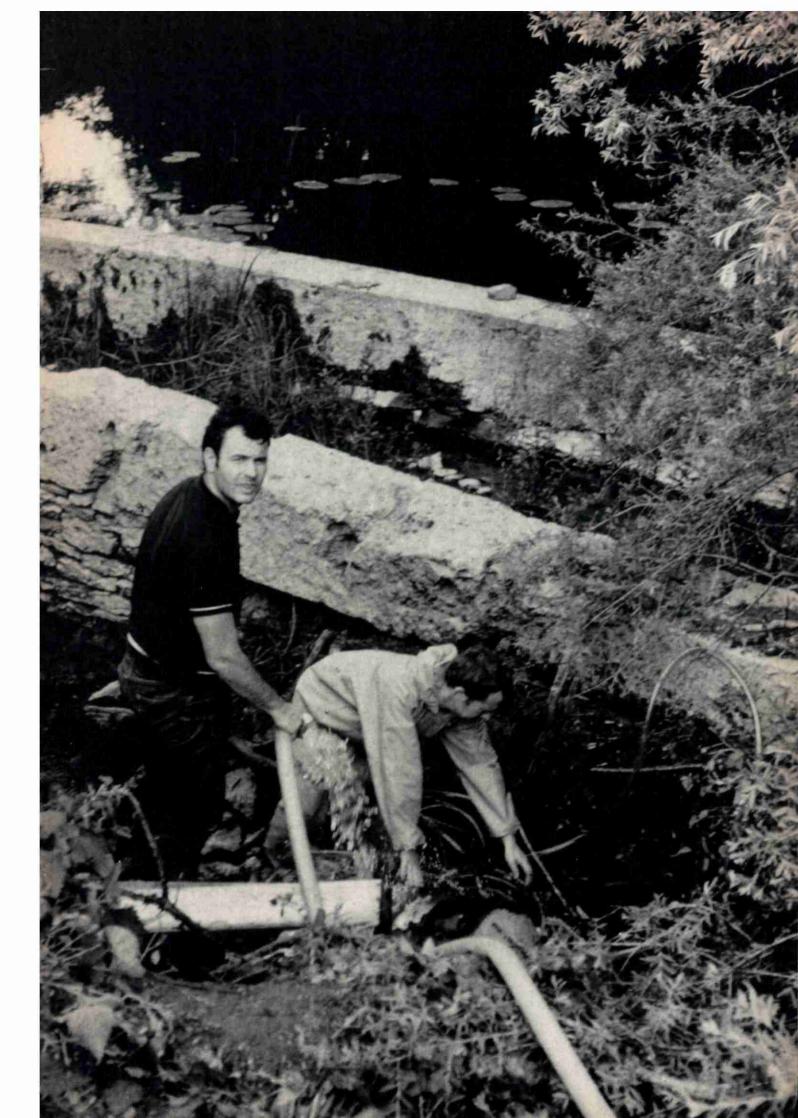
#### BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES 74. rue de la Fédération - 75-PARIS-15° - Tél. 783 94-00

#### DIRECTION DU SERVICE GÉOLOGIQUE NATIONAL B.P. 818 — 45-Orléans-La Source — Tél. 66-06-60

### LES PERTES DU SEREIN DANS LE BATHONIEN

(Yonne)

Expérience B.R.G.M. d'été 1970


par

R. CAMART - J. CAMPINCHI - G. RAMPON



Service géologique régional BASSIN DE PARIS

65, rue du général Leclerc 77-BRIE-COMTE-ROBERT Tél. 405-01-46



L'expérience par coloration et jaugeage des pertes du Serein entre Tormancy et Cours, entreprise par le B.R.G.M. de juin à août 1970, pour le compte de la Préfecture du département de l'Yonne sous le contrôle de la Direction de l'Agriculture du département de l'Yonne a vérifié et appuyé quantitativement les études antérieures.

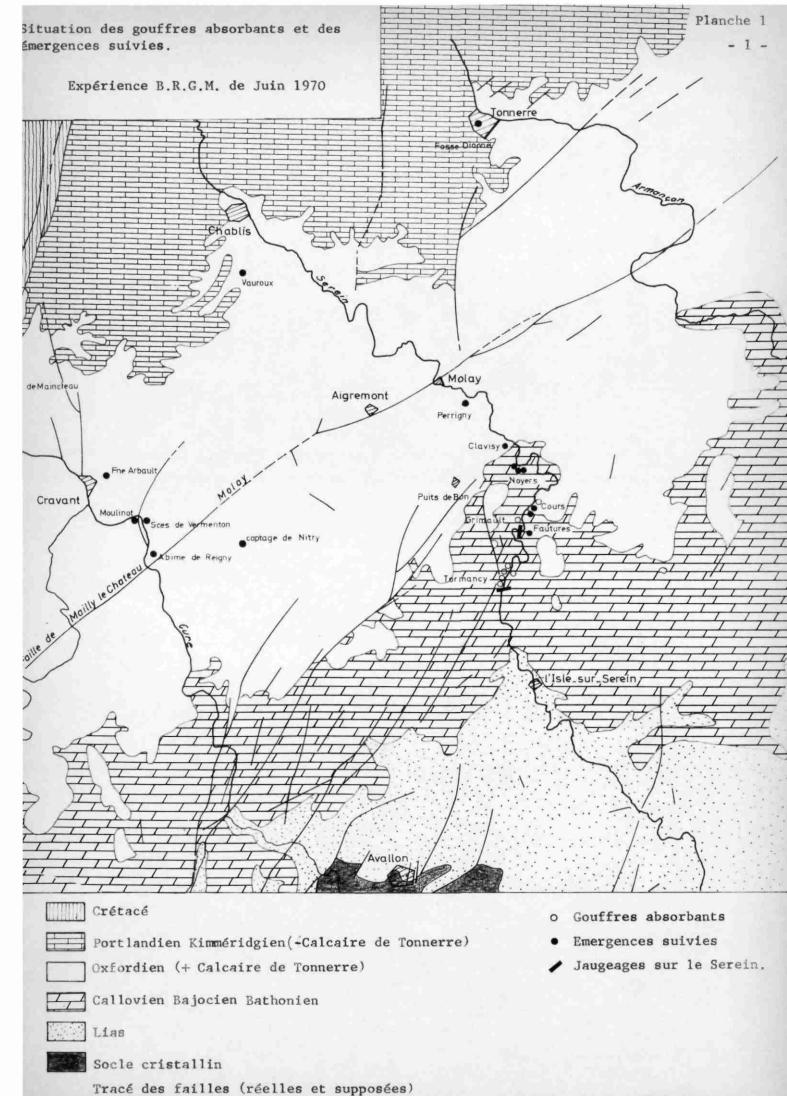
A la fin des hautes eaux et au début des basses eaux, au minimum, la moitié des pertes du Serein se dirigent vers Vermenton dans la vallée de la Cure. Le reste retourne au Serein à Clavisy et Perrigny.

Les sources de Vermenton et le lavoir de Perrigny bénéficient d'un apport extérieur qui représente au minimum les 3/5 de leur débit total. Le Bouillon de Clavisy est entièrement réalimenté par les pertes du Sercin.

Les pertes du Serein traversent tous les terrains allant du Bathonien moyen et supérieur à la base de l'Oxfordien supérieur. D'une part elles courcircuitent le Serein suivant en grande partie des accidents tectoniques repérés ; de l'autre, il est possible qu'elles suivent le pendage de l'auréole jurassique, puis à mi-parcours bifurquent vers le S.W. en suivant grossièrement la faille de Mailly-le-Château.

Les paramètres des pertes sont résumés dans le tableau ci-dessous :

| RESURGENCES       | LONGUEUR DES TRAJETS<br>km | DUREE MINIMUM DES<br>PARCOURS en jours | VITESSES DES PERTES<br>en m/j |
|-------------------|----------------------------|----------------------------------------|-------------------------------|
| CLAVISY           | 7,6<br>≠≠ minimum          | 5                                      | <b>%</b><br>00                |
| PERRIGNY          | 9,5<br>≠≠ minimum          | 11                                     | nimum 30<br>yenne<br>000 + 40 |
| VERMEN <b>TON</b> | 23<br>minimum              | 15                                     | mini<br>moye<br>100           |


L'incidence de la suppression des pertes du Serein sur les diverses émergences ci-dessus n'était pas gênante durant les mois de juin à août 1970; mais comme le montrent les différences des résultats de l'étude B.R.G.M. avec l'expérience du 19 octobre 1954 réalisée par M. MAZOIT, il faudrait réaliser une nouvelle expérience analogue en étiage pour savoir s'il est possible de colmater de manière définitive, toutes les pertes du Serein, sans gêner les utilisations des points d'eau alimentés par celles-ci.

### - SOMMAIRE -

#### TEXTE

| P                                                                                                                                     | ages     |
|---------------------------------------------------------------------------------------------------------------------------------------|----------|
| RESUME                                                                                                                                |          |
| 1 - OBJET DE L'ETUDE                                                                                                                  | 2        |
| 2 - REPERAGE DES GOUFFRES ABSORBANTS - CHOIX DES RESURGENCES A SURVEILLER                                                             | 3        |
| 3 - ESTIMATION DES DEBITS ABSORBES ET EMIS                                                                                            | 6        |
| 4 - CARACTERES PHYSICOCHIMIQUES DES EAUX ABSORBEES ET EMISES                                                                          | 8        |
| 5 - EXPERIENCE DE COLORATION                                                                                                          | 12       |
| 51 - Injection des colorants et surveillance des émergences                                                                           | 12<br>12 |
| ration                                                                                                                                | 17       |
| 531 - Emergences alimentées ou non par les pertes du Serein<br>532 - Trajets karstiques entre les pertes du Serein et les diffé-      | 17       |
| rentes émergences qu'elles alimentent                                                                                                 | 17       |
| les différentes émergences qu'elles alimentent                                                                                        | 18<br>19 |
| 6 - ESTIMATION QUANTITATIVE DE L'ALIMENTATION, PAR LES PERTES DU SEREIN, DES DIVERSES EMERGENCES - APPORTS EXTERIEURS                 | 22       |
| 7 - CONCLUSIONS                                                                                                                       | 25       |
| 71 - Vérification des études précédentes                                                                                              | 25       |
| 711 - Analogies                                                                                                                       | 25<br>25 |
| 72 - Apports complémentaires de la présente étude                                                                                     | 26       |
| résurgences                                                                                                                           | 29       |
|                                                                                                                                       |          |
| PLANCHES                                                                                                                              |          |
| Planche 1 - Situation des gouffres absorbants et des émergences suivies (expérience B.R.G.M. de juin 1970) Carte géologique 1/200.000 | 1        |
| Planche 2 - Quelques exutoires surveillés durant l'expérience B.R.G.M.                                                                | _        |
| Photos                                                                                                                                | 4<br>5   |
| Planche 4 - Analyses physicochimiques des eaux perdues ét émises (diagramme)                                                          | 10       |
| Planche 5 - Préparation et injection des colorants - Etude des concentra-<br>tions (photos)                                           | 11       |
| Planche 6 - Planning de l'expérience de coloration - durée de réapparition des colorants                                              | 13       |
| Planche 7 - Exemple d'évolution des concentrations en fluorescéine (eau) (diagramme)                                                  | 15       |

| Planc | he 8  |     | Evolution des concentrations au Bouillon de Clavisy (eau + |    |
|-------|-------|-----|------------------------------------------------------------|----|
|       |       |     | capteurs) (fluorescéine)                                   | 16 |
| Planc | he 9  | - ( | Comparaison des résultats des colorations effectuées par   |    |
|       |       |     | M. MAZOIT et le B.R.G.M carte au 1/200.000                 | 27 |
| Planc | he 10 | ) - | Répartition des pertes du Serein et apports extérieurs -   |    |
|       |       |     | Paramètres des pertes                                      | 28 |



Echelle 1/200.000

Pendage des terrains (2 %) vers le NW ou le NNW

#### 1 - OBJET DE L'ETUDE

Monsieur le Préfet du département de l'Yonne par le marché de gré à gré du 10 juin 1970, a chargé le B.R.G.M. (S.G.R. Bassin de Paris) d'exécuter une étude des pertes du Serein entre Tormancy et Cours, par une expérience de coloration, des jaugeages et des analyses physicochimiques d'eau.

#### Le but de cette étude est le suivant :

- a) vérifier et compléter quantitativement les expériences antérieures (cf. annexe : Rappel des éléments du rapport 69 SGL 245 BDP : Etude bibliographique des phénomènes karstiques du Jurassique de l'Yonne),
- b) déterminer les incidences éventuelles de la suppression de ces pertes sur les émergences qu'elles alimentent.

Ces études ont été réalisées sous le contrôle de la Direction départementale de l'Agriculture de l'Yonne, et effectuées en relation avec le S.R.A.E. de Bourgogne, le C.E.R.A.F.E.R. d'Antony, l'Agence financière de bassin "Seine-Normandie" et la lère Circonscription électrique, M. MAZOIT, Ingénieur au Service de contrôle des eaux de la Ville de Paris.

#### 2 - REPERAGE DES GOUFFRES ABSORBANTS - CHOIX DES RESURGENCES A SURVEILLER

La carte (planche 1) ci-jointe, donne la position début juin 1970, des gouffres absorbants, noyés et émissifs entre Tormancy et Cours ainsi que des 20 points d'eau suivis (2 puits - Le Serein en amont des Fautures - 17 sources). Le choix de ces 20 points se fit pour suivre toutes les émergences reconnues par M. MAZOIT, ainsi que toutes celles en relation possibles avec les pertes du Serein d'après les études hydrologiques antérieures ou ayant une cote inférieure aux pertes dans un rayon de 28 km dans le sens aval de la "pente" de la nappe.

Sur la planche 2, nous donnons des photos de quelques unes des émergences surveillées. Ces émergences sont situées soit sur le Serein en aval des gouffres absorbants, soit sur la Cure, près de l'Yonne, près de l'Armançon, ainsi que dans les vallées des rus de Sacy et de Vaucharme.

En annexe, pour chaque point ou groupe de points étudiés figurent un plan de situation au 1/25.000 ainsi qu'un tableau récapitulatif des divers renseignements topographiques ou hydrogéologiques connus les concernant.

## QUELQUES EXUTOIRES SURVEILLÉS

#### DURANT L'EXPÉRIENCE B. R. G. M.



1 - Source de Mainciau




2 - Bouillon de Clavisy



3 - Étang du Moulinot



4 - Source des Fautures



5 - Le Serein au pont de l'Isle/Serein



6 - Le Serein au pont de Cours

#### 3 - ESTIMATION DES DEBITS ABSORBES OU EMIS

Le tableau ci-dessous récapitule les résultats des jaugeages réalisés sur le Serein et les diverses émergences suivies. L'évolution des débits durant l'expérience est notée sur ce tableau.

Au moment de l'injection, les pertes du Serein entre Tormancy et Cours peuvent être estimées à 1 m<sup>3</sup> environ, dont le quart passait par le gouffre de Tormancy rive droite, et le 1/10 par celui de Grimault. Le reste soit 0,655 m<sup>3</sup>/s disparaissait dans les gouffres de Tormancy rive gauche n° 1 (0,010 m<sup>3</sup>/s), rive gauche n° 2 (0,003) et surtout dans ceux de Tormancy rive gauche n° 3 et rive gauche n° 4 noyés, de Cours aval (noyé) ainsi que dans le 11t même du Serein.

Sur la planche 3, en comparant le Serein à l'Islesur-Serein et à Cours (lit envahi par les plantes aquatiques), nous pouvons avoir une idée des pertes du Serein.

Le débit des résurgences de la région de Vermenton du 22 juin au 15 juillet 1970, période pendant laquelle la fluorescéine est ressortie est environ de 1,2 m³/s. Puisque, comme nous le verrons par la suite, une partie des pertes du Serein (moyenne 10,7 m³) est aussi remontée au Bouillon de Clavisy entre le 14 juin et le 9 juillet 1970 et au lavoir de Perrigny entre le 20 juin et le 13 juillet 1970, nous pouvons d'ores et déjà conclure que les sources de Vermenton ne sont pas uniquement réalimentées par les pertes du Serein.

