES	51	SAINT-QUENTIN-SUR-COOLE	51
BERGERES-LES-VERTUS	51	HAUSSIMONT	51	SARRY	51
BLACY	51	HUIRON	51	SEMOINE	10
BREUVERY-SUR-COOLE	51	HUMBAUVILLE	51	SOGNY-AUX-MOULINS	51
BUSSY-LETTREE	51	JALONS		SOMMESOUS	51
CERNON	51	JUVIGNY		SOMPUIS	51
CHAINTRIX-BIERGES	51	LE MESNIL-SUR-OGER	51	SONGY	51
CHALONS-EN-CHAMPAGNE	51	LENHARREE	51	SOUDE	51
CHAMPIGNEUL-CHAMPAGNE	51	LES ISTRES-ET-BURY	51	SOUDRON	51
CHENIERS	51	LOISY-SUR-MARNE	51	SOULIERES	51
CHEPPES-LA-PRAIRIE	51	MAILLY-LE-CAMP	10	THIBIE	51
CHERVILLE	51	MAIRY-SUR-MARNE	51	TOGNY-AUX-BOEUFS	51
CLAMANGES	51	MAISONS-EN-CHAMPAGNE	51	TRECON	51
COMPERTRIX	51	MATOUGUES	51	TROUANS	10
CONDE-SUR-MARNE	51	MONTEPREUX	51	VAL-DES-MARAIS	51
CONNANTRAY-VAUREFROY	51	NUISEMENT-SUR-COOLE	51	VASSIMONT-ET-CHAPELAINE	51
COOLE	51	OGER	51	VATRY	51
COOLUS	51	PIERRE-MORAINS	51	VELYE	51
COUPETZ	51	PIERRY	51	VERTUS	51
DOMMARTIN-LETTREE	51	POCANCY	51	VILLENEUVE-RENNEVILLE-CHEVIGNY	51
DROUILLY	51	POGNY	51	VILLERS-AUX-BOIS	51
ECURY-LE-REPOS	51	POIVRES	10	VILLERS-LE-CHATEAU	51
ECURY-SUR-COOLE	51	PRINGY	51	VILLESENEUX	51
ETRECHY	51	RECY	51	VILLIERS-HERBISSE	10
EUVY	51	ROUFFY	51	VITRY-LA-VILLE	51
FAGNIERES	51	SAINT-GIBRIEN	51	VOIPREUX	51
FAUX-VESIGNEUL	51	SAINT-MARD-LES-ROUFFY	51	VOUZY	51
FERE-CHAMPENOISE	51	SAINT-MARTIN-AUX-CHAMPS	51	VRAUX	51
-		Communes des bassins versants d'étude			

Tableau 2 – Liste des communes concernées par la collecte dans la zone d'étude

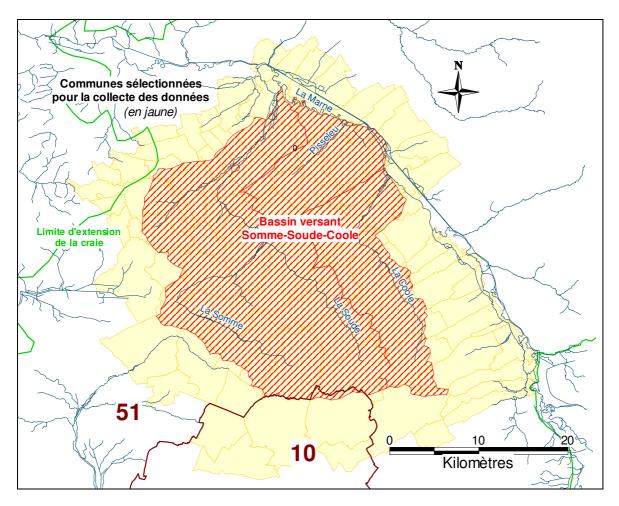


Figure 6 - Les communes concernées par la collecte dans la zone d'étude

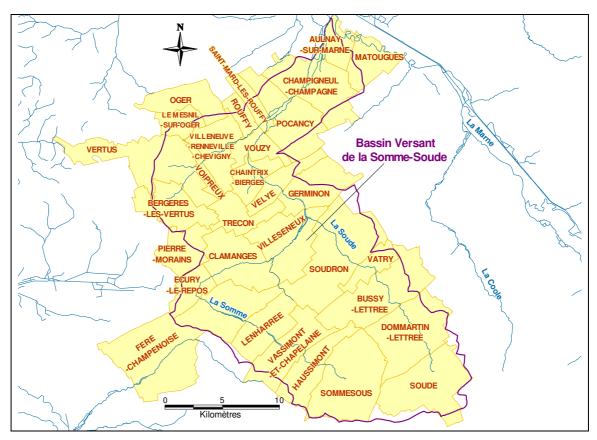


Figure 7 - Localisation des communes du bassin versant de la Somme-Soude

NOM	NUMERO	NOM	NUMERO
AULNAY-SUR-MARNE	51023	POCANCY	51435
BERGERES-LES-VERTUS	51049	ROUFFY	51469
BUSSY-LETTREE	51099	SAINT-MARD-LES-ROUFFY	51499
CHAINTRIX-BIERGES	51107	SOMMESOUS	51545
CHAMPIGNEUL-CHAMPAGNE	51117	SOUDE	51555
CLAMANGES	51154	SOUDRON	51556
DOMMARTIN-LETTREE	51212	TRECON	51578
ECURY-LE-REPOS	51226	VASSIMONT-ET-CHAPELAINE	51594
FERE-CHAMPENOISE	51248	VATRY	51595
GERMINON	51268	VELYE	51603
HAUSSIMONT	51285	VERTUS	51612
LE MESNIL-SUR-OGER	51367	VILLENEUVE-RENNEVILLE-CHEVIGNY	51627
LENHARREE	51319	VILLESENEUX	51638
MATOUGUES	51357	VOIPREUX	51651
OGER	51411	VOUZY	51655
PIERRE-MORAINS	51430		

Tableau 3 – Liste des communes du bassin de la Somme-Soude

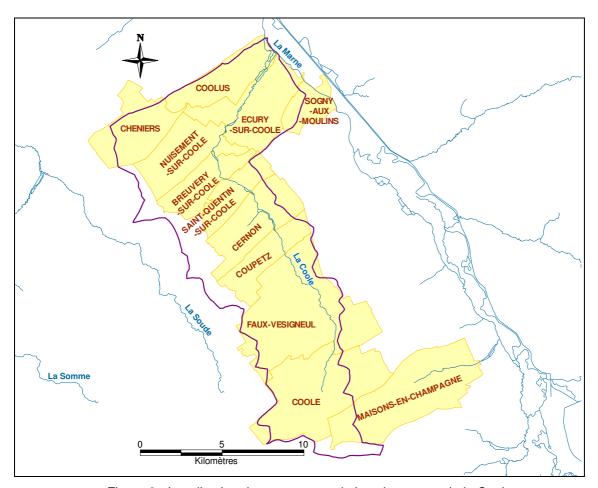
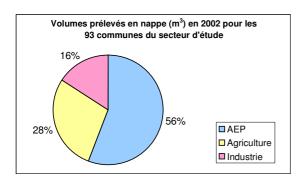



Figure 8 - Localisation des communes du bassin versant de la Coole

NOM	NUMERO
BREUVERY-SUR-COOLE	51087
CERNON	51106
CHENIERS	51146
COOLE	51167
COOLUS	51168
COUPETZ	51178
ECURY-SUR-COOLE	51227
FAUX-VESIGNEUL	51244
MAISONS-EN-CHAMPAGNE	51340
NUISEMENT-SUR-COOLE	51409
SAINT-QUENTIN-SUR-COOLE	51512
SOGNY-AUX-MOULINS	51538

Tableau 4 – Liste des communes du bassin de la Coole

Elaboration de règles de gestion volumique de la ressource en eau pour les bassins versants de la Somme-Soude et de la Coole (51)

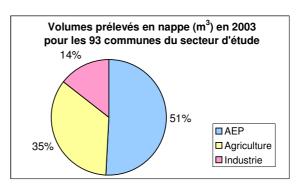
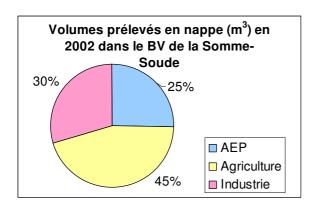
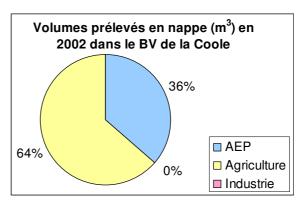
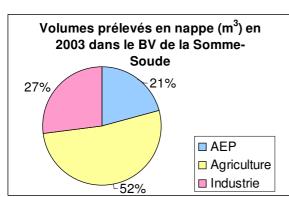





Figure 9 - Répartition des volumes prélevés par type d'usage (données AESN, 2002 et 2003)

Volumes prélevés en nappe (m³) en 2003 dans le BV de la Coole			
	30%		
	0%	■ AEP	
70%		□ Agriculture	
		■ Industrie	

	BV de la Somme-Soude (m³/an)			
	AEP	Agriculture	Industrie	
2002	1 479 172	2 621 873	1 744 283	
2003	1 298 247	3 251 647	1 666 720	

	BV de la Coole (m³/an)			
	AEP	Industrie		
2002	381 502	670 038	0	
2003	383 775	912 456	0	

Figure 10 – Répartition des types d'usages des prélèvements dans les bassins de la Somme-Soude et de la Coole (source : AESN, 2002 & 2003)

2 Données de prélèvement

2.1 LES DONNEES DE L'AGENCE DE L'EAU SEINE-NORMANDIE (TOUS USAGES)

Les volumes d'eaux souterraines et d'eaux superficielles prélevés au cours des années 2002 et 2003 ont été fournis par l'agence de l'eau Seine Normandie, Direction vallée de Marne à Châlons-en-Champagne (Annexe 2).

2.1.1 Répartition par type d'usage

En 2002, plus de la moitié (56%) des prélèvements sont destinés à l'alimentation en eau potable (AEP), près d'un tiers (28%) répond aux besoins de l'agriculture (irrigation) et les 16% restant reviennent à l'industrie (Figure 9).

En 2003, la part destinée à l'irrigation augmente pour dépasser le tiers (35%) des volumes prélevés sur l'année (Figure 9). En effet, 2003 est connue pour être une année sèche. La moitié des volumes sert à l'AEP (51%) et 14% utilisés par les industries.

La répartition des prélèvements par bassin montre que l'agriculture prend une part prédominante des prélèvements d'eau de nappe (45 à 70%) dans le bassin versant de la Somme-Soude aussi bien que dans le bassin de la Coole (Figure 10). La différence entre les deux bassins réside dans la part plus importante tenue par les prélèvements industriels dans le bassin de la Somme-Soude (27 et 30%) alors qu'elle est inexistante dans le bassin de la Coole.

Globalement, un volume d'eau plus important a été prélevé dans le secteur d'étude en 2003 qu'en 2002 (Tableau 5). L'irrigation est le principal facteur de cette augmentation.

	Volumes prélevés dans le secteur d'étude (m³/an)			
	AEP	Agriculture	TOTAL	
2002	1 860 674	3 291 911	1 744 283	6 896 868
2003	1 682 022	4 164 103	1 666 720	7 512 845

Tableau 5 – Synthèse des prélèvements effectués sur le secteur d'étude (bassins versants de la Somme-Soude et de la Coole) en 2002 et 2003

2.1.2 Prélèvements en eau de surface

Pour l'AEP, aucun prélèvement n'est effectué dans les eaux de surface pour les 93 communes de la zone d'étude en 2002 ou en 2003.

Pour l'agriculture, l'eau de surface est prélevée en période d'étiage dans quatre communes. **En 2002**, on compte un volume total de 54 073 m³/an pour les quatre communes suivantes :

♦ Condé-sur-Marne : 37 023 m³/an

♦ Jalons : 2 650 m³/an

♦ Mairy-sur-Marne : 10 500 m³/an

♦ Vertus: 3 900 m³/an

En 2003, le volume d'eau de surface prélevé pour l'irrigation dans les quatre communes suivantes est de 87 994 m³/an avec une augmentation particulièrement importante pour Jalons :

♦ Condé-sur-Marne : 41 828 m³/an

♦ Jalons : 37 916 m³/an

♦ Athis: 4 950 m³/an

♦ Vertus: 3 300 m³/an

Pour l'industrie, l'activité « sucrière » prélève un volume de 66 798 m³/an dans les eaux de surface à Fagnières en 2002 et 54 748 m³/an en 2003.

2.1.3 Répartition géographique des prélèvements

La carte de répartition des prélèvements de tous types d'usages confondus a été réalisée pour 2002 et 2003. Les volumes prélevés ont une répartition homogène sur la zone d'étude (Figure 11 et Figure 12).

La carte de répartition des prélèvements pour chaque type d'usage a été dressée à partir des données 2003 (Annexe 3). On note des contrastes assez importants dans les volumes prélevés.

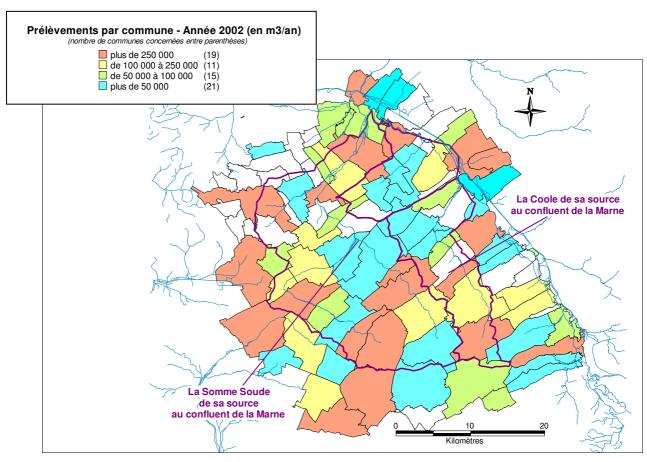


Figure 11 – Carte des prélèvements par commune (données AESN, 2002)

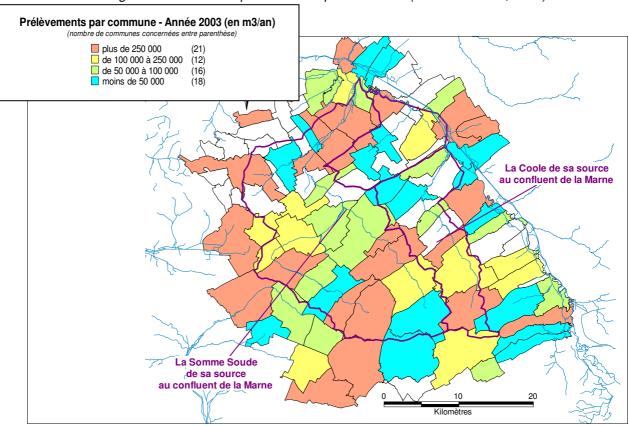


Figure 12 - Carte des prélèvements par commune (données AESN, 2003)

2.1.4 Carte des pressions

Le traitement des données de prélèvements 2003 a permis de mettre en évidence des communes plus sensibles que d'autres aux prélèvements dans la nappe (Annexe 4). Ainsi quatre classes ont été définies (Tableau 6 et Figure 13).

- La première catégorie correspond aux communes subissant une forte pression (prélèvements > 500 000 m³) ou ayant des prélèvements industriels : 15 communes sont concernées.
- La seconde catégorie concerne les communes dont les prélèvements AEP et/ou agricoles sont compris entre 100 000 et 500 000 m³: 19 communes sont concernées.
- La troisième catégorie comprend les 24 communes dont les prélèvements AEP et/ou agricoles sont compris entre 20 000 et 100 000 m³.
- La quatrième catégorie correspond aux communes où la pression est faible c'est-àdire des prélèvements AEP et/ou agricoles inférieurs 20 000 m³.

Catégories	Description
1	Prélèvements industriels importants et/ou 100 000 m³ < les prélèvements AEP < 500 000 m³ et/ou agricoles > 500 000 m³
2	100 000 m ³ < Prélèvements AEP < 500 000 m ³ et/ou 100 000 m ³ < agricoles < 500 000 m ³
3	20 000 m ³ < Prélèvements AEP< 100 000 m ³ et/ou 20 000 m ³ < agricoles < 100 000 m ³
4	Prélèvements AEP < 20 000 m ³ et/ou agricoles < 20 000 m ³

Tableau 6 - Description des 4 catégories de pression

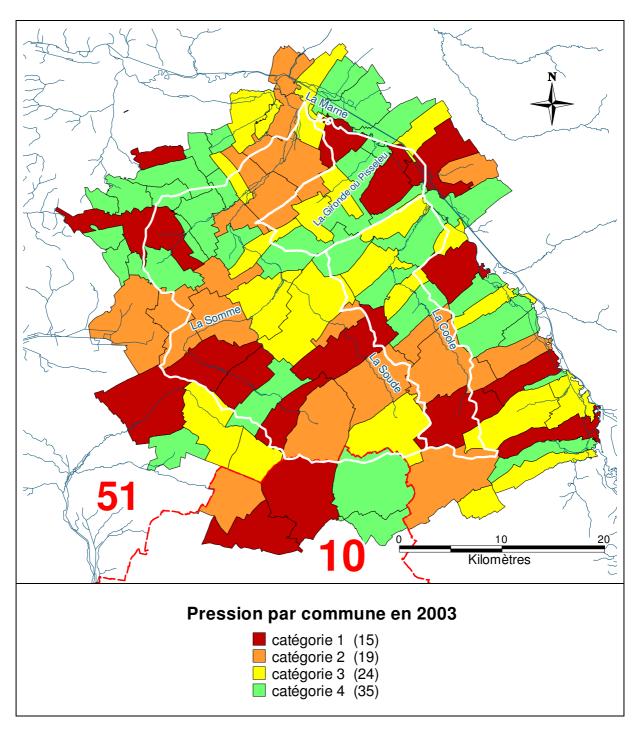


Figure 13 – Carte des pressions de la zone d'étude à partir des données AESN 2003

2.2 LES DONNEES DE LA DDAF DE LA MARNE (USAGE AGRICOLE)

La DDAF de la Marne a mis à disposition du BRGM le fichier des volumes prélevés pour chaque ouvrage d'irrigation inventorié (Annexe 5) et le fichier des surfaces irriguées (Annexe 6) sur la période 1998-2003 [à l'exception des données 2002 non communiquées].

Les ouvrages répertoriés sont référencés par un code forage (exemple CO01 pour bassin de la Coole, forage n°1) commun à tous les fichiers. Les données ont été triées et synthétisées à l'échelle des deux bassins versants étudiés. La correspondance entre le code forage de la DDAF 51 et l'indice BSS a été établie cartographiquement.

2.2.1 Volumes des prélèvements agricoles

Sur les deux bassins versants étudiés, on constate qu'entre 1998 et 1999, le volume global annuel prélevé pour les besoins agricoles augmente d'environ 500 000 mètres cubes. Pour ces deux années, le nombre de données ayant servi au cumul des volumes est sensiblement pareil (Tableau 7 et Figure 14).

En 2000 et 2001, les volumes prélevés sont bien inférieurs à ceux de 1998 et 1999 tandis que le nombre de données disponible en 2000 et 2001 est supérieur. On peut donc penser qu'en 2000 et 2001, les prélèvements agricoles ont été moindres que les deux années précédentes. En effet 2000 et 2001 sont connues comme étant des années plutôt humides. Cependant, il faut noter que les valeurs disponibles ne sont pas forcément les mêmes chaque année. Les prélèvements importants recensés en 1998 et 1999, n'ont pas été forcément pris en compte en 2000 et 2001 [par exemple les points CO11 et SS11 en Annexe 5].

En 2003, le nombre de données disponibles est le plus faible depuis 1998 et le volume prélevé est le plus important des cinq années. Les conditions climatiques particulièrement sèches de cette année ont induit des prélèvements exceptionnels en eau et vraisemblablement supérieurs à la valeur déclarée de 2.7 Mm³/an.

Volume des prélèvements agricoles sur les BV de la Somme-Soude et de la Coole					
Unités	1998	1999	2000	2001	2003
en m3	1 729 981	2 221 055	1 003 310	1 336 174	2 691 619
en Mm3	1.7	2.2	1.0	1.3	2.7
nombre de données	78	81	110	115	64

Tableau 7 – Synthèse des volumes prélevés pour l'usage agricole sur le secteur d'étude

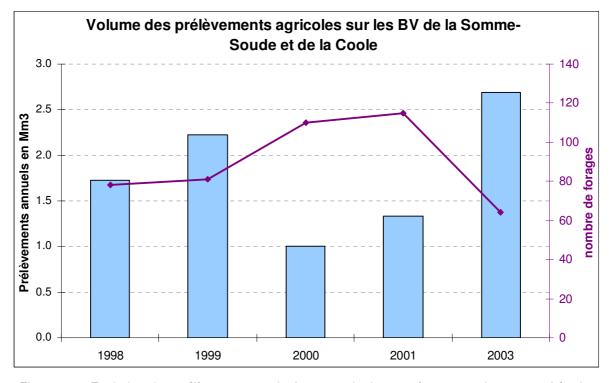


Figure 14 – Evolution des prélèvements agricoles annuels de 1998 à 2003 sur le secteur d'étude

2.2.2 Répartition géographique des prélèvements agricoles

En 1998, on constate que (Figure 15) :

- Pour le **bassin de la Somme-Soude**, les forages se répartissent équitablement entre la Soude, la Somme et la partie aval de la Somme-Soude. La zone médiane de ce bassin (après la confluence de la Somme avec la Soude) est exempte d'ouvrage d'irrigation recensé en 1998. 9 prélèvements dépassent 50 000 m³/an.
- Pour le bassin de la Coole, la quasi-totalité des forages d'irrigation se situent dans les 2/3 amont et en rive gauche avec un total de six ouvrages prélevant plus de 50 000 m³/an.
- Pour le bassin du Pisseleu, les forages d'irrigation se caractérisent par de faibles prélèvements.

En 2003, les ouvrages d'irrigations sur l'ensemble de la zone d'étude sont plus sollicités qu'en 1998 (Figure 16) : 25 forages ont prélevé plus de 50 000 m³/an dont 3 plus de 139 000 m³/an. Les prélèvements sont relativement équitablement répartis sur les trois bassins avec toutefois, une tendance plus importante en tête des bassins (2/3 sur le bassin amont de la Coole).

Il est impossible de savoir si les prélèvements se substituent d'une année à l'autre. En effet, les ouvrages prélevés chaque année ne sont pas forcément les mêmes puisque la rotation des points d'irrigation s'effectue en parallèle à la rotation des cultures.

La distance des différents ouvrages par rapport à la rivière a été estimée (Annexe 7).

- Dans le **bassin de la Coole**, les forages d'irrigation sont relativement bien répartis en termes de distance à la rivière (Figure 17) avec une majorité située à plus de 2 km.
- Par contre, dans le bassin de la Somme-Soude, près de la moitié (48%) des ouvrages sont situés à moins de 500 m de la rivière dont les deux tiers à moins de 250 m (Figure 18). Ces forages sont importants à prendre en compte pour l'évaluation de l'impact sur le débit de la rivière.

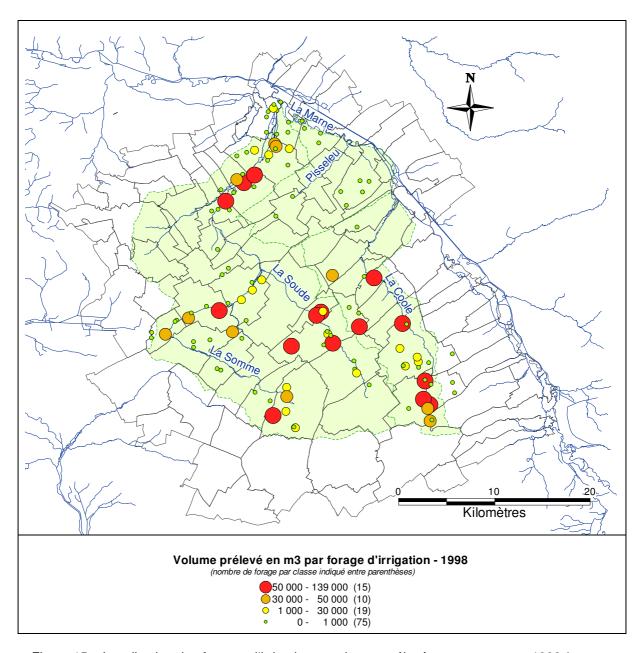


Figure 15 – Localisation des forages d'irrigation et volumes prélevés par ouvrage en 1998 (source DDAF51 et BRGM)

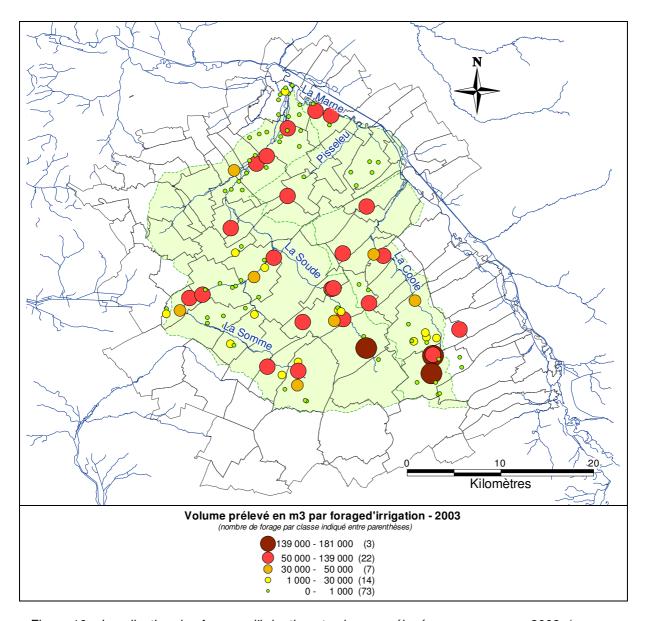


Figure 16 – Localisation des forages d'irrigation et volumes prélevés par ouvrage en 2003 (source DDAF51 et BRGM)

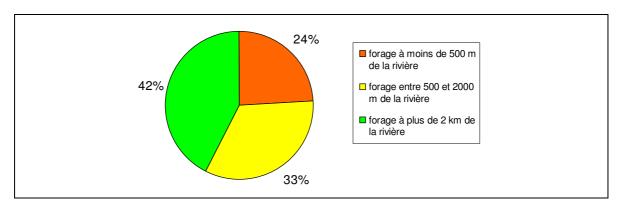


Figure 17 - Répartition des forages par rapport à leur distance à la Coole

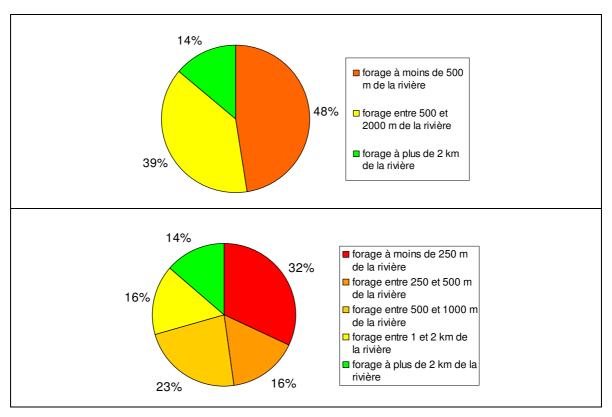


Figure 18 - Répartition des forages par rapport à leur distance à la Somme-Soude

2.2.3 Surfaces irriguées

Les superficies irriguées définies à partir des points de prélèvement ont été communiquées par la DDAF 51 sur la période 1998-2003, à l'exception de 2002 (Annexe 6). La synthèse des données a été effectuée sur les bassins versants étudiés (Tableau 8 et Figure 19).

Entre 1998 et 1999, on observe une augmentation de la superficie globale irriguée de près de 300 ha et entre 2000 et 2003 de presque 400 ha.

Entre 1999 et 2000, la superficie semble diminuer bien que le nombre de données pour ces deux années soit quasiment identique. En fait les données ne concernant pas les mêmes forages, la comparaison est difficile sachant que chaque forage renvoie à un autre système d'irrigation.

En 2003, les données disponibles sont moins nombreuses mais la superficie globale irriguée est plus importante. Les conditions climatiques exceptionnellement sèches pourraient expliquer que plus de parcelles ont nécessité un apport d'eau.

	Superficie annuelle irriguée globale							
	1998 1999 2000 2001 2003							
en ha	992	1 285	984	1 179	1 328			
nombre de données	76	80	83	119	67			

Tableau 8 – Evolution de la superficie irriguée globale annuelle dans les bassins de la Somme-Soude et de la Coole (source DDAF 51)

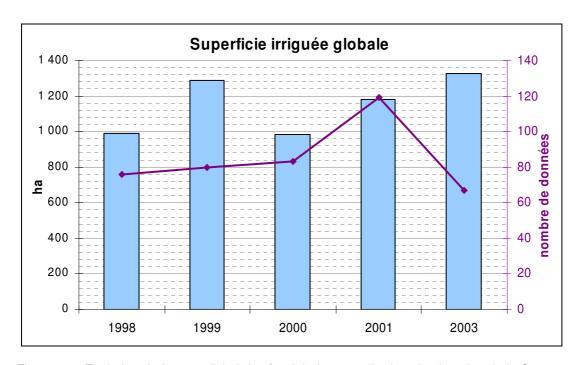


Figure 19 - Evolution de la superficie irriguée globale annuelle dans les bassins de la Somme-Soude et de la Coole (source DDAF 51)

2.2.4 Type de cultures irriguées

Selon les informations communiquées par la DDAF 51, les cultures irriguées prédominantes sur les deux bassins versants étudiés sont les **pommes de terre de consommation** qui couvre 70% des surfaces irriguées entre 1998 et 2003 (Figure 20 et Tableau 9).

En 1998, la culture de l'**oignon** arrive en second avec 17% des superficies irriguées en 1998. On note ensuite jusqu'en 2003 une diminution progressive de l'oignon au profit d'une diversification dans la production légumière (carotte, endives, haricot, betteraves, pois...).

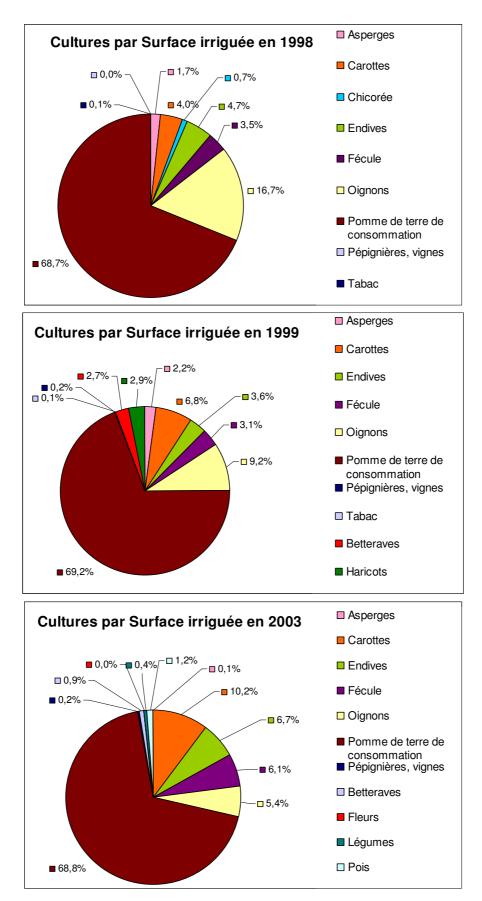


Figure 20 - Type de culture par surface irriguée en 1998, 1999 et 2003

	1998				1999			2003	
	Surface	Volume Prélevé	Dose	Surface	Volume Prélevé	Dose	Surface	Volume Prélevé	Dose
	Irriguée (ha)	(m ³)	(mm)	Irriguée (ha)	(m ³)	(mm)	Irriguée (ha)	(m ³)	(mm)
Asperges	16,50	15 200	92	28,80	34 760	121	1,00	600	60
Carottes	39,00	46 530	119	87,50	163 012	186	109,00	228 289	209
Chicorée	7,00	1 575	23						
Endives	46,00	34 320	75	46,00	24 990	54	72,00	100 624	140
Fécule	34,50	61 245	178	40,00	42 960	107	65,00	129 975	200
Oignons	164,36	286 632	174	118,50	222 811	188	58,00	127 492	220
Pomme de terre de consommation	677,42	1 228 984	181	888,46	1 625 793	183	737,00	1 951 292	265
Pépignières, vignes	0,25	25	10	2,25	275	12	2,00	1 530	77
Tabac	1,00	700	70	0,70	420	60			
Betteraves				34,50	11 955	35	10,00	4 526	45
Haricots				37,86	24 074	64			
Fleurs							0,00	35	
Légumes							4,00	8 925	223
Pois							13,00	4 990	38
Total	986,03	1 675 211		1284,57	2 151 050		1071,00	2 558 278	

Tableau 9 - Surfaces irriguées (d'après les données de la DDAF 51), volumes prélevés et calcul des doses par culture

2.3 LES DONNEES DE LA CHAMBRE D'AGRICULTURE DE LA MARNE (USAGE AGRICOLE)

2.3.1 Volumes des prélèvements pour l'irrigation

Des valeurs de volumes prélevés pour l'irrigation en 2002, 2003 et 2004 ont été fournies par la Chambre d'agriculture de la Marne. Ces données proviennent d'enquêtes faites auprès des agriculteurs. Le taux de réponse de ces enquêtes est proche de 100%. Toutefois, les volumes prélevés recensés sont attribués au siège social d'une exploitation dont les terres ne sont pas forcément sur le même territoire communal (Annexe 8).