En annexe, nous donnons les méthodes de jaugeages utilisées, un exemple de calcul de débit, ainsi que les variations de débit ( 9 juin au 22 juin 1970) du Serein à l'Isle-sur-Serein.

| МОМ                                                              | 3 et 4.6.197 <b>0</b>                             | 10,6.1970 | 16.6.1970 | 22.6.1970 | 29.6.1970                             | 23.7.1970                                      |
|------------------------------------------------------------------|---------------------------------------------------|-----------|-----------|-----------|---------------------------------------|------------------------------------------------|
| SEREIN<br>ISLE-SUR-SEREIN                                        | 1100                                              | 1060      | 860       | 1180      | 1010                                  | "320"                                          |
| TORMANCY                                                         |                                                   | 1,181     |           |           |                                       |                                                |
| AMONT DES (I) FAUTURES                                           |                                                   | 266       |           | 618       | 133                                   | Impossible à jau-<br>ger - pas de cou-<br>rant |
| GOUFFRES ABSORBANT<br>TORMANCY Rd.                               | <u>s</u><br>(250)                                 | (250)     |           |           |                                       | (50)                                           |
| " Rg.1                                                           | (10)                                              | (10)      |           |           |                                       | (3)                                            |
| " rg.2                                                           | (3)                                               | (3)       |           |           |                                       | sec                                            |
| " rg.3                                                           | noyé                                              | noyé      |           |           |                                       | 50                                             |
| " rg.4                                                           | noyé                                              | noyé      |           |           |                                       | même cote que le<br>Serein                     |
| GRIMAULT                                                         |                                                   |           |           |           | 100                                   | à sec                                          |
| COURS AVA                                                        | niveau d'eau à<br>10 cm sous ce-<br>lui du Serein | idem      |           |           |                                       | presqu'à sec                                   |
| EMERGENCES  A. Moulinot                                          | (400)                                             | 549       |           | 594       | 500                                   | 401                                            |
| B. Captage de<br>Vermenton (trop<br>plein) Q utilisé<br>= 38 1/s | (150)                                             | 63        |           | 89        | 59                                    | 91                                             |
| C. Fontaine ron-<br>de de Vermenton                              | 20                                                |           |           | 16        | jaugeage impossi-<br>ble (dérivation) | 46                                             |
| D, Petit lavoir<br>de Vermenton                                  | (20)                                              | 77        |           | 83        | 31                                    | 69                                             |
| E. Grand lavoir<br>de Vermenton                                  | (300)                                             | 508       |           | 404       | 651                                   | 167                                            |
| F. Abime de<br>Reigny                                            | <b>26</b> \$                                      |           |           | 353       | 195                                   | 175                                            |
| N. Sources des<br>Fautures (trop<br>plein) + venues<br>amont     | (30)                                              | (30)      |           | (75)      |                                       | (30)                                           |
| J. Gouffre<br>Cours aval                                         |                                                   | Emissif   |           | Emissif   | Emissif                               | Absorbant                                      |
| K. Gouffre<br>Cours m <b>édl</b> an                              |                                                   | Emissif   |           | Emissif   | Emissif                               | Absorbant                                      |
| L. Captage de<br>Noyers (trop plein                              | )                                                 | 6         |           | 7,5       | 7                                     | j                                              |
| M. Petit lavoir<br>de Noyers                                     |                                                   | 28        |           | 1.5       | 18                                    | 4                                              |
| N. Grand la <b>v</b> oir<br>de Noy <b>e</b> rs                   |                                                   | 38        |           | 35        | 23                                    | 27                                             |
| O. Bouillon de<br>Clavisy                                        | 383                                               |           | (178)     | 886       | 549                                   | 70                                             |
| P. Lavoir de<br>Perrign <b>y</b>                                 | (80)                                              | (50)      |           | (90)      |                                       | (2%)                                           |
| Q. Fosse Dionne<br>à Tonnerre                                    |                                                   | 180       |           | 130       | 75                                    | 50                                             |
| S. S <b>o</b> urce de<br>M <b>ai</b> nciau                       | (5)                                               | (5)       |           | (3)       |                                       |                                                |
| T. Fontaine d'Ar-<br>bault à Cravant                             | (75)                                              | 69        |           | 101       | 82                                    | 30                                             |

#### 4 - CARACTERES PHYSICOCHIMIQUES DES EAUX ABSORBEES ET EMISES

Toutes les émergences ainsi que le Serein en amont des Fautures ont été analysées. Les 20 analyses ont porté sur les caractères physicochimiques des eaux (résistivité, ph. température, ions majeurs, éléments en trace).

En annexe, pour chaque point étudié, nous avons reporté les résultats des analyses sous forme de tableau. La planche 4 synthétise tous les résultats, donne l'enveloppe des mesures et compare l'eau du Serein, du captage de Vermenton et du Bouillon de Clavisy.

Notons que dans l'ensemble, tous les points d'eau analysés appartiennent à la même famille (bicarbonatée (357,6 à 170,6 mg/l), calcique (116 à 64 mg/l), ph basique (7,3 à 8,2) avec présence parfois notable de plomb (0,07 mg/l), zinc (0,058 mg/l) et surtout cuivre (0,56 mg/l). Dans le détail, les eaux sont cependant différentes : exemple - teneurs en silice et en nitrates.

Les eaux des diverses émergences sont légèrement plus minéralisées que celles du Serein. Elles ont un ph et des teneurs en Na - K - F plus faibles, des teneurs en  ${\rm CO_3}$ ,  ${\rm Ca}$ ,  ${\rm Mg}$ ,  ${\rm SiO_2}$  plus fortes.

Ceci peut être dû soit à une dissolution des terrains traversés le long des parcours karstiques éventuels, entre les pertes et les résurgences, soit à des apports extérieurs.

L'eau du Bouillon de Clavisy est celle qui se rapproche le plus de l'eau du Serein après celle des Fautures.

Le groupe des émergences de la Cure présente des teneurs plus fortes en CO3, Ca, Mg, SiO2 que les autres groupes d'émergences.

Il n'y a pas de grandes différences entre des émergences voisines colorées ou non par la fluorescéine - exemple : Abime de Reigny - Vermenton.

En résumé, les analyses réalisées montrent qu'à l'époque de l'expérience, les différences de composition entre les eaux du Serein (écoulements du granite, du Lias et de la base du Jurassique moyen) et celles des émergences (écoulement du Jurassique moyen et supérieur) sont peu importantes : ce qui ne permet pas de caractériser les relations entre eaux de surfaces infiltrées et eaux souterraines.

indéterminé

trace

N° 2036

0,0001

indéterminé

#### PRÉPARATION ET INJECTION DES COLORANTS

#### **ÉTUDE DES CONCENTRATIONS**



7 - Préparation de la Rhodamine à Brie-Comte-Robert



8 - Injection de la Fluorescéine dans le gouffre n°1 de Tormancy rive gauche



9 - Le gouffre de Tormancy rive droite dans lequel fut injecté la Rhodamine



10 - Fluorimètre Turner et laboratoire d'étude des concentrations

#### 5 - EXPERIENCE DE COLORATION

#### 51 - INJECTION DES COLORANTS ET SURVEILLANCE DES EMERGENCES

L'injection des colorants s'effectua le 9 juin 1970 : 30 kg de fluorescéine dans les gouffres de Tormancy n° 1 et 2 rive gauche ; 1 kg de Rhodamine B dans celui de la rive droite. Les photos de la planche 5 illustrent la préparation des colorants et leur injection.

Des capteurs au charbon actif et des prélèvements d'eau permirent la surveillance étroite des 20 points étudiés pendant près de 3 mois. Le tableau de la planche 6 indique, entre autres renseignements, le rythme des prélèvements.

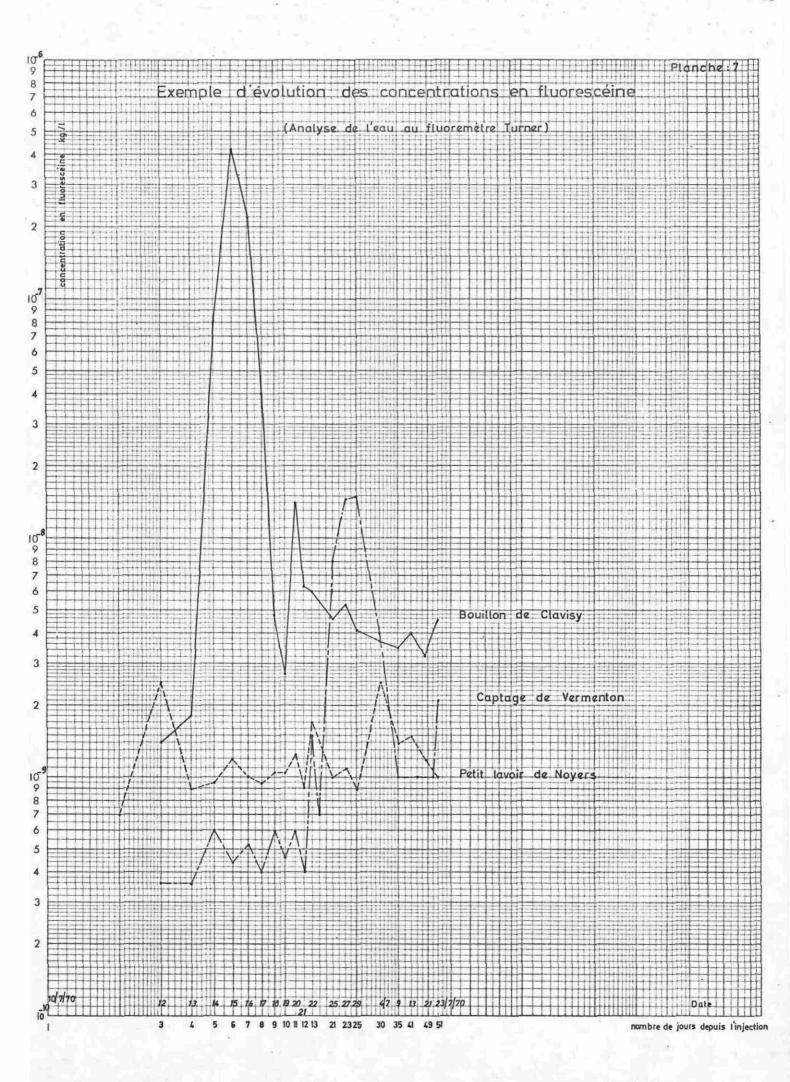
En annexe, nous donnons quelques précisions sur l'estimation à priori des poids de colorant à injecter, sur les considérations d'établissement du planning de prélèvements, sur la mise en place et la récupération de l'eau et des capteurs, sur la composition des capteurs, ainsi qu'un modèle de fiche établie pour la mise en place et le relevé des échantillons indicateurs.

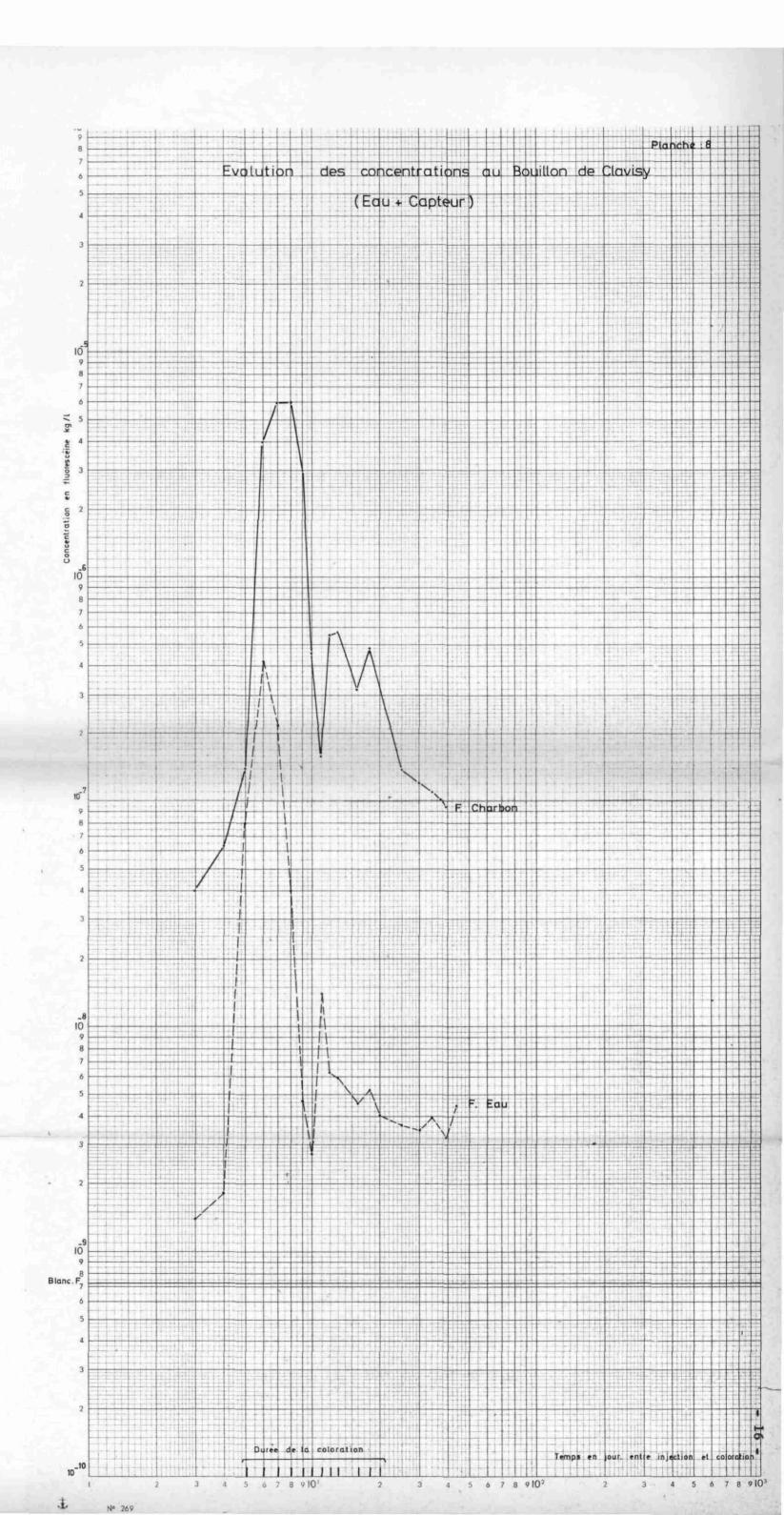
#### 52 - ETUDES DES CONCENTRATIONS DES COLORANTS AUX EMERGÈNCES

En premier lieu, une estimation grossière des concentrations fut effectuée à l'oeil nu à l'émergence ou sur des prélèvements d'eau. Cette estimation fut ensuite affinée par une comparaison avec des liqueurs étalon, enfin

| × 00 20 20 20 20 20 20 20 20 20 20 20 20 | 24686     | 4 12 4 | 200 | 2000 | 17.7  |     |       |     | - 00 | 2 4 60 | 0 h a | 404 | n so | 450 | 2000  | 870 | . 10 |       |      | no ho au | 42201   | 2220    | 8 20 |     |                              |
|------------------------------------------|-----------|--------|-----|------|-------|-----|-------|-----|------|--------|-------|-----|------|-----|-------|-----|------|-------|------|----------|---------|---------|------|-----|------------------------------|
| 1111111                                  | 11111     | 111    | 11  | 1111 | 11    | 11  | 111   | 1++ | 11   |        | 111   | 111 | 11   | 111 | 1 1 1 | 111 | 111  | 111   | 1111 | 1 1 1    | 111     | 1111    | 111  | A - | Source du Moulinot           |
| 18 jo                                    | ++++      | •      | 0   | 1    |       | 1   |       | 1   | +    |        | •     |     | •    |     |       |     |      |       |      |          |         |         |      |     |                              |
|                                          |           |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      | 72  | Vermenton - captage          |
|                                          |           | •      | +   | 0    |       | +   |       | +   | +    |        | +     |     | +    |     |       |     |      |       |      |          |         |         |      | D - | communal                     |
| 20 jo                                    | urs       |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         | 114  |     |                              |
| ++++++                                   | + + + + + |        | 0   | + +  | 4     | +   |       | + + | +    |        | +     |     | +    |     |       |     |      |       |      |          |         |         |      | C - | Vermenton - Fontair          |
| 18 je                                    | urs       |        |     |      |       |     |       | 14  |      |        |       |     |      |     |       |     |      |       |      |          |         |         | +    | 4   | ronde                        |
|                                          | ++++      |        | 0   |      |       | +   |       | 1   | +    |        |       |     |      |     |       |     |      |       |      |          |         |         |      | D - | Vermenton - Petit            |
| 18 jo                                    | ours      |        |     |      | 31.41 |     | Hales |     |      |        | 1,51  |     |      |     |       |     |      |       |      |          |         |         |      |     | lavoir                       |
|                                          |           |        | 0   |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      | P _ | Vermenton - Grand            |
| 18 10                                    |           |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      |     | lavoir                       |
|                                          |           |        |     |      |       |     |       |     |      |        |       |     |      | FE  |       |     |      |       |      |          | (Hallia |         |      | T.  | Abime de Reigny              |
|                                          |           |        |     |      |       | 1   |       | •   | 1    |        | *     |     | 1    |     |       |     |      |       |      |          |         |         |      |     | ADIME de Reigny              |
|                                          |           |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         | 1 +  | _   |                              |
| +++++                                    | +++•      | + +    | +   | 1    |       | +   |       | +   | +    |        | +     |     | +    |     | +     |     |      |       |      |          |         |         |      | G - | Captage de Nitry             |
|                                          |           |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         | +++  | #   |                              |
| ++++•++                                  | +++       |        |     |      |       | +-1 |       | +   |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      | н - | Source des Fautures          |
|                                          |           |        |     |      |       |     | 444   | 1   |      |        |       |     |      |     |       |     |      |       |      |          |         |         | 4    |     |                              |
|                                          | +++       |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      | 1 - | Serein en amont des          |
|                                          |           |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      |     | Fautures                     |
|                                          |           |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      | J - | Cours gouffre amont          |
|                                          |           |        |     |      |       |     |       | Til |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      |     |                              |
|                                          |           |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      | v _ | Cours gouffre média          |
| * * * * * * * * * *                      |           |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      |     | Cours gourre mears           |
|                                          |           |        |     |      |       |     |       |     | 71   |        |       |     |      |     |       |     |      |       |      |          |         |         |      | L - | Noyers - captage co          |
| ++++++                                   | † • •   · | + +    | •   | 1    |       | 1   |       | 1   | 1    |        | •     |     | +    |     |       |     |      |       |      |          |         |         |      |     | munal                        |
|                                          |           |        |     |      |       |     |       |     | 119  |        |       |     |      |     |       |     |      |       |      |          |         |         | 1    | -   |                              |
| ++++++                                   | +++ +     | + +    | +   |      | 4     | +   |       | +   | +    |        | +     |     | +    |     |       |     |      |       |      |          |         |         |      | M - | Noyers - Petit lavo          |
|                                          |           |        |     |      |       |     | 4     | 1   | -    |        |       |     |      |     | -139  |     |      |       |      |          |         |         | 14   |     |                              |
|                                          | +++       |        | +   |      |       |     |       | +   | +    |        | +     |     | +    |     | on .  |     |      | (O)   |      |          |         |         |      | N - | Noyers - Grand lave          |
|                                          |           |        |     |      |       |     |       |     |      |        |       |     |      |     | e     |     |      | 0     |      |          |         |         | 1    |     |                              |
| ++++++                                   |           |        |     |      |       |     |       |     |      |        |       |     |      |     | 0     |     |      | vol   |      |          |         |         |      | 0 - | Bouillon de Clavisy          |
| 6 jours                                  |           |        |     |      |       |     |       |     |      |        |       |     |      |     | név   |     |      | né    |      |          |         |         |      |     |                              |
|                                          |           |        |     |      |       |     |       |     |      |        |       | THE |      |     | Bé    |     |      | Bénév |      |          |         |         |      | P - | Lavoir de Perrigny           |
| 12 jour                                  |           |        |     |      |       |     |       |     |      |        |       |     | *    |     |       |     |      |       |      |          |         |         |      |     |                              |
|                                          |           |        |     |      |       |     |       |     | 1    |        |       |     |      |     |       |     |      |       |      |          |         |         |      | 0   | Force Dieses A Was           |
| +++                                      | + + + + + |        | +   | 1    |       | 1   |       | 1   | +    |        | +     |     | •    |     |       |     |      |       |      |          |         |         | +    | 4 - | Fosse Dionne à Ton-<br>nerre |
|                                          |           |        |     |      |       |     |       |     |      |        | ++    |     |      |     |       |     |      |       |      |          |         |         | +    |     |                              |
| ++++                                     | ++++      | + +    | +   | +    |       | +   |       | •   | +    |        | +     |     | •    |     |       |     |      | +     |      |          |         |         | +    | R • | · Puits de la Ferme d        |
|                                          |           |        |     |      |       |     |       |     |      |        | -     | 5   |      |     |       | 1 4 |      | 1     |      | -        |         |         | +    |     | Vauroux                      |
|                                          | ++++      |        |     |      |       |     |       | •   |      |        |       |     |      |     |       |     |      |       |      |          |         |         |      | s - | Source de Mainciau           |
|                                          |           |        |     |      | 28    |     |       |     |      |        |       | SHA |      |     |       |     |      |       |      |          |         |         |      |     |                              |
|                                          | 1         |        |     |      |       |     |       |     |      |        |       |     |      |     |       |     |      |       |      | 1        |         |         |      | Т - | Fontaine d'Arbault           |
|                                          | 3 3 3 3   |        |     |      | 4515  |     |       | T   |      |        |       |     | 1    |     |       |     |      |       |      |          | the n   | TOTAL . |      | 1   | à Cravant                    |

<sup>•</sup> Date supposée de l'apparition maximum des colorants à priori o Date réelle de l'apparition maximum des colorants (d'après expérience B.R.G.M. juin 1970)


précisée au fluorimètre (cf. planche 5). Cet appareil nous a permis non seulement d'étudier les concentrations en fluorescéine dans l'eau, mais aussi dans les éluats de la solution alcoolique de potasse qui permet de récupérer les colorants fixés sur les capteurs au charbon actif. L'étude de la rhodamine donnant des résultats abhérrants fut rapidement abandonnée.


Les planches 7 et 8 donnent des exemples d'évolution des concentrations dans le temps. Sur la planche 7 (évolution de la concentration de la fluorescéine dans l'eau), nous montrons 2 émergences colorées (Bouillon de Clavisy - captage de Vermenton) et une qui ne l'est pas (captage de Noyers).

Sur la planche 8, nous comparons (Bouillon de Clavisy) l'évolution des concentrations de la fluorescéine dans l'eau et les éluats.

C'est à Clavisy que la concentration maximum en fluorescéine dans l'eau est la plus forte  $4,2.10^{-7}$  kg/l; puis à Perrigny et au captage de Vermenton  $1,5.10^{-8}$  kg/l, au grand lavoir de Vermenton  $1,2.10^{-8}$  kg/l, à la fontaine ronde et au petit lavoir de Vermenton  $10^{-8}$  g/l, enfin au Moulinot  $(8,8.10^{-9}$  kg/l).

En annexe, nous développons les modalités de détermination des concentrations au fluorimètre : nous insistons sur les précautions prises pour l'étude des échantillons ; nous mettons en évidence les règles qui nous assurent qu'une émergence est colorée ; comparons les concentrations en fluorescéine de l'eau et des éluats, et les diverses méthodes de détection de la fluorescéine utilisées ; enfin nous donnons pour chaque point étudié, les diagrammes d'évolution des différentes concentrations.





#### 53 - RENSEIGNEMENTS HYDROGEOLOGIQUES APPORTES PAR L'EXPERIENCE DE COLORATION

#### 531 - Emergences alimentées ou non par les pertes du Serein

Les pertes du Serein entre Tormancy et Cours résurgent d'une part dans la vallée de cette rivière à Clavisy et Perrigny, d'autre part dans la vallée de la Cure à Vermenton.

A cette époque de l'année, il n'y a pas de relation entre ces pertes et la vallée du Serein en amont de Clavisy, avec la vallée de la Cure excepté à Vermenton, la vallée de l'Yonne, celle de l'Armançon, du ru de Sacy et de celle de Vaucharme.

Insistons sur la non coloration de la source des Fautures, malgré la composition chimique de l'eau, analogue à celle du Serein.

532 - Trajets karstiques entre les pertes du Serein et les différentes émergences qu'elles alimentent.

Pour Clavisy et Perrigny, le trajet en ligne droite suivant la direction tectonique SSE-NNW est possible. Les longueurs des parcours seraient donc respectivement au minimum de 6.500 m à 9.500 m.

Pour Vermenton, le tracé ne peut être la ligne droite, car le captage de Nitry situé sur ce parcours n'a pas été influencé, de plus il n'y a pas d'analogie avec la tectonique du karst et le pendage des terrains. La longueur du tracé est donc supérieure à 19 km.

Remarque: Le tracé proposé par M. MAZOIT paraît plus vraisemblable: les pertes se dirigeraient vers Aigremont en direction NW sur 11 km, buteraient sur la faille de Mailly-le-Château - Molay, puis sur 12 km en direction du SW gagneraient Vermenton. Il faudrait cependant admettre dans ce cas que

les pertes ne suivent pas exactement le tracé de la faille de Mailly-le-Château puisque l'Abime de Reigny n'a pas été coloré. Le tracé Aigremont-Vermenton n'est cependant pas impossible puisqu'il reste bien dans l'une des directions tectoniques privilégiée. Soulignons que dans cette hypothèse la faille de Mailly-le-Château ferait bien obstacle à la poursuite du flux en direction Aigremont-Chablis puisque le puits de Vauroux n'a pas été coloré.

Notons aussi que le cheminement du flux entre Aigremont et Vermenton serait précis puisque ni l'Abime de Reigny, ni la Fontaine d'Arbault à Cravant n'ont été colorés.

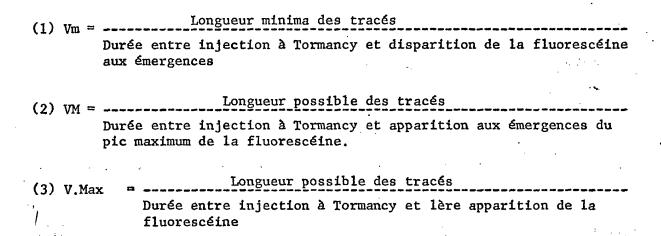
Enfin, signalons que le tracé de M. MAZOIT n'est pas incompatible avec "le gradient de la nappe". En effet, une estimation de la cote de la nappe d'après Tormancy et Vauroux donne pour Aigremont 158 m. Cette cote est inférieure à celle de Tormancy 184 m et supérieure à celle de Vermenton égale à 115 m.

Cependant pour être certain que le trajet proposé par M. MAZOIT est vraiment celui suivi par le flux karstique il faudrait que nous ayons à proximité d'Aigremont un point d'eau valable et que celui-ci ait été coloré. N'ayant pas de tel point d'eau, nous ne pouvons qu'estimer que la longueur du tracé est supérieure à 19 km.

533 - Durée des trajets karstiques entre les pertes du Serein et les différentes émergences qu'elles alimentent

Le tableau ci-dessous donne pour Vermenton, Clavisy et Perrigny, les durées entre l'injection de la fluorescéine à Tormancy et les premières apparitions de la fluorescéine, les pics maximum de coloration et les disparitions de la fluorescéine, soit :

|   | RESURGENCES | DUREE EN J      | OURS ENTRE INJECT | TIONS ET APPARITIONS |
|---|-------------|-----------------|-------------------|----------------------|
|   | - '         | lère apparition | Pic maximum       | Disparition          |
| : | CLAVISY     | 5               | <u>,</u> 6        | 20                   |
|   | PERRIGNY    | . 11            | 12                | 25                   |
|   | VERMENTON   | 15 ·            | 19                | 30                   |


C'est pour Clavisy que les différentes durées sont les plus courtes, puis pour Perrigny, enfin pour Vermenton.

Les durées des colorations des 3 groupes d'émergences sont voisines : (14 ou 15 jours). Le temps séparant la lère apparition de la fluorescéine du pic maximum est plus long à Vermenton (4 jours) qu'à Perrigny et Clavisy (1 jour). Le temps séparant les pics des disparitions sont plus courts à Vermenton (11 jours) qu'à Perrigny (13 jours) et Clavisy (14 jours).

#### 534 - Fourchette des vitesses des flux karstiques

Avec les longueurs des tracés karstiques et les durées ci-dessus, nous pouvons donner des vitesses moyennes possibles ainsi qu'unc fourchette des vitesses des flux karstiques pour Clavisy, Perrigny et Vermenton, soit :

| _                                       |               |                                 |                           |                           |
|-----------------------------------------|---------------|---------------------------------|---------------------------|---------------------------|
| 1                                       | ***           | VITESSES EI                     | N METRE/JOUR              |                           |
|                                         |               | Vitesse minima                  | Vitesses moyennes         | Vitesse maxima            |
| ******                                  | RESURGENCES   | Vm (1)                          | possibles<br>VM (2)       | V.Max. (3)                |
| *************************************** | CLAVISY       | $\frac{6500}{20} = 325$         | $\frac{6500}{6} = 1083$   | 6500 = 1300               |
|                                         | PERRIGNY<br>; | <u>9500</u> = 38 <b>0</b><br>25 | 9500 = 792<br>12          | . <u>9500</u> = 864       |
| *************************************** | VERMENTON     | 19000 = 633<br>30               | $\frac{23000}{19} = 1219$ | $\frac{23000}{15} = 1533$ |



Les vitesses minima sont certaines, les valeurs les plus fortes sont inférieures aux vitesses maxima possibles puisque nous ne pouvons pas définir un terme maximum pour les longueurs des tracés.

En résumé, comme le montre le schéma récapitulatif ci-dessous :

- d'une part, si nous estimons que les tracés choisis pour les 3 groupes d'émergences sont les plus probables, la vitesse moyenne pour Vermenton (1.210 m/j) serait légèrement supérieure à celle de Clavisy (1.083 m/j) et bien plus forte que celle de Perrigny (792 m/j),
- de l'autre, si nous pensons que ces tracés ne sont pas assez surs, nous pourrons admettre cependant que les vitesses moyennes pour Clavisy, Perrigny et Vermenton sont voisines et comprises entre 633 et 1.300 m/j, puisque les 3 fourchettes se recoupent suivant ces valeurs, et au minimum de 333 m/j à Vermenton, 380 m/j à Perrigny et 325 m/j à Clavisy.

#### CALCUL DES POIDS DE FLUORESCEINE RESSORTIE DANS LES DIFFERENTES EMERGENCES

| RESURGENCES                 | Débit moyer<br>1/s                                             | Durée de la<br>coloration<br>sec. | Volume<br>litre    | Concentra-<br>tion moyenne<br>Kg/l | Poids en<br>fluorescéine<br>Kg.                              |
|-----------------------------|----------------------------------------------------------------|-----------------------------------|--------------------|------------------------------------|--------------------------------------------------------------|
| MOULINOT                    | 500                                                            | 13.10 <sup>5</sup>                | 65.10 <sup>7</sup> | 5,5.10                             | 3,6                                                          |
| CAPTAGE VERMENTON           | 110                                                            | 11                                | 14.10 <sup>7</sup> | 8.10 <sup>-9</sup>                 | 1,1                                                          |
| PETIT LAVOIR VER-<br>MENTON | 55                                                             | 11                                | 7.10 <sup>7</sup>  | 7.10 <sup>-9</sup>                 | 0,5                                                          |
| GRAND LAVOIR VER-<br>MENTON | 470                                                            | 11                                | 60.10 <sup>7</sup> | 6.10 <sup>-9</sup>                 | 3,6                                                          |
| FONTAINE RONDE<br>VERMENTON | 30                                                             | 11                                | 4.10 <sup>7</sup>  | 7.10 <sup>-9</sup>                 | 0,3                                                          |
| TOTAUX VERMENTON            | <u>1165</u>                                                    |                                   |                    |                                    | 9,1                                                          |
| BOUILLON DE CLAVI-<br>SY    | 675                                                            | 13.10 <sup>5</sup> .              | 90.10 <sup>7</sup> | 25.10 <sup>-9</sup>                | 22,5                                                         |
| LAVOIR DE PERRIGNY          | 65                                                             | 12.10 <sup>5</sup>                | 8.10 <sup>7</sup>  | . 7.10 <sup>-9</sup>               | 0,6                                                          |
| TOTAUX CLAVISY-<br>PERRIGNY | <u>740</u>                                                     | 111                               |                    |                                    | <u>23,1</u>                                                  |
| TOTAUX GENERAUX             | 1905                                                           |                                   |                    | 11:                                | 32,2                                                         |
|                             | 1000 1/s<br>débit des<br>pertes au<br>moment de<br>l'injection |                                   |                    |                                    | 30 kg - Poids<br>de fluorescéi-<br>ne réellement<br>injecté. |

## 6 - ESTIMATION QUANTITATIVE DE L'ALIMENTATION, PAR LES PERTES DU SEREIN, DES DIVERSES EMERGENCES - APPORTS EXTERIEURS

Cette estimation peut être envisagée puisque nous pouvons calculer approximativement les volumes d'eau colorés par la fluorescéine des différentes résurgences, les concentrations en fluorescéine durant le temps de coloration et que nous connaissons le poids de fluorescéine injectée.

Le tableau ci-contre donne les résultats conformes à la probalité la plus grande, mais le calcul des débits et des concentrations peuvent comporter des erreurs dues aux appareils de mesure et aux interpolations entre mesures. Il est donc nécessaire d'assortir les résultats obtenus de fourchettes. Cependant, il ne faut pas appliquer directement les marges d'erreur, car nous obtiendrions des valeurs de l'ordre de 200 à 300 %. Il existe des relations liant chaque valeur qui permettent de réduire ces marges d'erreur; ainsi le volume d'eau en provenance des pertes du Serein ne peut pas être supérieur à celui de ces pertes. Le poids calculé de fluorescéine ressortie aux résurgences ne doit pas être très différent du poids injecté. La période de surveillance étant 3 fois plus longue que la durée estimée pour la réapparition des colorants, et la zone surveillée étendue, on peut estimer que toute la fluorescéine injectée à Tormancy est ressortie dans les 7 émergences colorées.

Les débits instantanés sont estimés à 20 % près. Le calcul des débits moyens par extrapolation entre les débits instantanés entraine une nouvelle approximation de 10 %, les débits moyens du tableau sont donc valables à 30 % près. Comme de plus, le calcul des concentrations moyennes est effectué avec une marge d'erreur de 10 %, les poids de fluorescéine du tableau seront donnés à 40 % près. Nous avons trouvé au total 32,2 kg pour 30 kg, l'estimation globale est donc bonne et confirme la compensation partielle des erreurs.

Ayant calculé les poids partiels à 40 % près, nous pouvons donner pour chaque émergence la valeur moyenne et une fourchette du pourcentage des pertes du Serein qui les réalimentent. Sachant que les pertes totales du Serein sont égales à 1 m³/s ± 40 %, grâce aux pourcentages ci-dessus, nous pouvons en déduire les 7 débits instantanés (moyenne et fourchette) provenant des pertes (1). Ces débits soustraits des débits globaux (2) à 30 % près nous permettant de calculer l'apport extérieur (3) (Moyenne - fourchette).Le tableau ci-contre récapitule tous ces calculs.

Globalement pour donner des ordres de grandeur plus faciles à retenir, nous pouvons dire :

- en moyenne 2/3 des pertes du Serein retournent au Serein, 1/3 seulement part vers la Cure. Ces chiffres, compte tenu de l'imprécision des mesures, peuvent être respectivement au maximum de 20 % et 80 % au minimum de 50 %,
- le Bouillon de Clavisy est pratiquement alimenté par les seules pertes du Serein,
- le laboir de Perrigny et le groupe des sources de Vermenton bénéficient d'un apport extérieur aux pertes du Serein de 60 % au minimum, 75 % en moyenne et 85 % au maximum.

# ESTIMATION QUANTITATIVE DE L'ALIMENTATION DES DIVERSES EMERGENCES PAR LES PERTES DU SEREIN - APPORTS EXTERIEURS

| RESURGENCES                 | des pe<br>pariti | it(1/s) pro<br>rtes durant<br>on de la fl<br>(à 40 % prè | l'ap-<br>uores- | des éme<br>l'appar | -          | durant<br>la |      | oorts extérie | urs  |
|-----------------------------|------------------|----------------------------------------------------------|-----------------|--------------------|------------|--------------|------|---------------|------|
|                             | - 40 %           | Moy.                                                     | + 40 %          | - 30 %             | Moy.       | +30 %        | min. | Moy.          | max. |
| <u>VERMENTON</u>            |                  | 110                                                      |                 |                    | 500        |              |      | 390           |      |
| Moulinot                    | 66               |                                                          | 154             | 350                | ··         | 650          | 284  |               | 496  |
| Captage                     | 18               | 30                                                       | 48              | 77                 | 110        | 143          | 59   | 80 .          | 95   |
| Fontaine<br>ronde           | 6                | 10                                                       | 14              | 21                 | 30.        | 39           | 15   | 20            | 25   |
| Petit lavoir                | 12               | 20                                                       | 28              | 38                 | 55         | 72.          | 26   | 35            | 44   |
| Grand lavoir                | 66               | 110                                                      | 154             | 329                | 470        | 611          | 263  | 360           | 457  |
| TOTAL<br>VERMENTON          | 168              | 280                                                      | 392             | 815                | 1165       | 1515         | 647  | <u>885</u>    | 1123 |
| Bouillon de<br>Clavisy      | 420              | 700                                                      | 980             | 472                | 675        | 878          | 52   | 0             | 0    |
| Lavoir de<br>Perrigny       | 12               | 20                                                       | 28              | 45                 | 65         | , 85         | 33   | 45            | . 57 |
| TOTAL CLAVI-<br>SY+PERRIGNY | 432              | <u>720</u>                                               | <b>100</b> 8    | 518                | <u>740</u> | 962          | 85   | 20            | 0_   |
| TOTAL GENE-<br>RAL          | 6 <b>0</b> 0     | 1000                                                     | 1400            | 1333               | 1905       | 2477         | 733  | 905           | 1077 |

#### 7 - CONCLUSIONS

#### 71 - VERIFICATION DES ETUDES PRECEDENTES

711 - Analogies

Les jaugeages exécutés sur le Serein confirment que les pertes du Serein entre Tormancy et Cours sont de l'ordre du  ${\rm m}^3/{\rm s}$ .