Sur le Tableau 10 et la Figure 21, on constate que les volumes prélevés dans les deux bassins versants suivent la même évolution. Les prélèvements pour l'irrigation de 2003 sont les plus importants. En effet, il s'agit d'une année très sèche. Ils sont suivis par 2004 qui a également été sèche par rapport à 2002 où les volumes prélevés sont plus faibles sur l'année de près de 100 000 m³. Par ailleurs, les prélèvements sont 4 fois moins importants dans le bassin de Coole par rapport à celui de la Somme-Soude. Or le bassin de la Coole a une superficie plus faible d'uniquement 3 fois : il apparaît donc plus sensible aux prélèvements.

	quantité 2002	quantité 2003	quantité 2004
Volume d'eau prélevée déclaré pour l'irrigation dans le BV de la Coole (m³)	818 277.5	1 026 549.4	961 685.0
Volume d'eau prélevée déclaré pour l'irrigation dans le BV de la Somme-Soude (m³)	3 477 894.3	4 196 497.5	3 942 188.8
Total sur le secteur d'étude	4 296 171.8	5 223 046.9	4 903 873.8

Tableau 10 – Synthèse des volumes d'eau prélevés pour l'irrigation dans la zone d'étude (source : Chambre d'Agriculture de la Marne)

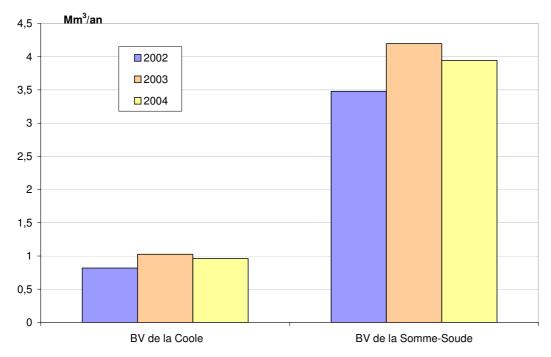


Figure 21 - Volumes d'eau prélevés pour l'irrigation dans la zone d'étude (source : Chambre d'Agriculture de la Marne)

2.3.2 Dose annuelle d'eau apportée à la culture de pomme de terre

Parmi les informations communiquées par la chambre d'agriculture de la Marne figure la dose annuelle d'eau apportée à la culture de pomme de terre de consommation. Son évolution permet de mettre en évidence (Figure 22) :

- L'année 2000 comme une année particulièrement humide, la part des doses « faibles » c'est-à-dire inférieure à 150 mm est majoritaire par rapport aux autres années;
- L'année 2003 comme une année sèche, la part des doses « importantes » c'est-àdire supérieures à 250 mm d'eau apportée est majoritaire par rapport aux autres années.

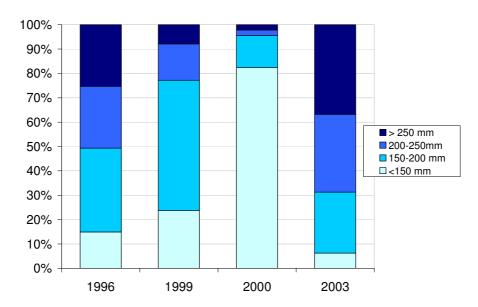


Figure 22 - Evolution de la dose annuelle d'eau apportée à la culture de pomme de terre de consommation (Source : Chambre d'agriculture de la Marne)

2.3.3 Surface Agricole Utilisable irriguée

Une autre donnée de comparaison à l'échelle du secteur d'étude est la part de la Surface Agricole Utilisable (SAU) irriguée.

- Dans le **bassin de la Coole**, la part de la SAU irriguée est de l'ordre de 3% (Figure 23). On note une augmentation notable de cette part entre 2003 (2.51%) et 2004 (2.82%).
- Dans le **bassin de la Somme-Soude**, la part de la SAU irriguée montre une augmentation régulière entre 2002 (3.22%) et 2004 (3.72%) (Figure 24).

Bien que la part de la SAU soit moins importante sur le bassin de la Coole, il apparaît à nouveau plus sensible à une augmentation des prélèvements que celui de la Somme-Soude. Une année sèche induit clairement une augmentation des prélèvements.

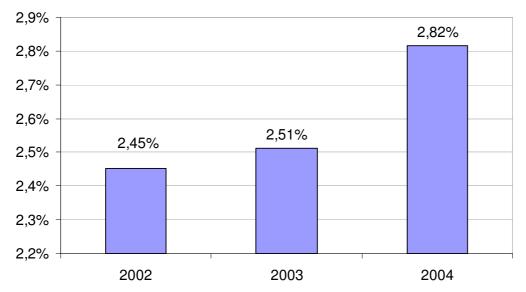


Figure 23 - Part de surfaces irriguées de la SAU dans le BV de la Coole (Source : Chambre d'agriculture de la Marne)

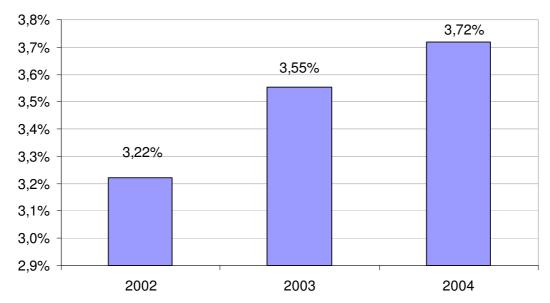


Figure 24 - Part de surfaces irriguées de la SAU dans le BV de la Somme-Soude (Source : Chambre d'agriculture de la Marne)

2.4 COMPARAISON DES VOLUMES PRELEVES POUR L'AGRICULTURE SUR LE SECTEUR D'ETUDE

2.4.1 Comparaisons des prélèvements pour 2003

Les données concernant la consommation agricole ont été comparées pour l'année 2003 selon leur origine : Agence de l'Eau Seine Normandie, DDAF de la Marne et Chambre d'Agriculture de la Marne (Tableau 11).

Volume des prélèvements agricoles sur les BV de la Somme-Soude et de la Coole (en m³/an)	Bassin de la Coole	Bassin de la Somme-Soude	Total
AESN	912 456	3 251 647	4 164 103
DDAF 51	894 874	1 796 745	2 691 619
Chambre d'agriculture 51	1 026 549	4 196 498	5 223 047

Tableau 11 – Comparaison des données 2003 pour les bassins de la Coole et de la Somme-Soude

Sur le total des prélèvements effectués **sur les deux bassins versants**, on note globalement une sous-estimation des valeurs provenant de la DDAF 51 (de 54% à 94%) et une surestimation des valeurs de la chambre d'agriculture 51 (de 20 à 48%).

- Dans le bassin de la Coole, les valeurs sont relativement proches avec un écart calculé de 2 à 15%.
- Dans le **bassin de la Somme-Soude**, les écarts entre les valeurs sont beaucoup plus importants (22 à 133%).

On note parmi les critères qui peuvent expliquer les écarts que :

- Les valeurs obtenues auprès de la Chambre d'Agriculture de la Marne sont issues d'une enquête auprès des agriculteurs. Les valeurs sont obtenues à l'échelle d'une exploitation et correspondent au volume prélevé par agriculteur déclaré dans la commune où se situe son siège. Ce qui signifie qu'un irrigant peut très bien irrigué sur le territoire d'une autre commune où sont ses terres mais qui ne fait pas partie du bassin versant concerné. De même qu'un exploitant dont le siège n'est pas localisé dans le bassin versant concerné mais dont les terres irriguées sont dans celui-ci, ne sera pas pris en compte dans ces valeurs ;
- Les données de l'AESN sont fonction du seuil de redevance et données par commune ;
- Les informations de la DDAF 51 sont obtenues par enquête auprès des exploitants et les résultats sont fonction de l'échantillon d'agriculteurs ayant répondus.

2.4.2 Estimation du volume prélevé en 2000 par référence aux besoins en eau des plantes et aux surfaces irriguées

Des données complémentaires ont été obtenus auprès de l'AGRESTE, organisme chargé de produire, d'analyser et de diffuser de l'information dans les domaines de l'agriculture, de la forêt, des industries agricoles et alimentaires et de l'espace rural : il s'agit des statistiques du Recensement Général de l'Agriculture de 2000. Les données concernent les besoins en eaux des plantes d'une part et les superficies irriguées d'autre part dans les bassins étudiés (Tableau 12).

Les statistiques confirment que les principales cultures irriguées sur le secteur d'étude sont les pommes de terre et les légumes qui nécessitent plus d'eau pour leur croissance et leur production que les céréales (Figure 25).

Pour l'année 2000, le volume des prélèvements calculé sur la base des besoins en eau estimés des plantes et pour une superficie irriguée de 2 466 ha, est d'environ 5.2 Mm³, soit 4 à 5 fois plus que la valeur fournie par la DDAF 51 (cf. annexe 5 - 1.02 Mm³). Selon toute probabilité la totalité des prélèvements n'est donc pas recensée.

L'année 2000 étant considérée comme particulièrement humide (18% des surfaces « irrigables » étaient réellement irriguées), on peut penser que pour une année moyenne, sèche ou très sèche comme en 2003 ou 2004, la superficie totale irriguée serait bien supérieure à 5 Mm³.

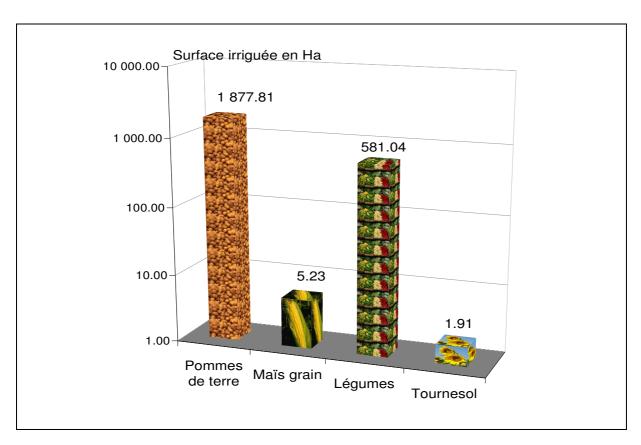
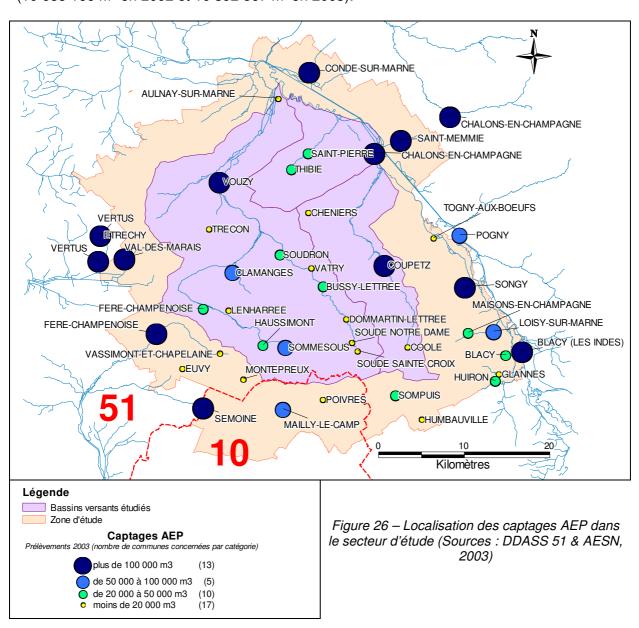


Figure 25 – Répartition des surfaces irriguées par type de culture. Source : Agreste – Recensement Agricole 2000

	Source :	Agreste -	Recenseme	nt Agricol	e 2000					
	Surfa	ce irriguée p	ar type de cul	ture et par c	ommunes o	u groupe de	commune (ha)			Superficie
Type de culture	Pommes de terre	Maïs grain	Maïs fourrage	Betterave	Blé tendre	Protéagineux	Légumes	Tournesol	Superficie	Irrigable
Besoin en eau des plantes	200 à 250 mm	75 à 100 mm	75 à 100 mm	50 à 75 mm			150 à 200 mm		Irriguée (ha)	(ha)
Besoin en eau moyen (mm)	225	87.5	87.5	62.5			175			
51023 AULNAY-SUR-MARNE	1	0	0	0		0	3	0	4	153
51049 BERGERES-LES-VERTUS	0	0	0	0	0	0	0	0	0	
51065 BLACY	0	0	0	0	0	0	0	0	0	(
51087 BREUVERY-SUR-COOLE	0	0	0	0	0	0	0	0	0	(
51099 BUSSY-LETTREE	85	0	0	0	0	0	6	0	91	55
51117 CHAMPIGNEUL-CHAMPAGNE	71	0	0	0	0	0	114	0	185	82
51146 CHENIERS	0	0	0	0	0	0	0	0	0	(
51148 CHEPPES-LA-PRAIRIE	0	0	0	0	0	0	0	0	0	(
51160 COMPERTRIX	0	0	0	0	0	0	0	0	0	
COUPETZ et CERNON et SAINT-QUENTIN-SUR-COOLE et VITRY-LA-VILLE	53	0	0	0	0	0	6	0	59	33
51226 ECURY-LE-REPOS	65	0	0	0	0	0	14	0	79	35
ECURY-SUR-COOLE et COOLUS et NUISEMENT-SUR-COOLE	36	0	0	0	0	0	11	0	47	350
51242 FAGNIERES	48	0	0	0	0	0	0	0	48	319
51244 FAUX-VESIGNEUL	96	0	0	0	0	0	12	0	108	579
51248 FERE-CHAMPENOISE	135	0	0	0	0	0	60	0	195	1 144
GERMINON et CHAINTRIX-BIERGES	52	0	0	0	0	0	0	0	52	144
51303 JALONS	41	0	0	0	0	0	56	0	97	39
LENHARREE et CONNANTRAY-VAUREFROY	132	0	0	0	0	0	15	0	147	822
51338 MAILLY-CHAMPAGNE	0	0	0	0	0	0	0	0	0	(
MAISONS-EN-CHAMPAGNE et COOLE et SOMPUIS	182	0	0	0	0	0	44	0	226	2 044
51357 MATOUGUES	32	0	0	0	0	0	0	0	32	27
51358 MAURUPT-LE-MONTOIS	0	0	0	0	0	0	0	0	0	
OGER et MESNIL-SUR-OGER et VERTUS et VOIPREUX	0	0	0	0	0	0	4	0	4	2:
PIERRE-MORAINS et CLAMANGES et VILLESENEUX	90	0	0	0	0	0	24	0	114	424
51435 POCANCY	133	0	0	0	0	0	77	0	210	919
RECY et CHALONS-EN-CHAMPAGNE	7	0	0	0	0	0	0	0	7	
51469 ROUFFY	0	0	0	0	0	0	0	0	0	
51483 SAINT-GIBRIEN	0	0	0	0	0	0	0	0	0	(
51504 SAINT-MARTIN-SUR-LE-PRE	0	0	0	0	0	0	0	0	0	(
51525 SARRY	0	5	0	0	0	0	0	2	7	60
SOGNY-AUX-MOULINS et MAIRY-SUR-MARNE	205	0	0	0	0	0	54	0	259	1 29
51545 SOMMESOUS	108	0	0	0	0	0	38	0	146	809
SOUDE et DOMMARTIN-LETTREE	47	0	0	0	0	0	0	0	47	310
51556 SOUDRON	0	n	0	0	n	0	n	0		0
51574 TOGNY-AUX-BOEUFS	0	0	0	0	0	0	0	0	0	(
51578 TRECON	0	0	0	0	0	0	0	0	0	
VASSIMONT-ET-CHAPELAINE et HAUSSIMONT et MONTEPREUX	49	0	0	0	0	0	14	0	63	410
51595 VATRY	87	0	0	0	0	0	0	0	87	360
51603 VELYE	0,	0	0	0	0	Ö	0	0	0	30.
51627 VILLENEUVE-RENNEVILLE-CHE	0	0	0	0	0	0	5	0	5	
VILLERS-LE-CHÂTEAU et SAINT-PIERRE et THIBIE	97	0	0	0	0	Ő	10	0	107	72:
51651 VOIPREUX	0	0	0	0	0	Ö	4	0	4	2
VOUZY et SAINT-MARD-LES-ROUFFY	28	0	0	0	0	0	9	0	37	150
TOTAL	1 878	5	0	0	0	0	581	้า	2 466	
TOTAL	. 070	J	U	U	U	U	301		2 400	10 002

des surfaces irrigables

			Volu	me prélevé	moyen (m3)				Total
Volume prélevé = (superficie irriguée * besoin en eau moyen)	4 225 073	4 576	0	0	0	0	1 016 820	0	5 246 469


Tableau 12 – Surfaces irriguées par type de culture et par commune. Source : Agreste – Recensement Agricole 2000

2.5 LES DONNEES DE LA DDASS DE LA MARNE CONCERNANT L'AEP

A partir des données fournies par la DDASS de la Marne, on a identifié la position exacte des captages AEP en établissant la correspondance avec l'indice national BSS (Banque de données du Sous-Sol gérée par le BRGM). Seules des données concernant les prélèvements AEP en nappe sur 2 communes (Etrechy et Vertus) ont été transmises par la DDASS. Le reste des données fournies concernant plutôt la production et la distribution de l'eau potable. Les données ont donc ensuite été complétées par celles de l'AESN.

Dans le secteur étudié, on recense 45 captages AEP, la plupart implantés à proximité d'un cours d'eau (Figure 26 et Tableau 13).

En 2002, 10 697 073 m³ d'eau ont été prélevés pour l'alimentation en eau potable par les communes du secteur étudié et **en 2003** 10 438 081 m³ (Tableau 14). Ces chiffres sont sensiblement comparables ceux obtenus uniquement à partir des données de l'AESN (10 685 166 m³ en 2002 et 10 392 567 m³ en 2003).

Bassin versant	Coole	Somme-Soude	Pisseleu
Nombre de prélèvement > 100 000 m³/an	1 : Coupetz	1 : Vouzy	1 : Châlons-en- Champagne
Nombre de prélèvements entre 50 000 et 100 000 m ³ /an	0	2 : Clamanges, Sommesous	0
Nombre de prélèvements entre 20 000 et 50 000 m ³ /an	0	4 : Soudron, Fère-Champenoise, Haussimont, Bussy-Lettrée	2 : Saint-Pierre, Thibie
Nombre de prélèvements < 20 000 m³/an	prélèvements O m³/an 2 : Coole, Chenier 6 : Trecon, Vatry, Lenharrée, Dommartin-Lettrée, Soudé-Notre- Dame, Soudé-Sainte-Croix		0
Nombre de prélèvements total	3	13	3

Tableau 13 – Synthèse des prélèvements AEP sur les bassins versants étudiés (Source : DDASS 51 et AESN, 2003)

			PRELEVEMENT	PRELEVEMENT	
DEPT	NOM DE LA COMMUNE	INDICE BSS		AEP ANNUEL 2003	EXPLOITANT
			en m3	en m³	
51	AULNAY-SUR-MARNE	01587X0008	14 245	17 851	COMMUNE D'AULNAY SUR MARNE
	BLACY	02253X0027	40 793	45 661	COM.COM DE VITRY LE FRANÇOIS
51	BLACY (LES INDES)	02253X0050	1 292 228	1 546 323	COM.COM DE VITRY-LE-FRANCOIS
51	BUSSY-LETTREE	01888X0009	21 558	28 643	COMMUNE DE BUSSY LETTREE
51	CHALONS-EN-CHAMPAGNE	01596X0001	4 979 370	4 643 740	COMMUNE DE CHALONS EN CHAMPAGNE
51	CHALONS-EN-CHAMPAGNE	01891X0019	770 710	674 800	COMMUNE DE CHALONS EN CHAMPAGNE
51	CHENIERS	01884X0023	4 965	4 965	COMMUNE DE CHENIERS
51	CLAMANGES	01886X0013	82 659	62 875	S.I.A.E.P. DE LA VALLEE DE LA SOMME
51	CONDE-SUR-MARNE	01588X0022	308 264	352 262	SIVOM DE CONDE
51	COOLE	02251X0001	16 542	16 223	COMMUNE DE COOLE
51	COUPETZ	01895X0010	320 782	332 896	S.I.V.O.M. DE LA COOLE
51	DOMMARTIN-LETTREE	02244X0008	16 322	16 282	COMMUNE DE DOMMARTIN LETTREE
51	ETRECHY	01878X0022	10 581	10 545	SIVOM DE LA REGION DE VERTUS
51	EUVY	02241X0006	11 138	8 730	COMMUNE D'EUVY
51	FERE-CHAMPENOISE	02241X0003	207 380	188 790	COM DE FERE CHAMPENOISE
51	FERE-CHAMPENOISE	01886X0002	32 098	38 422	COM DE FERE CHAMPENOISE
51	GLANNES	02253X0015	8 347	8 950	COMMUNE DE GLANNES
51	HAUSSIMONT	02243X0001	22 299	25 598	COMMUNE D'HAUSSIMONT
51	HUIRON	02253X0002	20 353	20 241	COMMUNE DE HUIRON
51	HUMBAUVILLE	02256X0014	7 320	7 079	COMMUNE DE HUMBAUVILLE
51	LENHARREE	01886X0001	22 726	16 245	COMMUNE DE LENHARREE
51	LOISY-SUR-MARNE	02253X0024	70 591	54 156	COM.COM DE VITRY LE FRANCOIS
10	MAILLY-LE-CAMP	02247X0001	92 323	95 316	COMMUNE DE MAILLY-LE-CAMP
51	MAISONS-EN-CHAMPAGNE	02252X0010	39 213	29 691	COMMUNE DE MAISONS EN CHAMPAGNE
51	MONTEPREUX	02242X0002	9 241	8 196	COMMUNE DE MONTEPREUX
51	POGNY	01896X0019	62 900	85 500	COMMUNE DE POGNY
10	POIVRES	02248X0007	12 290	13 160	COMMUNE DE POIVRES
51	SAINT-MEMMIE	01891X0017	457 494	469 191	COM DE ST MEMMIE
51	SAINT-PIERRE	01884X0002	34 829	33 343	COMMUNE DE ST PIERRE
10	SEMOINE	02246X0012	110 041	113 612	SYND DE LA MAURIENNE
51	SOMMESOUS	02243X0016	131 400	50 000	COMMUNE DE SOMMESOUS
	SOMPUIS	02255X0002	50 143	41 822	COMMUNE SOMPUIS
51	SONGY	01896X0025	128 673	114 936	S.I.A.E.P. DE PRINGY
	SOUDE SAINTE CROIX	02244X0009	12 488	16 100	COMMUNE DE SOUDE
_	SOUDE NOTRE DAME	02244X0004	5 360	6 350	COMMUNE DE SOUDE
	SOUDRON	01887X0005	23 097	25 035	COMMUNE DE SOUDRON
_	THIBIE	01883X0013	23 543	21 457	COMMUNE DE THIBIE
	TOGNY-AUX-BOEUFS	01896X0003	9 156	10 102	COMMUNE DE TOGNY AUX BOEUFS
51	TRECON	01886X0009	9 099	8 493	COMMUNAUTE REGION DE VERTUS
51	VAL-DES-MARAIS	01878X0018	326 071	341 968	COMMUNAUTE COMMUNES REGION VERTUS
51	VASSIMONT-ET-CHAPELAINE	02243X0020	9 177	10 563	COMMUNE DE VASSIMONT ET CHAPELAINE
	VATRY	01888X0010	8 203	8 595	COMMUNE DE VATRY
	VERTUS	01878X0022	273 928	274 186	COMMUNAUTE COMMUNES REGION VERTUS
51	VERTUS	01878X0015	377 630	337 330	COMMUNAUTE COMMUNES REGION VERTUS
51	VOUZY	01882X0020	209 503	201 858	SYND. VALLEES DE LA BERME & SOMME S
	TOTAL		10 697 073	10 438 081	

Tableau 14 - Captages AEP et volumes prélevés (Sources : DDASS 51, AESN, 2002 et 2003)

2.6 LES PRELEVEMENTS INDUSTRIELS

Les données fournies par la DRIRE sont incomplètes concernant la localisation des points de prélèvement et les volumes prélevés. Elles ne concernent que la réglementation des entreprises (arrêté préfectoral, rubriques de la nomenclature des ICPE). Les industriels soumis à autorisation doivent respecter selon l'arrêté préfectoral pris par l'administration un volume maximal de prélèvement en nappe ou en rivière. Dans les faits, la quantité réellement prélevée n'est pas connue. D'autre part, les prélèvements trop faibles pour être soumis à *Autorisation* ou *Déclaration* dans le cadre d'une réglementation ne sont pas recensés par la DRIRE.

La liste des prélèvements industriels dans la nappe (sites industriels concernés et volumes associés) a pu être établie pour 2003 uniquement à partir des données de l'Agence de l'Eau Seine-Normandie (Tableau 15). On ne tiendra compte dans cet inventaire que des industriels qui versent une redevance à l'Agence de l'Eau. Les industriels non assujettis à la redevance sont ceux intégrés à une collectivité, ceux qui n'ont pas de rejet à l'égout dont les prélèvements sont inférieurs au seuil de 16 060 m³/an.

Les prélèvements les plus importants (plus de 500 000 m³ à l'année) se font à Matougues et à Châlons-en-Champagne (Figure 27). Les prélèvements de 100 000 à 500 000 m³ sont localisés majoritairement dans la partie Ouest, Sud-Ouest de notre zone d'étude, dans les régions de Vertus, Fère-Champenoise, Normée, Haussimont et Mailly-le-Camp. A noter, qu'aucun prélèvement industriel n'est recensé dans le bassin de la Coole.

Nom point	Commune	eau	volume en étiage (m³/an)	Part en étiage	volume total en m³/an
COLLEGE ST EXUPERY	AVIZE	nappe	10 373	19%	56 056
SAEM EUROPORT VATRY	BUSSY LETTREE	nappe	11 036	37%	29 552
J.GRANTIL PAPIERS PEINTS	CHALONS EN CHAMPAGNE	nappe	3 037	79%	3 858
J.GRANTIL PAPIERS PEINTS	CHALONS EN CHAMPAGNE	nappe	0	0%	234
J.GRANTIL PAPIERS PEINTS	CHALONS EN CHAMPAGNE	nappe	0	0%	4 584
J.GRANTIL PAPIERS PEINTS	CHALONS EN CHAMPAGNE	nappe	0	0%	274
J.GRANTIL PAPIERS PEINTS	CHALONS EN CHAMPAGNE	nappe	12 842	29%	43 648
J.GRANTIL PAPIERS PEINTS	CHALONS EN CHAMPAGNE	nappe	25 362	61%	41 618
SALLE POLYVALENTE DE CHALONS/CH.	CHALONS EN CHAMPAGNE	nappe	9 748	11%	89 372
SOUDAGE PRODUCTION SERVICES	CHALONS EN CHAMPAGNE	nappe	196 695	40%	492 954
STATION D'EPURATION DE CHALONS	CHALONS EN CHAMPAGNE	nappe	4 076	46%	8 818
CRISTAL UNION DEVELOPPEMENT	FAGNIERES	nappe	3 918	26%	15 138
CRISTAL UNION DEVELOPPEMENT	FAGNIERES	nappe	3 306	68%	4 843
CRISTAL UNION DEVELOPPEMENT	FAGNIERES	surface	34 190	62%	54 748
SAS PARMENTINE PRODUCTION	FERE CHAMPENOISE	nappe	21 205	40%	52 799
TEREOS SA	FERE CHAMPENOISE	nappe	133 768	69%	193 938
TEREOS SA	FERE CHAMPENOISE	nappe	17 903	47%	37 987
TEREOS SA	FERE CHAMPENOISE	nappe	62 541	52%	121 247
AVEBE HAUSSIMONT	HAUSSIMONT	nappe	200 684	49%	409 273
SARL TRANSLEG	LENHARREE	nappe	25 320	73%	34 638
GROUPEMENT DE CAMP	MAILLY LE CAMP	nappe	94 022	41%	230 102
GROUPEMENT DE CAMP	MAILLY LE CAMP	nappe	16 398	46%	35 508
GROUPEMENT DE CAMP	MAILLY LE CAMP	nappe	1 258	16%	7 669
MC CAIN ALIMENTAIRE	MATOUGUES	nappe	277 834	42%	655 170
MC CAIN ALIMENTAIRE	MATOUGUES	nappe	9 914	42%	23 652
SICA MALTEUROP	PRINGY	nappe	26 650	42%	63 487
SICA MALTEUROP	PRINGY	nappe	32 373	38%	86 266
ESSILOR INTERNATIONAL	SAINT MARTIN SUR LE PRE	nappe	86 577	88%	98 844
DISTILLERIE DE LA REGION DE CHALONS	VERTUS	nappe	7 213	43%	16 954
DISTILLERIE DE LA REGION DE CHALONS	VERTUS	nappe	39 630	43%	91 510
	TOTAL		1 367 873	46%	3 004 741

Tableau 15 – Données de prélèvements industriels du secteur (Source AESN, 2003)

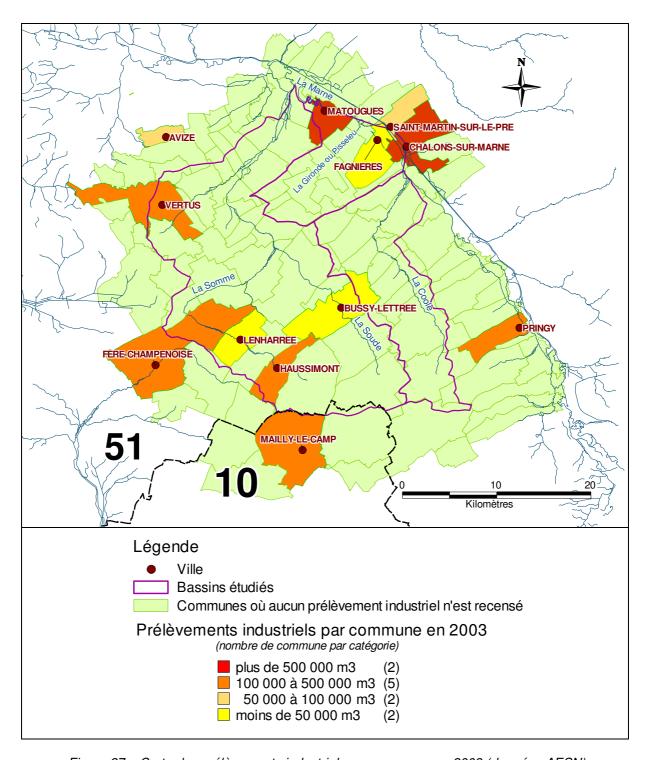


Figure 27 – Carte des prélèvements industriels par commune en 2003 (données AESN)

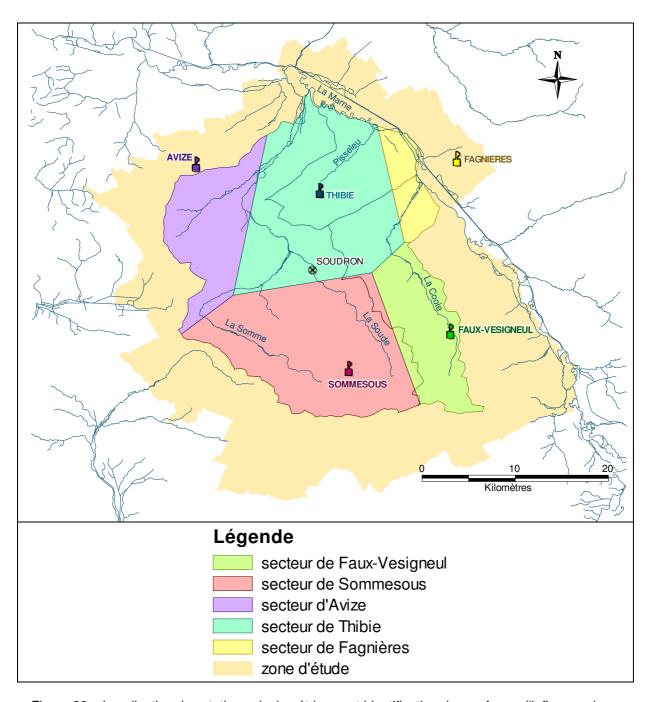


Figure 28 – Localisation des stations pluviométriques et identification des surfaces d'influence dans les bassins versants étudiés

3 Données météorologiques

Les précipitations mensuelles ont été obtenues auprès de Météo France de janvier 1975 à décembre 2004 pour les 6 stations les plus proches du secteur d'étude (Tableau 16).

Code station	Nom de la station	XL2E	YL2E
51029003	AVIZE	724 300	2 440 400
51242001	FAGNIERES	752 300	2 441 000
51244001	FAUX-VESIGNEUL	751 600	2 422 500
51545001	SOMMESOUS	740 700	2 418 500
51556001	SOUDRON	736 800	2 429 000
51566001	THIBIE	737 600	2 437 600

Tableau 16 – Liste des stations pluviométriques prises en compte pour l'étude

3.1 IDENTIFICATION DES SURFACES D'INFLUENCE DANS LES BASSINS VERSANTS

L'application de la méthode des polygones de Thiessen donne des coefficients de pondération par surface d'influence pour chaque poste pluviométrique concerné. La station de Soudron a été écartée du calcul en raison de sa localisation intermédiaire, trop proche de celle de Thibie qui a été préférée¹ (Figure 28 et Tableau 17). L'identification des surfaces d'influence va permettre le calcul d'une lame d'eau moyenne sur l'ensemble des bassins versants étudiés.

- Le bassin de la Somme-Soude est à moitié sous l'influence de la station de Sommesous (49%). Cette part correspond à la partie amont du bassin lorsque les cours de la Soude et de la Somme ne sont pas encore réunis. La moitié restante du bassin est sous l'influence équitablement répartie des stations d'Avize (24%) et de Thibie (26%).
- Le **bassin de la Coole** est pour ses deux tiers dans le secteur de la station de Faux-Vesigneul (57%). Cette part est située à l'amont du bassin. Sa partie médiane, se reportant au quart du bassin, appartient au secteur d'influence de la station de Thibie (26%). Enfin, les 13% du bassin en aval sont soumis au secteur de Fagnières.
- Le **bassin du Pisseleu** est à 83% dans le secteur de Thibie et au 17% restant dans le secteur de Fagnières.

_

Le coefficient de corrélation entre la série de Thibie et celle de Soudron est de 93%.

Elaboration de règles de gestion volumique de la ressource en eau pour les bassins versants de la Somme-Soude et de la Coole (51)

	Somme Soude		Cool	е	Pissele	u	Préc	ipitations (mm)
	Km²	%	Km²	%	Km²	%	Maximum	Moyenne	Minimum
Faux-Vesigneul	7,047	1	97,69	57	0	0	960,70	695,21	467,00
Sommesous	239	49	6,378	4	0	0	1 132,40	802,93	537,20
Avize	114,8	24	0	0	0	0	1 001,40	693,71	428,50
Thibie	124,6	26	45,22	26	90,16	83	1 013,10	657,63	426,90
Fagnières	0	0	22,04	13	18,73	17	923,70	639,83	428,70

Tableau 17 - Surfaces d'influence et les précipitations de chaque station par bassin versant

3.2 GRAPHIQUE DES PRECIPITATIONS MOYENNES ANNUELLES

Le graphique des précipitations moyennes annuelles des cinq stations sur la période de 1975 à 2004 (Figure 29) montre :

- Des précipitations globalement plus importantes enregistrées à Sommesous. Les hauteurs de pluie mesurées à la station de Sommesous sont quasiment toujours supérieures d'environ 10% à celles des quatre autres stations, à l'exception des années 1984 et 1990 où la station d'Avize et en 1980 la station de Faux-Vesigneul notent des hauteurs supérieures;
- Des précipitations globalement plus faibles relevées à Fagnières ;
- Une année particulièrement sèche en 1976 ;
- Une année particulièrement humide en 2001.

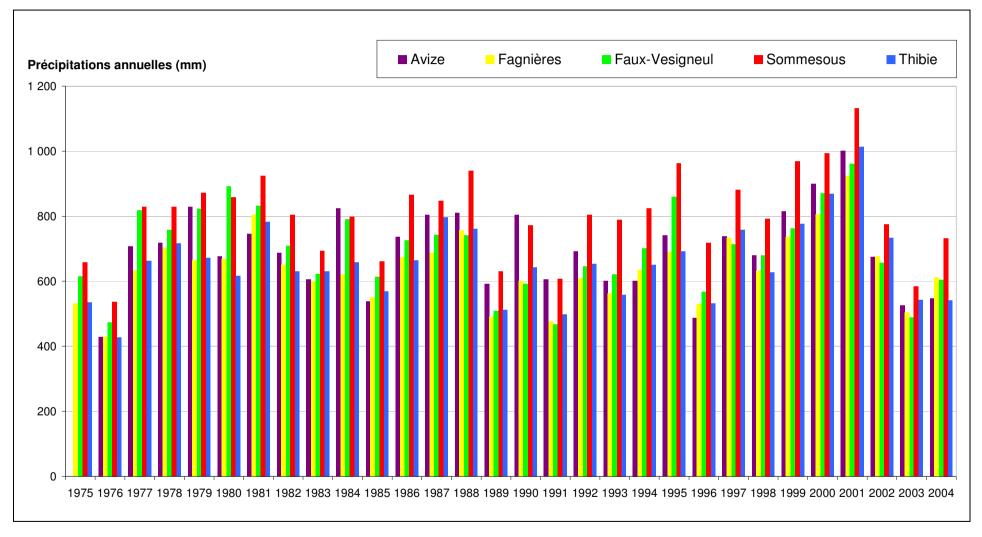


Figure 29 – Précipitations annuelles mesurées sur cinq stations (période 1975-2004)

3.3 GRAPHIQUE DE STATISTIQUES

Les statistiques annuelles faites sur les cinq stations (Figure 30) montrent des précipitations moyennes annuelles, non pondérées, comprises entre 639.8 mm et 802.9 mm, soit une moyenne égale à 698 mm.

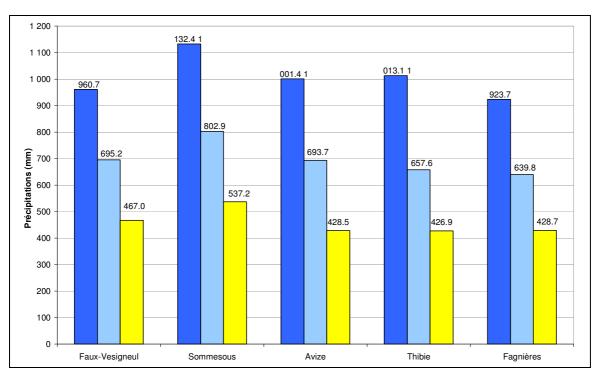


Figure 30 – Précipitations maximale, moyenne et minimale annuelles mesurées sur les cinq stations (données METEO France - période 1975-2004)

3.4 PRECIPITATIONS EFFICACES

Dans le cadre de l'étude de la gestion d'une ressource en eau souterraine, il est nécessaire de différencier les précipitations d'hiver (entre octobre et avril) des précipitations d'été (entre mai et septembre) : les précipitations d'hiver donnent lieu à une **précipitation efficace** qui alimente les nappes et les cours d'eau sans être utile pour l'agriculture dont les besoins sont alors inexistants ; les précipitations d'été ne produiront pas de précipitations efficaces mais seront utiles pour l'agriculture dont les besoins sont alors maximums.

La modélisation pluie-niveau et pluie-débit permettra ultérieurement d'évaluer mois par mois la pluie efficace sur le bassin versant concerné.

Néanmoins en première approximation, on peut se référer à la carte de France des précipitations efficaces moyennes annuelles calculées sur la période 1946-2001 (Figure 31). Sur le secteur d'étude, la lame d'eau moyenne annuelle des précipitations efficaces s'étend de 50 à 100 mm au Nord, en aval des bassins, et peut atteindre 200 mm en zone amont des bassins et en partie Ouest, à proximité des reliefs topographiques. En comparant avec les précipitations moyennes annuelles qui sont de l'ordre de 698 mm/an, on s'aperçoit que la pluie efficace représente moins de 30 % de la pluie, les 70 % restants s'évaporant. La part évaporée n'alimentera ni les nappes, ni les cours d'eau mais participera à couvrir en été une partie des besoins de l'agriculture.

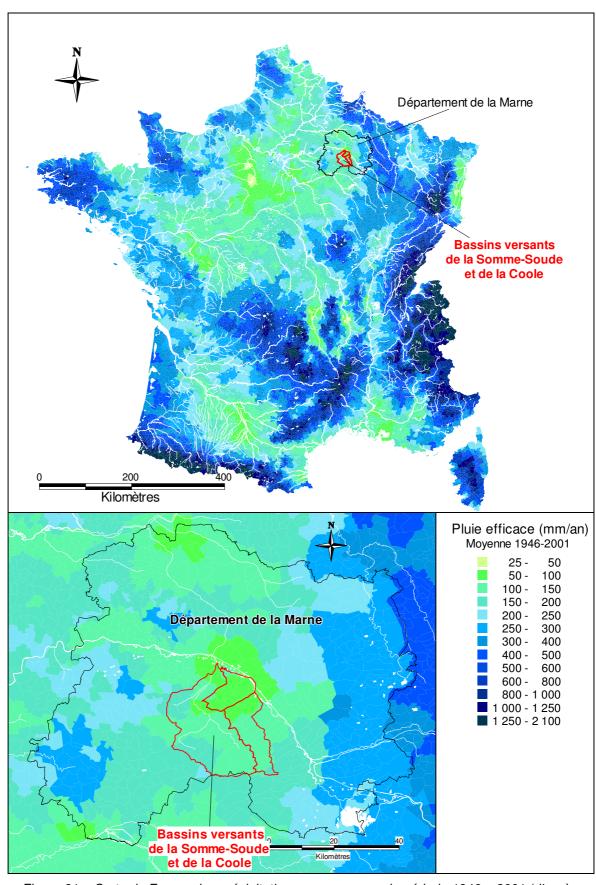


Figure 31 – Carte de France des précipitations moyennes sur la période 1946 – 2001 (d'après MEDD)

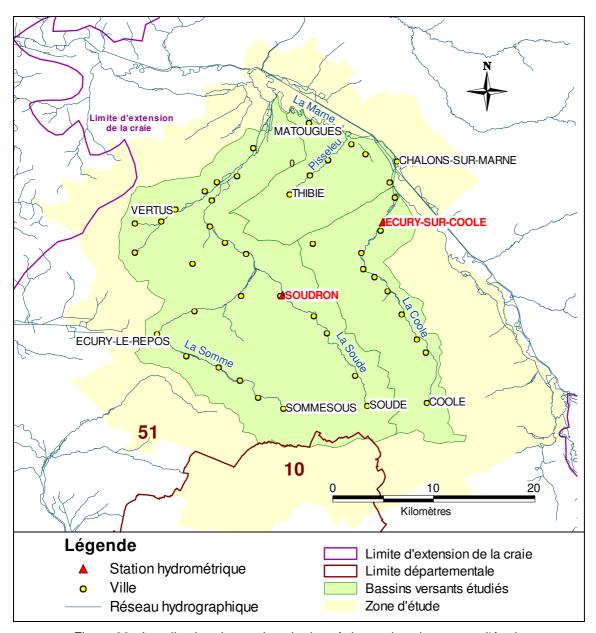


Figure 32 - Localisation des stations hydrométriques dans le secteur d'étude

4 Données de débits des rivières

Dans la zone d'étude, les débits de **Soude** et de la **Coole** sont mesurés respectivement aux **stations de Soudron et d'Ecury-sur-Coole** (Figure 32). Ces stations sont gérées par la DIREN Champagne-Ardenne. La station hydrométrique de Soudron, à 110 m d'altitude, mesure et enregistre les débits journaliers de la Soude depuis 1968 (11 479 valeurs). La station d'Ecury-sur-Coole, à 85 m d'altitude, recueille ceux de la Coole dans sa partie aval depuis 1996 (1 113 valeurs).

- Pour la **Coole**, les valeurs de débits journaliers sont disponibles entre le 1^{er} décembre 1996 et le 18 décembre 1999², soit trois années de suivi (Figure 33).
- Pour la **Soude**, les valeurs de débits journaliers sont disponibles du 6 mars 1968 au 18 décembre 1999² (Figure 34), puis du 1^{er} avril 2005 au 3 novembre 2005.

Le graphique comparatif des débits de la Soude et de la Coole montre des valeurs très proches (Figure 35) ; on peut admettre en première approximation que le régime des deux rivières est similaire.

La Soude a connu deux périodes d'assec recensées en 1976 (Tableau 18).

Année	Date premier jour	Date dernier jour	Nb. de jours
1976	22/08/1976	31/08/1976	10
1976	23/10/1976	23/11/1976	32

Tableau 18 – Date et durée des assecs de la Soude

Des données complémentaires concernant les assecs sur les deux rivières ont été recueillies auprès de la DIREN Champagne-Ardenne (Annexe 9). Cependant, elles ne concernent que 2003, 2004 et 2005. Or, pour ces trois années, on ne possède pas de valeurs de débit pouvant être recoupées avec ces relevés. Ces données sont difficilement utilisables.

- En 2003, nous ne possédons que des données d'assec en termes de kilomètres pour la Coole et la Somme-Soude (ce qui ne permet pas d'étendre à la Soude).
- En 2004, les relevés des assecs sont disponibles avec des relevés en points localisés et datés. Cependant, nous ne disposons pas de données de débit sur cette période pour pouvoir croiser les données.
- En 2005, des relevés des assecs sont disponibles sous la même forme qu'en 2004, à ceci près qu'ils ne sont pas datés. Il est alors difficile de mettre en relation ces données avec les valeurs de débits enregistrés sur la Soude.

Par ailleurs des valeurs d'une campagne de jaugeage pour le bassin de la Somme-Soude et une pour la Coole nous ont été fournies. Ni les dates, ni la précision des mesures n'ont été mentionnées. De nouvelles campagnes de jaugeages devront être réalisées dans le cadre d'une étude complémentaire pour affiner cette interprétation.

Arrêt des mesures après la tempête de décembre 1999 qui a endommagé la station hydrométrique.

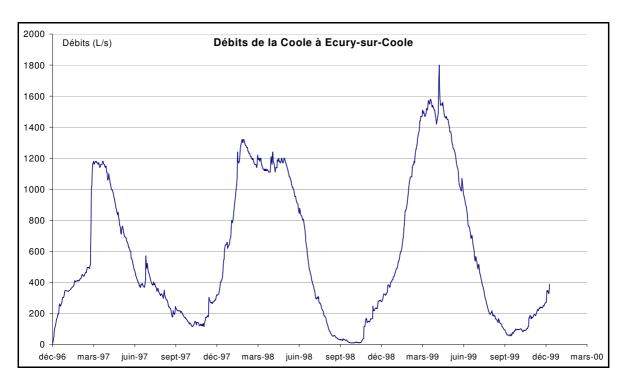


Figure 33 - Débits de la Coole à Ecury-sur-Coole

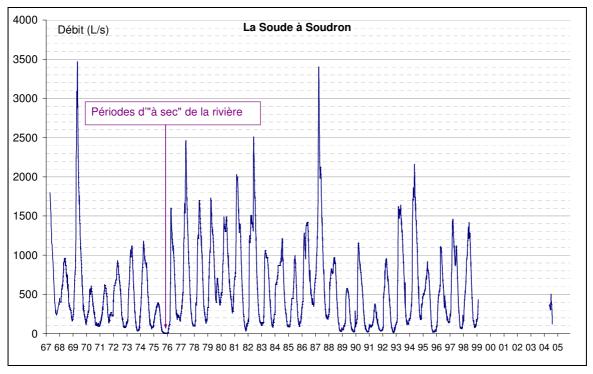


Figure 34 – Débits de la Soude à Soudron

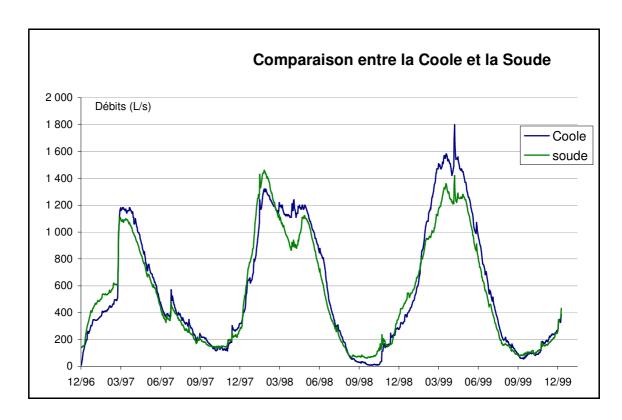


Figure 35 – Comparaison entre les débits de la Coole et de la Soude sur la même période

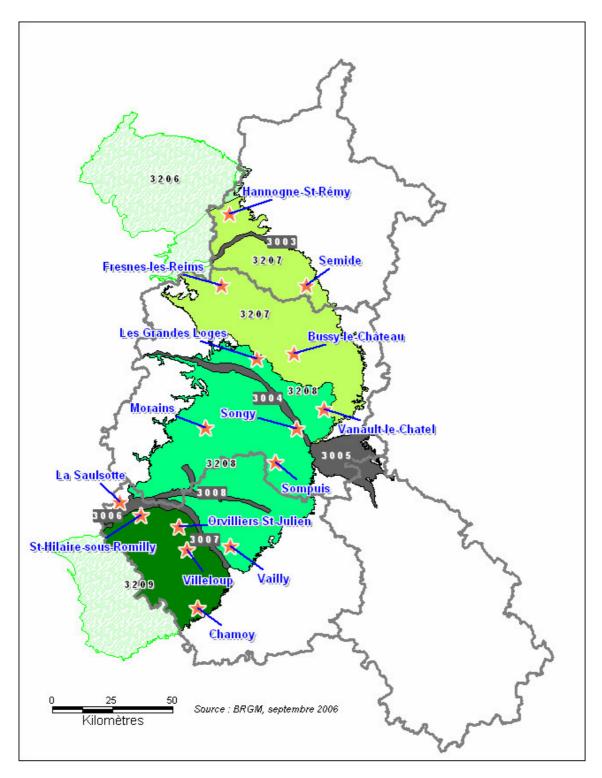


Figure 36 – Réseau de surveillance de la nappe de la craie en région Champagne-Ardenne

5 Données de niveau de nappe

La nappe de la craie est l'aquifère principal est région Champagne-Ardenne (Figure 36). Son extension se fait selon un croissant qui part du Sud-Ouest du département des Ardennes jusqu'au Nord-Est du département de l'Aube. Le secteur d'étude est entièrement inclus dans la masse d'eau (MES) n°3208, dite « craie de Champagne centre et Sud ». La définition d'une MES repose sur les principes suivants (circulaire DCE 2003/03) :

- Les masses d'eau sont délimitées sur la base de critères géologiques et hydrogéologiques; une masse d'eau correspond en général à tout ou partie d'entités hydrogéologiques définies dans le référentiel BD RHF.
- Les limites de masses d'eau sont stables et durables (limites géologiques étanches, crêtes piézométriques stables, lignes de courant).
- La délimitation est organisée à partir d'une typologie, basée sur la nature géologique et le comportement hydrodynamique des systèmes aquifères.

C'est ainsi que la limite Nord de la MES n°3208 a été choisie comme étant la crête piézométrique existant entre le bassin de la Marne et le bassin de la Vesle et que la limite Sud retenue correspond au cours d'eau de la Seine.

Les données disponibles sur les niveaux de nappe dans le secteur d'étude sont de deux types :

- La carte piézométrique établie en 2002 en période de hautes et basses eaux pour l'ensemble de la nappe de la craie (MES n°3207, 3208 et 3209) ;
- les chroniques piézométriques des 5 ouvrages assurant le suivi et la caractérisation de la MES n°3208 :

0	01584X0023/LV3	51	GRANDES-LOGES(LES)
0	01885X0002/S1	51	MORAINS
0	01894X0002/S1	51	VANAULT-LE-CHATEL
0	01897X0002/S1	51	SONGY
0	02255X0003/S1	51	SOMPUIS

5.1 LA PIEZOMETRIE DE LA NAPPE DE LA CRAIE EN 2002

Une campagne piézométrique de la nappe de la Craie, sur l'ensemble de la région Champagne-Ardenne, a été réalisée en 2002. Les résultats obtenus sont décrits dans le rapport BRGM « Cartographie de la piézométrie de la nappe de la craie en Champagne-Ardenne - Rapport final - BRGM/RP-52332-FR » de mai 2003.

5.1.1 Carte des Hautes Eaux d'avril 2002

Les mesures de niveau nécessaires à établir la carte piézométrique ont été effectuées du 8 avril au 25 avril 2002. Les points d'eau susceptibles d'être mesurés ont été extraits de la BSS. Au total, 517 points ont été retenus couvrant toute la région Champagne-Ardenne. La maille choisie consistait en 3 ou 4 points par huitième de feuille géologique au 1/50 000ème en favorisant une répartition géographique homogène (villages et points isolés).

La nappe de la craie présentait en 2002 un état de recharge supérieur à la normale (Figure 37).

5.1.2 Carte des Basses Eaux de septembre-octobre 2002

Les mesures de niveau nécessaires à la réalisation de la carte piézométrique ont été effectuées du 23 septembre au 4 octobre 2002. Tous les points d'eau ayant fait l'objet de mesures lors de la campagne d'avril 2002 ont été revisités. Certains de ces points étant alors assecs (26 points) ou inaccessibles (propriétaire absent), de nouveaux points mesurables ont été recherchés afin de garder une répartition géographique aussi homogène. 490 mesures piézométriques ont été retenues pour cette campagne.

Le niveau des basses eaux atteint en octobre 2002 correspondait à un niveau "normal" ou "habituel" (Figure 38).

5.1.3 Piézométrie dans le secteur d'étude

Dans les deux bassins d'études Somme-Soude et Coole, les écoulements de la nappe sont orientés vers le Nord, Nord-Ouest en tête de bassin. Puis en partie aval, ils se dirigent vers le Nord-Est. Le drainage des rivières du bassin est marqué dans le sens des écoulements. La vallée de la Marne constitue au Nord-Est l'un des points bas qui drainent la nappe en ce sens dans les bassins d'étude.

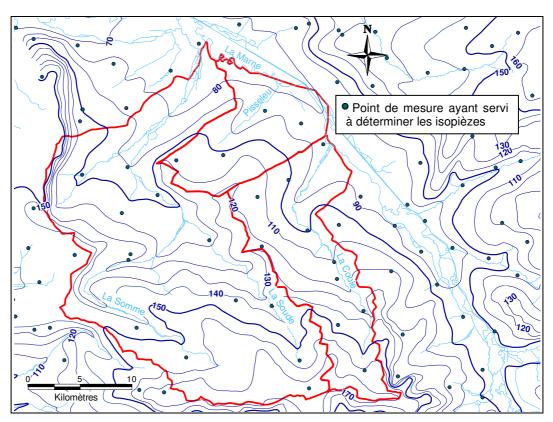


Figure 37 – Nappe de la craie : carte piézométrique en situation de hautes eaux (avril 2002)

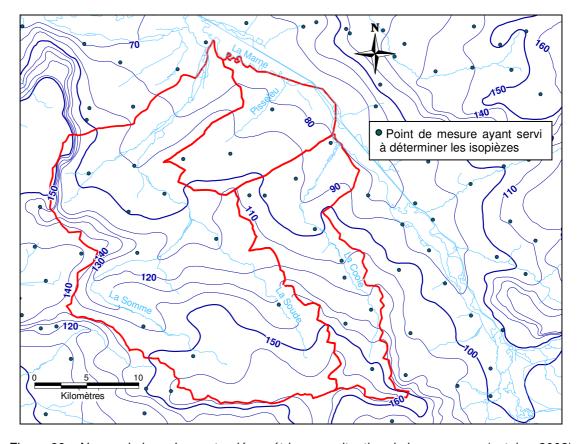


Figure 38 – Nappe de la craie : carte piézométrique en situation de basses eaux (octobre 2002)

5.2 LES PIEZOMETRES DE SUIVI DU RESEAU AESN

Il existe 5 piézomètres dans le voisinage de la zone d'étude aucun à l'intérieur même du secteur d'étude (Figure 39).

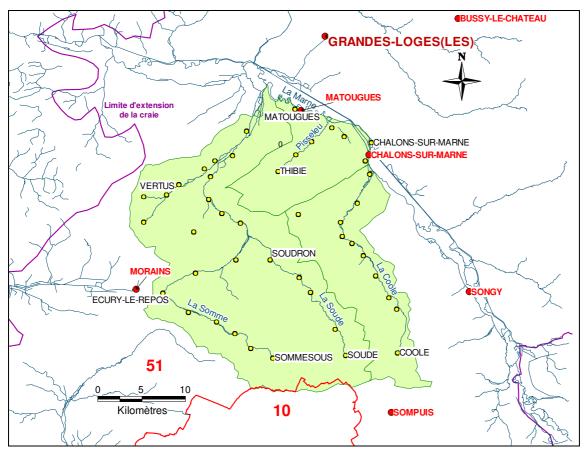


Figure 39 - Localisation des piézomètres suivis par le BRGM dans le secteur d'étude

Ces piézomètres, qui captent soit la craie soit les alluvions sur craie sont gérés et suivis par le BRGM pour le Ministère de l'Ecologie et du Développement Durable (MEDD). Les historiques de données piézométriques sont disponibles sur le site http://seine-normandie.brgm.fr/. Il s'agit des piézomètres suivants :

- 01891X0047 à Châlons-en-Champagne (alluvions de la Marne) (Figure 40) ;
- 01588X0002 à Matougues (alluvions de la Marne sur craie) (Figure 41) ;
- 01885X0002 à Morains (craie MES 3208) (Figure 42) ;
- 02255X0003 à Sompuis (craie MES 3208) (Figure 43);
- 01897X0002 à Songy (craie MES 3208) (Figure 44).

5.2.1 Piézomètres de Châlons-en-Champagne et de Matougues

Les piézomètres de **Châlons-en-Champagne** (Figure 40) et de **Matougues** (Figure 41) captent les alluvions de la Marne. Ils sont peu représentatifs de la situation hydrogéologique de la nappe de la craie dans les bassins versants étudiés.

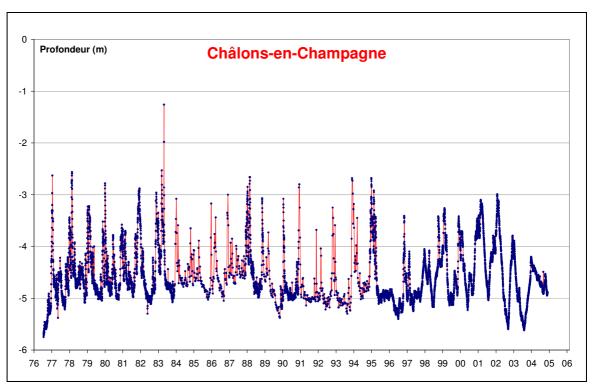


Figure 40 – Enregistrements du piézomètre de Châlons-en-Champagne

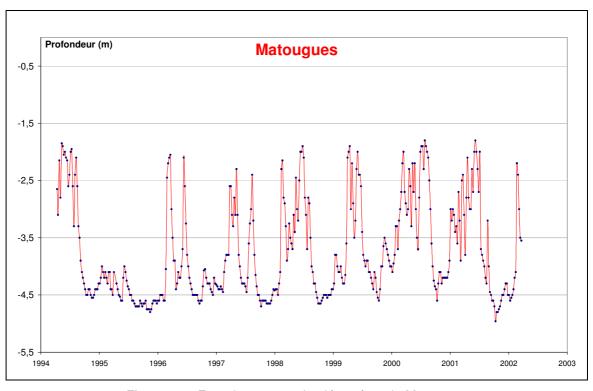


Figure 41 – Enregistrements du piézomètre de Matougues

5.2.2 Piézomètres de Morains, Sompuis et Songy

Bien que situés à l'extérieur des bassins de l'étude, les piézomètres de Morains, Sompuis et Songy semblent mieux représenter l'état de la nappe de la craie dans la zone d'étude.

Le piézomètre de **Morains** (Figure 42) est peu profond et situé dans le bassin versant du Petit Morin, à proximité de sa source. Des niveaux de nappe très bas sont enregistrés en 1976. Sa localisation dans la vallée du Petit-Morin fait de sa chronique une mauvaise représentation de la situation de notre secteur d'étude.

Le piézomètre de **Sompuis** (Figure 43) offre une importante chronique avec de nombreuses données ces dernières années. Ce piézomètre est relativement profond : le niveau d'eau varie entre -20,81 m (15/11/1992) et -8,65 m (31/03/1978) de profondeur. Néanmoins il présente quelques anomalies qui ne permettent pas de le retenir comme représentatif des fluctuations saisonnières de la nappe dans la zone d'étude :

- On constate que le niveau maximum plafonne environ à -8,7 m. Cette limite s'explique par les caractéristiques du sol qui varie nettement à partir d'une certaine profondeur (transmissivité, perméabilité, porosité).
- Sur les périodes du 08/12/2003 au 13/01/2004 et du 18/12/2004 au 26/01/2005, le piézomètre semble bouché puisqu'il plafonne à -20,18 m de profondeur maximale. Il est possible que le niveau soit plus bas puisque des valeurs inférieures ont déjà été enregistrées auparavant et le fond théorique est estimé à -21 m.

Le piézomètre de **Songy** (Figure 44) présente des variations intéressantes étant donné qu'il ne plafonne ni en valeurs minimales ni en valeurs maximales. Mais le pas de temps d'enregistrement est trop grand. Il est relevé manuellement tout comme Morains en moyenne toutes les semaines. De plus, certaines valeurs paraissent incertaines.

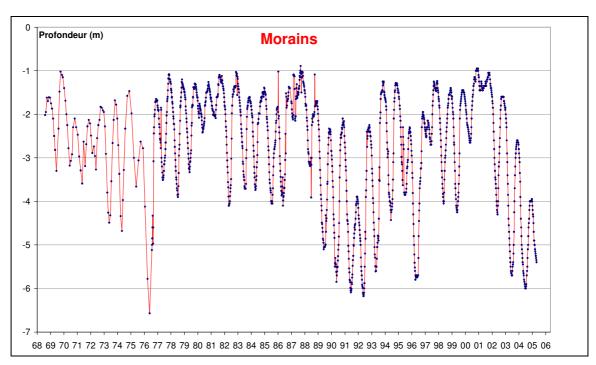


Figure 42 - Enregistrements du piézomètre de Morains

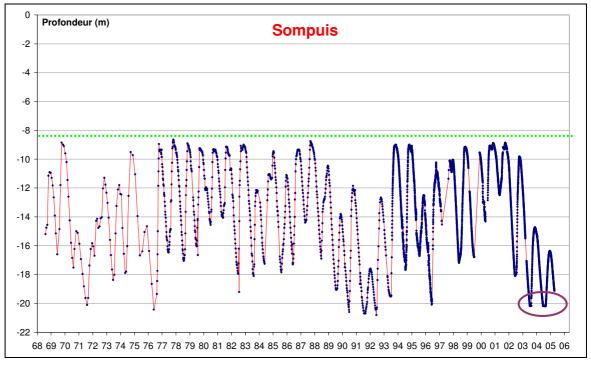


Figure 43 - Enregistrements du piézomètre de Sompuis

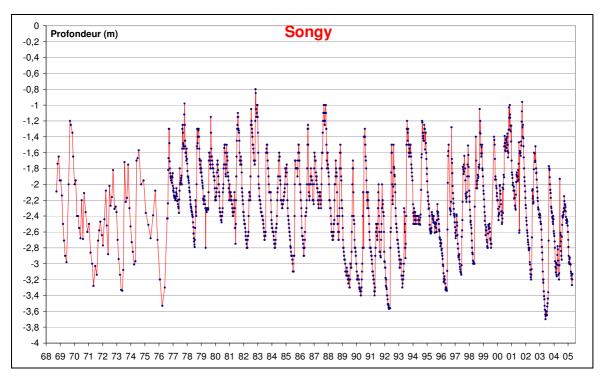


Figure 44 – Enregistrements du piézomètre de Songy

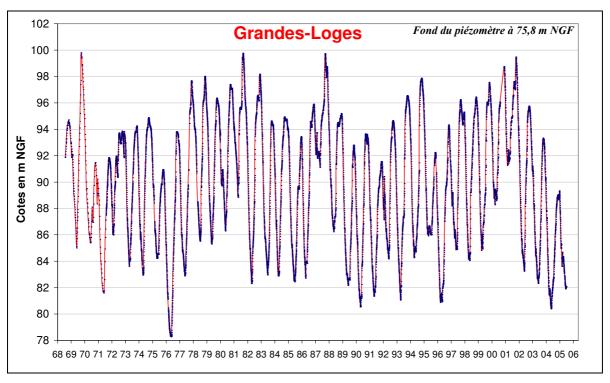


Figure 45 - Enregistrement du piézomètre aux Grandes-Loges

5.2.3 Piézomètre des Grandes-Loges

Aucun des piézomètres du secteur d'étude ne présente donc des données de qualité suffisante pour être utilisées pour la modélisation.

Les relevés de niveau de nappe obtenus auprès d'irrigants et des industriels du secteur d'étude ne sont pas assez précis et les chroniques pas assez longues pour être utilisable : Le pas de temps le plus fin obtenu est mensuel et la période la plus longue s'étend de 1991 à 2005.

La seule chronique piézométrique de longue durée fiable et représentative dans un rayon de quelques kilomètres autour du secteur d'étude se trouve aux Grandes-Loges. Il s'agit d'un piézomètre du réseau suivi par le BRGM pour le MEDD, d'indice national 01584X0023/LV3 situé plus au Nord qui possède une chronique de piézométrie longue de 1969 à nos jours, ininterrompue et un pas de temps quasi journalier depuis sa mise en service (Figure 45).

Les données du piézomètre des Grandes-Loges ont été comparées selon la méthode du double-cumul à celles des autres piézomètres de suivi de la MES n°3208 : Songy et Sompuis. Il s'agit d'une méthode propre à l'hydrologie comparant plusieurs échantillons acquis à différentes stations afin de déceler une éventuelle hétérogénéité. Le principe de la méthode consiste à vérifier la proportionnalité de la somme des valeurs mesurées aux deux stations.

Les résultats montrent une très bonne corrélation des niveaux piézométriques (Figure 46 et Figure 47). Ainsi, le choix du piézomètre des Grandes-Loges comme piézomètre de référence « non influencé » est validé.