Ni les résurgences à proximité du Serein entre Grimault et Noyers, ni la fosse Dionne à Tonnerre, ni l'Abime de Reigny sur la Cure, ne sont alimentés par les pertes du Serein.

Les sources de Vermenton sont alimentées par ces pertes. Le trajet du flux karstique proposé par M. MAZOIT entre Tormancy et Vermenton est possible.

La vitesse du flux karstique trouvé par M. MAZOIT pour Vermenton est du même ordre de grandeur que celles que nous avons calculées.

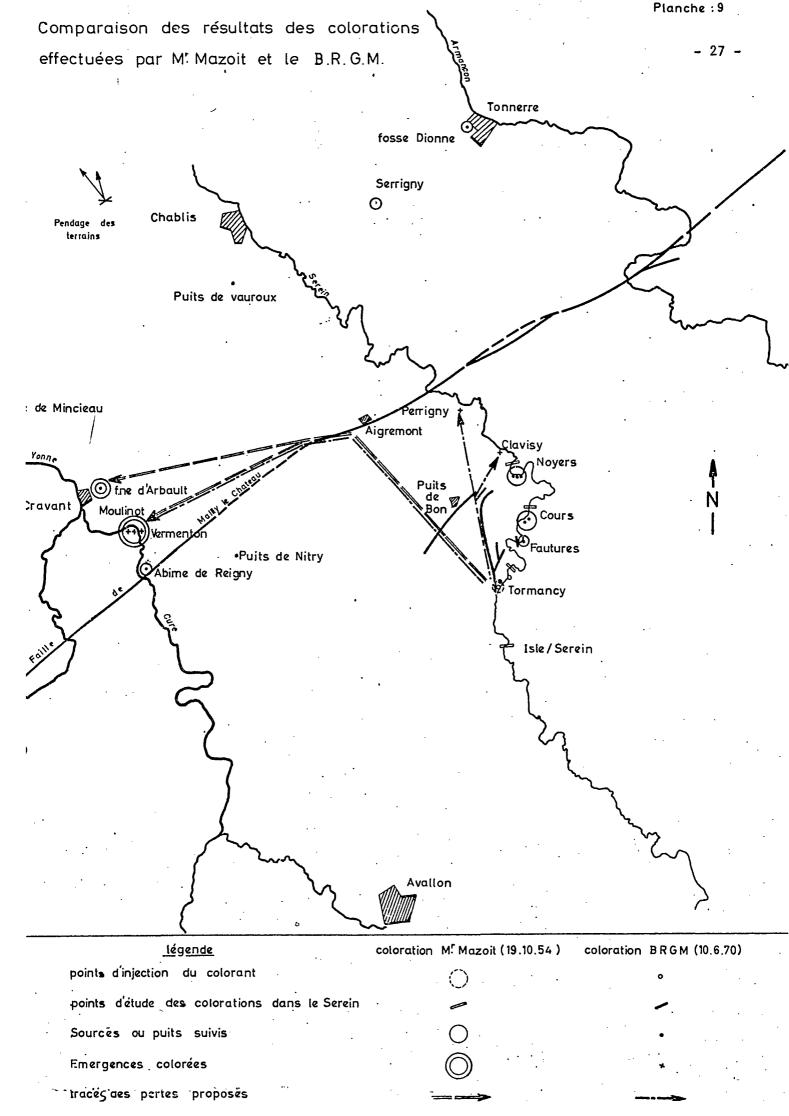
#### 712 - Différences

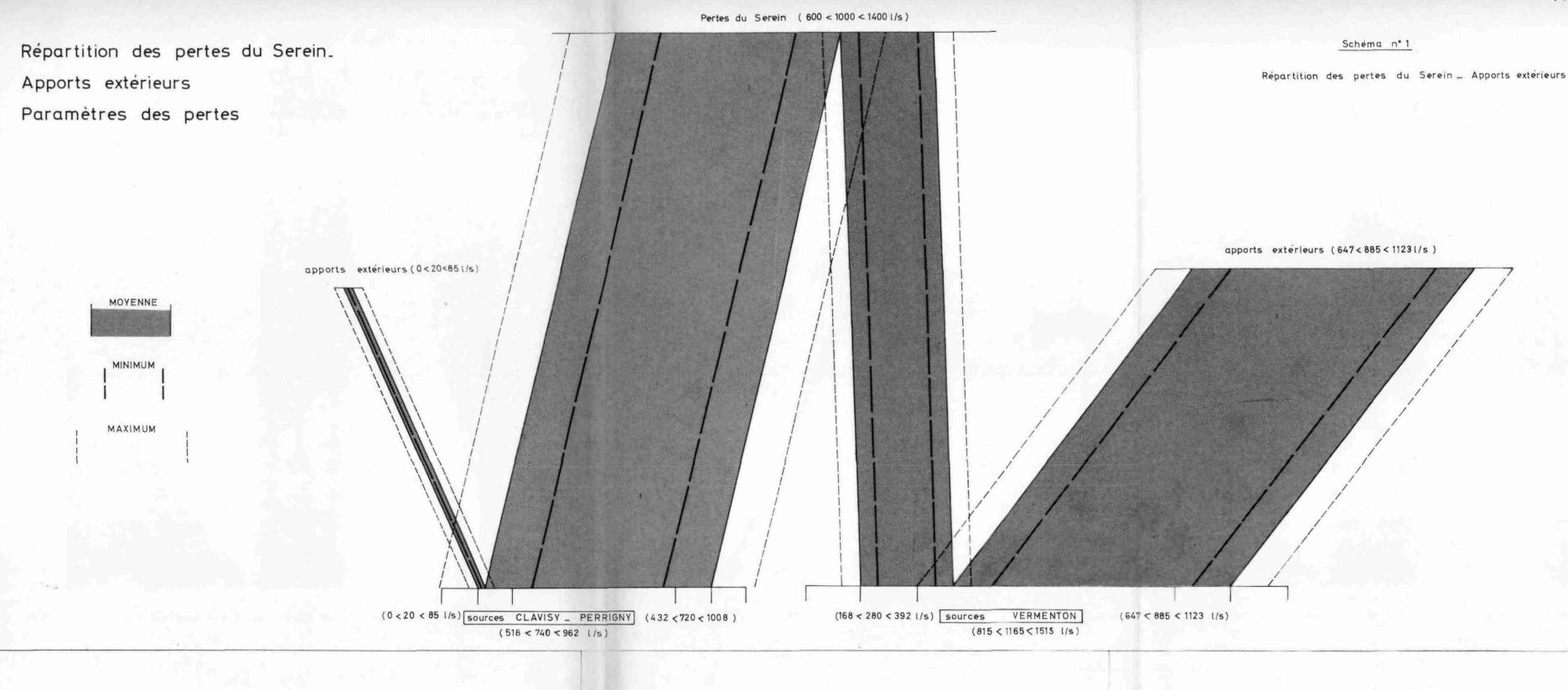
Les pertes du Serein ne ressortent pas seulement à Vermenton, mais retournent aussi au Serein par le Bouillon de Clavisy et le lavoir de Perrigny.

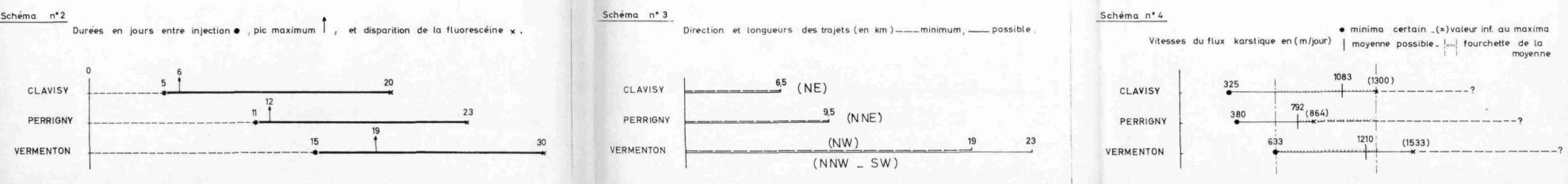
La Fontaine d'Arbault à Cravant est indépendante des pertes du Serein.

La planche 9 compare les résultats des colorations effectuées par M. MAZOIT et par le B.R.G.M.

#### 72 - APPORTS COMPLEMENTAIRES DE LA PRESENTE ETUDE


Dans le souci d'imager nos résultats, nous présentons ci-contre un série de schémas comparatifs.


Le premier schéma illustre la répartition des pertes du Serein vers la Cure et le Serein ainsi que l'importance des apports extérieurs.


Retenons que 50 % au minimum des pertes du Serein retournent vers cette rivière.Le quart des apports extérieurs est faible pour l'ensemble Perrigny-Clavisy, important pour Vermenton. Dans le détail et pour être plus précis, en nous référant au tableau de la page , on peut dire que le Bouillon de Clavisy est pratiquement uniquement alimenté par les pertes du Serein. Le lavoir de Perrigny et les sources de Vermenton bénéficient d'un apport extérieur qui représente au minimum les 3/5 de l'apport global.

Le deuxième schéma donne pour ces 3 grands groupes d'émergences les durées entre l'injection de la fluorescéine d'une part, et l'apparition, le pic maximum et la disparition du colorant de l'autre.

Le troisième schéma compare les longueurs des trajets minimaux et possibles des pertes vers Clavisy, Perrigny et Vermenton et rappelle les différentes direction (cf. aussi planche 9).







Enfin, la quatrième illustration montre que les vitesses minima du flux karstique ne sont pas inférieures à 300 m/jour, les vitesses moyennes probables voisines de 1.200 m/jour (Vermenton), 1.000 m/jour (Clavisy), 800 m/jour (Perrigny) si l'on estime que la longueur des trajets possibles est exacte, comprises entre 600 et 1.300 m/jour environ si nous pensons que les longueurs des tracés ne peuvent être avancées aussi surement que ci-dessus.

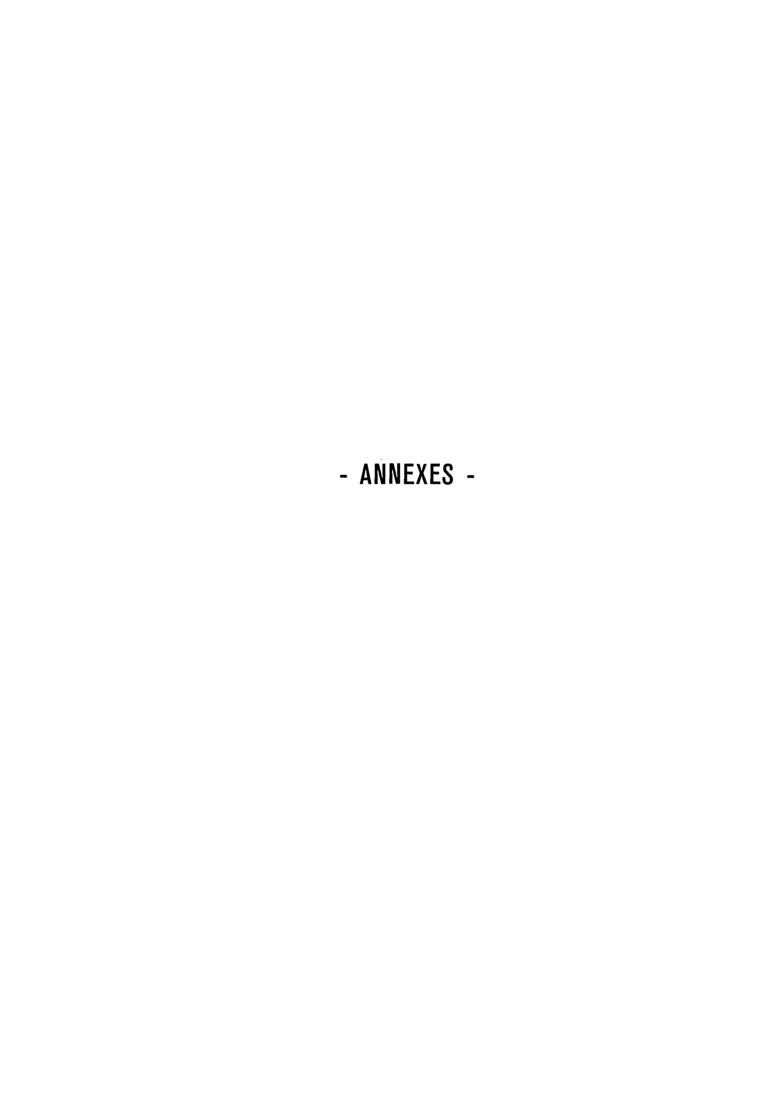
Enfin, les analyses chimiques comparées du Serein et des émergences observées ne nous ont pas permis de mettre en évidence des relations caractéristiques entre pertes et résurgences, les eaux ayant toutes des compositions voisines.

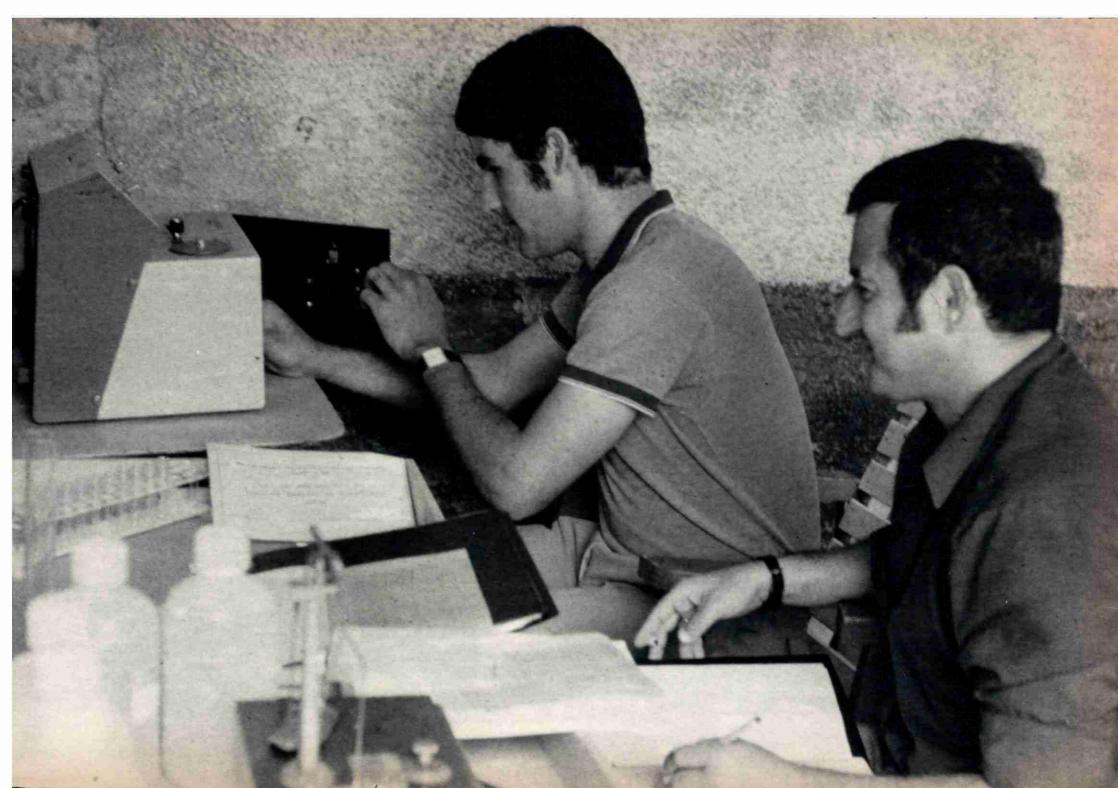
#### 73 - INCIDENCES DE LA SUPPRESSION DES PERTES DU SEREIN SUR LES DIVERSES RESURGENCES

A l'époque de l'expérience B.R.G.M., les pertes du Serein ne contribuent qu'à 40 % au maximum à l'alimentation des sources de Vermenton. La suppression de cette partie de l'alimentation n'aurait donc pas une influence catastrophique sur le débit de ces sources dont une seule est utilisée comme captage communal. De plus, ce captage laisse échapper à cette époque par son trop plein en moyenne 80 l/s. Même s'il ne restait que les 60 % de ce débit avec le trop plein restant 16.000 personnes pourraient être alimentées à raison de 250 l/jour/habitant. Les deux lavoirs de Vermenton pourraient encore remplir leur office même si leurs débits n'étaient plus que les 3/5 de ce qu'il est. La Fontaine ronde n'a aucune utilité pratique ; la diminution de son débit ne pose donc pas de problème. Les sources du Moulinot alimentent un petit étang artificiel qui ne s'assècherait pas si le débit des sources diminuait de 2/5 et qui pourrait toujours entraîner les turbines qui fournissent l'électricité de l'hôtel.

L'influence du colmatage des pertes du Serein est aussi négligeable à Perrigny puisqu'elles ne représentent que les 3/5 de l'alimentation du lavoir. Au contraire, la commune serait heureuse d'une diminution du débit du lavoir qui souvent déborde et inonde la chaussée voisine.

La suppression des apports d'eau au Bouillon de Clavisy n'aurait que l'effet de contraindre les animaux, qui s'y alimentent actuellement, à s'abreuver un peu plus tôt au Serein situé à quelques mètres de là : ce qu'ils font normalement lorsque le Bouillon n'est plus émissif. Il faudrait même dans ce cas isoler le Bouillon pour que le Serein ne s'y perde pas en basses eaux.


Ce n'est pas en hautes eaux qu'une influence néfaste de la suppression des pertes du Serein sur les résurgences est à craindre, ni au début des basses eaux (époque de notre expérience). Mais que se passe-t-il à l'étiage ?


En basses eaux le comportement des pertes du Serein est peut-être différent comme peut le laisser supposer les différences entre l'expérience de M. MAZOIT et celle du B.R.G.M.

Est-ce qu'à l'étiage, les pertes du Serein alimentent les mêmes résurgences, dans les mêmes pourcentages qu'en juin ? Est-ce qu'à l'étiage le rapport alimentation des émergences par le Serein et par des apports extérieurs ne varie pas ? Est-ce qu'en basses eaux l'alimentation des résurgences par les apports extérieurs reste assez forte pour qu'il soit possible, sans crainte; de supprimer l'apport du Serein ? Pour tenter de répondre à ces questions, il est indispensable de refaire à l'étiage l'expérience de coloration et de jaugeage en surveillant non seulement les 7 points colorés en juin 1970, mais aussi l'Abime de Reigny et la Fontaine d'Arbault à Cravant.

L'analyse de la fluorescéine au fluorimètre Turner se fera uniquement sur l'eau. Pour permettre une estimation quantitative plus précise il faudrait réaliser des jaugeages continus, ou au moins journaliers. Il sera donc nécessaire sur le Serein d'utiliser l'installation existante de l'Isle-sur-Serein, d'aménager une station de jaugeage à Cours, et d'équiper les émergences de Clavisy, de Perrigny, de Vermenton (petit et grand lavoir - Fontaine ronde - captage communal - Etang du Moulinot), ainsi que l'Abime de Reigny et la Fontaine d'Arbault à Cravant.

Dans l'état actuel de nos connaissances, nous pouvons seulement dire qu'en hautes eaux et au début des basses eaux, le colmatage des pertes du Serein entre Tormancy et Cours n'a pas une influence vraiment gênante sur les résurgences qui leurs sont liées.





# - SOMMAIRE -

## 1 - TEXTE EN ANNEXE

| ETUDE ELEMENTS DU RAPPORT 69 SGL 245 BDP RELATIFS A LA PRESENTE                           | 1 ·                  |
|-------------------------------------------------------------------------------------------|----------------------|
| 11 - Expérience de coloration par M. MAZOIT (cf. planche 9 dans le texte) 12 - Hydrologie | 1 2                  |
| 2 - REPERAGE DES GOUFFRES ABSORBANTS - CHOIX DES "RESURGENCES A SURVEILLER)               | 3                    |
| 21 - Repérage des gouffres absorbants                                                     | 3<br>3               |
| 3 - ESTIMATION DES DEBITS ABSORBES ET EMIS                                                | 6                    |
| 31 - Résurgences 32 - Pertes du Serein                                                    | 6<br>6               |
| 4 / CARACTERES PHYSICOCHIMIQUES DES EAUX ABSORBEES ET EMISES                              | 9                    |
| 5 - EXPERIENCE DE COLORATIONS                                                             | 12                   |
| 51 - Injection des colorants et surveillance des émergences                               | 12                   |
| 511 - Injection                                                                           | 12<br>13             |
| 52 - Détermination des points de sortie des colorants                                     | 20                   |
| 521 - Détermination à l'oeil nu sur place et en flacon                                    | 20<br>21             |
| 53 - Remarques sur les colorations                                                        | 23                   |
| 531 - Comparaison des concentrations en fluorescéine dans l'eau et les éluats             | 23                   |
| céine                                                                                     | 26                   |
| 54 - Terrains géologiques traversés par les Pertes                                        | 27                   |
|                                                                                           |                      |
| 2 - PLANCHES EN ANNEXES                                                                   | •                    |
| Planche A - Renseignements sur les gouffres et les points d'eau suivis lors               |                      |
| de l'expérience B.R.G.M. de juin 1970                                                     | 5<br>7               |
| Planche B - Exemple de calcul de débit                                                    | 7                    |
| rein                                                                                      | 8                    |
| Planche D - Résultats des analyses physicochimiques des eaux absorbées et                 | 10 . 11              |
| emises                                                                                    | 10 et 11<br>15<br>15 |
| Planche F - Abaque pour étude des concentrations au fluorimètre Turner -                  |                      |
| Etude de la fluorescéine                                                                  | 18                   |
| fluorescéine avec le fluorimètre Turner                                                   | 19                   |
| dans l'eau                                                                                | 24<br>25             |

#### 3 - CARTES ET DIAGRAMMES EN POCHETTE D'ANNEXE

#### Cartes au 1/25.000

- 1 Implantation des gouffres absorbants et des émergences suivies de Tormancy à Noyers (expérience B.R.G.M. juin 1970)
- 2 Implantation du Bouillon de Clavisy et du lavoir de Perrigny (expérience B.R.G.M. de juin 1970)
- 3 Implantation du captage de Nitry (expérience B.R.G.M. de juin 1970)
- 4 Implantation des sources de Vermenton, de Cravant et de l'Abime de Reigny, (expérience B.R.G.M. de juin 1970)
- 5 Implantation de la source de Mainciau (expérience B.R.G.M. de juin 1970)
- 6 Implantation du puits de Vauroux (expérience B.R.G.M. de juin 1970)
- 7 Implantation de la Fosse Dionne à Tonnerre (expérience B.R.G.M. de juin 1970)

### Diagrammes d'évolution des concentrations en fluorescéine dans l'eau et les capteurs (expérience B.R.G.M. juin 1970)

- A Source du Moulinot
- B Vermenton captage communa1
- C Vermenton Fontaine ronde
- D Vermenton Petit lavoir
- E Vermenton Grand lavoir
- F Source de l'Abime de Reigny
- G Puits de Nitry-Sacy
- H Source des Fautures
- I Serein en amont des sources des Fautures
- J Cours Gouffre amont
- K Cours Gouffre médian
- L Noyers captage communal
- M Noyers Petit lavoir
- N Noyers Grand lavoir
- O Bouillon de Clavisy
- P Lavoir de Perrigny
- Q Fosse Dionne à Tonnerre
- R Puits de Vauroux
- S Source de Mainciau
- T Fontaine d'Arbault à Cravant.

#### 1 - RAPPEL DES ELEMENTS DU RAPPORT 69 SGL 245 BDP RELATIFS A LA PRESENTE ETUDE

### 11 - EXPERIENCE DE COLORATION PAR M. MAZOIT (cf. planche 9 dans le texte)

- Expérience du 19 octobre 1964,
- Coloration par la fluorescéine : 25 kg,
- Points d'injection bétoire en aval du pont de Tormancy,
- Points colorés (repérage qualitatif à l'oeil nu)
- Fontaine ronde de Vermenton du 4 au 13 novembre 1954 (15 jours après 1 injection)

Grande fontaine de Vermenton (captage communal) du 4 au 12 novembre 1954 (15 jours après l'injection)

Fontaine de Verre (grand lavoir de Vermenton) du 4 au 9 novembre 1954 (15 jours après l'injection)

Moulinot (Vermenton) à partir du 4 novembre 1954 :
Cravant (Fontaine d'Arbault) 1 seul flacon - date inconnue

#### - Points non colorés

- Sur le Serein de l'amont vers l'aval Serein à la Menille Source des Fautures Résurgences amont pont de Cours Serein à l'Abreuvoir de Venoise Source du lavoir de Noyers captage communal de Noyers Sources du Moulin de Noyers Serein en aval de Noyers.
- Autres points : Diaclase de Serrigny Fosse Dionne à Tonnerre Abime de Reigny et Grande Fontaine.
- La Bouillon de Clavisy et le lavoir de Perrigny n'ont pas été suivis. Il n'y a eu aucun écho publique de coloration,
- La vitesse du flux karstique entre Tormancy et Vermenton était de 56 m/heure
- D'après M. MAZOIT, les eaux perdues par le Serein au niveau de Tormancy, suivraient tout d'abord le tracé S.E. N.W. d'une vallée sèche qui pourrait être l'ancien cours du Serein, à vitesse forte sensiblement dans la

direction du pendage naturel des calcaires jurassiques, puis buteraient sur la faille de Mailly-le-Château et prendraient à vitesse plus lente la direction de Vermenton soit W. - S.W.

12 - HYDROLOGIE (JAUGEAGE DU SEREIN PAR BELGRAND ET LEMOINE 1870-1874 - PAR LE S.R.A.E. BOURGOGNE D'UNE PART ET M. GOUBET (lère CIRCONSCRIPTION ELECTRIQUE) DE L'AUTRE EN 1969 - CONCLUSIONS Mme RAMBERT (RAPPORT 69 SGL 245 BDP).

- Les pertes sur le Serein sont maxima entre Massangis et Grimault,
- Il y aurait des résurgences dans la région de Clavisy,
- Les échanges karstiques entre le Serein et l'Yonne seraient de 1 à 2  $m^3/s$ .

2 - REPERAGE DES GOUFFRES ABSORBANTS - CHOIX DES "RESURGENCES A SURVEILLER" (cf. planche 1 dans le texte).

#### 21 - REPERAGE DES GOUFFRES ABSORBANTS

Entre Tormancy et Grimault, ces pertes étaient bien connues. La plupart protégée par des murets en pierres. Au moment de l'injection, seuls les gouffres 1 et 2 rive gauche et 1 rive droite étaient absorbants; les autres gouffres de Tormancy ainsi que celui de Cours aval étaient noyés. Fin juillet un autre gouffre absorbant était découvert entre Grimault et les gouffres de Cours, rive gauche du Serein.

#### 22 + CHOIX DES "RESURGENCES A SURVEILLER"

Le choix de ces points se fit d'une part pour suivre tous les points d'émergence reconnus par M. MAZOIT, prévisibles d'après les études hydrologiques dans la région de Clavisy, ainsi que toutes les émergences en relation possible avec les pertes du Serein, ayant une cote inférieure à celles-ci, dans un rayon de 28 km dans le sens de la pente de la nappe en aval des points d'injection.

Vingt points furent ainsi suivis. Ils se répartissent ainsi :

- Sur le Serein en aval des points d'injection,
  - . Serein en amont des sources des Fautures.
  - . Source des Fautures,
  - . Gouffre de Cours (médian et aval),
  - . Noyers (captage communal petit et grand lavoir),
  - . Bouillon de Clavisy,
  - . Lavoir de Perrigny.

- Sur la Cure :
  - . Abime de Reigny,
  - Petit et grand lavoir de Vermenton,
  - . Fontaine ronde,
  - . Captage communal,
  - . Source du Moulinot.
- Près de l'Yonne :
- Fontaine d'Arbault à Cravant,
  - . Source de Mainciau à Bailly (Saint-Bris)
- Près de l'Armançon : Fosse Dionne à Tonnerre,
- Dans la vallée du ru de Sacy : captage de Nitry,
- Dans la vallée du ru de Vaucharme : puits de la ferme de Vauroux.

Sur ces vingt points, il y a cinq captages communaux (4 sources + 1 puits) - cinq lavoirs - un puits particulier - deux sources aménagées pour des besoins particuliers (lac du Mculinot - Site touristique de la Fosse Dionne).

En pochette, pour chaque point ou groupe de points étudiés (injection, émergence), il y a un plan de situation au 1/25.000. Cartes 1 à 7.

La planche A donne entre autres renseignements, les paramètres géographiques et hydrogéologiques des points mentionnés.

REDSEIGNEMENTS SUR LES COUNTRES ET LES POI TS D'HAU SUIVIS LORS DE L'EXPERIENCE B.R. M. DE JUIN 1 70

| •                                           |                  |                          |          | : Carte u               |                  | numéro .                 | numéro    | :                                       |                     | : Tompe de | :Sites géologiques                                      | •                                                                                               |
|---------------------------------------------|------------------|--------------------------|----------|-------------------------|------------------|--------------------------|-----------|-----------------------------------------|---------------------|------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| DESIGNATION                                 | х                | ٧٠                       | z        | 1/2 .030                | COMMURE          | Code<br>m <b>inier</b>   | watriones | Distance aux<br>points d'in-<br>jection | Gradient<br>moyen   |            | des points d'eau                                        | DIVERS                                                                                          |
| Vallée du Serein<br>Gouffres Tormancy Rg. 1 | 723,250          | <b>2</b> 94 <b>,</b> 950 | 185      | Novers 1/2              | MASSAMGIS        | 4 <b>3</b> €.1.8         |           |                                         |                     |            | tathonien moyen<br>et supérieur                         | Gouffre absorbant<br>ou émissif                                                                 |
| Coulires Tormanc/ Rg. 2                     | II.              | 11                       | 11       | (1                      | 11               | 11                       |           |                                         |                     |            | it                                                      | P                                                                                               |
| Couffres Tormancy Rg. 3                     | 11               | 11                       | 14       | 1                       | 11               | 11                       | -         |                                         |                     |            | 77                                                      | it .                                                                                            |
| ouffres Tormancy Rg.d.                      | 11               | l <sub>T</sub>           |          | 1)                      | ì-               | d                        |           |                                         |                     |            | 12                                                      | 19                                                                                              |
| ouffres Tormancy Rd,                        | 11               | 11                       | 11       | 11                      | 1}               | 11                       |           |                                         |                     |            | 11                                                      | n                                                                                               |
| Pource des Fautures<br>(captée)             | 724,740          | 296,850                  | 180      | - 11                    | CRIMAULT         | 437.1.1                  | _         | :                                       |                     |            | н                                                       | Débit d'exploitation<br>30 m <sup>3</sup> /h                                                    |
| Source Crimault                             | 724,230          | 297,950                  | 181      | 11                      | u                | 43(.1                    |           |                                         |                     |            | 11                                                      | Absorbant ou émissif                                                                            |
| Couffre Cours amont                         | 725,000          | <b>2</b> 98 <b>,30</b> 0 | 176      | 11                      | н                | 436,1,9                  | ī         | 4.500                                   | 20.10-4             | 7 jours    | *1                                                      | 11                                                                                              |
| ouffre Jours médian                         | н                | 1)                       | н        | TP                      | 11               | l'                       | ڼ         | 4,600                                   | 20.10-4             | 11         | t!                                                      | r)                                                                                              |
| Couffre Lours aval                          | 11               | 11                       | 11       | 11                      | ft.              | 11                       |           |                                         |                     |            | VE.                                                     | 11                                                                                              |
| .oyers Captage communal                     | <b>724,2</b> 5   | 300,42                   | 174      | 14                      | NOYERS           | 43€.1.10                 | Î         | 6.200                                   | 24.10               | 9 jours    | 64                                                      | Débit d'exploitation<br>6 1/s                                                                   |
| soyers Petit la <b>v</b> oir                | 724,400          | 300;50                   | 11       | l1                      | f1               | 11                       | M         | 37                                      | tt                  | п          | o p                                                     |                                                                                                 |
| Noyers Grand Lavoir                         | 724,ú00          | 300;575                  | 11       | 11                      | 11               | 11                       | Į,        | 11                                      | Ħ                   | 11         | 11                                                      |                                                                                                 |
| Bouillon de Clavisy                         | 723,075          | 302,400                  | 1ó7      | Tonnerre<br>3/6         | H                | 404.5.3                  | 0         | 6.500                                   | 24.10-4             | 10 jours   | Rauracien                                               | Absorbant ou émissif                                                                            |
| Lavoir de Perrigny                          | 721,375          | 304,130                  | 165      | 11                      | PERRIGIA         | 4 %.5.1                  | P         | 9.500                                   | 21.10               | 15 jours   | 11                                                      | :                                                                                               |
| Ru de Va <b>ucharme</b><br>Puits de Vauroux | 709,870          | 310,530                  | NS +140  | Chabl <b>i</b> s<br>7/8 | CHA <b>B</b> LIS | 403.7.5                  | R         | 21,000                                  | 21.10 <sup>-4</sup> | 30 jours   | Kimméridgien in-<br>férieur - Calcai-<br>re de Tonnerre |                                                                                                 |
| Armançon<br>Fosse Dionne à Tonnerre         | 722,300          | 318,750                  | 145      | Tonnerre<br>1/2         | TONNERRE         | 404.1.2                  | Q         | 24.000                                  | 16.10 <sup>-4</sup> | 45 jours   | ri                                                      |                                                                                                 |
| Ru de Sacy<br>Captage de Jitry              | 710,400          | 297,025                  | NS + 145 | Vermenton<br>3/4        | VERME!\TO:\      | 435.3.4                  | G         | 13.000                                  | 31.10 <sup>-4</sup> | 13 jours   |                                                         | Puits de 48,50 m +<br>galerie de 20 m LNW<br>à 18 m de profondeur<br>débit 18 m <sup>3</sup> /h |
| <u>Cure</u><br>Abime de Reigny              | <b>70</b> 4,780  | 295,550                  | 117      | Vermenton<br>1/2        | ŢĪ               | <b>43</b> 5. <b>2</b> .8 | ř         | 18.000                                  | 38.10               | 15 jours   | Alluvions + Rau-<br>racien                              |                                                                                                 |
| Vermenton captage commu-<br>nal             | 704,5 <b>0</b> 0 | 297,210                  | 115      | 11                      | 11               | 435.2.7                  | Ų         | 19.000                                  | 37.10-4             | 16 jours   | н                                                       | Débit <sub>3</sub> d'exploitation<br>140 m /h                                                   |
| Vermenton Petit lavoir                      | 704,740          | 297,275                  | 11       | 11                      | 17               | 11                       | D         | 11                                      | И                   | Rf.        | tr                                                      |                                                                                                 |
| Vermenton Crand lavoir                      | 11               | 297,050                  | - 11     | II.                     | (f               | 11                       | Е         | 11                                      | 51                  | 11         | 11                                                      |                                                                                                 |
| Vermenton Fontaine ronde                    | 704,485          | 297,220                  | "        | 11                      | i)               | 435.2.6                  | С         | u u                                     | 18                  | 11         | 11                                                      |                                                                                                 |
| Sources de l'Hôtel du<br>Moulinot           | 704,370          |                          | 11       | p7                      | 11               | 435.2.5                  | А         | H                                       | er.                 | 11         | ft                                                      |                                                                                                 |
| Fontaine d'Arbault à<br>Cravant             | <b>702,4</b> 25  | 299,500                  | 124      | 11                      | CRAVANT          | 435.2.1                  | Ţ         | 21.000                                  | 28.10 <sup>-4</sup> | 23 jours   | S <b>éq</b> uanien                                      |                                                                                                 |

#### 3 - ESTIMATION DES DEBITS ABSORBES ET EMIS

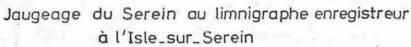
#### 31 - EMERGENCES

Une série de jaugeages fut effectuée au moulinet, quand cela était possible les 3.10.16.29 juin 1970 et le 23 juillet 1970. La planche B est un exemple de calcul de débit par cette méthode.