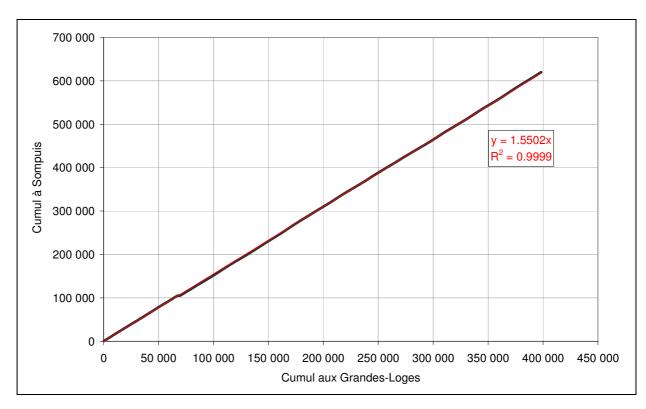


Figure 46 - Double-cumul des niveaux piézométriques aux Grandes-Loges et à Sompuis

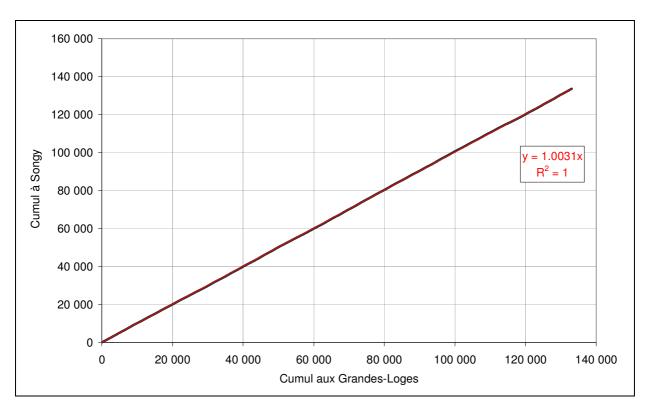


Figure 47 - Double-cumul des niveaux piézométriques aux Grandes-loges et à Songy

L'abscisse des deux graphiques correspond à la somme des valeurs enregistrées aux Grandes-Loges et l'ordonnée correspond à la somme des valeurs aux mêmes dates à Songy ou Sompuis.

6 Corrélations entre la pluie, les débits et les niveaux de la nappe de la craie

Une analyse comparative sommaire des chroniques de pluies, de débits et de niveaux de nappe a été effectuée sur les deux bassins versants étudiés. Elle porte sur :

- D'une part les débits de la Soude à Soudron et des niveaux de la nappe aux Grandes-Loges;
- D'autre part les débits de la Coole à Ecury-sur-Coole et des niveaux de la nappe aux Grandes-Loges.

L'analyse des relations entre la pluie et les niveaux de la nappe ou les débits de la rivière sera approfondie lors de la phase de modélisation GARDENIA qui permettra de calculer les pluies efficaces sur le bassin versant à partir des précipitations enregistrées et de l'évapotranspiration (Chapitre 7).

6.1 LE BASSIN DE LA SOMME-SOUDE

6.1.1 Débits et niveaux de nappe

La superposition des débits de la Soude à Soudron et des niveaux de la nappe de la craie aux Grandes-Loges sur la période de 1968 à 2005 (Figure 48) montre une bonne corrélation entre les deux types de données. Les niveaux piézométriques les plus faibles enregistrés en 1991, 1992, 1993 et 1996 correspondent à des débits très faibles enregistrés à la station de Soudron. Sur la période 1995-2005, la corrélation est très nette (Figure 49).

6.1.2 Débits et précipitations

Pour la période de 1995-2004, les débits de la Soude à Soudron ont été superposés aux précipitations mensuelles relevées par Météo France dans la même commune de Soudron (Figure 50). On observe un léger décalage entre les précipitations et le débit de la Soude observé. L'hiver 1995-1996, plus sec, explique les débits plus faibles de la Soude en 1996.

6.1.3 Niveaux de nappe et précipitations

Les faibles précipitations de l'hiver 1995-1996 se ressentent sur les niveaux de nappes qui sont très faibles à fin 1996 (proche de 81 m NGF). Les années 2001 et 2002 se présentent comme des années particulièrement humides (niveau des basses eaux supérieures à 91 m NGF). Suite à la sécheresse de 2003, des niveaux de basses eaux encore plus faibles (près de 80 m NGF) sont constatés en fin d'année.

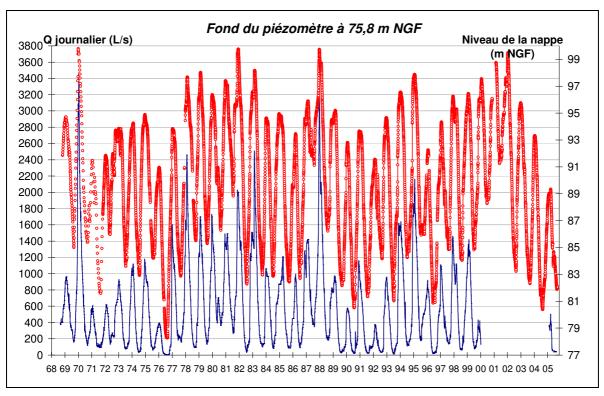


Figure 48 – Débits de la Soude à Soudron et niveaux de la nappe aux Grandes-Loges

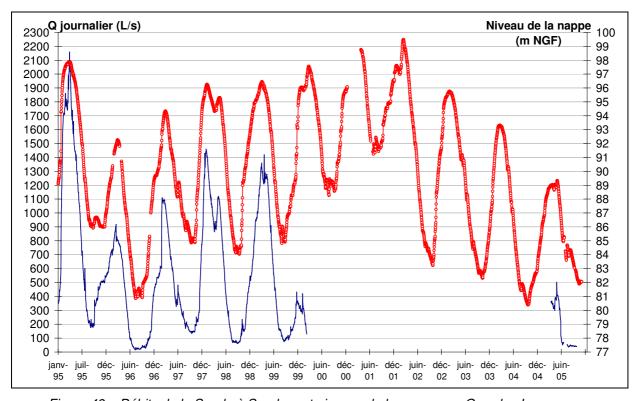


Figure 49 – Débits de la Soude à Soudron et niveaux de la nappe aux Grandes-Loges

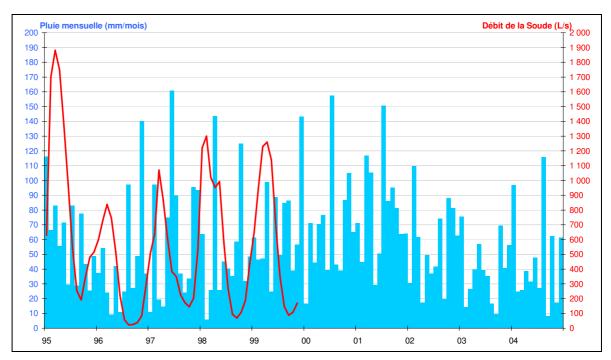


Figure 50 – Précipitations mensuelles et débits de la Soude à Soudron (1995 – 2004)

Elaboration de règles de gestion volumique de la ressource en eau pour les bassins versants de la Somme-Soude et de la Coole (51)

6.2 LE BASSIN DE LA COOLE

6.2.1 Débits et niveaux de nappe

La superposition des débits de la Coole à Ecury-Sur-Coole et des niveaux de la nappe de la craie aux Grandes-Loges sur la période 1996-2005 (Figure 51) montre une bonne corrélation entre les deux types de données sur la période 1996-1999. Néanmoins la période de mesure des débits de la Coole est trop courte pour avoir une idée de la corrélation exacte sur l'ensemble de la période 1996-2005.

6.2.2 Débits et précipitations

Sur la période de fin 1996 à fin 1999, à partir du graphique de corrélation Pluie-Débit (Figure 52) de la Coole, on peut estimer le temps de réponse de la rivière à environ un ou deux mois.

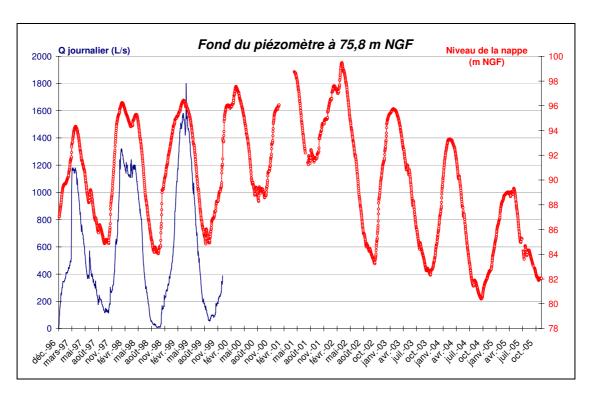


Figure 51 – Débits de la Coole à Ecury-Sur-Coole et niveaux de nappe aux Grandes-Loges

Figure 52 – Précipitations mensuelles et débits de la Coole à Ecury-Sur-Coole (1996-1999)

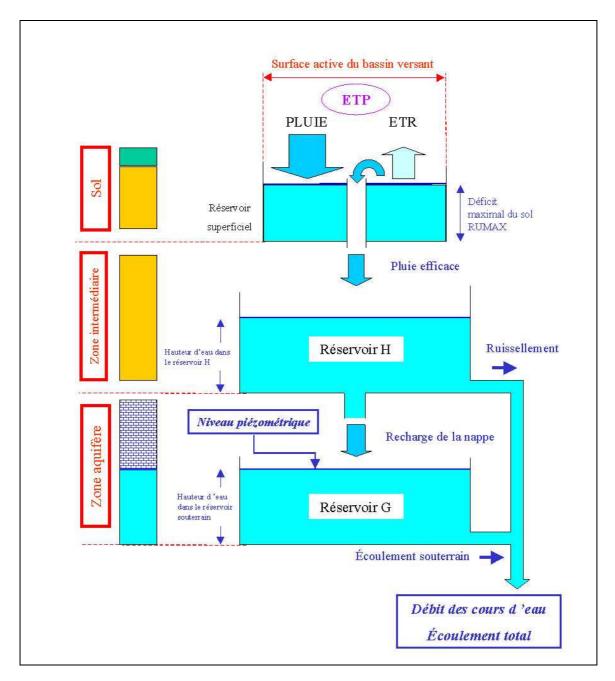


Figure 53 - Schéma de principe du modèle hydrologique global GARDENIA

7 Modélisation sur les bassins versants étudiés

7.1 PRINCIPE DE FONCTIONNEMENT DU MODELE HYDROLOGIQUE GLOBAL GARDENIA

Le modèle GARDENIA repose sur une série d'équations d'écoulements dans plusieurs réservoirs censés représenter, à une échelle globale, les écoulements dans le bassin versant.

Le modèle GARDENIA est un modèle hydrologique global qui permet de réaliser un bilan entre les précipitations, l'évapotranspiration potentielle, le ruissellement superficiel et la recharge d'une nappe à l'échelle d'un bassin versant.

Il s'agit d'un modèle à réservoirs (Figure 53), qui analyse, à un pas de temps donné, les fonctions de production et de transfert entre les pluies et **le débit à l'exutoire d'un bassin versant** dans le cas d'une modélisation pluie-débit ou entre les pluies et **le niveau piézométrique en un point d'une nappe** dans le cas d'une modélisation pluie-niveau piézométrique.

La fonction **Production** détermine, dans un premier réservoir, la quantité d'eau qui ne s'évaporera pas et qui donnera lieu soit à un ruissellement, soit à une recharge de la nappe, et que l'on désigne comme étant la pluie efficace.

La fonction **Transfert** détermine le temps mis par l'eau non évaporée pour arriver à la nappe ou ressortir à l'exutoire du bassin.

Les différents réservoirs du modèle sont décrits ci-dessous :

- un **réservoir superficiel** qui représente la première dizaine de centimètres du sol dans lesquelles se produit l'évapotranspiration, caractérisé par la réserve utile du sol (zone d'influence des racines de la végétation);
- un réservoir H qui est une zone intermédiaire qui produit un écoulement rapide;
- un réservoir G qui est la zone aquifère qui produit l'écoulement souterrain.

Les différents paramètres qui définissent ce modèle de bassin sont les suivants :

- la capacité du réservoir superficiel, ou réserve utile pour l'évaporation. Il est défini par le déficit maximum du sol ou réserve utile maximale (RUMAX);
- les coefficients de vidange du réservoir H;
- le coefficient de vidange du réservoir G;
- le niveau de base de l'aquifère (NB) et le coefficient d'emmagasinement
 (S) pour un calage pluie-niveau ;
- la **superficie du bassin versant** pour un calage pluie-débit ;
- le débit de fuite, qui correspond aux flux non contrôlés par les stations de jaugeage (cela peut être des pompages, des flux souterrains ou les incertitudes sur les débits mesurés).

Le calage du modèle consiste à trouver le jeu de ces paramètres qui restitue au mieux les valeurs de niveau ou de débit observées, et qui fournit ainsi les valeurs numériques que sont :

- la pluie efficace;
- la part du ruissellement et de la recharge de la nappe sur la pluie efficace ;
- le coefficient d'emmagasinement de l'aquifère ;
- la superficie du bassin versant étudié ;
- les débits en plus ou en moins non contrôlés.

L'aire de représentativité du modèle correspond à la surface du bassin versant défini par rapport à la localisation de la station hydrométrique pour la Soude à Soudron d'une part et pour la Coole à Ecury-sur-Coole d'autre part (Figure 54).

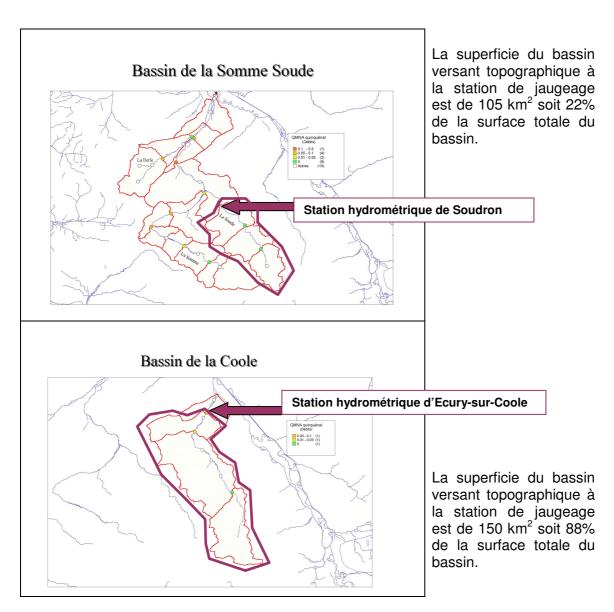


Figure 54 – Définition des débits spécifiques à l'échelle des bassins et sous-bassins versants (d'après DIREN CHA) et aire de représentativité des modèles GARDENIA

7.2 CALAGE DU MODELE SUR LE BASSIN VERSANT DE LA SOUDE

Le calage du modèle est une opération relativement longue qui consiste à renseigner convenablement les données numériques initiales du modèle, mais surtout à s'assurer de leur cohérence, ainsi que celle des paramètres initiaux retenus dans les équations. Le calage permet d'identifier, en ajustant les hauteurs piézométriques ou les débits des rivières calculées aux valeurs mesurées, les données non mesurées : les paramètres hydrodynamiques, le débit de fuite et la recharge ou pluie efficace. Cet ajustement est effectué de manière manuelle par essais-erreurs ou à l'aide d'algorithme de minimisation, plus communément appelé calage automatique.

Le modèle hydrologique global GARDENIA utilise en données d'entrée les **précipitations** et l'**évapotranspiration potentielle (ETP)** mesurées sur le bassin versant, et en données de calage les **débits de la rivière** et les **niveaux de la nappe** permettant une évaluation de la pluie efficace sur le bassin versant.

Deux calages seront donc effectués l'un dit « calage pluie-débit » à partir de la chroniques des mesures de débit dans la rivière Soude et l'autre dit « calage pluie-niveau » à partir de la chronique des mesures piézométriques sur le piézomètre de référence. La pluie efficace calculée selon les deux modes de calage fera l'objet d'une analyse spécifique.

Le **pas de calcul** retenu dans la modélisation GARDENIA est **décadaire**. Il permet d'avoir une évaluation suffisante de la pluie efficace sur les bassins versants. Il s'agit d'un compromis entre la nécessité de disposer de longues séries représentatives de grandes fluctuations climatiques interannuelles et l'étude des assecs ou du moins les débits d'étiage inférieur à un seuil.

7.2.1 Données numériques initiales du modèle

Les précipitations

On dispose des données de pluie mensuelles depuis 1975 sur six stations météorologiques proches ou dans le bassin de la Soude à Soudron (localité de la station hydrométrique). Par ailleurs, les précipitations à Reims sont disponibles au pas de temps journalier à partir de 1965.

Les données du **poste pluviométrique de Reims**, qui dispose d'une chronique de pluie plus longue et au pas de temps plus fin, ont été comparées à celles de la **station pluviométrique de Soudron** par la méthode du double cumul (Figure 55). Les précipitations sont plus importantes à la station de Soudron de l'ordre de 8% par rapport à celles de Reims. L'utilisation des données de Reims est donc parfaitement justifiée moyennant l'application d'un coefficient de correction k calculé de tel sorte que :

$$\frac{\sum P \operatorname{Re} ims}{\sum P Soudron} = 0.92.$$

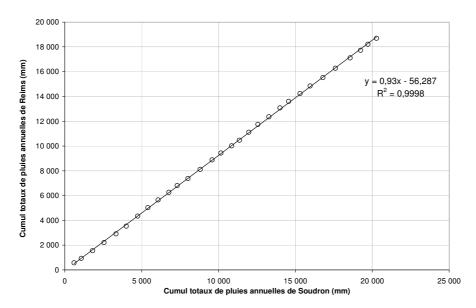


Figure 55 - Double cumul des pluies annuelles de Soudron et Reims (1975-2004)

L'évapotranspiration potentielle (ETP)

On dispose des données d'ETP décadaire à la **station météorologique de Reims-Courcy** depuis 1979. La série a été complétée pour les années comprises entre 1965 et 1979 par les valeurs moyennes décadaires connues de l'ETP.

Les débits de la Soude

On dispose des données de débit journalier de la Soude à la **station de Soudron** depuis 1968.

Les données piézométriques

On dispose des données de niveau de la nappe de la Craie sur le **piézomètre des Grandes-Loges** depuis 1969.

Les mesures n'ont pas toujours été faites avec une fréquence quotidienne. Entre 1968 et 1972, la fréquence des mesures n'était pas journalière ; les données sont espacées de quelques jours. Ensuite, la fréquence des mesures est devenue quotidienne. Quelques interruptions de mesures ont été enregistrées mais elles ne perturbent pas ou peu l'allure des variations saisonnières.

Bien que situé hors du bassin de la Soude mais dans la même masse d'eau MES n°3208 « craie de champagne centre et sud » que les **piézomètres de Sompuis et de Songy**, le piézomètre des Grandes-Loges est jugé parfaitement représentatif de la situation de la nappe de la Craie sur l'ensemble du secteur. L'analyse des chroniques du piézomètre des Grandes Loges et des débits de la Soude à Soudron le confirme. A titre de comparaison, des simulations ont également été effectuées à partir des chroniques des deux autres piézomètres de Sompuis et de Songy.

7.2.2 Calage « pluie-débit » à Soudron

Restitution des débits observés à Soudron

Le calage du modèle a été effectué sur les valeurs décadaires de débits de la Soude entre 1965 et 2005. Les données sur la période allant de 1965 à 1974 ont servi à amorcer le modèle hydrodynamique et les résultats des simulations sont disponibles sur la période 1975-2005.

La restitution des débits observés (Figure 56) est considérée comme satisfaisante sachant que l'objectif du calage était d'approcher au mieux les valeurs de débits faibles : Les débits calculés se superposent globalement bien aux débits observés notamment en période de basses eaux. Le coefficient de corrélation est de 0.84 (Annexe 10).

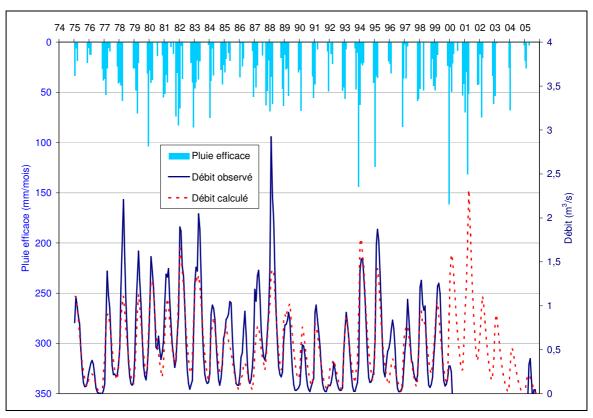


Figure 56 - Calage pluie-débit de la Soude à Soudron

Paramètres de l'ajustement et bilan moyen

Le calage « pluie-débit » sur la Soude à Soudron a permis d'identifier, en ajustant la chronique des débits calculés sur la chronique des débits observés, les données non mesurées tels que la **pluie efficace et** le **débit de fuite** (Annexe 10).

On obtient sur la période de simulation (1975-2005) un **débit fuite annuel**³ **de - 0.0896 m3/s** et une **pluie efficace moyenne annuelle de 185.5 mm** (ce qui représente 28 % des précipitations).

Estimation des lames d'eau correspondant à l'écoulement souterrain

Calcul n°1

Le débit de fuite est estimé à 0.0896 m3/s soit 89,57 L/s. Le **volume de fuite total annuel** est de **2.83 Millions de m3/an**. Rapporté à la superficie du bassin versant jaugé, on obtient une **lame d'eau de 27 mm** (15% de la pluie efficace annuelle).

Débit de fuite	$= 0.0896 \text{ m}^3/\text{s} \text{ soit } 89,57 \text{ L/s}$
Volume de fuite :	= 0,0896 (m ³ /s) x 3 600 (s) x 24 (h) x 365 (j) = 2 825 626 m ³ /an, soit 2,83 Mm ³ /an
Lame d'eau correspondante :	= 2 825 626 m ³ /an / 105 000 000 m ² (*) = 0,027 m/an soit <u>27 mm/an</u>

^(*) superficie du bassin versant en amont de la station de jaugeage

Tableau 19 - Calcul du débit de fuite sur le BV de la Soude - ajustement par GARDENIA

Calcul n°2

Le volume total annuel d'écoulement souterrain (qui comprend également les prélèvements) peut également être calculé à partir de la formule de Darcy (Tableau 20) et des paramètres suivants :

- le gradient hydraulique de la nappe (i) de l'ordre de 3‰ (cf. cartes piézométriques) ;
- la largeur du front d'avancement de la nappe (L) est de l'ordre de 6,5 km à proximité de la station de jaugeage (cf. cartes piézométriques) ;
- la transmissivité de l'aquifère de la craie (T) estimé à 0,0061 m²/s sur la base d'une analyse des données de 16 forages.

Le volume total annuel d'écoulement souterrain est estimé à 3,8 Millions de m³ (soit une lame d'eau de 35.7 mm). Cette valeur est relativement comparable au débit de fuite obtenu par modélisation soit 2,83 Mm³/an.

84

Le débit de fuite, ajusté automatiquement par le modèle, est supposé constant tout au long de l'année et correspond au flux non contrôlé par la mesure à l'exutoire (débit souterrain et prélèvements en nappe).

Volume total annuel d'écoulement souterrain	= V * e * L = K * i * e * L = T * i * Largeur du front d'écoulement = 0,0061 x 0,003 x 6 500 = 0,12 m ³ /s, soit 3,8 Mm ³ /an = 3 751 207 m ³ /an /105 000 000 m ² = 0.0357 m/an soit 35.7 mm/an				
Avec :					
Vitesse (V)	= perméabilité * gradient hydraulique de la nappe				
vitesse de Darcy d'écoulement de la nappe	= K * i				
Gradient hydraulique (i)	Estimé à 0,003				
Transmissivité (T)	= perméabilité * épaisseur de l'aquifère = K * e Estimée à 0.0061 m²/s				
Largeur du front d'écoulement (L)	Estimée à 6,5 km				

Tableau 20 - Calculs du débit d'écoulement souterrain de la Soude

Calcul n°3

Le **volume annuel des prélèvements** pour l'irrigation, l'alimentation en eau potable et l'industrie sur le bassin versant de la Soude (Tableau 21) est estimé à **974 472 m³/an soit 9.3 mm** ou 5% de la pluie efficace (qui est de 185.5 mm).

Volume annuel prélevé en 2003	Irrigation (m³/an)	AEP (m³/an)	Industrie (m³/an)		
Source : AESN	843 915	101 005	29 552		
Source : DDAF 51	Données disponibles sur le BV Somme-Soude en entier				
Source : Chambre d'Agriculture 51	795 300				
TOTAL sur 2003 (m³/an)	974 472 (*)				

^{*} Les valeurs les plus contraignantes ont été retenues pour le calcul, c'est-à-dire celles de l'AESN.

Tableau 21 – Ensemble des données de prélèvements dans le bassin de la Soude

Conclusions du calage « pluie-débit » sur la Soude

Si l'on compare les résultats des trois calculs effectués, on note que la valeur de la lame d'eau correspondant au débit de fuite (27 mm => estimation par modélisation du flux non contrôlé par la mesure à l'exutoire c'est-à-dire débit souterrain et prélèvements en nappe) est cohérente avec les valeurs estimées sur la base des caractéristiques hydrodynamique (35.7 mm) et sur la base des données de prélèvements en nappe (9.3 mm).

Les résultats de la modélisation sur le bassin versant de la Soude peuvent considérés concluants. Les données sont suffisantes pour espérer une exploitation et une interprétation correcte des résultats conduisant à l'estimation satisfaisante des termes du bilan hydrologique. Néanmoins il est rappelé que la surface prise en compte par le modèle ne représente que 22% de la surface totale du bassin. Les données collectées ne permettent pas à l'heure actuelle d'étendre les résultats à l'intégralité du bassin versant Somme-Soude.

7.2.3 Calage « pluie-niveau » aux Grandes-Loges

Restitution des niveaux observés aux Grandes Loges

Le calage du modèle a été effectué sur les valeurs décadaires de niveaux piézométriques de l'ouvrage des Grandes-Loges entre 1965 et 2005. Les données sur la période allant de 1965 à 1984 ont servi à amorcer le modèle hydrodynamique et les résultats des simulations sont disponibles sur la période 1985-2005.

La restitution des niveaux observés (Figure 57) est considérée comme satisfaisante : Les niveaux calculés se superposent globalement bien aux niveaux observés notamment en période de basses eaux. Le coefficient de corrélation est de 0.92 (Annexe 11).

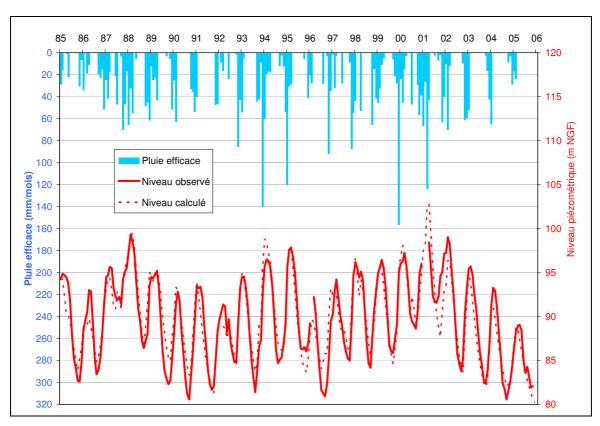


Figure 57 – Calage pluie-niveau aux Grandes-Loges

Paramètres de l'ajustement et bilan moyen

Le calage « pluie-niveau » sur le piézomètre des Grandes-Loges a permis d'identifier, en ajustant la chronique des niveaux calculés sur la chronique des niveaux observés, les données non mesurées tels que le **coefficient d'emmagasinement de la nappe** et la **pluie efficace** : valeur moyenne annuelle sur la période 1985-2005 de **207.5 mm** soit 32% des précipitations (Annexe 11).

7.2.4 Calage « pluie-niveau » à Sompuis et Songy

Restitution des niveaux observés à Sompuis

Pour le calage de Sompuis, les valeurs supérieures à un seuil ont été supprimées puisque le piézomètre plafonne. De fait de son colmatage les trois dernières années, les valeurs stables minimales ont également été supprimées pour le calage du modèle. En dépit de ces modifications, le calage n'est pas jugé satisfaisant, notamment au niveau des niveaux minimums simulés (Figure 58 et Annexe 12).

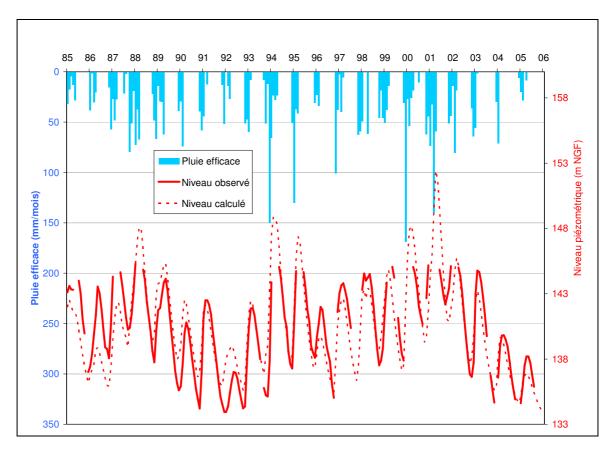


Figure 58 – Calage pluie-niveau à Sompuis

Restitution des niveaux observés à Songy

Concernant le calage à Songy, les valeurs aberrantes ont été supprimées afin de faciliter le calage. Toutefois, on s'aperçoit que l'irrégularité des données ne permet pas au modèle d'approcher la majeure partie des variations. Dans ces conditions, les valeurs simulées n'approche que trop vaguement les valeurs observées (Annexe 13).

Les résultats de la modélisation « pluie-niveau » sur le bassin versant de la Soude à partir des chroniques de Sompuis et Songy ne sont pas concluants. Les données sont insuffisantes.

7.2.5 Analyse des pluies efficaces sur la période hivernale

Les résultats des modélisations comprennent une chronique de précipitation efficace au pas de temps mensuel sur la période 1974 à 2005. Les résultats obtenus en raisonnant à l'échelle de l'année calendaire (de janvier à décembre) montrent une pluie efficace moyenne annuelle de **185.5 mm** pour le calage « pluie-débit » à Soudron et **207.5 mm** pour le calage « pluie-niveau » aux Grandes-Loges.

L'analyse des deux chroniques sur une année hydrologique, c'est-à-dire la période qui va d'octobre à septembre de l'année suivante, fournie des valeurs un peu différentes des précédentes (Tableau 22) :

- ⇒ 189 mm/an à partir du calage « pluie-débit » à Soudron,
- ⇒ **204 mm/an** à partir du calage « pluie-niveau » aux Grandes-Loges.

Le calage « pluie-débit » est représentatif du fonctionnement de l'ensemble du sous-bassin versant en amont de Soudron, tandis que le calage « pluie-niveau » reste une représentation plus ponctuelle. De plus la valeur moyenne du calage « pluie-débit » correspond bien à la valeur estimée par la méthode du MEDD comprise entre 150 et 200 mm/an.

On retiendra par conséquent plutôt les résultats du calage « pluie-débit » pour l'évaluation de la ressource en eau du bassin versant de la Soude.

L'analyse statistique des valeurs de précipitations efficaces obtenues pour le calage « pluie-débit » (Tableau 22) sur les 31 hivers entre octobre 1974 et septembre 2005 met en évidence un **maximum de 377 mm** (hiver 2000-2001) et un **minimum de 51 mm** (hivers 1975-1976 et 2004-2005).

Sur les 31 années, on compte (Figure 59) :

- ⇒ 6 hivers humides, où la pluie efficace a été supérieure à 250 mm,
- ⇒ 8 hivers secs, où la pluie efficace a été inférieure à 150 mm,
- ⇒ 17 hivers « moyens », où la pluie efficace est comprise entre 150 et 250 mm.

Les années hydrologiques retenues comme étant des **années moyennes de référence** sont les suivantes : 1978-1979, 1980-1981 et 1998-1999 (**pluie efficace à 192 mm**).

Année	Pluie effica	Pluie efficace (en mm)				
hydrologique ou Hiver (oct. à sept.)	Calage « pluie – débit » à Soudron	Calage « pluie – niveau » aux Grandes-Loges				
74 - 75	230	245				
75 - 76	51	78				
76 - 77	195	208				
77 - 78	206	232				
78 - 79	192	220				
79 - 80	241	266				
80 - 81	192	217				
81 - 82	293	305				
82 - 83	306	307				
83 - 84	156	203				
84 - 85	168	189				
85 - 86	77	103				
86 - 87	157	194				
87 - 88	294	296				
88 - 89	245	258				
89 - 90	126	149				
90 - 91	132	164				
91 - 92	92	120				
92 - 93	157	190				
93 - 94	336	350				
94 - 95	235	261				
95 - 96	72	96				
96 - 97	163	167				
97 - 98	210	248				
98 - 99	192	217				
99 - 00	293	299				
00 - 01	377	386				
01 - 02	187	205				
02 - 03	150	183				
03 - 04	94	127				
04 - 05	51	82				
Moyenne	189	204				
Minimum	51	78				
Maximum	377	386				

Tableau 22 – Tableau des pluies efficaces par année hydrologique (d'après la modélisation sur le bassin versant de la Soude)

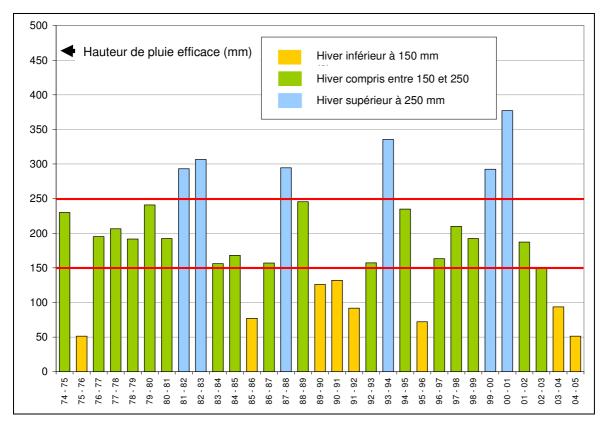


Figure 59 - Graphique des pluies efficaces par année hydrologique (d'après la modélisation sur le bassin versant de la Soude)

7.3 CALAGE DU MODELE SUR LE BASSIN VERSANT DE LA COOLE

Malgré le manque de données pour les débits de la Coole disponibles sur le bassin versant, le calcul de la pluie efficace a néanmoins été réalisé à l'aide du modèle hydrologique global GARDENIA. Les simulations ont consisté à reconstituer uniquement les variations des **débits de la Coole à Ecury-sur-Coole** (pas de calage « pluie-niveau »).