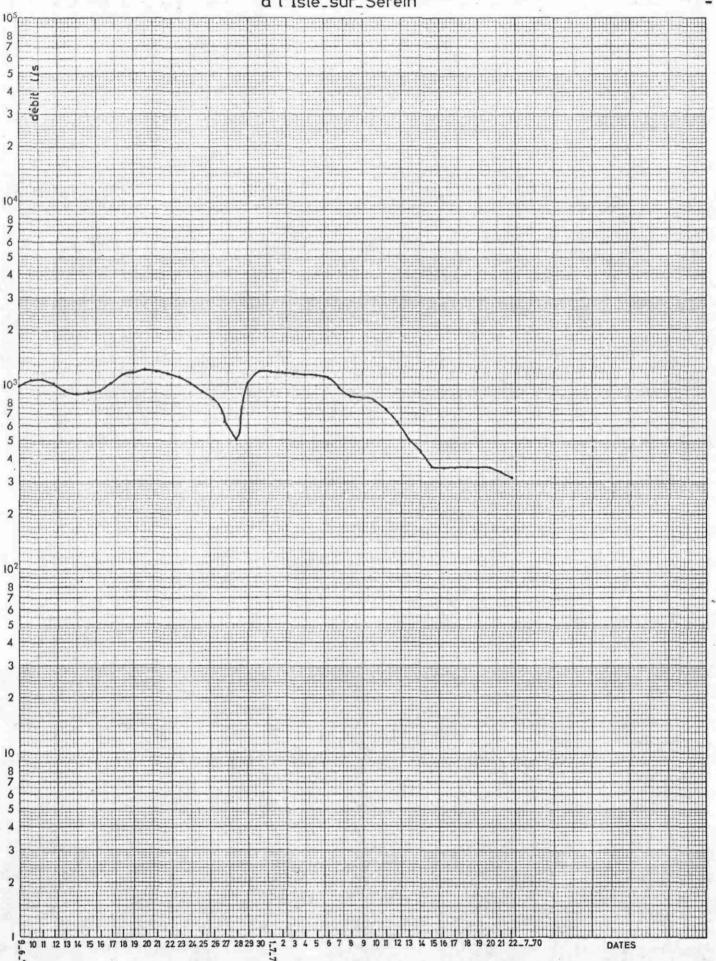
#### 32 - PERTES DU SEREIN

Au moment de l'injection, les pertes du Serein furent globalement estimées par différence entre le débit de la rivière du Pont de Tormancy et en amont des sources des Fautures (jaugeage au moulinet). Au chiffre obtenu, il faut ajouter les pertes du gouffre de Grimault rive gauche pour avoir les pertes totales entre Tormancy et Cours.

Dans le détail, les débits absorbés par les divers gouffres absorbants non noyés furent estimés par comparaison.


Les débits du Serein à l'Isle-sur-Serein furent calculés grâce aux relevés limnigraphiques sommairement tarés que nous a obligeamment communiqué M. GOUBET, Ingénieur en chef de la lère circonscription électrique. A titre indicatif, nous donnons ci-dessous les variations de débit de la rivière en ce point entre le 9 juin et le 22 juillet 1970 (planche C).

## JAUGEAGE AU MOULINET


| The control of the    | ESPACEMENT | numero     | nombre de |         |                                 | ulinet en 3<br>Res formule |            | ET VITESSES<br>ES | VITE                    | SSES             | HAUTEU                        | RS                   | SURFACE     | DEBIT  | <u>For</u>                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-----------|---------|---------------------------------|----------------------------|------------|-------------------|-------------------------|------------------|-------------------------------|----------------------|-------------|--------|-----------------------------------------|
| The component of the    |            |            |           |         | -:                              |                            | . :        |                   | •                       | •                | 1                             | 7                    | S 2<br>en m |        | vc = <u>vs + vf</u>                     |
| No.    | m          | VERTICALES | tours     |         | tours de<br>l'hélice<br>A.l sor | (vm)<br>tie des            | tours de   |                   | (Vitesse                | (vitesse         | (hauteur<br>suivant<br>chaque | (hauteur<br>moyenne) | = HM.E      | S.vm   | $= \frac{vs + 2 v}{4}$                  |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | live       | 0          |           | <u></u> |                                 | :<br>:                     | . <b>4</b> | <b></b>           | vc,1 0                  | ļ                | 7                             |                      |             |        | #                                       |
| 0.5   1   108   0.245   114   0.225   vc.2 0.25   0.275   0.275   0.2   0.1   0.0028   118   11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |            |           |         | •                               |                            |            |                   |                         |                  | į                             |                      |             |        | 1 _                                     |
| 0.5 2 167 0,355 130 0,285 65 0,16 0,222 0,28 0,25 0,12 0,033 0,033 0,5 0,5 1 100 0,285 65 0,16 0,222 0,28 0,23 0,23 0,23 0,33 0,33 0,33 0,33 0,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,5        |            |           |         |                                 |                            |            |                   |                         |                  |                               | •                    | 0,0375      | 0,005  | 2                                       |
| 0.5   167   0.355   117   0.26   0.307   0.225   0.225   0.125   0.003   0.5   3   130   0.285   65   0.16   0.222   0.278   0.25   0.25   0.125   0.035   0.5   4   192   0.405   119   0.265   0.335   0.25   0.25   0.125   0.035   0.5   5   272   0.555   130   0.325   0.44   0.432   0.15   0.15   0.067   0.006   0.5   6   189   0.4   228   0.455   0.437   0.368   0.16   0.08   0.003   0.5   7   132   0.31   0.31   0.31   0.31   0.315   0.12   0.006   0.5   7   132   0.31   0.325   0.335   0.325   0.315   0.15   0.006   0.5   1   136   0.295   0.310   0.325   0.310   0.325   0.310   0.5   1   136   0.295   0.310   0.325   0.310   0.325   0.310   0.5   3   346   0.68   0.415   0.325   0.310   0.325   0.310   0.5   3   346   0.68   300   0.61   220   0.46   0.337   0.225   0.25   0.125   0.025   0.5   5   512   0.98   282   0.373   0.77   0.678   0.25   0.125   0.025   0.5   7   360   0.71   0.465   0.325   0.310   0.457   0.25   0.25   0.125   0.085   0.5   7   360   0.71   0.466   0.31   0.61   0.47   0.475   0.25   0.25   0.125   0.005   0.5   7   360   0.71   0.466   0.31   0.61   0.47   0.475   0.25   0.25   0.125   0.005   0.5   7   360   0.71   0.466   0.31   0.61   0.47   0.475   0.25   0.25   0.125   0.005   0.5   7   360   0.71   0.466   0.31   0.61   0.47   0.475   0.25   0.25   0.125   0.005   0.5   7   360   0.71   0.466   0.31   0.61   0.47   0.475   0.475   0.005   0.5   7   360   0.71   0.466   0.31   0.61   0.47   0.475   0.475   0.005   0.5   7   360   0.71   0.466   0.31   0.61   0.47   0.475   0.475   0.005   0.5   7   360   0.71   0.466   0.31   0.61   0.47   0.475   0.475   0.005   0.5   7   360   0.71   0.466   0.31   0.61   0.477   0.475   0.475   0.475   0.475   0.5   7   360   0.71   0.466   0.31   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   0.475   |            | 1          | 108       | 0,245   | •                               | :                          | 114        | 0,255             | vc.2 0,25               | i                | H2 0,15                       | i                    |             |        | Н1 + Н2                                 |
| 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,5        | 2          | 167       | 0,355   |                                 |                            | 117        | 0,26              | 0,307                   |                  | 0,25                          |                      | 0,1         | 0,028  | HM =                                    |
| 0,5   1   19   0,285   65   0,16   0,222   0,278   0,25   0,125   0,003   19   0,5   3   272   0,555   150   0,325   0,44   0,432   0,15   0,0875   0,0004   0,3   6   189   0,4   228   0,455   0,427   0,368   0,12   0,006   0,003   0,2   10   132   0,31   0,135   0,125   0,445   0,15   0,12   0,0   1   136   0,295   198   0,415   0,415   0,415   0,415   0,415   0,415   0,5   2   198   0,415   0,415   0,415   0,415   0,415   0,415   0,415   0,5   3   346   0,68   300   0,61   0,645   0,587   0,22   0,15   0,075   0,008   0,5   3   346   0,68   300   0,61   0,645   0,587   0,2   0,5   5   5   512   0,98   282   0,575   0,77   0,678   0,25   0,125   0,082   0,5   7   360   0,71   246   0,31   0,11   0,47   0,12   0,077   0,003   0,5   7   360   0,71   246   0,31   0,10   0,47   0,12   0,077   0,003   0,14   0,15   0,771   0,066   0,31   0,10   0,47   0,12   0,077   0,003   0,16   0,17   0,077   0,003   0,17   0,006   0,17   0,007   0,007   0,16   0,17   0,071   0,066   0,31   0,10   0,47   0,12   0,077   0,003   0,16   0,17   0,077   0,007   0,007   0,007   0,007   0,16   0,17   0,077   0,007   0,007   0,007   0,007   0,17   0,077   0,007   0,007   0,007   0,007   0,18   0,19   0,19   0,19   0,10   0,17   0,007   0,007   0,16   0,007   0,007   0,007   0,007   0,007   0,17   0,007   0,007   0,007   0,007   0,007   0,18   0,19   0,19   0,19   0,19   0,10   0,10   0,10   0,10   0,19   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,19   0,19   0,19   0,19   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10   0,10    | 0,5        |            |           |         | *                               | :                          |            |                   |                         | i                |                               | •                    | 0,125       | 0,033  |                                         |
| 0.5 4 192 0,405 119 0,265 0,335 0,278 0,25 0,125 0,035 0,085 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 3          | 130       | 0,285   |                                 |                            | 65         | 0,16              | 0,222                   |                  | 0,25                          | 1                    |             |        |                                         |
| 0,5   3   272   0,555   150   0,325   0,44   0,387   0,20   0,1   0,038   0.0   0,5   6   189   0,4   228   0,455   0,455   0,427   0,368   0,15   0,155   0,004   0,5   7   132   0,31   0,31   0,315   0,368   0,16   0,08   0,003   0,2   7   132   0,31   0,31   0,315   0,015   0,006   0,002   0,2   14te gauche 8   3,7 total   0,35   0,300   0,155   0,006   0,012   0,002   0,5   1   136   0,295   150   0,325   0,310   0,415   0,02   0,5   2   198   0,415   0,415   0,415   0,415   0,155   0,22   0,5   3   346   0,68   300   0,61   0,645   0,25   0,10   0,5   4   300   0,61   220   0,46   0,53   0,587   0,2   0,15   0,075   0,039   0,5   5   512   0,98   282   0,575   0,77   0,678   0,25   0,5   6   360   0,705   226   0,47   0,587   0,28   0,5   7   360   0,71   246   0,51   0,61   0,47   0,15   0,075   0,005   0,1   0,1   0,006   0,007   0,006   0,1   0,2   0,1   0,006   0,2   0,1   0,006   0,007   0,006   0,1   0,1   0,007   0,007   0,008   0,2   0,1   0,006   0,007   0,008   0,3   0,2   0,1   0,006   0,007   0,4   0,4   0,4   0,4   0,4   0,4   0,4   0,4   0,4   0,4   0,4   0,4   0,4   0,5   0,6   0,2   0,1   0,006   0,5   0,6   0,7   0,2   0,1   0,006   0,5   0,7   0,7   0,007   0,008   0,5   0,7   0,007   0,007   0,007   0,007   0,007   0,5   0,7   0,007   0,007   0,007   0,007   0,007   0,5   0,7   0,7   0,007   0,007   0,007   0,007   0,007   0,5   0,7   0,007   0,007   0,007   0,007   0,007   0,007   0,007   0,007   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0, | 0,5        |            |           |         |                                 |                            |            | :                 |                         | 0,278            |                               | 0,25                 | 0,125       | 0,035  | <u>Débit tot</u>                        |
| 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 4          | 192       | 0,405   | 9<br>4<br>4<br>1                |                            | 119        | 0,265             | 0,335                   |                  | 0,25                          |                      |             | :      | 0.140                                   |
| 0,5   5   272   0,355   150   0,325   0,44   0,432   0,15   0,0875   0,004   0,5   0,004   0,5   0,004   0,5   0,007   0,008   0,003   0,2   0,004   0,15   0,008   0,003   0,15   0,008   0,003   0,15   0,008   0,003   0,15   0,12   0,006   0,012   0,002   0,002   0,148   0,15   0,15   0,008   0,003   0,16   0,008   0,003   0,16   0,008   0,003   0,16   0,008   0,003   0,16   0,008   0,003   0,16   0,008   0,003   0,16   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008   0,008  | 0,5        |            |           |         | :<br>:<br>:                     |                            |            | •                 |                         | 0,387            |                               | 0,20                 | 0,1         | 0,038  | 0,148<br>0,409                          |
| 0,5   1   136   0,295   198   0,415   0,312   0,312   0,315   0,315   0,122   0,148   0,155   0,122   0,148   0,1415   0,155   0,155   0,122   0,148   0,1415   0,155   0,122   0,148   0,1415   0,155   0,122   0,148   0,1415   0,155   0,155   0,155   0,16   0,08   0,008   0,16   0,008   0,16   0,008   0,16   0,16   0,008   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16   0,16    |            | 5          | 272       | 0,555   |                                 |                            | 150        | 0,325             | 0,44                    |                  | 0,15                          |                      |             |        | 0,549                                   |
| 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,5        |            |           |         | •<br>•<br>•                     |                            |            |                   | 1                       | 0,432            |                               | 0,175                | 0,0875      | 0,004  |                                         |
| 0,2   7   132   0,31   0,31   0,155   0,12   0,066   0,012   0,002   0,148   0,31   0,155   0   0   0   0,012   0,002   0,148   0,317   total   0   0   0   0   0,155   0   0   0   0,148   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0, |            | 6          | 189       | 0,4     | į                               |                            | 228        | 0,455             | 0,427                   |                  | 0,20                          |                      |             | •      |                                         |
| 0,2   0,002   0,002   0,002   0,002   0,002   0,002   0,002   0,002   0,002   0,002   0,002   0,002   0,002   0,003   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,008   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005   0,005    | 0,5        |            |           |         |                                 |                            |            |                   | Activities and a second | 0,368            |                               | 0,16                 | 0,08        | 0,003  |                                         |
| A.2 sortic Zème  O, 15  O, 1 136  O, 295  I 198  O, 415  O, 5  O, 5  O, 5  O, 5  O, 5  O, 5  O, 6  O, 7  O,  |            | 7          | <br>      | ;       | 132                             | 0,31                       |            |                   | 0,31                    |                  | 0,12                          |                      |             |        |                                         |
| 3,7 total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1          |            |           |         | •                               |                            |            | :                 |                         | 0,155            |                               | 0,06                 | 0,012       | 0,002  |                                         |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 1 1        |           |         |                                 | :                          |            |                   | ) 0                     | •                | 0                             |                      |             | 0 148  |                                         |
| 0,5   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,7 total  |            |           |         |                                 | :<br>:                     |            |                   |                         |                  | <u>.</u>                      |                      | <u> </u>    |        |                                         |
| 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |            |           |         | A.2 sort                        | ie 2ème<br>:               |            |                   |                         | •<br>•<br>•<br>• |                               |                      |             |        |                                         |
| 0,5   1   136   0,295   150   0,325   0,310   1,0,2   0,15   0,075   0,028   0,55   0,415   0,415   0,415   0,415   0,415   0,415   0,415   0,415   0,415   0,415   0,415   0,525   0,15   0,075   0,039   0,587   0,587   0,2   0,1   0,058   0,587   0,2   0,1   0,058   0,587   0,2   0,125   0,082   0,575   0,77   0,65   0,25   0,125   0,082   0,575   0,77   0,678   0,25   0,125   0,085   0,587   0,587   0,587   0,25   0,125   0,085   0,587   0,587   0,587   0,587   0,25   0,125   0,085   0,587   0,587   0,587   0,588   0,2   0,125   0,085   0,587   0,588   0,2   0,125   0,085   0,587   0,598   0,25   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,085   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0,125   0 | 0.5        | U          |           |         |                                 | •                          |            |                   | U                       | 0.155            | 0                             |                      | 0.05        | 0.000  |                                         |
| 0,5   198   0,415   0,362   0,15   0,075   0,028   0,55   0,525   0,15   0,075   0,039   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55   0,55 | 0,5        | 1          | 126       | 0.205   |                                 | :                          | 150        | 0.225             | 0.210                   | :                | 102                           | 0,1                  | 0,05        | 0,008  |                                         |
| 0,5   2   0,415   0,415   0,415   0,525   0,1   0,075   0,039   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0, | 0.5        | 1          | 130       | 0,293   | •                               | •                          | 130        | 0,323             | 0,310                   | :                | 1,0,2                         | n 15                 | 0.075       | 0.029  |                                         |
| 0,5   3   346   0,68   300   0,61   3   0,645   0,2   0,15   0,075   0,039   0,55   0,587   0,587   0,2   0,1   0,058   0,587   0,587   0,2   0,1   0,058   0,587   0,587   0,2   0,1   0,058   0,55   0,125   0,082   0,575   0,77   0,587   0,678   0,25   0,125   0,082   0,575   0,77   0,587   0,587   0,25   0,125   0,085   0,587   0,598   0,2   0,1   0,060   0,15   0,060   0,15   0,075   0,035   0,035   0,125   0,035   0,035   0,125   0,035   0,035   0,035   0,035   0,006   0,15   0,075   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0,006   0, | 0,5        | 2          |           |         | 198                             | 0 415                      |            |                   | 0 415                   | ;                | 0.1                           | :                    | 0,075       | 0,020  |                                         |
| 0,5   3   346   0,68   300   0,61   3   0,645   0,2   0,1   0,058   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5   0,5  | 0.5        |            |           |         | 150                             | 0,413                      |            |                   | 0,413                   | :                | 0,1                           | :                    | 0.075       | 0.039  |                                         |
| 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,3        | 3          | 346       | 0.68    | 1                               | ;<br>;                     | 300        | 0.61              | 0.645                   | •                | 0.2                           | •                    | 1 0,073     | ,,,,,, |                                         |
| 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5        |            | 5,0       |         |                                 | c .                        |            | ,,,,,             | 7 0,043                 | i                |                               | į                    | 0.1         | 0.058  | :                                       |
| 0,5   5   512   0,98   282   0,575   0,77   0,65   0,25   0,125   0,082   0,5   6   360   0,705   226   0,47   0,587   0,587   0,598   0,2   0,1   0,5   7   360   0,71   246   0,51   0,61   0,47   0,15   0,073   0,035   0,1   0,2   0,1   0,073   0,035   0,2   0,1   0,073   0,035   0,2   0,1   0,073   0,035   0,1   0,0   0   0   0   0   0,1   0,0   0,0   0,1   0,0   0   0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0,0   0,1   0,0   0, |            | 4          | 300       | 0,61    | :                               | ;<br>4<br>1<br>1           | 220        | 0,46              | 0,53                    |                  | 0,2                           | •                    | ,-          | ,,,,,, | •                                       |
| 0,5       512       0,98       282       0,575       0,77       0,678       0,25       0,125       0,085         0,5       6       360       0,705       226       0,47       0,587       0,25       0,125       0,085         0,5       7       360       0,71       246       0,51       0,61       0,15       0,15       0,075       0,035         0,1       0,2       0,17       0,075       0,035       0,035       0,075       0,035       0,060         0,2       0,1       0,075       0,075       0,035       0,075       0,035       0,075       0,035       0,060         0,5       0,0       0,0       0,0       0,075       0,0373       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006       0,006 <t< td=""><td>0,5</td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td><td></td><td>0.65</td><td></td><td>i</td><td>0.125</td><td>0.082</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0,5        |            |           |         |                                 |                            | *          |                   |                         | 0.65             |                               | i                    | 0.125       | 0.082  |                                         |
| 0,5 6 360 0,705 226 0,47 0,587 0,25 0,125 0,085 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ·          | 5          | 512       | 0,98    |                                 |                            | 282        | 0,575             | 0,77                    |                  | 0,25                          | :                    |             |        |                                         |
| 0,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0,5        |            |           |         | •                               |                            |            |                   |                         | 0,678            |                               | ;                    | 0,125       | 0,085  |                                         |
| 0,5 7 360 0,71 246 0,51 0,61 0,598 0,2 0,1 0,060 0,1 0,1 0,060 0,1 0,1 0,060 0,1 0,1 0,060 0,1 0,1 0,060 0,1 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,1 0,0 0,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 6          | 360       | 0,705   |                                 | ,<br>,<br>,                | 226        | 0,47              | 0,587                   | 1                | 0,25                          | :                    |             |        | *                                       |
| 7 360 0,71 246 0,51 0,61 0,15 0,15 0,075 0,035 0,035 0,035 0,036 0,16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0,5        |            |           |         |                                 |                            | •          |                   | ;                       | •                |                               | <u>i</u>             | 0,1         | 0,060  |                                         |
| 0,1 0,47 0,15 0,075 0,035 0,035 0,15 0,15 0,075 0,035 0,15 0,15 0,075 0,035 0,15 0,15 0,075 0,035 0,006 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 7          | 360       | 0,71    |                                 | i<br>!<br>!                | 246        | 0,51              | 0,61                    | :<br>:<br>:      | 0,15                          | <u> </u>             |             |        | *************************************** |
| 0,2 0,2 0,2 0,15 0,006 0,15 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,17 0,006 0,10 0,10 0,10 0,10 0,10 0,10 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0,         |            |           | •       |                                 | i<br>                      |            |                   |                         | 0,47             |                               | ;                    | 0,073       | 0,035  |                                         |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | Č.         | ,-        | ٥,٦٤    |                                 | •<br>•<br>•                | 128        | 0,28              | 0,32                    | :                | 0,17                          | :                    | •           | :      |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,5        |            |           |         |                                 |                            |            |                   | ř<br>F<br>T             | 0,10             |                               | 0,075                | 0,0375      | 0,006  | :                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Ģ          |           |         |                                 | •                          |            |                   | 0                       | :                | 0                             |                      |             |        | :                                       |

|            |   |             | Formule | s   |
|------------|---|-------------|---------|-----|
| vc         | = | <u>vs</u> + | vf_     |     |
|            | = | vs +        | 2 vm +  | v i |
| <b>V</b> m | = | ve 1        | + vc 2  |     |
|            |   | H1 -        | + H2    |     |

tal A m/s







## 4 - CARACTERES PHYSICOCHIMIQUES DES EAUX ABSORBEES ET EMISES

Nous trouvons dans la planche D sous forme de tableau les résultats des analyses effectuées par le laboratoire B.R.G.M. d'Orléans (éléments majeurs + traces) et par nous mêmes sur le terrain (température).

### RESULTATS DES AMALYSES PHYSICOCHIMIQUES DI. AUX ALSORDEES ET EMISES

| ELEMENTS ETUDIES          | А                | 3                   | С                  | D                  | E                  | F                       | G                  | ) =<br>- h        | ī = Serein       | j                  | Ŕ                  |
|---------------------------|------------------|---------------------|--------------------|--------------------|--------------------|-------------------------|--------------------|-------------------|------------------|--------------------|--------------------|
| th                        | 14°4             | 10°7                | 11°                | 11^                | 13°7               | 15-2                    | 11 1               | 15^2              | <u>20 2</u>      | 12°6               | 12 1               |
| <b>P</b> A                | 7,4              | 7,4                 | 7,8                | 7,5                | "7,3"              | 7,7                     | 7 <b>,</b> 6       | 7,7               | <u>8,2</u>       | 7,7                | -,7                |
| Résistivité à 18°C        | 2867 ohms        | 2027 ohms           | 2104 ohms          | 2018 ohms          | 2016 ohms          | "1 7 <sup>33</sup> olms | 2170 ohms          | 3185 ohms         | <u>3433</u> oans | 2396 <b>ohms</b>   | 2340 ohms          |
| Na en mg/l                | 3,7              | 3,26                | 3,25               | 3,70               | 3,25               | 2,81                    | 2,~1               | 5,32              | <u>5,55</u>      | "2,2"              | 2,22               |
| K en mg/1                 | 1,16             | 1,03                | 1,07               | <b>1</b> ,41       | 1,07               | 1,16                    | 1,57               | 2,32              | <u>2,40</u>      | 0,66               | 0,65               |
| Ca en mg/l                | 113,6            | 112,0               | 107,2              | 112,0              | 112,0              | 116,0                   | 103,2              | 71,2              | "6→,0"           | 104,6              | 105,8              |
| Mg en mg/l                | 3,8              | 7,2                 | 3,8                | 7,2                | 7,2                | 6,2                     | <u>7,7</u>         | 2,8               | 2,8              | 3,3                | 2,4                |
| Cl en mg/l                | <u>11,4</u>      | 8,3                 | 8,5                | <u>11,</u> 4       | 11,4               | ~, 1                    | 7,1                | 7,1               | 7,1              | 7,1                | 7,1                |
| Co <sub>3</sub> H en mg/1 | 344,,0           | 344,0               | 307,0              | 334,0              | 326,4              | <u>357,6</u>            | 312,0              | 212,0             | "170, a"         | 302,4              | 297,6              |
| ${\sf So}_4^-$ en mg/ $1$ | 11,5             | 10,5                | 11,0               | 12,0               | 13,0               | 9,0                     | 10,0               | 13,0              | 13,0             | 10,0               | 10,0               |
| No <sub>2</sub> en mg/l   | 0,06             | . 0,03              | "0,01"             | <b>,0,0</b> 3      | 0,02               | 0,03                    | 0,03               | 0,03              | 0,03             | 0,03               | د 0,03             |
| No $_{3}$ en mg/1         | 7,30             | 8,41                | <u>8,86</u>        | 8,40               | 8,40               | é,20                    | 5,75               | 1,1               | "néant"          | 6,20               | გ,86               |
| NW_ en mg/l               | "0,10"           | "0,10"              | <u>"0,10"</u>      | <"0,10"            | <"0,10"            | 0,15                    | ."0 <b>,</b> 10"   | 50,10             | "0,10"           | ."0,10"            | "0,10·"            |
| Fe <sup>++</sup> en mg/l  | Ind.             | Ind,                | Ind.               | Ind.               | Ind,               | Ind.                    | Ind.               | lnd.              | ïnd.             | ĩnđ.               | Ind.               |
| Fe <sup>+++</sup> en mg/1 | <u>1,1</u>       | 69                  | 11                 | "                  | 11                 | i a                     | 11                 | 0,2               | v r              | ſŧ                 | rt                 |
| F en mg/l                 | 0,05             | <b>,</b> "0,05"     | 0,07               | 0,08               | 0,0;               | <b>"0,05"</b>           | 0,05               | 0,13              | 0,1÷             | 0,05               | 0,25               |
| PO 4 en mg/l              | Traces           | Traces              | Traces             | Traces             | Traces             | Traces                  | Traces             | Traces            | Traces           | Traces             | Traces             |
| Résidu sec en mg/l        | 350              | 345                 | <b>3</b> 2 5       | 350                | 335                | 345                     | 313,5              | 22 0              | "218"            | 340                | 330                |
| LI                        | Ind.             | Ind.                | Ind.               | Ind,               | Ind,               | Ind.                    | Ind.               | Ind.              | Ind.             | Ind.               | Ind.               |
| SiO <sub>2</sub> en mg/l  | ·                | 5,2                 | 5                  | 5                  | <u>5,6</u>         | 5,2                     | <u>3,0</u>         | 3,₹               | " néant"         | "néant"            | 2,5                |
| Cr en mg/l                | ("0,0015"        | <b>\"0,001</b> 5"   | ."0 <b>,001</b> 5" | -"0,0015"          | -"0,0015"          | _"0,0015"               | . "0,0015"         | "0,0015"          | ."0,0015"        | . "0,0015"         | - "0,0015"         |
| Mn e <b>n</b> mg/l        | <"0,0035"        | < "0 <b>,</b> 0035" | ."0,0035"          | < <b>"0,</b> 0035" | - <b>"0,00</b> 35" | ."0,0035"               | , "0,0035"         | "0,00 <b>3</b> 5" | ·"0,0035"        | <b>. "0,</b> 0035" | <b>. "0,003</b> 5" |
| Co en mg/1                | "0,0017 <b>"</b> | <b>-"0,</b> 0017"   | \"0,0017 <b>"</b>  | <"0,0017"          | -"0,0017"          | - "0,0017"              | . "0,0017"         | "0,0017"          | "0,0017"         | - "0,0017"         | -"0,0017"          |
| Ni en mg/l                | "0,0017"         | <"0,0017"           | ~ <b>"</b> 0,0017" | < <b>"0,0017</b> " | ."0,0017"          | ."0,0017"               | <b>, "</b> 0,0017" | "0,0017"          | "0,0017"         | - "0,0017"         | . 0,043            |
| Cu en mg/l                | 0,014            | "0,008"             | 0,013              | 0,028              | 0,027              | 0,138                   | 0,013              | 0,0 <b>2</b> 5    | 0,081            | 0,082              | <u>0,560</u>       |
| Zn en mg/l                | 0,007            | 0,013               | "0,007"            | 0,014              | 0,012              | "0,007"                 | 0,032              | 0,008             | 0,030            | 0,020              | <u>0,058</u>       |
| Cd en mg/l                | 0,002            | <b>0,002</b>        | 0,002              | - 0.002            | - 0,002            | 0,002                   | 0,002              | 0,002             | 0,002            | . 0,002            | 0,002              |
| Sn en mg/1                | <b>0,00</b> 06   | -0,0006             | 、0,0006            | 0,0006             | _ 0,0006           | 0,0006                  | 0,0006             | 0,0006            | 0,0006           | 0,0006             | 0,0006             |
| Pb en mg/l                | <b>0,00</b> 9    | _"0,0015"           | 0,004              | "0 <b>,001</b> 5"  | 0 <b>,0</b> 03     | <b>0,</b> 005           | 0,002              | 0,006             | 0,006            | 0,003              | 0,003              |

Légende: 11,4 maximum
"0,10" minimum

| ELEMENTS ETUDIES           | L.                 | М                 | N                  | 0           | Р                 | Q                  | R             | S              | Т         |
|----------------------------|--------------------|-------------------|--------------------|-------------|-------------------|--------------------|---------------|----------------|-----------|
| th                         | 11°7               | 11°6              | 13°5               | 15          | 13°2              | 12°9               | 11^9          | 13°1           | 11 ′1     |
| Ph                         | 7,8                | 7,8               | 7,7                | 7,8         | 7,6               | 7,8                | 7,9           | 7,9            | 7,9       |
| Résistivité à 18° C        | 2340 ohms          | <b>230</b> 9 ohms | 2405 ohms          | 2845 ohms   | <b>2</b> 335 ohms | 22 <b>1</b> 6 ohms | 2693 ohms     | 2443 ohms      | 3140 ohms |
| Na en mg/1                 | 2,36               | 2,44              | 2,65               | 4,4         | 3,1               | 3,4                | 3,25          | 2,73           | 3,25      |
| K en mg/1                  | 0,83               | 0,83              | 1,08               | 1,82        | 1,32              | 1,32               | 0,75          | 0,75           | "0,60"    |
| Ca en mg/l                 | 105,6              | 109,6             | 101,6              | 82,4        | 101,6             | 105,6              | 90,4          | 94,4           | 76        |
| Mg en mg/1&                | 2,8                | "1,4"             | 3,8                | 1,9         | 3,8               | 3,8                | 1,9           | 4,3            | 2,4       |
| Cl en mg/l                 | <u>11,4</u>        | ' <b>,</b> 1      | <u>11,4</u>        | "2,9"       | 11,4              | 8,5                | 8,5           | 9,9            | 7,1       |
| Co <sub>3</sub> li en mg/l | 290,4              | 307,0             | 283,2              | 230,4       | 278,4             | 278,4              | 244,8         | 24 <b>2,</b> 4 | 218,4     |
| So <sub>Δ</sub> en mg/l    | 10,5               | 10                | 10,5               | 12          | 13                | 16,5               | 10            | <u>24</u>      | "4"       |
| No <sub>2</sub> en mg/1    | 0,03               |                   | ر 0 <b>,</b> 03    | 0,04        | < 0,03            | _ 0,03             | _ 0,03        | <u>0,40</u>    | 0,22      |
| No <sub>3</sub> en mg/1    | 7,08               | 7,97              | 7,3                | 3,54        | 9 <b>,0</b> 8     | 25 <b>,</b> 25     | <b>17,</b> 70 | 16,60          | 17,27     |
| NH <sub>4</sub> en mg/1    | <"0,10"            | 0,25              | 0,12               | 0,80        | ,"0,1"            | ."0,1"             | "0,1"         | 0,20           | "0,1"     |
| Fe <sup>7+</sup> en mg/l   | Ind.               | Ind.              | Ind.               | Ind.        | Ind.              | Ind,               | Ind.          | ind.           | Ind.      |
| Fe en mg/1                 | 11                 | 11                | ti                 | 0,2         | :<br>;            | 11                 | 11            | 11             |           |
| F en mg/l                  | 0,08               | 0,08              | 0,10               | <u>0,16</u> | 0,1               | 0,05               | 0,06          | 0,13           | 0,13      |
| PO <sub>A</sub> en mg/1    | traces             | traces            | traces             | traces      | traces            | 0,8                | traces        | 2,3            | 0,5       |
| Résidu sec en mg/l         | 337                | 325               | 32 <b>2,</b> 5     | 269         | 342,5             | 354                | 291,5         | 302,5          | 262,5     |
| Li                         | Ind.               | Ind.              | Ind.               | Ind.        | Ind,              | Ind.               | Ind.          | Ind.           | Ind.      |
| SiO <sub>2</sub> en mg/1   | 4,0                | 2,0               | 3,2                | 4,0         | 5,0               | "néant"            | 4,0           | 5,5            | 4,0       |
| Cr en mg/l                 | "0,00 <b>1</b> 5"  | ~ "0,0015"        | . "0,0015"         | "0,0015"    | "0,0015"          | "0,0015"           | 0,002         | <u>0,006</u>   | 0,002     |
| Mn en mg/l                 | "ر 3 <b>,0</b> 03" | "0,0035"          | · <b>"0,</b> 0035" | "0,0035"    | "0,0035"          | "0,0035"           | 0,006         | <u>0,018</u>   | 0,012     |
| Co en mg/l                 | "0,0017"           | "0,0017"          | "0,0017"           | . "0,0017"  | "0,0017"          | ."0,0017"          | 0,040         | 0,003          | 0,003     |
| Ni en mg/l                 | "0,0017"           | ~"0,0017"         | "0,0017"           | . "0,0017"  | -"0,0017"         | 0,0049             | 0,0049        | <u>0,044</u>   | 0,009     |
| Cu en mg/1                 | 0,047              | 0,117             | 0,206              | 0,540       | 0,043             | 0,035              | 0,016         | 0,011          | 0,046     |
| Zn en mg/l                 | 0,014              | 0,008             | "0,007"            | 0,016       | 0,007             | 0,031              | 0,025         | 0,021          | 0,013     |
| Cd en mg/1                 | .0,002             | ~ 0,002           | . 0,002            | 0,002       | 0,002             | 0,002              | _ 0,002       | 0,002          | _0,002    |
| Sn en mg/l                 | 0,0006             | ~ 0,0006          | 0,0006             | 0,0006      | 0,0006            | 0,0006             | 0,0006        | 0,0006         | 0,0006    |
| Pb en mg/l                 | 0,002              | 0,016             | 0,003              | 0,003       | 0,07              | 0,003              | 0,021         | 0,009          | 0,010     |

#### V - EXPERIENCE DE COLORATIONS

#### 51 - INJECTION DES COLORANTS ET SURVEILLANCE DES EMERGENCES

### 511 - Injection

L'injection se fit sur les gouffres Rg.1, Rg.2, et Rd de Tormancy, après aménagement.