7.3.1 Données numériques initiales du modèle

Les précipitations

On dispose des données de pluie mensuelles depuis 1975 sur six stations météorologiques proches du bassin versant de la Coole. Par ailleurs, les précipitations à Reims sont disponibles au pas de temps journalier à partir de 1965.

Les données du **poste pluviométrique de Reims** ont été comparées par la méthode du double cumul à celles issues du **calcul de la pluie sur le bassin de la Coole** (méthode des polygones de Thyssen) (Figure 60). Les précipitations sont plus importantes sur le bassin de la Coole de l'ordre de 9% par rapport à celles de Reims. La corrélation est bonne et l'utilisation des données de Reims est justifiée moyennant l'application d'un coefficient de correction k calculé de tel sorte que :

$$\frac{\sum P \operatorname{Re} ims}{\sum P Soudron} = 0,91.$$

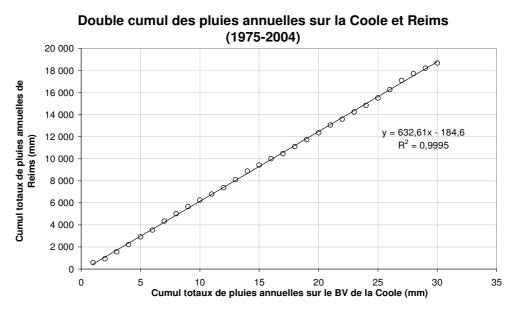


Figure 60 - Double cumul des pluies annuelles du BV de la Coole et Reims (1975-2004)

L'évapotranspiration potentielle (ETP)

On dispose des données de l'ETP décadaire à la **station météorologique de Reims-Courcy** depuis 1979. La série a été complétée pour les années comprises entre 1965 et 1979 par les valeurs moyennes décadaires connues de l'ETP.

Les débits de la Coole

On dispose des données de débits journaliers de la Coole à la station d'Ecury-sur-Coole du 01/12/1996 au 18/12/1999.

7.3.2 Calage « pluie-débit » à Ecury-sur-Coole

Restitution des débits observés à Ecury-sur-Coole

Le calage du modèle a été effectué sur les valeurs décadaires de débits de la Coole entre 1996 et 1999 (3 années seulement). Les données climatiques sur la période allant de 1965 à 1974 ont servi à amorcer le modèle hydrodynamique et les résultats des simulations sont disponibles sur la période 1975-2005.

La restitution des débits observés (Figure 61) peut être considérée comme satisfaisante : Sur les 3 années de calage, les débits calculés se superposent globalement bien aux débits observés. Le coefficient de corrélation est de 0.88 (Annexe 14).

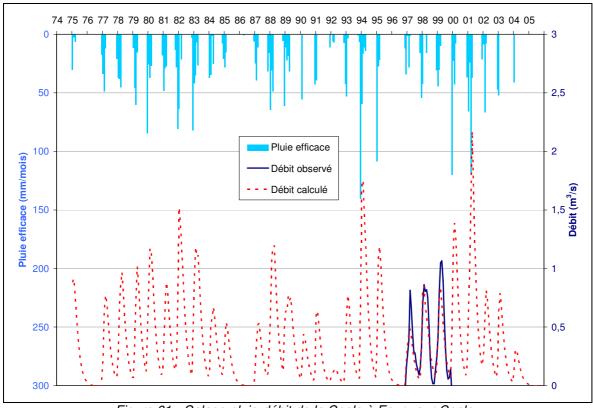


Figure 61 - Calage pluie-débit de la Coole à Ecury-sur-Coole

Paramètres de l'ajustement et bilan moyen

Le calage « pluie-débit » sur la Coole à Ecury-sur-Coole a permis d'identifier, en ajustant la chronique des débits calculés sur la chronique des débits observés, les données non mesurées tels que la **pluie efficace et** le **débit de fuite** (Annexe 14).

On obtient sur la période de simulation (1975-2005) un **débit de fuite annuel**⁴ **de - 0.008 m**³/**s** et une **pluie efficace moyenne annuelle de 111.2 mm** (ce qui représente 17 % des précipitations totales).

Estimation des lames d'eau correspondant à l'écoulement souterrain

Calcul n°1

Le débit de fuite est estimé à 0.008 m3/s soit 8 L/s. Le **volume de fuite total annuel** est de **0.25 Millions de m3/an**. Rapporté à la superficie du bassin versant jaugé, on obtient une **lame d'eau de 2 mm** (0.25% de la pluie efficace annuelle).

Débit de fuite	= 0,008 m ³ /s soit 8 L/s
Volume de fuite :	= 0,008 (m ³ /s) x 3 600 (s) x 24 (h) x 365 (j) = 252 288 m ³ /an, soit 0.25 Mm ³ /an
Lame d'eau correspondante :	= 252 288 m ³ /an / 150 000 000 m ² (*) = 0.002 m/an soit <u>2 mm/an</u>

^(*) Superficie du bassin versant en amont de la station de jaugeage

Tableau 23 - Calcul du débit de fuite sur le BV de la Coole - ajustement par GARDENIA

Calcul n°2

Le volume total annuel d'écoulement souterrain (qui comprend également les prélèvements) peut également être calculé à partir de la formule de Darcy (Tableau 24) et des paramètres suivants :

- le gradient hydraulique de la nappe (i) de l'ordre de 7‰ (cf. annexe 1-4 et cartes piézométriques);
- la largeur du front d'avancement de la nappe (L) est de l'ordre de 2 km à proximité de la station de jaugeage (cf. cartes piézométriques);
- la transmissivité de l'aquifère de la craie (T) estimé à 0,0061 m²/s sur la base d'une analyse des données de 16 forages.

Le volume total annuel d'écoulement souterrain est estimé à 2.7 Millions de m³ (soit 18 mm) Cette valeur n'est absolument pas comparable au débit de fuite obtenu par modélisation soit 0.25 Mm³/an.

Le débit de fuite, ajusté automatiquement par le modèle, est supposé constant tout au long de l'année et correspond au flux non contrôlé par la mesure à l'exutoire (débit souterrain et prélèvements en nappe).

Volume total annuel d'écoulement souterrain	= V * e * L = K * i * e * L = T * i * Largeur du front d'écoulement = 0,0061 x 0,007 x 2 000 = 0,09 m ³ /s, soit <u>2.7 Mm³/an</u> = 2 693 174 m ³ /an /150 000 000 m ² = 0.018 m/an soit <u>18 mm/an</u>			
Avec:				
Vitesse (V)	= perméabilité * gradient hydraulique de la nappe			
vitesse de Darcy d'écoulement de la nappe	= K * i			
Gradient hydraulique (i)	Estimé à 0,007			
Transmissivité (T)	= perméabilité * épaisseur de l'aquifère			
	= K * e			
	Estimée à 0,0061 m ² /s			
Largeur du front d'écoulement (L)	Estimée à 2 km			

Tableau 24 - Calculs du débit d'écoulement souterrain de la Coole

Calcul n°3

Le volume annuel des prélèvements pour l'irrigation et l'alimentation en eau potable⁵ sur le bassin versant de la Coole (Tableau 25) est estimé à **1 410 324 m³/an soit 9.4 mm**, soit 8% de la pluie efficace (111.2 mm).

Volume annuel prélevé en 2003	Irrigation (m³/an)	AEP (m³/an)	
Source : AESN	912 456	383 775	
Source : DDAF de la Marne	894 874		
Source : Chambre d'Agriculture de la Marne	1 026 549		
TOTAL sur 2003 (m ³ /an)	1 410 324 (*)		

^{*} Les valeurs les plus contraignantes ont été retenues pour le calcul : AESN pour l'AEP et Chamb. Agri

Tableau 25 – Ensemble des données de prélèvements dans le bassin de la Coole

Conclusions du calage « pluie-débit » sur la Coole

Si l'on compare les résultats des trois calculs effectués, on note que la valeur de la lame d'eau correspondant au débit de fuite (2 mm => estimation par modélisation du flux non contrôlé par la mesure à l'exutoire c'est-à-dire débit souterrain et prélèvements en nappe) est totalement incohérente avec les valeurs estimées sur la base des caractéristiques hydrodynamique (18 mm) et sur la base des données de prélèvements en nappe (9.4 mm).

Les résultats de la modélisation sur le bassin versant de la Coole ne sont pas concluants. Les données sont bien trop insuffisantes pour espérer une exploitation et une interprétation correcte des résultats conduisant à l'estimation satisfaisante des termes du bilan hydrologique. Ce constat nous conduit à abandonner les calculs sur le bassin de la Coole.

-

Aucun prélèvement pour les usages industriels n'a été recensé sur le bassin versant.

8 Bilan hydrologique sur le bassin versant de la Soude et simulations complémentaires

8.1 CALCUL DU BILAN HYDROLOGIQUE

Le bilan hydrologique est établi sur les données moyennes résultant du calage « pluiedébit » sur la Soude à Soudron (période de simulation 1975-2005), à l'exception des prélèvements dont la valeur a été prise égale aux données de 2003.

8.1.1 Pluie totale

La moyenne des précipitations annuelles sur la période 1975-2005 est estimée à partir des données d'entrée du modèle « pluie-débit » sur le bassin versant de la Soude. La valeur est de **663 mm**.

8.1.2 Pluie efficace

Le calage du modèle « pluie-débit » sur la bassin versant de la Soude a permis de calculer la pluie efficace sur la période 1975-2005 et d'en déduire une valeur moyenne de **186 mm**.

8.1.3 Evapotranspiration réelle

L'évapotranspiration réelle (ETR) annuelle est estimée à partir des données d'entrée du modèle « pluie-débit » sur le bassin versant de la Soude. La valeur moyenne est de **477 mm**.

8.1.4 Ecoulement dans la rivière

Le calage du modèle « pluie-débit » sur la bassin versant de la Soude a permis de calculer l'écoulement rapide⁶ (27 mm) et l'écoulement lent⁷ (163 mm) sur la période 1975-2005. La valeur moyenne de l'écoulement en rivière est donc de **190 mm**.

Le débit moyen interannuel de la Soude, sur la période d'observation (1968-1999), est égal à **0,574 m³/s**. Cela correspond à un volume écoulé de **18.1 Mm³/an** à la station de Soudron soit une lame d'eau de **172 mm**. Cette valeur est assez proche de celle estimée par calage du modèle.

⁶ Lame d'eau correspondant à l'écoulement rapide (ruissellement rapide + écoulement karstique rapide)

⁷ Lame d'eau correspondant à l'écoulement lent souterrain (contribution des aquifères au débit des rivières)

8.1.5 Prélèvements en nappe

Les seules données disponibles pour le bassin versant de la Soude sont les prélèvements totaux en 2003 (irrigation, AEP et industrie). Le volume global est estimé à 974 472 m³/an, soit une lame d'eau de **9.3 mm**.

8.1.6 Ecoulements souterrains

Le débit de fuite moyen calculé sur la période 1975-2005 correspond au volume d'eau non contrôlé par la station de jaugeage (volumes d'eau prélevés en nappe et écoulement souterrain) ; il est égal à 89,57 L/s. Le volume de fuite total annuel est de **2,82 Mm³/an** soit une lame d'eau de **27 mm**.

L'écoulement souterrain peut être estimé par différence entre le débit de fuite et les prélèvements, soit **17.7 mm**.

L'écoulement souterrain provenant de l'extérieur du bassin (\mathbf{Q}_{ext}) est estimé à partir du calage à **4 mm**.

8.1.7 Conclusions sur le bilan hydrologique

La figure 62 présente le bilan dont le calcul des termes a été présenté ci-dessus.

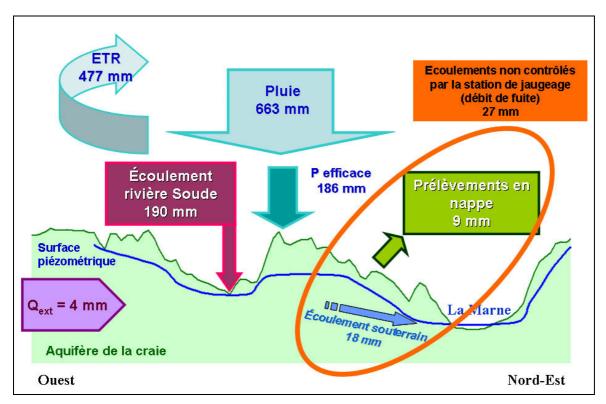


Figure 62 – Bilan hydrologique du bassin versant de la Soude (51) d'après les résultats de la modélisation GARDENIA

La réalisation d'un bilan hydrologique complet et fiable devrait prendre en compte des chroniques de débits prélevés pour les différents usages c'est-à-dire leur répartition mensuelle. Or ces informations ne sont pas disponibles et les quelques données globales disponibles (2002-2003) ne sont pas synchrones avec les données de débits disponibles (lacunes de mesure de 2000 à 2005).

Dans ces conditions, il est très difficile voire impossible de modéliser l'impact des prélèvements sur les débits des rivières. L'approche du bilan hydrologique qui est faite sur la Soude est donc forcément approximative.

Le bassin de la Somme-Soude est bien plus complexe et plus vaste que celui de son sous bassin de la Soude. Pour pouvoir étendre ce bilan hydrologique à l'ensemble du bassin de la Somme-Soude, il faudrait disposer de campagnes de jaugeages différentiels entre la station de Soudron et des points situés plus en aval en période d'étiage et de hautes eaux la même année. Des essais de simulation GARDENIA pourraient alors engagés par analogie hydrologique.

8.2 SIMULATION DE L'ETAT DE REFERENCE « SANS IRRIGATION »

Les partenaires ont souhaité lors de la présentation finale du rapport en décembre 2005 que le BRGM réalise des modélisations complémentaires selon deux options.

L'option 1 concerne la réalisation de simulations en supprimant sur la chronique de débits de la Soude à Soudron les années qui sont connues pour être les plus influencées par les prélèvements et en les remplaçant par des chroniques d'avant 1986, supposées être non influencées puisque l'irrigation était pratiquement inexistante sur le secteur.

L'objectif est d'obtenir des résultats de simulations correspondant à l'état de référence « sans irrigation » du système hydrodynamique modélisé sur la Soude et de le comparer par rapport aux résultats des premières simulations « avec irrigation ».

La comparaison des chroniques de débits simulés « avec irrigation » et « sans irrigation » (Figure 63) obtenues avec le modèle GARDENIA montre sur la période 1990-2005 un écart moyen de 15% entre l'état de référence et la situation impactée. Le nombre de mois d'assec observé à l'état de référence est multiplié par 2.5 en cas d'irrigation.

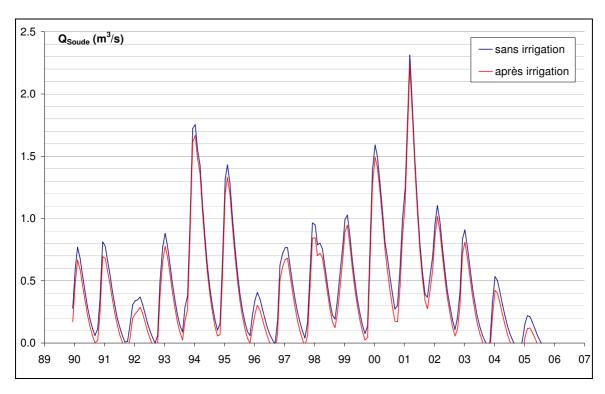


Figure 63 – Comparaison des simulations avec calage avant 1986 uniquement et le modèle influencé par l'irrigation entre 1990 et fin 2005

8.3 SIMULATION DE L'IMPACT D'UNE VARIATION DES PRELEVEMENTS EN NAPPE SUR LE DEBIT DE LA RIVIERE SOUDE

L'option 2 concerne la réalisation de modélisations complémentaires en considérant une variation des prélèvements (diminution et augmentation) afin de définir les impacts que peuvent avoir ces mesures sur la ressource en eau du bassin en terme de nombre de mois d'assec par année hydrologique.

La prise en compte des prélèvements n'étant pas directement possible avec GARDENIA, la méthode a consisté à simuler l'impact d'un débit de fuite inférieur (réduction des prélèvements en nappe) ou supérieur (augmentation des prélèvements en nappe) à celui déterminé lors du calage « pluie-débit » de la Soude à Soudron (cf § 7.2.2.).

Le **débit de fuite** correspond à une moyenne interannuelle qui comprend les **volumes prélevés** mais aussi des **écoulements souterrains**. On considère la part des écoulements souterrain fixée et on attribue l'augmentation du débit de fuite aux prélèvements (irrigation, AEP et industrie) selon cinq scénarii possibles (Tableau 26, Figure 64 et Figure 65).

La simulation pour l'état de référence (**simulation 1**) a été réalisée avec un débit de fuite de 90 L/s (2.82 Mm³/an). Il s'agit du débit de fuite moyen calculé précédemment sur la période 1975-2005 (§ 8.1.6.) pour un volume de prélèvement de 974 472 m³/an (§ 8.1.5). Le calage a été effectué sur la période 1975-1985 ; en effet avant 1986 l'irrigation dans le secteur est quasi inexistante. La restitution des données du débit de la Soude a été faite sur la période 1985-2005. Les **simulations 2 à 6** correspondent à un débit de fuite supérieur à celui de l'état de référence (90 L/s) ; la variation est de + 10 à + 210 L/s. Les **simulations 7 à 11** correspondent à un débit de fuite inférieur à celui de l'état de référence (90 L/s) ; la variation est de - 10 à - 50 L/s.

Débit de fuite (L/s)	Volume de fuite en Mm³/an	Différence de débit de fuite (L/s) par rapport à l'état de référence	Différence des volumes prélevés (Mm³/an) par rapport à l'état de référence		
SIMULATION 1 : Sit	uation de référence sa	ns pompage (année hyd	rologique 1985-1986)		
90	2.83	0	0		
SIMULATI	ON 2 à 6 : Augmentation	on du débit de fuite selo	n 5 scénarii		
100	3.15	+ 10	+ 0.315		
110	3.47	+ 20	+ 0.631		
120	3.78	+ 30	+ 0.946		
150	4.73	+ 60	+ 1.9		
300	9.46	+ 210	+ 6.63		
SIMULAT	ION 7 à 11 : Diminution	n du débit de fuite selon	5 scénarii		
80	3.15	- 10	- 0.315		
70	3.47	- 20	- 0.631		
60	3.78	- 30	- 0.946		
50	4.73	- 40	- 1.9		
40	9.46	- 50	- 6.63		

Tableau 26 - Débits de fuites simulés pour visualiser l'impact de l'augmentation ou de la diminution des prélèvements dans le bassin de la Soude

Les **débits de fuite (Qf)** pris en compte lors des simulations sont compris entre 40 L/s ou 0.04 m3/s (réduction des prélèvements 55%) et 300 L/s ou 0.3 m3/s (augmentation des prélèvements de 230%). Les représentations graphiques (Figure 64 et Figure 65) concernent la comparaison des situations à Qf = 40, 90, 150 et 300 L/s.

Les simulations pour Qf = 50, 60, 70, 80, 100, 110 et 120 L/s ne sont pas représentées car leur différence avec la "situation naturelle" n'est pas assez grande pour être visible à l'échelle du graphique.

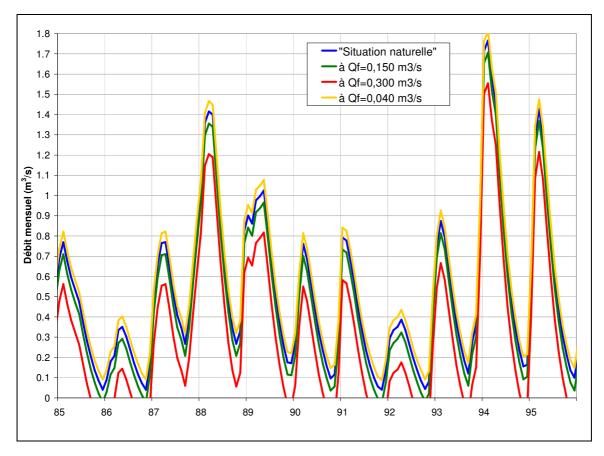


Figure 64 - Impact de Qfuite de 40, 150 et 300 L/s sur les débits de la Soude à Soudron entre 1985 et 1995

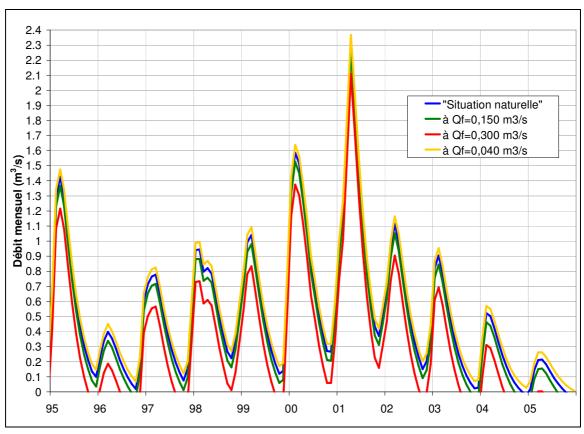


Figure 65 – Impact de Qfuite de 40, 150 et 300 L/s sur les débits de la Soude à Soudron entre 1995 et 2005

Le nombre de **mois d'assec** obtenu par simulation pour chaque scénario envisagé est présenté sur le Tableau 27 par année hydrologique.

Il est évident que le pas de temps mensuel n'est pas assez fin. Mais ces simulations selon des scénarios parfois exagérés sont destinées à montrer l'impact d'une augmentation des prélèvements sur la situation hydrologique de la Soude à Soudron :

- Une augmentation du débit de fuite de 60 L/s soit 1,9 Mm³ prélevés en plus, correspondrait à un accroissement des prélèvements du double de ce qu'ils sont actuellement.
- O Une augmentation des prélèvements annuels de 315 000 m³/an ($Q_{fuite} = 100$ L/s), ne montre pas un impact remarquable à l'échelle mensuelle (comme pour $Q_{fuite} = 60$ L/s). Un impact est remarquable à l'échelle mensuelle à partir d'une augmentation de 631 000 m³/an ($Q_{fuite} = 110$ L/s).
- Ainsi le nombre d'assecs deviendrait considérable si les prélèvements augmentaient de 210 L/s soit 6,63 Mm³ supplémentaires à l'année. Il s'agirait d'un accroissement de près de 7 fois des prélèvements du bassin actuel.

Evidemment, ces valeurs ne tiennent pas compte des variations saisonnières de prélèvements. Une augmentation des prélèvements uniquement sur quelques mois aurait un impact encore plus important sur le nombre d'"à sec". Il existe par ailleurs d'autres modèles qui permettent d'intégrer des chroniques de variations des prélèvements au cours du temps.

Concernant l'impact d'une diminution des prélèvements sur la situation hydrologique de la Soude à Soudron, on note que :

- Dès une diminution de 10 L/s du débit de fuite soit 315 000 m3/an prélevé en moins, le nombre de moins d'assec prévus baisse;
- A partir d'une diminution de 30 L/s (soit 946 000 m 3/an en moins) et plus, le nombre de mois d'assec ne diminue plus. Il est impossible de descendre en dessous.

	Diminution des prélèvements selon 5 scénarii			Situation de	Augmentation des prélèvements selon 5 scénarii						
		◆ Débit fuite (L/s)			référence				e (L/s)		
Année hydrologique	40	50	60	70	80	90	100	110	120	150	300
(oct. à sept)			Volu	ıme de	s prélè	vements m	illions	de m3	par an		
	1	1	0.028 -97%	0.343 -65%	0.659 -32%	0.974	1.289 +35%	1.605 +65%	1.920 +97%	2.874 +195%	7.604 +680%
			Nombre	e de mo	ois d'as	ssec simulé	s par t	ype de	scéna	rio	
1985 - 1986	/	/	/	/	/	/	/	/	/	1	7
1986 - 1987	/	/	/	/	/	/	/	/	/	1	5
1989 - 1990	/	/	/	/	/	/	/	/	/	/	2
1990 - 1991	/	/	/	/	/	/	/	/	/	/	3
1991 - 1992	/	/	/	/	/	/	/	/	/	2	5
1992 - 1993	/	/	/	/	/	/	/	/	/	1	5
1993 - 1994	/	/	/	/	/	/	/	/	/	/	2
1994 - 1995	/	/	/	/	/	/	/	/	/	/	2
1995 - 1996	/	/	/	/	/	/	/	/	/	/	3
1996 - 1997	/	/	/	/	/	/	/	1	1	2	5
1997 - 1998	/	/	/	/	/	/	/	/	/	/	4
1999 - 2000	/	/	/	/	/	/	/	/	/	/	3
2002 - 2003	/	/	/	/	/	/	/	/	/	/	2
2003 - 2004	/	/	/	/	/	/	/	/	2	3	5
2004 - 2005	/	/	/	1	1	2	2	3	4	4	8
Fin 2005	1	1	1	2	2	3	3	4	4	5	8

Tableau 27 – Nombre de mois d'assec simulés par type de scénario et par année hydrologique

8.4 SIMULATIONS PREDICTIVES SUR LE BASSIN DE LA SOUDE

8.4.1 Débits à 12 mois de la Soude à Soudron

Le modèle GARDENIA permet d'établir des prévisions statistiques des débit de la Soude à Soudron de l'ordre de quantiles 10%, 20%, 50%, 80%, 90% et une prévision « garantie » s'il ne pleut pas dans les six mois (Figure 66 et Annexe 15).

La légende des courbes s'interprète comme suit :

- ⇒ Observ. = Série des débits journaliers observés
- ⇒ Simul. = Série des débits journaliers simulés jusqu'à la date d'émission de la simulation. En fait il ne s'agit pas réellement d'une « simulation » mais d'une simulation réadaptée
- ⇒ Prév_Garan = Prévision « garantie » : c'est à dire réalisée en considérant qu'aucune précipitation ne surviendra après la date d'émission de la prévision. Ce sont les débits simulés les plus bas possibles, d'où le terme de « garanti ». Tout modèle étant approché, il ne faut pas considérer les valeurs calculées comme garanties à 100 %
- ⇒ Prév_10 % = Prévision ayant une probabilité de non-dépassement de 10 %, c'est à dire que pour chaque pas de temps on a une probabilité de 10 % d'observer un débit inférieur (donc une probabilité de 90 % d'observer un débit supérieur ou égal.)
- ⇒ Prév_50 % = Prévision ayant une probabilité de non-dépassement de 50 %, c'est la valeur médiane.
- ⇒ Prév_90 % = Prévision ayant une probabilité de non-dépassement de 90 %, c'est à dire que pour chaque pas de temps on a une probabilité de 90 % d'observer un débit inférieur (donc une probabilité de 10 % d'observer un débit supérieur ou égal.)
- ⇒ Prév X % = Prévision ayant une probabilité de non-dépassement de X %

Ces prévisions ont été réalisées avec des données de pluviométrie s'arrêtant fin août 2005. Il ne s'agit que de statistiques basées sur les 30 années antérieures. Il nous faudrait connaître la pluviométrie pour prédire les débits à l'aide du modèle de fonctionnement.

Le pas de temps utilisé pour la modélisation est décadaire. Les valeurs de prévisions sont donc au même pas de temps. Evidemment, plus le champ de prévision est éloigné, moins la prévision est fiable.

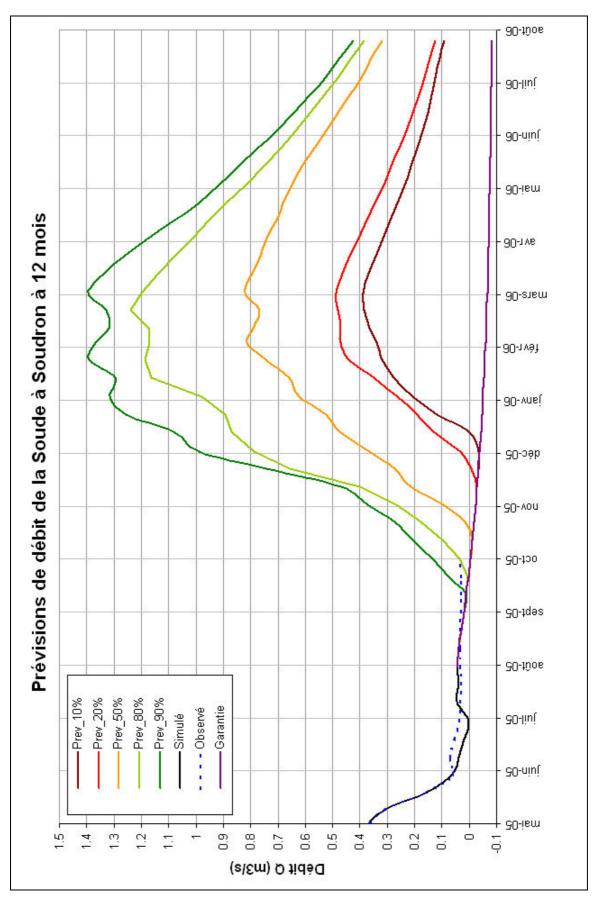


Figure 66 - Prévisions à 12 mois du débit de la Soude à Soudron

8.4.2 Niveaux de la nappe à 8 mois aux Grandes-Loges

De la même façon que pour les débits de la Soude, les niveaux de la nappe au Grandes-Loges peuvent être estimés statistiquement à l'aide des quantiles 10%, 20%, 50%, 80%, 90% et une prévision « garantie » s'il ne pleut pas dans les six mois. La même série de pluie a été utilisée. Le niveau a pu être estimé au pas de temps décadaire jusque fin avril 2006 (Figure 67 et Annexe 16).

La série observée à posteriori, entre décembre 2005 et avril 2006, a été ajoutée afin de vérifier la pertinence de la prévision. Les niveaux observés à partir de décembre 2005 sont inférieurs à la prévision à 10% jusqu'en février 2006. Au-delà la prévision est largement sous-estimée par rapport à la réalité; en effet la recharge de l'hiver 2005-2006 s'est prolongée dans le temps jusqu'à atteindre en avril 2006 son maximum (compris entre les quantiles 50 et 80%).

Il apparaît que l'exercice de prévision des niveaux piézométriques est un exercice difficile, nécessairement lié aux prévisions des précipitations et qui risque de ne pas convenir aux besoins de gestion des ressources en eau à l'échelle du bassin versant.

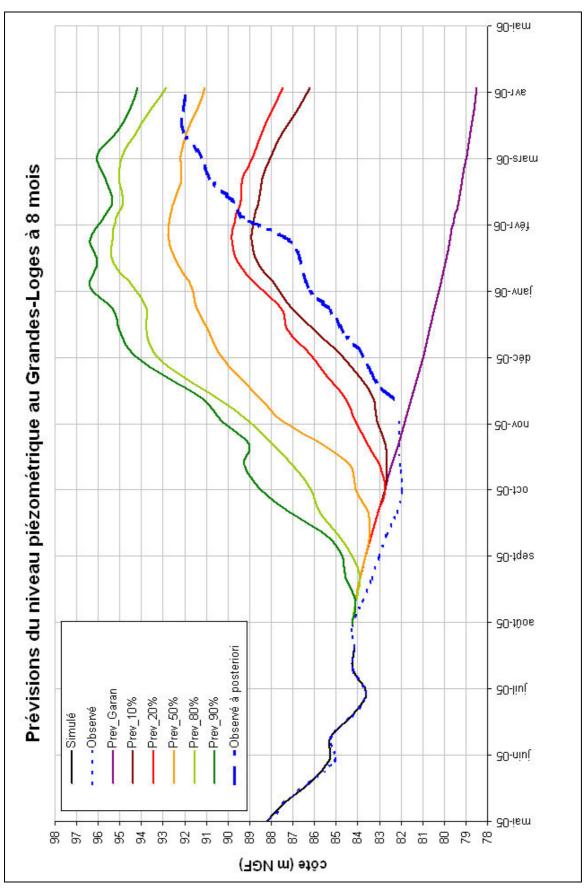


Figure 67 - Prévisions à 8 mois des niveaux piézométriques aux Grandes-Loges

9 Proposition de règles de gestion volumique de la ressource en eau du bassin de la Soude

L'objectif étant d'établir une règle de gestion volumique de la ressource en eau du bassin de la Soude, on se propose de trouver une relation entre le débit de la rivière Soude (par exemple un index représentatif du débit d'étiage) et le niveau piézométrique aux Grandes-Loges à une date donnée.

Le piézomètre des Grandes-Loges est situé hors du bassin de la Soude. Par conséquent, il constitue un index représentatif de l'état de remplissage de l'aquifère dans des conditions non influencées.

9.1 DEFINITION DU SEUIL DE REFERENCE

Le QMNA₅ est le débit mensuel minimal annuel de fréquence quinquennale sèche (ayant une probabilité 1/5 de ne pas être dépassé chaque année). Le QMNA₅ est nommé dans la nomenclature de la loi sur l'eau "débit moyen mensuel sec de récurrence 5 ans". En effet, il est utilisé dans la réglementation (loi sur l'eau, Installations Classées) et c'est pourquoi, il a été choisi comme seuil.

Le QMNA₅ donne une information sur la sévérité de l'étiage. Il constitue la référence pour les objectifs de qualité et pour l'application ou la réglementation (procédures d'autorisation ou de déclaration) en matière de rejet et de prélèvements. Le QMNA₅ a été déterminé par la loi Log Normale (à 3 paramètres donc meilleure que la loi Normale) avec un intervalle de confiance de 95%.

QMNA₅ = 45 L/s (entre 25,4 et 64,7 L/s) au seuil de confiance de 95%

9.2 DEFINITION D'UN INDEX DE GESTION

Entre 1969 et 2005, une relation a pu être établie entre le niveau piézométrique aux Grandes-Loges au 15 avril de chaque année (période de l'année où la nappe atteint sa cote maximale) et le nombre de jours entre mai et août (période de l'année où les prélèvements agricoles sont les plus importants) où le débit de la Soude à Soudron est inférieur au QMNA5 (Figure 68).

Nb max. jour Q<QMNA₅ mai-août = $(-14.495 \times NP \text{ Grandes-Loges } 15/04) + 1 372.2$

Depuis 1969, il a été observé pour huit années un débit de la Soude à Soudron inférieur au QMNA $_5$ avec un nombre de jours compris entre 1 (en 1992) et 69 (en 1976) (Tableau 28). Pour les années non mentionnées, le débit journalier n'a jamais été inférieur au QMNA $_5$.

On constate un changement de régime à partir de 1990. En effet, à partir de cette année et jusqu'en 1996, il y a presque chaque année des jours où le débit de la Soude à Soudron est inférieur au QMNA₅. Ce changement coïncide avec le début de l'expansion de l'irrigation dans le secteur.

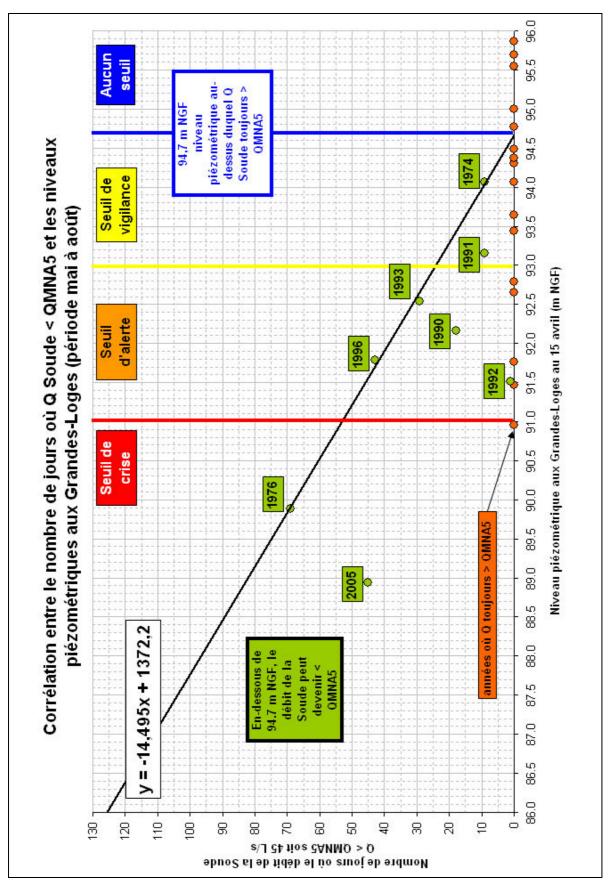


Figure 68 – Corrélation entre le nombre de jour où le débit de la Soude est inférieur au QMNA5 et le niveau piézométrique aux Grandes-Loges

Année	Nombre de jour où le débit de la Soude à Soudron est inférieur au QMNA5 (entre mai et août)	Niveau piézométrique au 15 avril aux Grandes-Loges (m NGF)
1974	9	94,08
1976	69	89,90
1990	18	92,17
1991	9	93,16
1992	1	91,52
1993	29	92,55
1996	43	91,80
2005	45	88,95

Tableau 28 – Nombre de jour entre mai et août où le débit de la Soude est inférieur au QMNA₅ et niveau piézométrique correspondant de la nappe le 15 avril aux Grandes-Loges

D'après la relation établie, quand le niveau piézométrique aux Grandes-Loges le 15 avril est supérieur à la cote 94,7 m NGF, le débit de la Soude à Soudron entre mai et août n'est jamais inférieur au QMNA₅. Le risque d'assec est donc négligeable.

Il est proposé de retenir comme index de gestion la cote piézométrique de la nappe au Grandes-Loges le 15 avril de l'année en cours pour établir les règles de gestion au moment de la plus forte consommation en eau, c'est-à-dire de mai à août.

9.3 DEFINITION DES REGLES DE GESTION

Il est proposé de définir les règles de gestion volumique sur le bassin de la Soude à partir de la relation qui existe entre le niveau piézométrique aux Grandes-Loges au 15 avril de chaque année et le nombre de jours entre mai et août où le débit de la Soude à Soudron est inférieur au QMNA5 (Figure 68). L'instauration de trois seuils est proposée :

Niveau piézométrique (NP) aux Grandes-Loges au 15 avril	<u>Seuil</u>	<u>Préconisations</u>
NP ≥ 95	Aucun seuil	Aucune restriction
93≤NP<95	Seuil de vigilance	Les prélèvements doivent être surveillés et utilisés au plus juste
91≤NP<93	Seuil d'alerte	Des critères de priorités peuvent être instaurés pour les différents prélèvements. Ces critères doivent tenir compte des différents usages
NP < 91	Seuil de crise	mais également être le résultat d'accords concertés entre les usagers, le seuil de crise étant le plus restrictif.

9.4 CONCLUSIONS

La relation définie entre le niveau piézométrique aux Grandes-Loges le 15 avril et le nombre de jours où le débit de la Soude à Soudron est inférieur au QMNA5 entre mai et août est valable pour une situation à l'équilibre.

Si de gros changements intervenaient dans le périmètre du piézomètre des Grandes-Loges (situé hors du bassin versant de la Soude mais considéré comme représentatif de la situation à l'équilibre et non influencé) ou dans le périmètre d'étude, il est probable que la relation ne serait plus valable sous sa forme actuelle (Figure 68).

Pour apprécier au mieux les impacts réels sur le fonctionnement hydrodynamique du bassin versant étudié, il est nécessaire de disposer de plusieurs piézomètres de surveillance.

De plus, les règles de gestion proposées sont valables uniquement pour le bassin de la Soude en amont de Soudron (station de mesure des débits de la rivière Soude) qui comprend les communes de Bussy-Lettrée, Dommartin-Lettrée, Soudé, Soudron et Vatry.

Pour étendre son application à l'ensemble du **bassin de la Somme-Soude**, plus complexe et nettement plus grand que celui de la Soude (485 km² contre 105 km²), il faudrait disposer de campagnes de jaugeages différentiels (hautes eaux et basses eaux) sur l'ensemble des cours d'eau (Soude, Somme, Somme-Soude et Berle).

Pour conclure sur les propositions de règles de gestion, on peut voir que le choix des seuils et des critères de priorités n'est pas définitif. Les propositions devront faire l'objet de discussions entre les administrations concernées et les usagers de l'eau. Les éventuelles mesures réglementaires à mettre en place ne relèvent pas de cette étude.

10 Conclusions, recommandations et perspectives

La présente étude concernant l'élaboration de règles de gestion de la ressource en eau souterraine pour les bassins de la Somme-Soude et de la Coole (département de la Marne) s'est décomposé en trois étapes successives :

- La collecte et le traitement des données ;
- La modélisation hydrodynamique globale du fonctionnement du système ;
- o l'élaboration de propositions pour la mise en œuvre de règles de gestion de la ressource en eau souterraine à l'échelle des bassins versants étudiés.

Les deux bassins versants étudiés « Somme-Soude » et « Coole » sont situés intégralement en zone crayeuse, sur un territoire de 765 km², presque intégralement consacré à l'agriculture et où l'irrigation est importante.

L'interprétation des données collectées a conduit à mieux connaître l'importance des prélèvements, à préciser les usages et leurs répartitions sur le périmètre d'étude et à identifier les secteurs où la pression est la plus grande. Ainsi, les prélèvements les plus importants sont équitablement répartis dans le bassin de la Somme-Soude. Par contre, dans le bassin de la Coole, le principal usage est agricole et se concentre dans les 2/3 amont du bassin.

Il est rapidement apparu que la complexité de l'étude viendrait à la fois d'un manque d'information (absence de chroniques suffisantes de débits sur la Coole, de mesures piézométriques sur les 2 bassins versants ou de séries des volumes prélevés) et paradoxalement d'un surcroît d'informations. Par exemple, pour les prélèvements agricoles (irrigation) on dispose de 3 sources (AESN, DDAF 51 et Chambre d'agriculture 51) qui ne présentent pas du tout les mêmes résultats.

La modélisation « pluie-débit » a été entreprise avec le logiciel GARDENIA à partir de la chronique de débits journaliers disponible sur la Soude à Soudron (avec toutefois une interruption de décembre 1999 à avril 2005).

Pour la modélisation « pluie-niveau », le piézomètre des Grandes-Loges, bien que situé hors du périmètre d'étude, a été retenu en raison de la longueur de sa chronique qui remonte à 1969, de la qualité de ses mesures et de sa représentativité pour la masse d'eau crayeuse constituant la « ressource en eau » des bassins versants étudiés. Ce piézomètre a d'autre part été retenu comme un index de gestion non influencé pouvant servir à l'élaboration des règles de gestion.

Une relation a été établie entre le niveau piézométrique aux Grandes-Loges au 15 avril de chaque année et le nombre de jour entre mai et août où le débit de la Soude à Soudron est inférieur au QMNA₅. Trois niveaux de seuil ont été proposés sur la base d'une situation des niveaux piézométrique (NP) de la nappe aux Grandes-Loges le 15 avril :

- o NP ≥ 94,7 m NGF ⇒ aucun seuil;
- 93 ≤ NP < 94,7 m NGF ⇒ Seuil de vigilance ;

- o 91 ≤ NP < 93 m NGF ⇒ Seuil d'alerte ;
- NP < 91 m NGF → Seuil de crise.

Les mesures préconisées pour les différents seuils seraient à établir en concertation avec les différents acteurs et sont amenées à évoluer en fonction des connaissances acquises sur les bassins versants étudiés.

Les simulations réalisées pour le bassin de la Soude ont conduit à établir le bilan hydrologique moyen selon lequel les prélèvements en nappe représenteraient 5% de la pluie efficace moyenne annuelle et l'écoulement souterrain 10%. Des simulations complémentaires ont permis d'estimer l'impact d'une augmentation des prélèvements en nappe : on estime que 0,631 Mm³/an prélevés en plus (soit une augmentation de 65% par rapport aux prélèvements 2003 estimés à 0.974 Mm³/an) augmenterait significativement le nombre assec.

Recommandations

Il est apparu suite à l'étude entreprise sur les bassins versants de la Somme-Soude et de Coole et à l'analyse détaillée des données collectées qu'un certain nombre de mesures doivent être prises afin d'améliorer les connaissances sur le secteur (Tableau 29 et Figure 69) :

- Remettre en service la station hydrométrique d'Ecury-sur-Coole afin d'obtenir les débits journaliers sur la Coole ;
- Réaliser au minimum deux campagnes de jaugeages différentiels (en basses et en hautes eaux) d'amont en aval sur les cours d'eau suivants : Somme, Soude, Somme-Soude, Berle, Pisseleu et Coole ;
- Renforcer les points du réseau ROCA : relevés datés et géoréférencés des assecs :
- Organiser deux campagnes de piézométrie en basses et hautes eaux sur les deux bassins versants étudiés et sélectionner les ouvrages sur lesquels un suivi régulier du niveau de nappe pourra être mis en place;
- Améliorer les connaissances et la répartition des prélèvements (chroniques des volumes prélevés à une fréquence régulière sur des ouvrages parfaitement identifiés et géoréférencés).

Perspectives

L'objectif de l'étude était de mieux comprendre le fonctionnement hydrodynamique des deux bassins versants étudiés pour anticiper les problèmes d'assec. Le modèle mis en œuvre a permis de simuler l'impact d'une augmentation des prélèvements et de prévoir les débits ou les niveaux piézométriques dans un délai de 8 à 12 mois. Malgré tout, la pluviométrie demeure un paramètre aléatoire imprévisible.

Le rapport ne répond pas complètement aux objectifs fixés au départ. La modélisation n'a pu être réalisée que sur le bassin de la Soude et son extension à l'ensemble de la zone d'étude s'avère impossible dans l'état actuel des connaissances.

Pour aboutir à une modélisation plus fiable, il a été recommandé de compléter les connaissances actuelles sur le secteur d'étude. Dans le cas où des mesures complémentaires pourraient être entreprises, il sera possible de réaliser des simulations par analogie hydrologique et de reconstituer les débits en aval. A partir de ces débits reconstitués, la même méthodologie que celle appliquée sur le bassin versant de la Soude pourra être envisagée. Les paramètres de calage pourront être retrouvés mais le débit de fuite sera probablement différent.

D'autre part, le BRGM dispose d'un modèle hydrologique global pluie-débit EROS prenant en compte les chroniques de débits d'échange (prélèvements et/ou apports en rivière ou en nappe). Mais il nécessite, comme GARDENIA, des chroniques complètes et synchrones de pluie, ETP, débits et niveaux piézométriques dans le bassin concerné.

Bassin de Somme-Soude	Bassin de la Coole						
Poursuite des mesures hydrométriques à la station de Soudron sur la Soude	Remise en service de la station hydrométrique à Ecury-sur-Coole						
Campagnes de jaugeages en hautes eaux et en basses eaux à :							
 Soudron (étalonnage) Champigneul-Champagne, Pocancy, Germinon Saint-Mard-les-Rouffy (Berle) Villeseneux et Haussimont (Somme) Dommartin-Lettrée (Soude) 	 Ecury-sur-Coole (étalonnage) Coolus Cernon Faux-Vésigneul 						
Suivi d'un piézomètr	e dans le secteur de :						
Che	niers						
Trecon	Cernon						
Relevés des assecs en no	mbre de jour ou décade à :						
 Soudron (station) Germinon Villeseneux et Haussimont (Somme) Dommartin-Lettrée (Soude) Ecury-sur-Coole (étalonnage) Coolus Cernon Faux-Vésigneul 							
Prélèvements :							
Obtenir des chroniques des volumes prélevés et la répartition par décade							

Tableau 29 – Recommandations des mesures à entreprendre sur les bassins versants étudiés

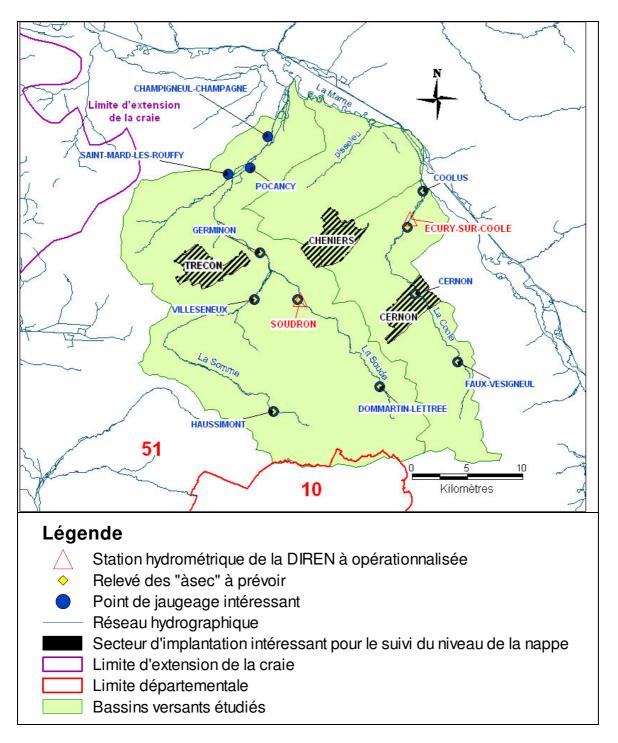


Figure 69 - Cartographie des mesures à entreprendre sur les bassins versants étudiés

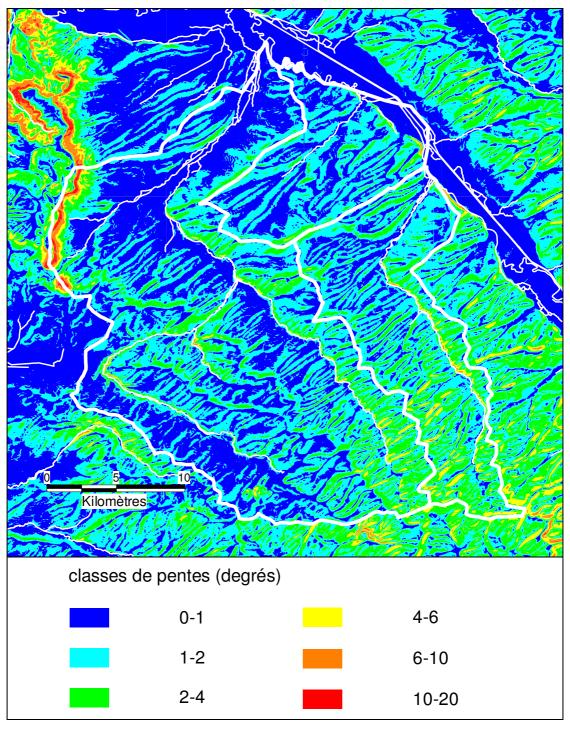
Bibliographie

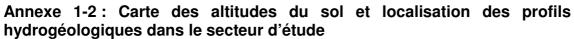
BRGM (1975 et 1977) - Cartes géologiques de la France à 1/50 000

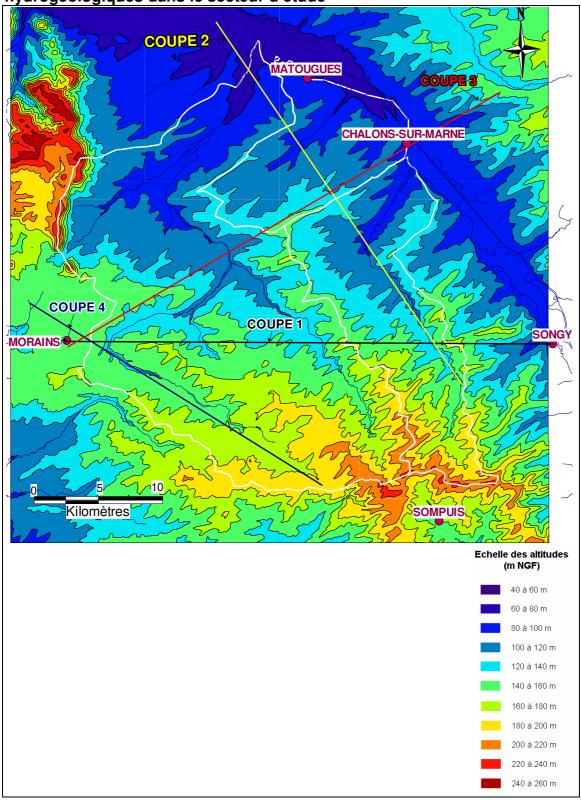
- Feuille de Vertus (n°188),
- Feuille de Châlons-sur-Marne (n°189),
- Feuille de Fère-Champenoise (n°224),
- Feuille de Vitry-le-Francois (n°225),

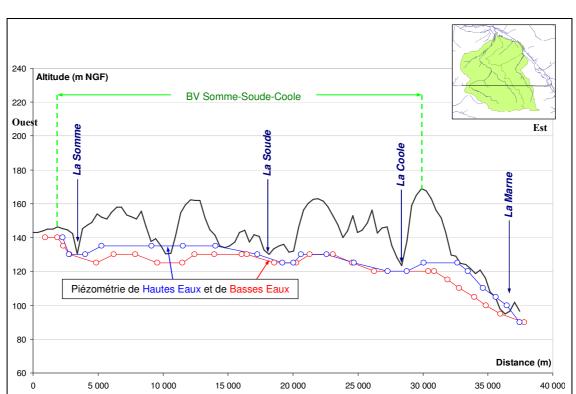
DDAF de la Marne (2004) - Etude Géomorphologique des bassins versants de la Somme-Soude et de la Coole, Département de la Marne. Aspects géographiques, climatologiques, géologiques et hydrogéologiques, Eaux superficielles et Aménagement. Rapport de stage à la DAFF, Châlons en Champagne, novembre 2004.

DUERMAEL G., MEGNIEN C., MORFAUX P., PICOT G., RAMPON G. (1967) - Carte hydrogéologique à 1/100 000 de la région Champagne-Ardenne. Feuille de Vertus, Châlons, Vitry-le-François, Fère-Champenoise. Rapport DSGR 67 A 8.

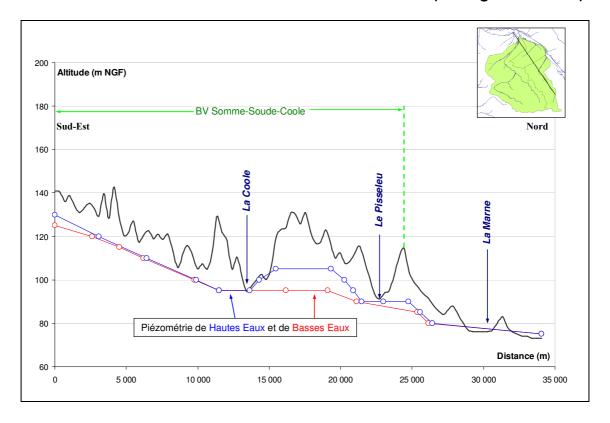

HILLY J. et HAGUENAUER B. (1979) – Guide géologique régional « Lorraine-Champagne ». Ed. Masson.

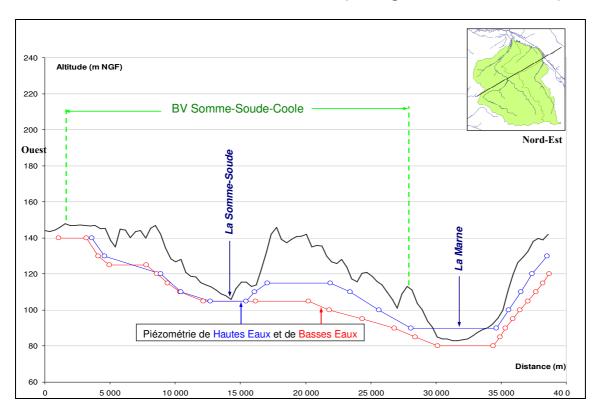

MARTIN J.C., ROUXEL-DAVID E., BATKOWSKI D., NORMAND M., CHABART M. (2004) – Elaboration d'une règle de gestion volumique de la ressource en eau du bassin de la Barbuise (Aube) – Rapport final. BRGM/RP-53178-FR, 93 p., 46 figures, 12 tableaux, 5 annexes.


ROUXEL-DAVID E. (2004) – Suivi de la qualité des eaux souterraines en aval des installations classées situées dans la région Champagne-Ardenne (Bassin Seine-Normandie), Synthèse à 2003. Rapport final. Rapport BRGM/RP-53186-FR, 494 p.

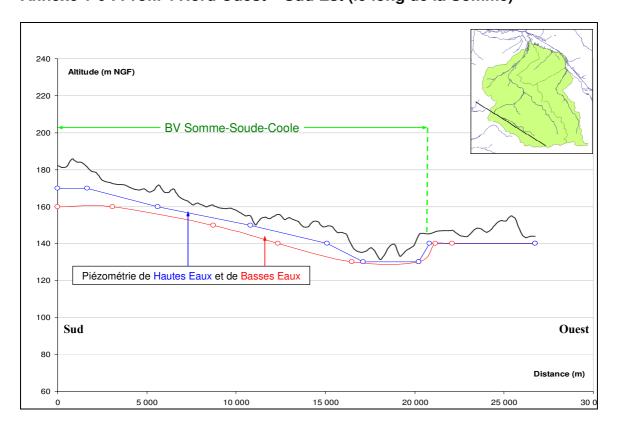

Annexe 1 – Profils hydrogéologiques des bassins de la Somme-Soude et de la Coole

Annexe 1-1: Carte des pentes





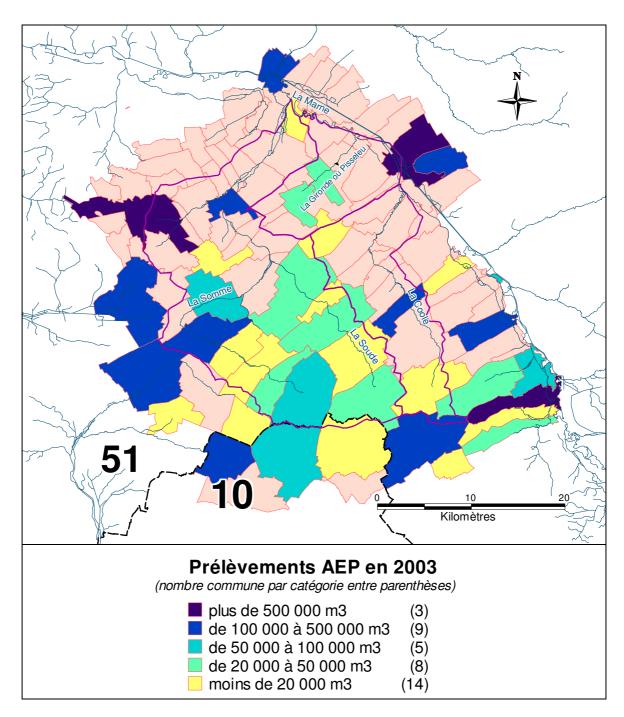
Annexe 1-3 : Profil 1 Ouest – Est (transversal)



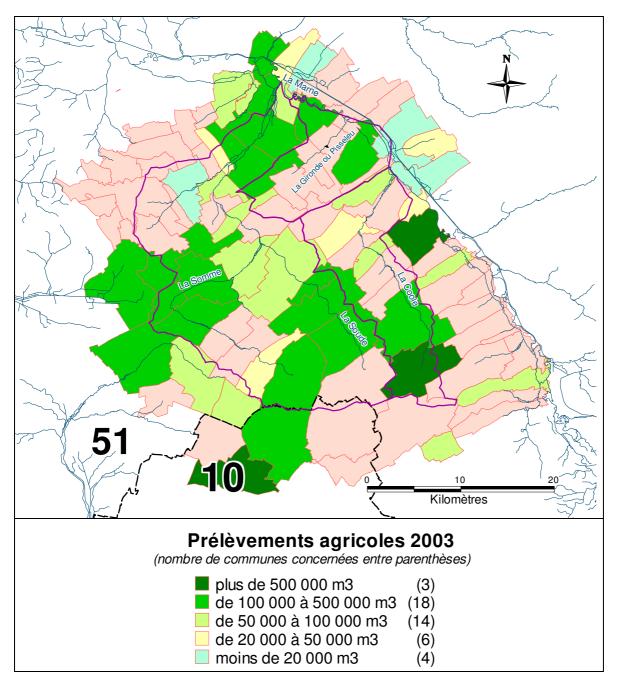
Annexe 1-5: Profil 3 Sud Ouest – Nord Est (le long de la Somme-Soude)

Annexe 1-6: Profil 4 Nord Ouest – Sud Est (le long de la Somme)

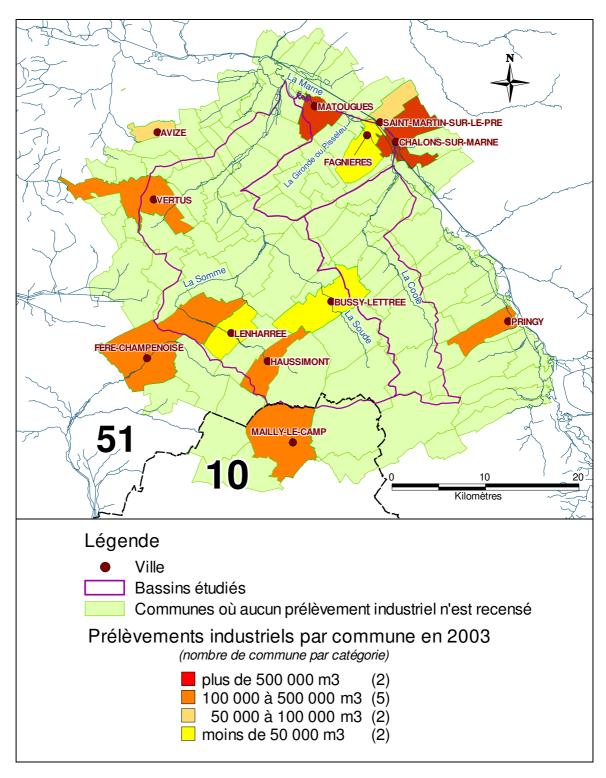
Annexe 2 – Synthèse des données de l'Agence de l'Eau Seine-Normandie sur les prélèvements en 2002 et 2003


		Volumes prélevés dans la nappe en 2002 en m³/an					
INSEE	COMMUNE	AEP	Agriculture	Industrie	Total		
51003	AIGNY	7	7.9				
51018	ATHIS		80 630		80 630		
51023	AULNAY-SUR-MARNE	14 245	62 100		76 345		
51029	AVIZE	11210	02 100	25 674	25 674		
51049	BERGERES-LES-VERTUS			20 07 1	20 07 1		
51065	BLACY	1 333 021			1 333 021		
51087	BREUVERY-SUR-COOLE	1 000 021	30 965		30 965		
51099	BUSSY-LETTREE	21 558	264 679		286 237		
51106	CERNON	2.000	201070		200 201		
51107	CHAINTRIX-BIERGES						
51108	CHALONS-EN-CHAMPAGNE	5 750 080	948	653 210	6 404 238		
51117	CHAMPIGNEUL-CHAMPAGNE	0 700 000	309 641	000 210	309 641		
51146	CHENIERS	4 965	000 041		4 965		
51148	CHEPPES-LA-PRAIRIE	7 000			1 300		
51150	CHERVILLE		77 680		77 680		
51154	CLAMANGES	82 659	108 010		190 669		
51160	COMPERTRIX	02 000	100 010		100 000		
51161	CONDE-SUR-MARNE	308 264			308 264		
51164	CONNANTRAY-VAUREFROY	000 204	117 460		117 460		
51167	COOLE	16 542	332 527		349 069		
51168	COOLUS	10 042	70 720		70 720		
51178	COUPETZ	320 782	70720		320 782		
51212	DOMMARTIN-LETTREE	16 322	121 849		138 171		
51220	DROUILLY	10 322	121 043		130 171		
51226	ECURY-LE-REPOS		176 299		176 299		
51227	ECURY-SUR-COOLE		170 299		170 299		
51239	ETRECHY						
51239	EUVY	11 138			11 138		
51242	FAGNIERES	11 130	85 000	72 114	157 114		
51244	FAUX-VESIGNEUL		104 626	72 114	104 626		
51248	FERE-CHAMPENOISE	239 478	109 584	306 441	655 503		
51251	FLAVIGNY	209 470	109 304	300 441	000 000		
51268	GERMINON						
51200	GIONGES						
51271	GLANNES	8 347			8 347		
51275	HAUSSIMONT	22 299	32 300	458 022	512 621		
51205	HUIRON	20 353	02 300	TJU UZZ	20 353		
51295	HUMBAUVILLE	7 320	55 800		63 120		
51303	JALONS	7 320	78 153		78 153		
51312	JUVIGNY		70 133		70 100		
51312	LE MESNIL-SUR-OGER						
51319	LENHARREE	22 726		44 661	67 387		
51302	LES ISTRES-ET-BURY	22 120		44 001	07 307		
51302	LOISY-SUR-MARNE	70 591			70 591		
10216	MAILLY-LE-CAMP	92 323	102 000	228 549	422 872		
51339	MAIRY-SUR-MARNE	92 323	570 722	220 049	570 722		
51340	MAISONS-EN-CHAMPAGNE	39 213	3/0/22		39 213		
51340	MATOUGUES	39 213	119 528	832 818	952 346		
		0.041		032 010			
51377	MONTEPREUX	9 241	34 000		43 241		

		Volume	s prélevés dans	la nappe en 200	2 en m³/an
INSEE	COMMUNE	AEP	Agriculture	Industrie	Total
51409	NUISEMENT-SUR-COOLE		47 140		47 140
51411	OGER				
51430	PIERRE-MORAINS		97 790		97 790
51431	PIERRY				
51435	POCANCY		189 179		189 179
51436	POGNY	62 900			62 900
10293	POIVRES	12 290			12 290
51446	PRINGY			195 213	195 213
51453	RECY				
51469	ROUFFY				
51483	SAINT-GIBRIEN				
51499	SAINT-MARD-LES-ROUFFY		96 900		96 900
51502	SAINT-MARTIN-AUX-CHAMPS				
51504	SAINT-MARTIN-SUR-LE-PRE			93 265	93 265
51506	SAINT-MEMMIE	457 494	21 147		478 641
51509	SAINT-PIERRE	33 503			33 503
51512	SAINT-QUENTIN-SUR-COOLE		51 760		51 760
51525	SARRY				
10369	SEMOINE	110 041			110 041
51538	SOGNY-AUX-MOULINS		32 300		32 300
51545	SOMMESOUS	131 400	319 309		450 709
51550	SOMPUIS	50 143			50 143
51552	SONGY	128 673			128 673
51555	SOUDE	17 848			17 848
51556	SOUDRON	23 097	23 800		46 897
51558	SOULIERES				
51566	THIBIE	23 543			23 543
51574	TOGNY-AUX-BOEUFS	9 156			9 156
51578	TRECON	9 099	133 950		143 049
10386	TROUANS				
51158	VAL-DES-MARAIS	326 071	370 962		697 033
51594	VASSIMONT-ET-CHAPELAINE	9 177			9 177
51595	VATRY	8 203	268 120		276 323
51603	VELYE		76 755		76 755
51612	VERTUS	651 558		102 341	753 899
51627	VILLENEUVE-RENNEVILLE-CHEVIGNY		7 800		7 800
51630	VILLERS-AUX-BOIS				
51634	VILLERS-LE-CHATEAU		14 052		14 052
51638	VILLESENEUX		36 280		36 280
10430	VILLIERS-HERBISSE		512 380		512 380
51648	VITRY-LA-VILLE		39 210		39 210
51651	VOIPREUX				
51655	VOUZY	209 503	68 000		277 503
51656	VRAUX				
	Total sur le secteur d'étude	10 685 166	5 452 055	3 012 308	19 149 529
Total s	sur les 65 communes des BV d'étude	9 173 974	4 333 456	2 791 421	16 298 851


	Volumes prélevés dans la nappe en 2003 en m ³ /a				
INSEE	COMMUNE	AEP	Agriculture	Industrie	Total
51003	AIGNY	7	29 254		29 254
51018	ATHIS		52 789		52 789
51023	AULNAY-SUR-MARNE	17 851	55 750		73 601
51029	AVIZE	17 001	00700	56 056	56 056
51049	BERGERES-LES-VERTUS			00 000	00 000
51065	BLACY	1 591 984			1 591 984
51087	BREUVERY-SUR-COOLE	1 001 001			1 001 001
51099	BUSSY-LETTREE	28 643	270 329	29 552	328 524
51106	CERNON	200.0	270 020	20 002	020 02 1
51107	CHAINTRIX-BIERGES				
51108	CHALONS-EN-CHAMPAGNE	5 318 540	506	685 360	6 004 406
51117	CHAMPIGNEUL-CHAMPAGNE	0010040	389 643	000 000	389 643
51146	CHENIERS	4 965	303 043		4 965
51148	CHEPPES-LA-PRAIRIE	7 303			7 303
51150	CHERVILLE		64 036		64 036
51154	CLAMANGES	62 875	122 671		185 546
51160	COMPERTRIX	02 073	122 07 1		160 040
51161	CONDE-SUR-MARNE	352 262	122 130		474 392
51164	CONNANTRAY-VAUREFROY	332 202	72 500		72 500
51167	COOLE	16 223	572 776		588 999
51167	COOLUS	10 223	58 640		58 640
51178	COUPETZ	332 896	36 640		332 896
	DOMMARTIN-LETTREE	16 282	215 200		231 482
51212 51220	DROUILLY	10 282	215 200		231 482
			107.000		107.000
51226	ECURY-LE-REPOS		197 390		197 390
51227	ECURY-SUR-COOLE				
51239	ETRECHY EUVY	8 730			0.700
51241	_	8 730	100,000	10.001	8 730
51242	FAGNIERES		132 000	19 981	151 981
51244	FAUX-VESIGNEUL	007.040	151 375	405.074	151 375
51248	FERE-CHAMPENOISE	227 212	155 952	405 971	789 135
51251	FLAVIGNY				
51268	GERMINON				
51271	GIONGES	0.050			0.050
51275	GLANNES	8 950	00.400	100.070	8 950
51285	HAUSSIMONT	25 598	26 400	409 273	461 271
51295	HUIRON	20 241	00.450		20 241
51296	HUMBAUVILLE	7 079	83 150		90 229
51303	JALONS		177 783		177 783
51312	JUVIGNY				
51367	LE MESNIL-SUR-OGER	40045		04.000	F0.000
51319	LENHARREE	16 245		34 638	50 883
51302	LES ISTRES-ET-BURY	F 1 150			E4.450
51328	LOISY-SUR-MARNE	54 156	100.000	070	54 156
10216	MAILLY-LE-CAMP	95 316	198 000	273 279	566 595
51339	MAIRY-SUR-MARNE		675 217		675 217
51340	MAISONS-EN-CHAMPAGNE	29 691			29 691
51357	MATOUGUES		166 130	678 822	844 952
51377	MONTEPREUX	8 196	55 000		63 196

		Volume	s prélevés dans	la nappe en 200	3 en m³/an
INSEE	COMMUNE	AEP	Agriculture	Industrie	Total
51409	NUISEMENT-SUR-COOLE		29 120		29 120
51411	OGER				
51430	PIERRE-MORAINS		124 895		124 895
51431	PIERRY				
51435	POCANCY		297 890		297 890
51436	POGNY	85 500			85 500
10293	POIVRES	13 160			13 160
51446	PRINGY			149 753	149 753
51453	RECY				
51469	ROUFFY				
51483	SAINT-GIBRIEN				
51499	SAINT-MARD-LES-ROUFFY		45 980		45 980
51502	SAINT-MARTIN-AUX-CHAMPS				
51504	SAINT-MARTIN-SUR-LE-PRE			98 844	98 844
51506	SAINT-MEMMIE	469 191	45 848		515 039
51509	SAINT-PIERRE	33 343			33 343
51512	SAINT-QUENTIN-SUR-COOLE		52 400		52 400
51525	SARRY		5 896		5 896
10369	SEMOINE	113 612			113 612
51538	SOGNY-AUX-MOULINS		48 145		48 145
51545	SOMMESOUS	50 000	432 523		482 523
51550	SOMPUIS	41 822			41 822
51552	SONGY	114 936			114 936
51555	SOUDE	22 450			22 450
51556	SOUDRON	25 035	66 000		91 035
51558	SOULIERES				
51566	THIBIE	21 457			21 457
51574	TOGNY-AUX-BOEUFS	10 102			10 102
51578	TRECON	8 493	142 160		150 653
10386	TROUANS				
51158	VAL-DES-MARAIS	341 968	392 540		734 508
51594	VASSIMONT-ET-CHAPELAINE	10 563			10 563
51595	VATRY	8 595	292 386		300 981
51603	VELYE		72 846	100 101	72 846
51612	VERTUS	576 547	0.000	108 464	685 011
51627	VILLENEUVE-RENNEVILLE-CHEVIGNY		6 600		6 600
51630	VILLERS-AUX-BOIS				
51634	VILLERS-LE-CHATEAU		00.000		00.000
51638	VILLESENEUX		82 902		82 902
10430	VILLIERS-HERBISSE		774 280		774 280
51648	VITRY-LA-VILLE		54 290		54 290
51651	VOLTZY	004.050	00.000		000.050
51655	VOUZY	201 858	88 000		289 858
51656	VRAUX	10 000 505	18 700	0.040.000	18 700
Takai	Total sur le secteur d'étude	10 392 567	7 118 022	2 949 993	20 460 582
l otal s	sur les 65 communes des BV d'étude	8 815 942	5 535 295	2 744 184	17 095 421


Annexe 3 – Cartes de répartition des prélèvements par type d'usage

Répartition des prélèvement AEP dans notre zone d'étude (Source : AESN,2003)

Répartition des prélèvements agricoles dans notre zone d'étude (Source : AESN,2003)

Répartition des prélèvements industriels dans notre zone d'étude (Source : AESN, 2003)

Annexe 4 – Catégorie de pression par Commune

Catégories	Description
1	Prélèvements industriels importants et/ou 100 000 m³ < les prélèvements AEP < 500 000 m³ et/ou agricoles > 500 000 m³
2	100 000 m ³ < Prélèvements AEP < 500 000 m ³ et/ou 100 000 m ³ < agricoles < 500 000 m ³
3	20 000 m ³ < Prélèvements AEP< 100 000 m ³ et/ou 20 000 m ³ < agricoles < 100 000 m ³
4	Prélèvements AEP < 20 000 m ³ et/ou agricoles < 20 000 m ³

NOM	NUMERO	Pression
AVIZE	51 029	1
BLACY	51 065	1
BUSSY-LETTREE	51 099	1
CHALONS-EN-CHAMPAGNE	51 108	1
COOLE	51 167	1
FAGNIERES	51 242	1
FERE-CHAMPENOISE	51 248	1
HAUSSIMONT	51 285	1
LENHARREE	51 319	1
MAILLY-LE-CAMP	10 216	1
MAIRY-SUR-MARNE	51 339	1
MATOUGUES	51 357	1
PRINGY	51 446	1
VERTUS	51 612	1
VILLIERS-HERBISSE	10 430	1
CHAMPIGNEUL-CHAMPAGNE	51 117	2
CLAMANGES	51 154	2
CONDE-SUR-MARNE	51 161	2
COUPETZ	51 178	2
DOMMARTIN-LETTREE	51 212	2
ECURY-LE-REPOS	51 226	2
FAUX-VESIGNEUL	51 244	2
JALONS	51 303	2
PIERRE-MORAINS	51 430	2
POCANCY	51 435	2
SAINT-MEMMIE	51 506	2
SEMOINE	10 369	2
SOMMESOUS	51 545	2
SOMPUIS	51 550	2
SONGY	51 552	2
TRECON	51 578	2

NOM	NUMERO	Pression
VAL-DES-MARAIS	51 158	2
VATRY	51 595	2
VOUZY	51 655	2
AIGNY	51 003	3
ATHIS	51 018	3
AULNAY-SUR-MARNE	51 023	3
CHERVILLE	51 150	3
CONNANTRAY-VAUREFROY	51 164	3
COOLUS	51 168	3
HUIRON	51 295	3
HUMBAUVILLE	51 296	3
LOISY-SUR-MARNE	51 328	3
MAISONS-EN-CHAMPAGNE	51 340	3
MONTEPREUX	51 377	3
NUISEMENT-SUR-COOLE	51 409	3
POGNY	51 436	3
SAINT-MARD-LES-ROUFFY	51 499	3
SAINT-MARTIN-SUR-LE-PRE	51 504	3
SAINT-PIERRE	51 509	3
SAINT-QUENTIN-SUR-COOLE	51 512	3
SOGNY-AUX-MOULINS	51 538	3
SOUDE	51 555	3
SOUDRON	51 556	3
THIBIE	51 566	3
VELYE	51 603	3
VILLESENEUX	51 638	3
VITRY-LA-VILLE	51 648	3
BERGERES-LES-VERTUS	51 049	4
BREUVERY-SUR-COOLE	51 087	4
CERNON	51 106	4
CHAINTRIX-BIERGES	51 107	4
CHENIERS	51 146	4
CHEPPES-LA-PRAIRIE	51 148	4
COMPERTRIX	51 160	4
DROUILLY	51 220	4
ECURY-SUR-COOLE	51 227	4
ETRECHY	51 239	4
EUVY	51 241	4
FLAVIGNY	51 251	4
GERMINON	51 268	4
GIONGES	51 271	4
GLANNES	51 275	4
JUVIGNY	51 312	4
LE MESNIL-SUR-OGER	51 367	4
LES ISTRES-ET-BURY	51 302	4

NOM	NUMERO	Pression
OGER	51 411	4
PIERRY	51 431	4
POIVRES	10 293	4
RECY	51 453	4
ROUFFY	51 469	4
SAINT-GIBRIEN	51 483	4
SAINT-MARTIN-AUX-CHAMPS	51 502	4
SARRY	51 525	4
SOULIERES	51 558	4
TOGNY-AUX-BOEUFS	51 574	4
TROUANS	10 386	4
VASSIMONT-ET-CHAPELAINE	51 594	4
VILLENEUVE-RENNEVILLE-CHEVIGNY	51 627	4
VILLERS-AUX-BOIS	51 630	4
VILLERS-LE-CHATEAU	51 634	4
VOIPREUX	51 651	4
VRAUX	51 656	4

Annexe 5 - Synthèse des données de prélèvements agricoles fournies par la DDAF de la Marne

Volume prélevé global									
Code forage	1998	Code forage	1999	Code forage	2000	Code forage	2001	Code forage secteur	2003
CO01	78 484	CO01	54 631	CO01	42 251	CO01	39 047	CO01	73 964
CO02	50 077	CO02	35 742	CO02 CO03		CO02	17 134	CO02 CO03	
CO03 CO04	0 138 430	CO03 CO04	0 136 910	CO03	53 970	CO03 CO04	0 38 350	CO03	141 080
CO05	104 290	CO05	143 280	CO05	63 210	CO05	53 120	CO05	164 420
CO06	0	CO06	0	CO06		CO06	62 200	CO06	76 170
CO07	0	CO07	0	CO07		CO07	0	CO07	
CO08	33 000	CO08	32 040	CO08	20 700	CO08	10 700	CO08	0
CO09 CO10	0 30 000	CO09 CO10	0 54 000	CO09 CO10	0	CO09 CO10		CO09 CO10	0
CO11	103 800	CO11	150 000	CO11	O	CO11		CO11	
CO12	0	CO12	0	CO12		CO12	0	CO12	36 000
CO13	0	CO13	41 820	CO13		CO13		CO13	71 730
CO14	3 000	CO14	0	CO14		CO14	31 976	CO14	4 526
CO15 CO16	18 000 9 000	CO15 CO16	10 200 10 500	CO15 CO16		CO15 CO16	6 000 0	CO15 CO16	26 370
CO17	0	CO17	0	CO17		CO17	12 000	CO17	
CO18	8 100	CO18	20 000	CO18	22 850	CO18	26 742	CO18	20 000
		CO19	46 585	CO19	26 040	CO19	33 170	CO19	58 600
		CO20	0	CO20		CO20	0	CO20	0
0000	00 500	CO21	16 286	CO21	20 250	CO21	36 640	CO21	0
CO22 CO23	30 500 51 005	CO22 CO23	24 500 54 520	CO22 CO23	13 875	CO22 CO23	21 850 37 280	CO22 CO23	51 000 103 405
CO24	0	CO24	0	CO24	0	CO24	37 200	CO24	103 403
CO25	0	CO25	0	CO25	•	CO25	0	CO25	
				CO26	23 088	CO26		CO26	23 088
				CO27		CO27	10.075	CO27 CO28	44 521
				MAR01	14 673	CO28 MAR01	18 375 27 484	MAR01	44 52 1
				1017 (1 10 1	14070	MAR126	0	MAR126	0
						MAR127	11 000	MAR127	108 080
								MAR129	
								MAR134 MAR157	69 050
				MAR33		MAR33	0	MAR33	03 030
				MAR34		MAR34	0	MAR34	
				MAR37		MAR37		MAR37	
0001-	0	0001-	•	MAR38	0	MAR38	0	MAR38 SS01a	0
SS01a SS02	0	SS01a SS02	0 0	SS01a SS02	0	SS01a SS02	0	SS02	0
SS03	ő	SS03	21 370	SS03	v	SS03	28 563	SS03	Ü
SS04	9 600	SS04	19 200	SS04	44 390	SS04	27 000	SS04	180 370
SS05	0	SS05	0			0000		SS05	88 066
SS06 SS07	55 000 60 000	SS06 SS07	0 48 600	SS06 SS07		SS06 SS07	0	SS06 SS07	62 110 60 000
SS08	0	SS08	0	SS08		SS08	0	SS08	49 382
SS09	Ö	0000	ŭ	SS09	0	SS09	Ö	SS09	0
SS10	62 500	SS10	44 000	SS10	30 061	SS10	25 817	SS10	88 515
SS11	50 000	SS11	94 400	SS11	00.440	SS11	00.700	SS11	100.050
SS12 SS13	17 500 0	SS12 SS13	25 068 0	SS12 SS13	30 410 11 200	SS12 SS13	29 700 0	SS12 SS13	100 858 18 000
SS14	10 000	SS14	17 262	SS14	11 200	SS13	11 253	SS14	14 100
		SS15	0	SS15	19 522	SS15	24 540	SS15	50 350
		SS16	7 040	SS16	9 500	SS16		SS16	
		SS17	24 700 21 150	SS17	21 460 14 420	SS17		SS17 SS18	
SS19	27 000	SS18 SS19	0	SS18 SS19	14 420	SS18 SS19	0	SS19	27 000
SS20	0	SS20	35 700	SS20		SS20	0	SS20	3 150
SS21	47 700	SS21	81 500	SS21	48 146	SS21	30 541	SS21	
SS22	0	SS22	63 000	SS22		SS22	48 600	SS22	10 575
SS23 SS24	0	SS23 SS24	24 000 0	SS23 SS24	0	SS23 SS24	45 000 0	SS23 SS24	4 400 0
0024	J	SS25	12 000	SS25	7 200	SS25	3 120	SS25	3
		SS26	65 701	SS26	36 255	SS26	32 396	SS26	64 500
				SS27		SS27		SS27	
SS29	42 000	SS29	37 884	SS28a		SS28a	18 400	SS28a SS29	0
SS29 SS30	42 000 40 000	3329	3/ 884	SS29 SS30	46 590	SS29 SS30	18 400 46 700	SS29 SS30	136 200
SS31	15 000			SS31	.5 550	SS31	0	SS31	0
				SS32		SS32		SS32	
0004	00.000	0004	00 445	SS33	45 750	SS33		SS33	0
SS34 SS35	22 000 0	SS34	26 445	SS34 SS35	45 750 5 100	SS34 SS35	0 0	SS34 SS35	0
JJJJ	U	SS36	0	SS36	5 100	SS36	0	SS36	0
l		3330	U	3330					

	Volume prélevé global								
Code forage	1998	Code forage	1999	Code forage	2000	Code forage	2001	Code forage secteur	2003
SS38	32 000	SS38	33 000	SS38	17 420	SS38	17 290	SS38	44 285
SS39	0	SS39	17 100	SS39	3 600	SS39	0	SS39	22 500
SS40	25 000	SS40	0	SS40	0.000	SS40	7 800	SS40	43 000
SS41	0	SS41	8 400	SS41	3 600	SS41	600	SS41	0
SS42	8 500	SS42 SS44	0	SS42		SS42 SS44	600	SS42 SS44	17 500 51 602
SS44 SS46	16 000 51 000	SS44 SS45	24 322 37 000	SS44 SS45	26 932	SS44 SS45	15 710 35 457	SS45	31 602
SS47	30 500	SS45 SS46	66 580	SS45 SS46	50 940	SS45 SS46	35 457 37 110	SS46	120 360
SS48	24 000	SS47	6 355	SS47	30 940	SS47	18 220	SS47	38 930
SS50	4 500	SS48	36 900	SS48		SS48	10 220	SS48	00 000
SS51	700	SS49	11 610	SS49		SS49		SS49	
SS54	25 000	SS50	420	SS50	0	SS50	0	SS50	0
SS55	80 500	SS51	0	SS51	0	SS51	0	SS51	0
SS58	42 640	SS54	27 000	SS54		SS54	9 800	SS54	58 190
		SS55	51 600	SS55		SS55	17 166	SS55	
		SS58	15 300	SS58		SS58		SS58	
SS59	0			SS59		SS59		SS59	
SS60	0			SS60		SS60		SS60	
		SS62	10 000	SS62	31 714	SS62	20 890	SS62	72 845
SS63	20	SS63	20	SS63		SS63	32	SS63	35
SS64	66 000	SS64	120 000	SS64	41 500	SS64	74 520	SS64	
SS65	0			SS65		SS65	0	SS65	
SS66	0			SS66		SS66	0	SS66	
SS68	0			SS67	10 500	SS67	0	SS67 SS68	
				SS68 SS69	13 500	SS68 SS69		SS69	
		SS70	250	SS70		SS70	450	SS70	1 530
		3370	250	SS71		SS71	430	SS71	1 300
SS72	4 110	SS72	4 974	SS72		SS72	0	SS72	1 892
00.2		SS73	10 000	SS73		SS73	Ö	SS73	
SS74	0	SS74	55 740	SS74		SS74	30 492	SS74	
SS75	67 500	SS75	68 000	SS75	69 000	SS75		SS75	69 000
SS76	59 500	SS76	74 340	SS76	30 223	SS76	34 637	SS76	92 240
SS77	32 000			SS77	4 243	SS77	0	SS77	
				SS78	41 400	SS78	20 000	SS78	31 500
				SS79a		SS79a	28 127	SS79a	
SS80	0			SS80		SS80		SS80	
0000	47.000	0000	00.400	SS81		SS81		SS81	
SS82	17 000	SS82	22 400	SS82 SS83	0	SS82	20 806	SS82 SS83	
				SS84		SS83 SS84		SS84	
SS85	27 000			SS85		SS85	0	SS85	
SS86	500			SS86		SS86	0	SS86	
				SS87a		SS87a	Č	SS87a	
1				SS88		SS88	0	SS88	
SS89	25	SS89	25	SS89		SS89		SS89	
		SS90	19 685	SS90		SS90	0	SS90	0
						SS91	8 000	SS91	17 460
						SS92	0	SS92	0
						SS94	0	SS94	34 047
3	4 704 070		0.000.05		4 040 000	SS95	122 253	SS95	122 253
en m ³	1 731 979 1.732		2 223 054		1 019 983		1 376 659 1.377		2 870 752 2.871
en Mm ³ nombre de									
données	79		82		115		123		68

Annexe 6 – Synthèse des données de superficies irriguées fournies par la DDAF de la Marne

Volume prélevé global									
Code forage	1998	Code forage	1999	Code forage	2000	Code forage	2001	Code forage secteur	2003
CO01 CO02 CO03 CO04	50.00 25.50 0.00 84.50	CO01 CO02 CO03 CO04	18.50 20.00 0.00 102.50	CO01 CO02 CO03 CO04	25 41	CO01 CO02 CO03 CO04	26 20 0 38.5	CO01 CO02 CO03 CO04	27 51.35
CO05 CO06 CO07 CO08	40.50 0.00 0.00 16.50	CO05 CO06 CO07 CO08	84.00 0.00 0.00 13.35	CO05 CO06 CO07 CO08	76.81 15.35	CO05 CO06 CO07 CO08	43.55 72.6 0 10.7	CO05 CO06 CO07 CO08	61.54 54.2
C009 C010 C011 C012 C013 C014 C015 C016	0.00 30.00 58.00 0.00 0.00 7.00 12.50 9.00	CO09 CO10 CO11 CO12 CO13 CO14 CO15 CO16	0.00 30.00 60.00 0.00 32.00 0.00 4.50 6.00	CO09 CO10 CO11 CO12 CO13 CO14 CO15 CO16	13.33	C009 C010 C011 C012 C013 C014 C015 C016	0 25 6 0	CO09 CO10 CO11 CO12 CO13 CO14 CO15 CO16	0 10 28 10 8.5
CO17 CO18	4.50 23.00 17.50	CO17 CO18 CO19 CO20 CO21 CO22 CO23	10.00 30.65 0.00 7.83 22.50 23.20	CO17 CO18 CO19 CO20 CO21 CO22 CO23	21 22 18 14	CO17 CO18 CO19 CO20 CO21 CO22 CO23	16 22.5 0 19.7 18 18.18	CO17 CO18 CO19 CO20 CO21 CO22 CO23	7 34 0 0 38 36
CO24 CO25	0.00 0.00	CO24 CO25	0.00 0.00	CO24 CO25 CO26 CO27	25	CO24 CO25 CO26 CO27 CO28	0 11.5	CO24 CO25 CO26 CO27 CO28	25 12
				MAR01	18	MAR01 MAR126 MAR127	22 0 10.5	MAR01 MAR126 MAR127 MAR129 MAR134	0 30.15
SS01a	0.00	SS01a	0.00	MAR33 MAR34 MAR37 MAR38 SS01a		MAR33 MAR34 MAR37 MAR38 SS01a	0 0	MAR157 MAR33 MAR34 MAR37 MAR38 SS01a	19.8
SS02 SS03 SS04 SS05	0.00 0.00 12.00 0.00	SS02 SS03 SS04 SS05	0.00 12.00 24.00 0.00	SS02 SS03 SS04	0 30	SS02 SS03 SS04	0 20.5 30	SS02 SS03 SS04 SS05	0 32 35
\$\$06 \$\$07 \$\$08 \$\$09 \$\$10 \$\$11	18.00 18.00 0.00 0.00 25.00 20.00	\$\$06 \$\$07 \$\$08 \$\$10 \$\$11	0.00 27.00 0.00 20.00 59.00	\$\$06 \$\$07 \$\$08 \$\$09 \$\$10 \$\$11	25	\$\$06 \$\$07 \$\$08 \$\$09 \$\$10 \$\$11	0 0 0 0 29	\$\$06 \$\$07 \$\$08 \$\$09 \$\$10 \$\$11	20 20 31.7 0 23
SS12 SS13 SS14	9.37 0.00 8.00	SS12 SS13 SS14 SS15 SS16	18.82 0.00 10.10 0.00 8.80	SS12 SS13 SS14 SS15 SS16	24.14 12 27 8.8	SS12 SS13 SS14 SS15 SS16	30.34 0 5 27.8	SS12 SS13 SS14 SS15 SS16	33 12 10.2 26
SS19 SS20 SS21 SS22	15.00 0.00 33.00 0.00	SS17 SS18 SS19 SS20 SS21 SS22	30.00 25.50 0.00 17.00 38.00 21.00	SS17 SS18 SS19 SS20 SS21 SS22	36 18 40	SS17 SS18 SS19 SS20 SS21 SS22	0 0 40 27	SS17 SS18 SS19 SS20 SS21 SS22	15 14 37
SS22 SS23 SS24	0.00 0.00 0.00	SS22 SS23 SS24 SS25 SS26	8.00 0.00 12.00 29.00	SS22 SS23 SS24 SS25 SS26 SS27	24 24	SS22 SS23 SS24 SS25 SS26 SS27	34 0 29.17	\$\$22 \$\$23 \$\$24 \$\$25 \$\$26 \$\$27	16 0 28.2
SS29 SS30 SS31	24.00 20.00 8.00	SS29	24.60	SS28a SS29 SS30 SS31 SS32	24	SS28a SS29 SS30 SS31 SS32	23 25 0	SS28a SS29 SS30 SS31 SS32	0 46 0
SS34 SS35	11.50 0.00	SS34 SS36	12.30 0.00	SS33 SS34 SS35 SS36	40.5 3	SS33 SS34 SS35 SS36	0 0 0	SS33 SS34 SS35 SS36	0
SS30 SS31 SS34	20.00 8.00 11.50	SS29 SS34	24.60	SS27 SS28a SS29 SS30 SS31 SS32 SS33 SS34 SS35	24 40.5	SS27 SS28a SS29 SS30 SS31 SS32 SS33 SS34 SS35	23 25 0	\$\$27 \$\$28a \$\$29 \$\$30 \$\$31 \$\$32 \$\$33 \$\$34 \$\$35	0 46 0

Volume prélevé global									
Code forage	1998	Code forage	1999	Code forage	2000	Code forage	2001	Code forage secteur	2003
SS38	26.00	SS38	18.00	SS38	16	SS38	18	SS38	26.36
SS39	0.00	SS39	16.00	SS39	6	SS39	0	SS39	9
SS40	11.00	SS40	0.00	SS40		SS40	8	SS40	31
SS41	0.00	SS41	6.00	SS41	6	SS41	6	SS41	0
SS42	11.00	SS42	0.00	SS42		SS42	6	SS42	17
SS44	10.00	SS44	10.81	SS44		SS44	10.7	SS44	10.48
SS46	29.00	SS45	28.00	SS45	40	SS45	44	SS45	
SS47	17.00	SS46	44.00	SS46	36.63	SS46	36.01	SS46	41.1
SS48	41.50	SS47	20.50	SS47		SS47	15.35	SS47	21.3
SS50	6.00	SS48	20.50	SS48		SS48		SS48	
SS51	0.70	SS49	21.50	SS49		SS49		SS49	
SS54	20.00	SS50	0.70	SS50		SS50	0	SS50	0
SS55	22.00	SS51	0.00	SS51		SS51	0	SS51	0
SS58	33.00	SS54	22.00	SS54		SS54	10	SS54	27
		SS55	27.00	SS55		SS55	20	SS55	
		SS58	18.00	SS58		SS58		SS58	
SS59	0.00			SS59		SS59		SS59	
SS60	0.00			SS60		SS60		SS60	
		SS62	9.00	SS62	35	SS62	25	SS62	30
SS63		SS63	0.13	SS63		SS63	0.188	SS63	0.18
SS64	36.00	SS64		SS64	31	SS64	46	SS64	
SS65	0.00			SS65		SS65	0	SS65	
SS66	0.00			SS66		SS66	0	SS66	
SS68	0.00			SS67		SS67	0	SS67	
				SS68	66	SS68		SS68	
				SS69		SS69		SS69	
		SS70	2.00	SS70		SS70	1	SS70	1.7
				SS71		SS71		SS71	
SS72	6.85	SS72	6.86	SS72		SS72	0	SS72	6.8
		SS73	10.00	SS73		SS73	0	SS73	
SS74	0.00	SS74	34.80	SS74		SS74	35.2	SS74	
SS75	45.00	SS75	45.00	SS75	45	SS75		SS75	45
SS76	34.00	SS76	35.00	SS76	30	SS76	35	SS76	49
SS77	16.00			SS77	17	SS77	0	SS77	
				SS78	31.5	SS78	20	SS78	15
				SS79a		SS79a	18	SS79a	
SS80	0.00			SS80		SS80		SS80	
				SS81		SS81		SS81	
SS82	8.00	SS82	14.00	SS82		SS82	15	SS82	
				SS83		SS83		SS83	
				SS84		SS84		SS84	
SS85	18.00			SS85		SS85	0	SS85	
SS86				SS86		SS86	0	SS86	
				SS87a		SS87a		SS87a	
				SS88		SS88	0	SS88	
SS89	0.25	SS89	0.25	SS89		SS89		SS89	
		SS90	12.70	SS90		SS90	0	SS90	0
						SS91	6	SS91	9.7
				[SS92	0	SS92	0
				[SS94	0	SS94	46
						SS95	90	SS95	90
	2 989.67		3 284		2 984		3 180		3 331
	<i>77</i>		81		84		120	Ī	68

Annexe 7 – Distance estimée des forages par rapport à la rivière

Bassin de la Coole

Bassin de la Somme-Soude

Code forage	n° Banque du sous-sol	x	Υ	Distance de la rivière (km)	Nbre de valeur	Nbre de valeur
SS77	P1	731 762	2 440 434	0		2.001
SS88	I I	729 814	2 437 330	0	-	
SS64		730 612	2 438 182	0.034	=	
SS13		741 564	2 424 126	0.046	=	
SS80	188-3-22	732 374	2 441 002	0.059	=	
SS01a	100 0 22	743 982	2 421 445	0.065	=	
SS55		727 017	2 426 476	0.077	-	
SS50		730 282	2 426 876	0.099	-	
SS35		735 950	2 447 675	0.111	-	
SS96		732 700	2 432 860	0.143	-	
SS26		725 323	2 425 585	0.151	-	
SS54		726 728	2 425 949	0.151	=	
SS17		725 494	2 425 716	0.161	=	
SS36		728 596	2 427 174	0.161	00	
SS06	188-8-DO4	741 782	2 423 307	0.18	28	
SS40		732 245	2 427 855	0.181	=	
SS46	224-3-16	736 977	2 417 715	0.181	=	
SS42		733 385	2 428 871	0.187	=	
SS90		737 582	2 438 678	0.19	=	
SS97		730 130	2 438 400	0.192	=	
SS04		744 266	2 420 179	0.208	-	40
SS37		733 350	2 429 684	0.209	-	42
SS75		732 500	2 440 104	0.209	-	
SS51		729 928	2 426 718	0.225	-	
SS14	188-8-DO3	741 255	2 424 278	0.229	-	
SS03		744 075	2 420 601	0.231	-	
SS10		740 542	2 426 561	0.234	=	
SS58	188-6-22	727 253	2 422 878	0.249	=	
SS09		741 202	2 424 542	0.254		
SS11		740 087	2 426 217	0.256		
SS27		734 858	2 445 398	0.263		
SS16		730 842	2 427 485	0.33		
SS38		724 312	2 424 248	0.33		
SS78	188-2-5	730 115	2 439 370	0.335		
SS66		729 143	2 437 145	0.349	14	
SS02		745 572	2 418 938	0.406	14	
SS83		731 441	2 439 087	0.433		
SS12		740 747	2 426 647	0.447		
SS44		734 365	2 429 935	0.454		
SS22		732 289	2 423 814	0.473		
SS93		732 954	2 440 239	0.48		
SS84		729 066	2 422 503	0.493		
SS72		735 574	2 447 906	0.513	20	34
SS28a	158-7-61	735 935	2 445 194	0.541		
SS15		733 666	2 418 171	0.603]	
SS76	188-3-23	733 607	2 440 909	0.638		

4.07 0.880 88	0.880	2 422 991 moyenne	737 461		SS07
3.75		2 423 025	735 875		SS101
3.041		2 430 478	730 236		SS39
2.96		2 415 662	740 400		SS102
2.849		2 441 959	737 097		SS68
2.004		2 443 671	737 243		SS85
2.58		2 436 611	735 833		SS62
2.499		2 414 451	737 880		SS48
2.416		2 414 537	737 722		SS49
2.284		2 431 156	730 889		SS25
2.09		2 415 733	735 546		SS45
2		2 425 330	737 230		SS100
1.947		2 442 916	731 771		SS67
1.83		2 417 350	736 330		SS98
1.816		2 423 870	722 850		SS91
1.765		2 424 436	722 877		SS18
1.498		2 423 651	728 960	188-DDA3	SS60
1.397		2 443 300	732 799		SS81
1.311		2 433 130	729 750		SS05
1.279		2 439 681	733 555	P3	SS79a
1.273		2 443 666	735 808	_	SS32
1.263		2 443 918	735 861		SS30
1.185		2 445 400	737 100		SS92
1.143		2 446 455	737 158		SS87a
1.028		2 437 258	730 982		SS65
1.012		2 444 188	735 721		SS29
0.991		2 446 996	734 870		SS74
0.966		2 416 162	736 885	224-3-39	SS47
0.863		2 447 550	735 040		SS86
0.851		2 420 491	730 094	224-2-19	SS24
0.827		2 417 274	735 242	224-3-DDA1	SS20
0.817		2 420 643	729 711	004	SS23
0.811		2 443 511	733 617		SS82
0.801		2 423 473	727 246	188-DDA2	SS59
0.8		2 423 128	740 839		SS08
0.787	0.787	2 425 686	732 740		SS41
0.73	0.73	2 442 458	734 985		SS33
0.705		2 424 498	731 313		SS21
0.701	0.701	2 418 682	736 962		SS19
0.697	0.697	2 448 296	735 627		SS73
0.681	0.681	2 443 032	735 097		SS31
0.643	0.643	2 441 226	733 930	188-3-30	SS34

Annexe 8 – Synthèse des données de la Chambre d'agriculture de la Marne

code	Ville	quantité 2002	quantité 2003	quantité 2004
40	BREUVERY SUR COOLE	30 960.0	44 520.0	32 627.4
106	COOLE	34 881.0	46 896.0	31 767.0
107	COOLE	57 404.0	95 922.9	60 614.1
108	COOLE	41 832.0	40 287.0	37 013.0
109	COOLE	42 774.0	65 000.0	22 838.2
110	COOLE	13 600.0	28 600.0	8 000.0
504	COOLE	0.0	0.0	0.0
111	COOLE	29 097.0	44 268.0	23 002.0
112	COOLE	28 999.3	46 850.2	28 794.8
113	COOLE	27 431.0	49 432.0	28 441.6
114	COOLE	25 106.4	54 464.0	18 054.0
532	COOLE	0.0	0.0	0.0
115	COOLE	110 000.0	129 983.0	100 000.0
116	COOLUS	25 000.0	24 000.0	26 400.0
121	COUPETZ	0.0	0.0	36 355.0
122	COUPETZ	0.0	0.0	0.0
123	COUPETZ	0.0	0.0	49 532.0
531	COUPETZ	0.0	0.0	17 998.6
149	ECURY/COOLE	70 712.8	58 632.6	53 497.2
156	FAGNIERES	0.0	0.0	0.0
157	FAGNIERES	29 100.0	29 100.0	29 100.0
530	FAUX VESIGNEUL	0.0	0.0	115 993.2
499	FAUX VESIGNEUL	0.0	0.0	6 945.0
165	FAUX VESIGNEUL	0.0	0.0	6 945.0
166	FAUX VESIGNEUL	0.0	2 000.0	3 750.0
420	FAUX VESIGNEUL	22 579.9	14 247.0	20 188.3
538	FAUX VESIGNEUL	18 360.0	22 175.3	19 729.6
167	FAUX VESIGNEUL	53 350.0	76 776.0	61 992.0
168	FAUX VESIGNEUL	25 937.8	22 678.2	20 083.0
536	MAISONS en CHAMPAGNE	0.0	0.0	0.0
298	NUISEMENT SUR COOLE	41 200.0	30 600.0	30 600.0
299	NUISEMENT SUR COOLE	0.0	0.0	0.0
389	SAINT QUENTIN/COOLE	51 752.4	52 417.2	29 624.0
407	SOGNY AUX MOULINS	38 200.0	47 700.0	41 800.0
	me d'eau prélevée déclarée pour pation dans le BV de la Coole (m³)	818 277.5	1 026 549.4	961 685.0

code	Ville	quantité 2002	quantité 2003	quantité 2004
19	AULNAY SUR MARNE	0.0	0.0	0.0
58	BUSSY LETTREE	99 576.0	73 980.0	100 230.0
59	BUSSY LETTREE	50 042.5	49 186.8	59 017.8
60	BUSSY LETTREE	99 978.0	125 000.0	144 000.0
61	BUSSY LETTREE	33 222.9	40 971.6	41 850.0
63	BUSSY LETTREE	0.0	0.0	0.0
67	CHAMPIGNEUL CHAMPAGNE	0.0	0.0	0.0
68	CHAMPIGNEUL CHAMPAGNE	0.0	0.0	0.0
75	CHAMPIGNEUL CHAMPAGNE	0.0	0.0	0.0
69	CHAMPIGNEUL CHAMPAGNE	70 400.0	135 976.0	97 910.0
70	CHAMPIGNEUL CHAMPAGNE	110 400.0	121 500.0	98 800.0
71	CHAMPIGNEUL CHAMPAGNE	0.0	0.0	0.0
72	CHAMPIGNEUL CHAMPAGNE	0.0	0.0	0.0
73	CHAMPIGNEUL CHAMPAGNE	0.0	0.0	0.0
74	CHAMPIGNEUL CHAMPAGNE	189 050.0	220 800.0	294 400.0
505	CHAMPIGNEUL CHAMPAGNE	0.0	0.0	0.0
506	CHAMPIGNEUL CHAMPAGNE	0.0	0.0	0.0
507	CHAMPIGNEUL CHAMPAGNE	0.0	0.0	0.0
85	CLAMANGES	72 640.0	64 420.0	76 320.0
86	CLAMANGES	0.0	0.0	7 000.0
87	CLAMANGES	0.0	0.0	0.0
88	CLAMANGES	35 340.0	58 275.0	50 760.0
142	DOMMARTIN LETTREE	28 800.0	35 200.0	0.0
143	DOMMARTIN LETTREE	71 790.0	179 986.0	96 600.0
145	ECURY LE REPOS	120 600.0	114 080.0	120 250.0
146	ECURY LE REPOS	0.0	0.0	0.0
147	ECURY LE REPOS	74 730.0	114 489.9	118 788.5
148	ECURY LE REPOS	121 079.4	113 314.5	74 216.5
172	FERE CHAMPENOISE	56 100.0	40 500.0	48 900.0
161	FERE CHAMPENOISE	54 076.0	71 736.0	58 554.4
173	FERE CHAMPENOISE	4 935.0	3 292.0	813.0
174	FERE CHAMPENOISE	9 997.5	24 990.0	28 354.2
183	GERMINON	39 338.0	55 790.0	136 020.0
184	GERMINON	94 593.0	86 340.0	61 846.0
190	HAUSSIMONT	23 750.0	17 000.0	20 000.0
191	HAUSSIMONT	78 000.0	54 910.0	30 438.0
192	HAUSSIMONT	0.0	0.0	20 400.0
232	LENHAREE	143 000.0	232 900.0	152 420.0
233	LENHAREE	427 260.0	398 550.0	248 520.0
234	LENHAREE	0.0	0.0	0.0
231	LENHAREE	36 800.0	76 500.0	84 700.0

275	MATOUGUES	0.0	0.0	0.0
508	MATOUGUES	22 759.3	29 984.8	35 054.6
276	MATOUGUES	14 047.0	15 009.5	37 848.0
277	MATOUGUES	12 368.0	24 048.0	22 043.5
278	MATOUGUES	13 543.2	24 942.2	20 930.4
279	MATOUGUES	14 506.5	17 486.6	16 229.8
280	MATOUGUES	13 200.0	16 460.0	21 340.0
510	MATOUGUES	11 375.0	16 380.4	18 015.0
512	MATOUGUES	18 059.6	21 684.0	24 637.6
311	PIERRE MORAINS	6 000.0	13 200.0	13 200.0
313	PIERRE MORAINS	97 785.0	124 875.5	105 314.1
320	POCANCY	86 250.0	84 000.0	97 500.0
321	POCANCY	0.0	7 200.0	0.0
322	POCANCY	36 500.0	39 500.0	41 000.0
323	POCANCY	130 700.0	148 450.0	166 950.0
324	POCANCY	96 170.0	92 250.0	87 250.0
325	POCANCY	69 000.0	75 920.0	73 680.0
326	POCANCY	59 400.0	55 000.0	77 000.0
371	SAINT MARD LES ROUFFY	18 000.0	25 000.0	23 000.0
372	SAINT MARD LES ROUFFY	0.0	0.0	0.0
518	SAINT MARD LES ROUFFY	0.0	0.0	0.0
419	SOMMESOUS	66 996.0	71 986.0	43 865.0
417	SOMMESOUS	64 000.0	83 600.0	87 600.0
418	SOMMESOUS	112 156.4	159 246.0	97 796.4
554	SOMMESOUS	0.0	0.0	0.0
459	VATRY	84 550.0	102 300.0	110 000.0
460	VATRY	73 399.2	100 139.2	92 890.0
461	VATRY	84 999.0	88 536.0	86 610.0
468	VERTUS	45.0	153.0	490.0
469	VERTUS	66 000.0	133 569.0	161 280.0
543	VILLENEUVE RENNEVILLE CHEVIGNY	33 000.0	33 000.0	33 000.0
471	VILLENEUVE RENNEVILLE CHEVIGNY	0.0	0.0	0.0
540	VILLESENEUX	0.0	0.0	0.0
479	VILLESENEUX	19 896.2	51 597.0	36 930.4
480	VILLESENEUX	7 690.0	31 292.0	32 200.0
487	VOIPREUX	0.0	0.0	7 425.0
403	VOUZY	0.6	0.6	0.6
489	VOUZY	0.0	0.0	0.0
490	VOUZY	0.0	0.0	0.0
déclar	lume d'eau prélevée ée pour l'irrigation dans de la Somme-Soude (m³)	3 477 894.3	4 196 497.5	3 942 188.8

Annexe 9 - Les assecs recencés dans les bassins de la Somme-Soude et de la Coole en 2003, 2004 et 2005

Bilan 2003	
Nom du cours d'eau	Distance en assec (km)
somme-soude, la (riviere)	52,757
coole, la (riviere)	30,160
pisseleu, le (ruisseau)	9,360

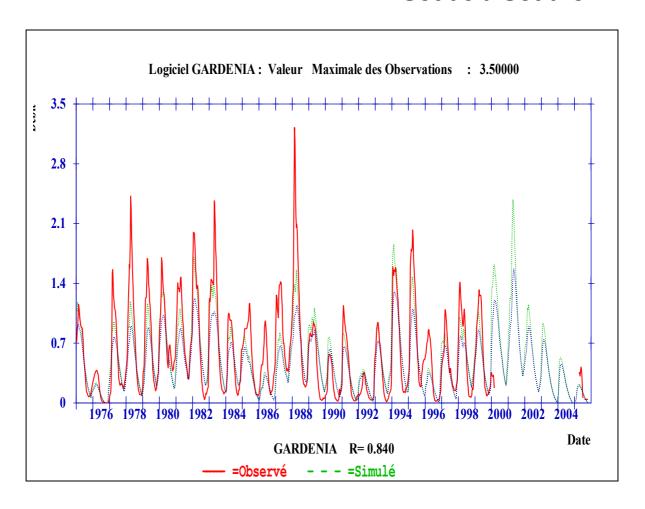
idROCA	Nom de la Station	Nom du cours d'eau	X (en m)	Y (en m)
02510001	Coolus	Coole (la)	747975	2437460
02510002	Faux-Vésigneul	Coole (la)	751938	2422103
02510004	Villeseneux	Somme (la)	732783	2428537
02510005	Dommartin- Lettrée	Soude (la)	744375	2420550
02510006	Velye	Somme-Soude (la)	731405	2433745
02510022	Saint-Pierre	Pisseleu (le)	739763	2440265

			ВІ	LAN	N 20	04									
				Nu	mér	o de	la (cam	pag	ne d	d'obs	serva	ation	1	
Nom de la Station	Nom du cours d'eau	1	2	3	4	5	6	7	8	9	10	11	12	13	14
date de d camp	7/5/04	21/5/04	4/6/04	18/6/04	2/7/04	16/7/04	30/7/04	13/8/04	27/8/04	10/9/04	24/9/04	8/10/04	22/10/04	4/11/04	
date de fin de	la campagne	7/5/04	21/5/04	4/6/04	18/6/04	2/7/04	16/7/04	30/7/04	13/8/04	27/8/04	10/9/04	24/9/04	8/10/04	22/10/04	4/11/04
Coolus	Coole (la)	1	1	1	1	1	1	3	3	3	3	3	3	3	3
Faux- Vésigneul	Coole (la)	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Villeseneux	Somme (la)	1	1	1	1	1	1	3	3	3	3	3	3	3	3
Dommartin- Lettrée	I Solide (Ia)			1	1	1	3	3	3	3	3	3	3	3	3
Velye	Velye Somme- Soude (la)			1	1	1	1	2	3	3	3	3	3	3	3
Saint-Pierre	Pisseleu (le)	3	თ	თ	თ	3	თ	3	თ	თ	თ	3	3	3	3

Interprétation des codes de niveau d'écoulement : 1 = Ecoulement visible

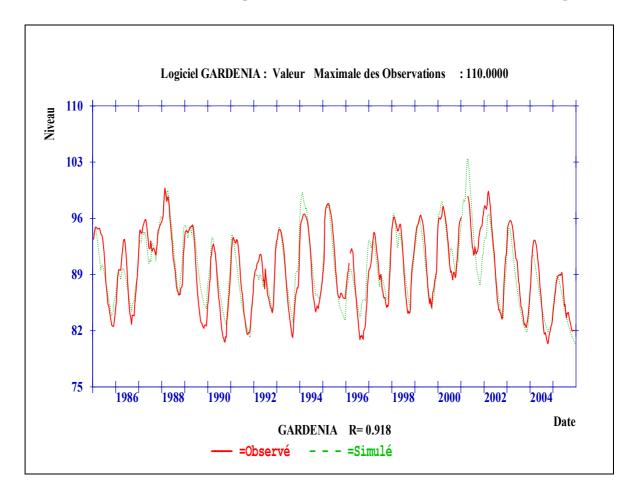
- 2 = Ecoulement non visible
- 3 = Assec
- 4 = Non renseigné

							E	BILA	N 20	05											
			Numéro de la campagne d'observation																		
Nom de la Station	Nom du cours d'eau	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
date de dé campa		2/2/05	30/3/02	13/4/05	27/4/05	11/5/05	24/5/05	8/6/05	22/6/05	90/2/9	19/7/05	3/8/05	17/8/05	31/8/05	14/9/05	28/9/05	12/10/05	26/10/05	15/11/05	29/11/05	14/12/05
date de f campa		2/2/05	30/3/05	13/4/05	27/4/05	11/5/05	25/5/05	8/6/05	29/6/05	90/2/9	20/7/05	3/8/05	17/8/05	31/8/05	14/9/05	28/9/05	12/10/05	26/10/05	16/11/05	30/11/05	14/12/05
Coolus	Coole (la)	1_	1	1	1	1	1	1	1	1	1	2	3	3	3	3	3	3	3	3	1
Faux- Vésigneul	Coole (la)	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Villeseneu x	Somme (la)	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1
Dommartin -Lettrée	Soude (la)	1	1	1	1	1	1	1	1	3	3	3	3	3	3	3	3	3	3	3	3
Velye	Somme- Soude (la)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

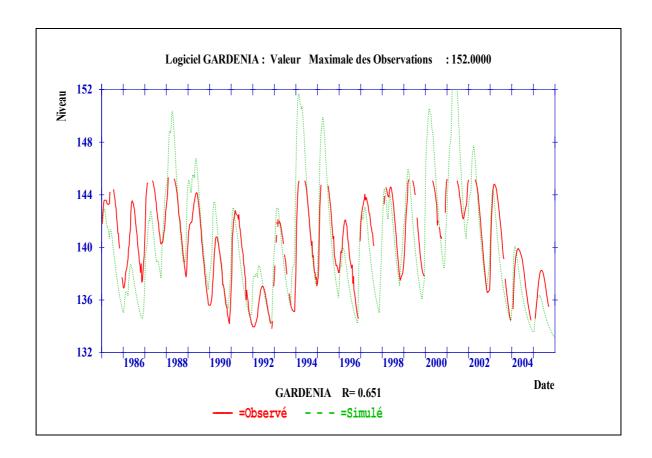

Interprétation des codes de niveau d'écoulement :

- 1 = Ecoulement visible
- 2 = Ecoulement non visible
- 3 = Assec
- 4 = Non renseigné

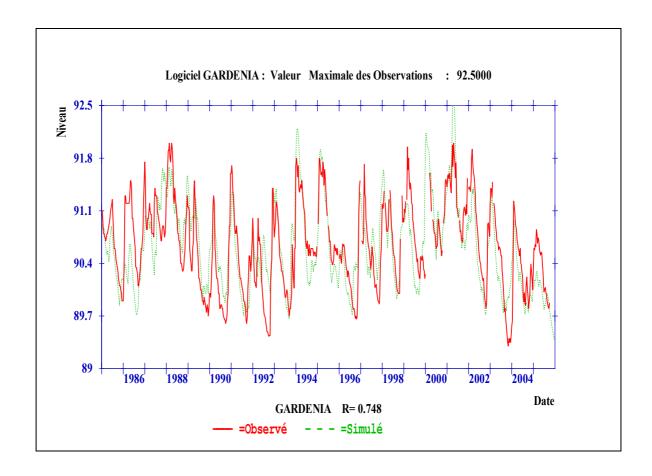
Légende des annexes 10 à 14


Libellé long	Libellé	Unité	Valeur exemple
· ·	court	Office	valeur exemple
Surface du bassin versant	Surface	km2	105
Débit de fuite (flux non contrôlé par la mesure à l'exutoire)	Debit fuite	m3/s	-0.0896
Niveau de base (niveau qui serait atteint en l'absence totale			
d'alimentation au bout d'un temps infini)	N Base	m NGF	
Coefficient d'emmagasinement	Emmgas		
Coefficient d'ajustement pondéré entre débits calculés et			
observés	R pon		0.705
Coefficient d'ajustement non pondéré	R nat		0.84
Coef. de correction des Pluies	C Plu	%	8
Capacité de la réserve superficielle	D max	mm	60.22
Coef. de correction de l'ETP	C ETP	%	-6
Hauteur de répartition Ruissellement-Percolation	RuiP	mm	450
Temps de demi-montée ou percolation	Tper	mois	2.47
Temps de demi-tarissement Sout 1	Tar1	mois	1.142
Temps de demi-montée ou percolation Sout 1> 2	Tper2	mois	0.15
Temps de demi-tarissement Sout 2	Tar2	mois	0.15
Lame d'eau précipitée sur le bassin	Pluie	mm	663.2
Lame d'eau évapotranspirée sur le bassin	ETR	mm	479.6
Hauteur de réduction de la reprise par ETP => non utilisé	Repri	mm	0
	PLF	mm	185.5
Lame d'eau correspondant à l'écoulement rapide			
(ruissellement rapide + écoulement karstique rapide)	Qrap	mm	26.6
Lame d'eau correspondant à l'écoulement lent souterrain			
(contribution des aquifères au débit des rivières)	Qsout 1	mm	163.1
Lame d'eau correspondant à l'écoulement lent (réservoir			
souterrain profond) => pas pris en compte dans l'étude	Qsout 2	mm	0
Variation de stockage	Dif Sto	mm	-6.092
Valeur minimale des observations	Min Obs	m3/s	0
Valeur minimale des simulations	Min Sim	m3/s	-0.0282
Valeur maximale des observations	Max Obs	m3/s	3.225
Valeur maximale des simulations	Max Sim	m3/s	1.8573
Valeur moyenne des observations	Moy Obs	m3/s	0.5848
Valeur moyenne des simulations	Moy Sim	m3/s	0.5398
Ecart type des valeurs observées	Sig Obs		0.519
Ecart type des valeurs simulées	Sig Sim		0.3918
Nombres d'observations	Nb Obs		922

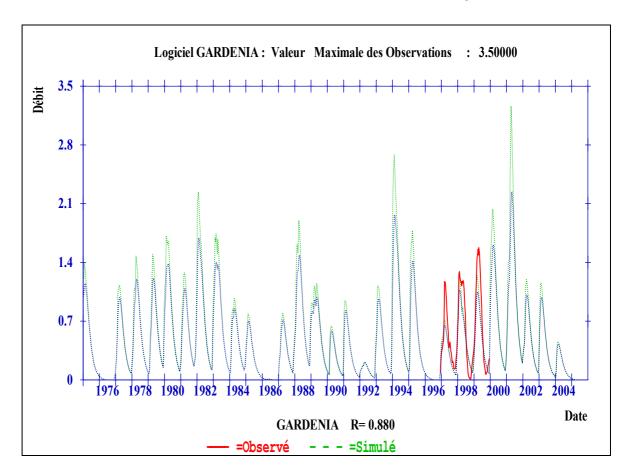
Annexe 10 - Résultats du calage pluie-débit de la Soude à Soudron


			GE								
Surface	Debit fuite	R pon	R nat	C Plu	D max	C ETP	RuiP	Tper	Tar1	Tper2	Tar2
km²	m³/s			%	mm	%	mm	mois	mois	mois	mois
105	-0.0896	0.705	0.84	8	60.22	-6	450	2.47	1.142	0.15	0.15
	RECAPIT	ULATIF ST	ATISTIQUI	ES DONNE	ES APRES	CALAGE					
Pluie	ETR	Repri	PLF	Qrap	Qsout 1	Qsout 2	Dif Sto				
mm	mm	mm	mm	mm	mm	mm	mm				
663.2	479.6	0	185.5	26.6	163.1	0	-6.092				
			BILAN MO	YEN APRE	S CALAGE						
Min Obs	Min Sim	Max Obs	Max Sim	Moy Obs	Moy Sim	Sig Obs	Sig Sim	Nb Obs			
m³/s	m³/s	m³/s	m³/s	m³/s	m³/s						
0	-0.0282	3.225	1.8573	0.5848	0.5398	0.519	0.3918	922			

Annexe 11 - Résultats du calage pluie-niveau au piézomètre des Grandes-Loges


Emmgas	N Base	R pon	R nat	C Plu	D max	C ETP	RuiP	Tper	Tar1	Tper2	Tar2
	m NGF			%	mm	%	mm	mois	mois	mois	mois
4.31-4	77.575	0.918	0.918	6	16.62	4.19	2.278	7.36	2.638	0.15	0.15
	RECAPIT	ULATIF ST	ATISTIQUI	ES DONNE	ES APRES	CALAGE					
Pluie	ETR	Repri	PLF	Qrap	Qsout 1	Qsout 2	Dif Sto				
mm	mm	mm	mm	mm	mm	mm	mm				
644.7	438	0	207.5	191.4	17.22	0	-1.875				
			BILAN MO	YEN APRE	S CALAGE						
Min Obs	Min Sim	Max Obs	Max Sim	Moy Obs	Moy Sim	Sig Obs	Sig Sim	Nb Obs			
m NGF	m NGF	m NGF	m NGF	m NGF	m NGF						
80.39	80.676	99.74	103.44	89.659	89.623	4.7465	4.3427	743			

Annexe 12 – Résultats du calage pluie-niveau au piézomètre de Sompuis


			\GE								
Emmgas	N Base	R pon	R nat	C Plu	D max	C ETP	RuiP	Tper	Tar1	Tper2	Tar2
	m NGF			%	mm	%	mm	mois	mois	mois	mois
1.00E-03	132	0.651	0.651	12	67.36	-11.4	400	4	0.472	0.15	0.15
	RECAPIT	ULATIF ST	ATISTIQUI	ES DONNE	ES APRES	CALAGE					
Pluie	ETR	Repri	PLF	Qrap	Qsout 1	Qsout 2	Dif Sto				
mm	mm	mm	mm	mm	mm	mm	mm				
681.2	489	0	195.4	10.16	190.1	0	-8.032		_		
			BILAN MO	YEN APRE	S CALAGE						
Min Obs	Min Sim	Max Obs	Max Sim	Moy Obs	Moy Sim	Sig Obs	Sig Sim	Nb Obs			
m NGF	m NGF	m NGF	m NGF	m NGF	m NGF						
133.84	133.9	145.3	152.32	140.12	139.68	3.1262	3.5759	611			

Annexe 13 – Résultats du calage pluie-niveau au piézomètre de Songy

	RECAPITULATIF AJUSTEMENT APRES CALAGE														
Emmgas	N Base	R pon	R nat	C Plu	D max	C ETP	RuiP	Tper	Tar1	Tper2	Tar2				
	m NGF			%	mm	%	mm	mois	mois	mois	mois				
4.55E-03	89	0.748	0.748	12	1.E-03	-29.1	484.8	2.87	0.305	0.15	0.15				
	RECAPIT	ULATIF ST	ATISTIQUI	ES DONNE	ES APRES	CALAGE									
Pluie	ETR	Repri	PLF	Qrap	Qsout 1	Qsout 2	Dif Sto								
mm	mm	mm	mm	mm	mm	mm	mm								
681.2	315	0	366.2	72.44	298.5	0	-4.72								
			BILAN MO	YEN APRE	S CALAGE										
Min Obs	Min Sim	Max Obs	Max Sim	Moy Obs	Moy Sim	Sig Obs	Sig Sim	Nb Obs							
m NGF	m NGF	m NGF	m NGF	m NGF	m NGF										
89.3	89.663	92	92.71	90.643	90.605	0.5832	0.5586	726							

Annexe 14 - Résultats du calage pluie-débit à la station d'Ecury-sur-Coole

	RECAPITULATIF AJUSTEMENT APRES CALAGE														
Surface	Debit fuite	R pon	R nat	C Plu	D max	C ETP	RuiP	Tper	Tar1	Tper2	Tar2				
km²	m³/s			%	mm	%	mm	mois	mois	mois	mois				
150	-0.008	0.83	0.88	7.87	95.15	21.8	381.1	1.95	0.904	0.15	0.15				
	RECAPIT	ULATIF ST	ATISTIQUI	S DONNE	ES APRES	CALAGE									
Pluie	ETR	Repri	PLF	Qrap	Qsout 1	Qsout 2	Dif Sto								
mm	mm	mm	mm	mm	mm	mm	mm								
662.4	554.3	0	111.2	13.66	100.2	0	-5.679								
			BILAN MO	YEN APRE	S CALAGE										
Min Obs	Min Sim	Max Obs	Max Sim	Moy Obs	Moy Sim	Sig Obs	Sig Sim	Nb Obs							
m³/s	m³/s	m³/s	m³/s	m³/s	m³/s										
0.01	0.0545	1.578	1.2837	0.5866	0.4908	0.4605	0.3508	109							

Annexe 15 - Valeurs des quantiles de prévisions à 12 mois pour la Soude à Soudron (août 2005 – août 2006)

Date	Observé	Garantie	Prev_10%	Prev_20%	Prev_50%	Prev_80%	Prev_90%
25/08/2005	0,033	0,046	0,046	0,046	0,046	0,046	0,046
05/09/2005	0,031	0,037	0,037	0,037	0,037	0,037	0,037
15/09/2005	0,031	0,028	0,028	0,028	0,028	0,028	0,028
25/09/2005	0,029	0,020	0,020	0,020	0,020	0,020	0,020
05/10/2005	0,030	0,011	0,011	0,011	0,011	0,011	0,011
15/10/2005	0,029	0,004	0,004	0,004	0,004	0,005	0,074
25/10/2005	0,031	0	0	0	0	0,035	0,133
05/11/2005		0	0	0	0	0,096	0,206
15/11/2005		0	0	0	0,014	0,178	0,273
25/11/2005		0	0	0	0,095	0,267	0,372
05/12/2005		0	0	0	0,213	0,403	0,467
15/12/2005		0	0	0	0,272	0,654	0,740
25/12/2005		0	0	0,033	0,367	0,788	0,989
05/01/2006		0	0,003	0,130	0,473	0,870	1,080
15/01/2006		0	0,116	0,190	0,523	0,894	1,256
25/01/2006		0	0,208	0,263	0,622	0,978	1,315
05/02/2006		0	0,277	0,348	0,658	1,163	1,295
15/02/2006		0	0,319	0,442	0,746	1,188	1,391
25/02/2006		0	0,338	0,469	0,812	1,171	1,368
05/03/2006		0	0,366	0,472	0,790	1,173	1,320
15/03/2006		0	0,385	0,481	0,767	1,238	1,327
25/03/2006		0	0,389	0,486	0,820	1,201	1,393
05/04/2006		0	0,368	0,465	0,793	1,136	1,336
15/04/2006		0	0,342	0,436	0,765	1,078	1,263
25/04/2006		0	0,315	0,406	0,740	1,013	1,174
05/05/2006		0	0,289	0,375	0,705	0,952	1,078
15/05/2006		0	0,262	0,344	0,681	0,888	0,990
25/05/2006		0	0,237	0,314	0,650	0,818	0,916
05/06/2006		0	0,213	0,285	0,613	0,750	0,843
15/06/2006		0	0,190	0,258	0,567	0,689	0,773
25/06/2006		0	0,169	0,231	0,523	0,634	0,705
05/07/2006		0	0,152	0,207	0,479	0,582	0,642
15/07/2006		0	0,137	0,185	0,437	0,531	0,582
25/07/2006		0	0,123	0,163	0,396	0,482	0,526
05/08/2006		0	0,108	0,143	0,357	0,432	0,474
15/08/2006		0	0,093 Soude à Soud	0,125	0,320	0,386	0,426

Il s'agit de valeurs de débit Q de la Soude à Soudron exprimées en m³/s : à un quantile X% s'associe une valeur de débit Q, la probabilité est de X% d'avoir un débit inférieur à Q.

Annexe 16 - Valeurs des quantiles de prévisions à 8 mois pour les niveaux piézométriques aux Grandes-Loges (août 2005 – avril 2006)

Date	Observé	Garantie	Prev_10%	Prev_20%	Prev_50%	Prev_80%	Prev_90%
25/08/2005	84,27	84,27	84,27	84,27	84,27	84,27	84,27
05/09/2005	83,79	84,11	84,11	84,11	84,11	84,11	84,11
15/09/2005	83,34	83,89	83,89	83,89	83,89	83,89	84,55
25/09/2005	83,04	83,63	83,63	83,63	83,63	84,26	84,73
05/10/2005	82,69	83,34	83,34	83,34	83,42	84,92	85,52
15/10/2005	82,20	83,05	83,05	83,05	83,52	85,75	87,18
25/10/2005	81,95	82,74	82,74	82,74	84,10	86,17	88,51
05/11/2005	82,04	82,43	82,66	82,97	84,36	87,02	89,25
15/11/2005	82,06	82,12	82,74	83,54	85,69	87,98	89,04
25/11/2005	82,06	81,82	83,12	84,09	87,45	89,02	90,29
05/12/2005		81,53	83,26	84,58	88,52	90,46	91,15
15/12/2005		81,24	83,89	85,40	89,47	92,04	92,82
25/12/2005		80,96	84,77	86,19	90,36	93,37	94,34
05/01/2006		80,70	85,97	87,22	90,91	93,77	95,01
15/01/2006		80,44	87,05	87,53	91,43	93,75	95,33
25/01/2006		80,20	87,74	88,57	91,70	94,38	96,39
05/02/2006		79,97	88,62	89,54	92,34	95,30	96,05
15/02/2006		79,75	88,90	89,83	92,72	95,34	96,39
25/02/2006		79,53	88,79	89,65	92,69	95,20	95,75
05/03/2006		79,33	88,56	89,40	92,50	94,84	95,33
15/03/2006		79,14	88,42	89,34	92,16	95,04	95,67
25/03/2006		78,96	87,98	88,85	92,19	94,87	96,04
05/04/2006		78,79	87,44	88,40	91,89	94,24	95,15
15/04/2006		78,63	86,81	87,97	91,44	93,62	94,56
25/04/2006		78,48	86,20	87,45	91,06	92,84	94,17

Il s'agit de valeurs de nappe aux Grandes-Loges exprimés en m NGF : à un quantile X% s'associe une valeur de niveau de nappe N, la probabilité est de X% d'avoir un niveau inférieur à N.

Annexe 17 - Recensement des années où le niveau aux Grandes-Loges au 15 avril était inférieur à 94.7, 91, 92 et 93 m NGF

Année	NP au 15/04	<94,7 m	<91 m	<92 m	<93 m
1969	94,50	1	0	0	0
1970	92,80	1	0	0	1
1971	90,97	1	1	1	1
1972	91,48	1	0	1	1
1973	92,66	1	0	0	1
1974	94,08	1	0	0	0
1975	94,07	1	0	0	0
1976	89,90	1	1	1	1
1977	93,65	1	0	0	0
1978	97,65	1	0	0	0
1979	98,01	0	0	0	0
1980	95,70	0	0	0	0
1981	96,98	0	0	0	0
1982	95,56	0	0	0	0
1983	97,25	0	0	0	0
1984	94,32	1	0	0	0
1985	94,78	0	0	0	0
1986	91,78	1	0	1	1
1987	95,88	0	0	0	0
1988	98,48	0	0	0	0
1989	95,01	0	0	0	0
1990	92,17	1	0	0	1
1991	93,16	1	0	0	0
1992	91,52	1	0	1	1
1993	92,55	1	0	0	1
1994	96,05	0	0	0	0
1995	97,36	0	0	0	0
1996	91,80	1	0	1	1
1997	93,45	1	0	0	0
1998	94,38	1	0	0	0
1999	96,17	0	0	0	0
2000	96,50	0	0	0	0
2001	98,76	0	0	0	0
2002	96,61	0	0	0	0
2003	93,73	1	0	0	0
2004	92,27	1	0	0	0
2005	88,95	1	1	1	1
Nbre de données	Nbre de données 37		3	7	11
Pourcentage co	59%	8%	19%	30%	

Centre scientifique et technique

3, avenue Claude-Guillemin BP 6009 45060 - Orléans Cedex 2 - France

Tél.: 02 38 64 34 34

Service géologique régional Champagne-Ardenne

12, rue Clément Ader BP137

51685 - Reims Cedex 2 - France

Tél.: 03 26 84 47 70