En nous basant sur l'expérience de M. MAZOIT, sachant au départ que le débit des pertes du Serein peut être estimé à 2 m³/s au maximum, que le débit des émergences est aussi voisin de 2 m³ (jaugeage du 3 juin 1970, et que la coloration a été observée durant 9 jours à Vermenton, si nous désirons observer une concentration en fluorescéine de 0,01 mg/l visible à l'oeil nu, il faut utiliser un poids de colorant minimum de 15 kg. Pour garder une marge de protection suffisante, nous avons doublé ce poids soit 31 kg.

Dans le gouffre Rg. 1, 15 kg de fluorescéine solubilisée dans un fut de 200 litres furent mis en place le 9 juin 1970 entre 15 h 15 et 16h.

Dans le gouffre Rg. 2, la même quantité de fluorescéine fut injectée le 9 juin 1970 entre 15 et 17 h.

Dans le gouffre Rd, 1 kg de rhodamine B, injecté le 9 juin 1970 à 18 h, avait disparu à 18 h 20.

Toutes les précautions furent prises pour qu'il n'y ait pas de fuite dans le cours du Serein. Le personnel du B.R.G.M. chargé de la préparation des solutions et de l'injection est différent de celui chargé de la pose, de la réception et de l'analyse des échantillons.

#### 512 - Surveillance des émergences

### - Planning de prélèvements

a) Pour établir le temps de surveillance de chacun des 19 points énumérés, nous avons estimé par un artifice, la durée possible séparant l'injection des diverses réapparitions en utilisant la formule de Darcy sous la forme  $t=-\frac{d}{K1}$  avec t= temps cherché - d= distance séparant les points d'injection et les résurgences - K= coefficient de perméabilité - i= pente de la nappe.

Nous avions tous les facteurs pour calculer t sauf K. En nous basant sur les résultats des colorations de M. MAZOIT pour le captage de Vermenton, nous avons calculé K toujours d'après la formule ci-dessus, t étant connu. Nous avons estimé que le coefficient K trouvé pour Vermenton était valable pour les autres parcours et ainsi défini les différents temps pour chacune des émergences.

b) Pour tenir compte de l'approximation sur K, nous avons commencé les observations le jour qui suivit l'injection, à la source des Fautures, 2 jours après à Cours et Noyers, 3 jours après pour les autres points exceptés Cravant (4 jours), Vauroux (6 jours), Mainciau (7 jours).

Entre les premières surveillances et la date d'arrivée possible du colorant, il y eu chaque jour des échantillons remplacés et analysés jusqu'au 23 juin 1970. Ensuite la surveuilance se relacha: Lous les 2 jours jusqu'au 26 juin 1970, tous les 5 jours en juillet, tous les 10 jours environ en août.

Les relevés cessèrent le 21 juin 1970 à la Source des Fautures et dans le Serein, le 9 juillet 1970 à Cours, le 23 juillet 1970 dans les autres points excepté Cravant, Vauroux et Tonnerre (jusqu'au 24 août 1970). La source de Mainciau à débit par trop insignifiant fut abandonné dès le 29 juin 1970.

Le temps global de mesures couvrit environ entre 3 (pour les points les plus éloignés exemple : Tonnerre) et 3 fois (points plus proches, exemple : Abime de Reigny) le temps nécessaire à l'apparition calculée de la fluorescéine. La durée de surveillance pour l'ensemble de l'étude dura environ 3 mois.

## Mise en place - Récupération des échantillons

Avant l'injection en chaque point, 2 capteurs (\*) à charbon actif aisément distinguables l'un de l'autre furent mis en place dans les endroits les plus calmes et les plus sombres de l'émergence. Appelons-les A.1 et A.2.

Lors de la première récupération A.1 était ramassé et remplacé par un capteur neuf A.3. Lors du deuxième ramassage A.2 était remplacé par A.4, et ainsi de suite. Ainsi le temps d'immersion de chaque capteur était au minimum de 48 h, ce qui permettait d'être sûr que les colorants auraient le temps d'être absorbés.

D'autre part lors de chaque ramassage, un prélèvement d'eau était effectué. Nous pouvions avoir ainsi non seulement des renseignements ponctuels dans le temps, mais aussi être certain de détecter les colorants qui auraient pu passer entre 2 prélèvements ponctuels. Lors des ramassages, chaque échantillon était numéroté et disposé jusqu'au moment de l'analyse à l'abri de la lumière.

A titre indicatif, nous donnons dans la planche E, un exemple des modèles de fiche de relevé utilisée.

Depuis l'injection jusqu'à la fin du mois de juin le B.R.G.M. se chargea de récolter les échantillons. En juillet et août, le ramassage se fit alternativement par des bénévoles (mairie, fontainiers, particuliers) et par le B.R.G.M.

### EXEMPLE DE FICHE DE MISE EN PLACE ET DE RELEVE DES ECHANTILLONS

| n° des<br>PRELEVE-<br>MENTS | MISE   | EN PLACE | PRELEVI   |               |               | MII<br>E A L'OELL | COMPARAISON<br>ECHANTILLON<br>D'EAU AVEC       | CONDITIO | ONS HYDROLO | GIQUES DES PRE | LEVEMENTS   |
|-----------------------------|--------|----------|-----------|---------------|---------------|-------------------|------------------------------------------------|----------|-------------|----------------|-------------|
| HENTS                       | Date   | Heure    | Date      | •             | sur<br>place  | •                 | LIQUEUR ETALON (CONCENTRATION)                 | pluie    | soleil      | eau trouble    | eau limpide |
| 0.1                         | 9.6.70 | 9h30     | 12<br>c   | 16h           |               |                   |                                                |          | +           |                | +           |
| 0.2                         | 11     | 11       | 13 c      | 15h10         |               |                   |                                                | •        | +           |                | +           |
| 0.3                         | 12     | 16h      | 14<br>C+E | 15h50         | vert          | vert<br>påle      | 10 <sup>-8</sup> à 10 <sup>-7</sup>            | +        |             |                | +           |
| 0.4                         | . 13   | 15h10    | 15<br>C+E | 15h15         | vert<br>foncé | vert              | 10 <sup>-7</sup> à 10 <sup>-6</sup><br>maximum |          | . +         |                | +           |
| 0.5                         | 14     | 15h50    | 16<br>C+E | <b>1</b> 6h   | "             | 11                | 10 <sup>-7</sup> à 10 <sup>-6</sup>            |          | +           |                | +           |
| 0.6                         | 15     | 15h15    | 17<br>C+E | <b>1</b> 5h15 | !!            | vert<br>påle      | 10 <sup>-8</sup> à 10 <sup>-7</sup>            |          | +           |                | +           |
| 0.7                         | 16     | 16h      | 18<br>C+E | <b>1</b> 5h15 | 4             | vert<br>très pãle | <10 <sup>-8</sup>                              | +        |             |                | +           |
| 0.8                         | 17     | 15h15    | 19<br>C+E | 15h45         | vert          | non<br>visible    |                                                |          | +           |                | +           |

C = Capteurs au charbon actif E = flacon d'eau.

\* NOTA: Les capteurs utilisés sont des petits tubes en acier galvanisé (genre bigoudis) de 5 cm de long sur 1,5 de diamètre perforés régulièrement (12x15 = 72 trous de 2 mm de diamètre), remplis de 2 grammes environ de charbon actif en fragments de dimensions voisines (5x3 mm), fermés par des bouchons en plastique. Les tubes étaient entièrement remplis afin d'éviter tout frottement des grains de charbon dans l'eau, ce qui entrainerait une détèrioration de la partie superficielle absorbante des grains de charbon.

#### - Etude des concentrations

## Détermination qualitative

Lors de chaque ramassage lorsqu'une coloration était visible sur place, elle fut notée sur les fiches de relevé et reportée sur les diagrammes d'évolution. C'est ainsi par exemple qu'à l'hôtel du Moulinot ou au Bouillon de Clavisy, grâce à la forte épaisseur de la tranche d'eau examinée, des concentrations de l'ordre de 3.10<sup>-9</sup> ont pu ainsi être détectées.

## Détermination quantitative

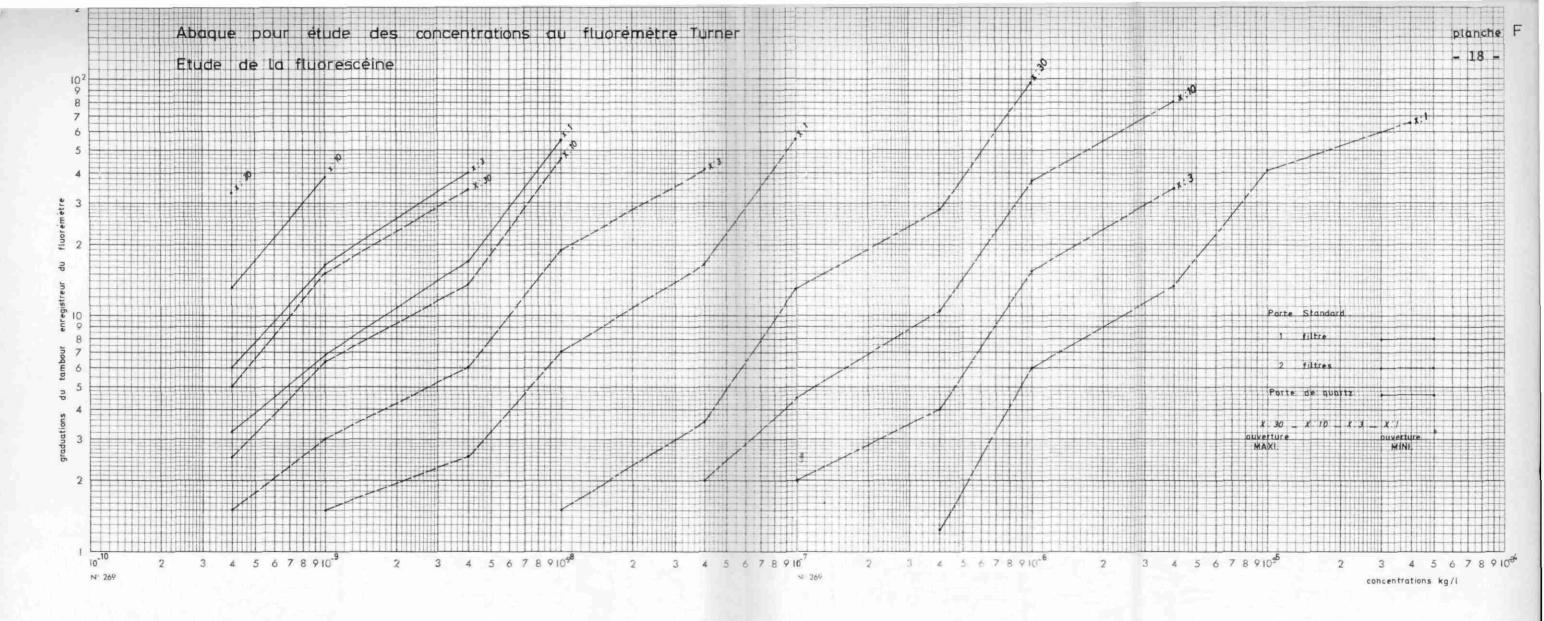
Les échantillons d'eau et l'éluat des solutions alcooliques de potasse contenant les charbons (\*) ont été étudiés au fluorimètre Turner (\*\*), et comparés pour vérification aux liqueurs étalon établi de  $10^{-3}$  à  $10^{-10}$  kg/l. (C'est ainsi qu'il a été établi que l'appareil donnait des concentrations trop fortes pour la rhodamine. Nous avons donc abandonné les mesures de ce colorant très rapidement).

\* NOTA: Pour la préparation de l'éluat (solution alcoolique de potasse) le temps d'élution ..., nous renvoyons au petit opuscule extrait de Spélunca, mémoire n° 41.964, établi par Andrée LALLEMAND et Henri PALOC, ingénieurs B.R.G.M. et intitulé "Possibilités offertes par la méthode de détection au charbon actif pour les expériences de colorations à la fluorescéine".

Notons qu'avant chaque série d'analyses, une nouvelle solution de potasse alcoolique était préparée. Ceci afin d'éviter son jaunissement. La proportion de potasse dans l'alcool était de 10 %. Le temps d'élution de 12 heures environ.

\*\* Le fluorimètre Turner a été étalonné sur les liqueurs étalon préparées peu de temps avant l'expérience.

Suivant le montage (porte standart ou porte à quartz teinte sensible - la nature des filtres mis entre la source de rayon ultra violet et l'échantillon, ou celui-ci et l'analyseur - l'ouverture du diaphragme) nous obtenons des graduations sur le tambour d'enregistrement (gradué de 0 à 100).


A ces graduations, sur les abaques dressées, correspondent des concentrations. La série des valeurs obtenues nous donne un éventail des valeurs duquel nous avons extrait la médiane. L'appareil permet de mesurer des concentrations comprises entre 4.10<sup>-5</sup> et 4.10<sup>-10</sup> kg de fluorescéine par litre.

Nous donnons une copie de l'abaque utilisée (planche F) ainsi qu'un exemple de fiche de lecture de l'appareil et de calcul des concentrations (planche G). En pochette, il y a les diagrammes d'évolution des concentrations pour chacun des points surveillés. Ces diagrammes sont numérotés de A à T.

#### - Précautions

Outre les précautions prises conformément aux conseils de l'opuscule ci-dessus concernant la confection des capteurs, leur mise en place, leur récupération, leur mise en solution pour analyse, sur les propres conseils de Mme LALLEMAND-BARRES et de notre propre initiative, nous avons adopté les mesures suivantes :

a) Avant chaque série d'expériences, nous avons remis le tambour enregistreur de l'appareil au 0 grâce à un tube opaque noir placé dans la porte de l'appareil à la place de l'échantillon. C'est ce que nous avons appelé faire le noir.



| Presevent |       | _                |   |    |     | r                                                | اریا        | esce | ne | sta | ndar      | 1 2 | filtre | . 5 |     |     |      |    |     |             |   |   | Fluc     | ) e 5 c e | erne | 2,7. | าปลา         | 1               | . 1 10 | 10 |                  |                                         |            |    |              |           |    |      |             | F         | ٠٠  | esce | 1.0                      | 1001  | tz   |    |       |       |        |     | Med | diane des    |
|-----------|-------|------------------|---|----|-----|--------------------------------------------------|-------------|------|----|-----|-----------|-----|--------|-----|-----|-----|------|----|-----|-------------|---|---|----------|-----------|------|------|--------------|-----------------|--------|----|------------------|-----------------------------------------|------------|----|--------------|-----------|----|------|-------------|-----------|-----|------|--------------------------|-------|------|----|-------|-------|--------|-----|-----|--------------|
|           |       | _                |   |    | X 1 |                                                  | $\Box$      |      | X  | 3   |           |     | Х      | 10  |     |     | X    | 30 |     |             | X | 1 |          |           | X    | 3    |              |                 | X1     | 0  |                  | L.,                                     | <b>X</b> 3 | 0  |              |           | X1 |      |             |           | х 3 | 3    |                          |       | ΧI   | 0  |       |       | X 30   | ) _ | con | ncentral ons |
| ר"        | C ile |                  |   | L  | В   | ь                                                | N           | L    | В  | ь   | N         | L   | В      | Ь   | N   | L_  | В    | Ь  | N   | L           | В | ь | N        | L         | В    | ь    | N            | L               | В      | Ъ  | N                | L                                       | В          | ь  | N            | i         | В  | ь    | N           | L         | В   | Ь    | Z                        | L     | В    | ь  | ΝL    | .   [ | 3   1  |     | Ц_  |              |
| 01        | 12 (  | 6 73             | 9 |    |     |                                                  |             |      |    |     |           |     |        |     |     |     |      |    |     |             |   |   |          |           |      |      |              |                 |        |    |                  |                                         |            |    |              | `.        |    |      | , '         |           | ٠,  |      | , -                      | 71. ( | ., 1 |    | Vil 7 | ٠,    | د      | 7   |     |              |
| E,        | 16    | b.v              | С |    |     |                                                  |             |      |    |     |           |     |        | l   |     |     |      |    |     |             |   |   | ,        |           |      |      |              | '               |        |    | 10.71            | ! I                                     |            |    | و-ا <b>ا</b> |           |    | - 1  | 2.5<br>10.5 |           |     |      | ^ 35<br>1∩- <sup>9</sup> |       |      |    | ×     |       |        |     | 1,4 | 10 -9        |
| 01        | 12.6  | <b>6</b> 73      | 9 |    |     | <del>                                     </del> | <del></del> |      | ^  | 2   | 3         | ,   | ٠      | 3   |     | 3 Ē | ^    |    | 3 5 | ١.          |   | - | 15       | 34.       |      | -    | 145          | :<br>:1955<br>: |        | 11 | 181.5            | 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7          | 31 | ,            | ,<br>10.5 |    | 10.5 | ,           | ,25.<br>> | 15  | 4.   | ,                        | .,,,  | 6 =  | 67 | , >   | . 10  | 20 10  | ,,  |     |              |
| Ff        | 16    | ,                | С |    |     |                                                  |             |      |    |     |           |     | !      |     | ×   |     | <br> |    | ,   |             |   |   | د<br>ان: |           |      |      | , F          | *               | 1      |    | <br>110 <b>R</b> |                                         |            |    |              |           |    |      |             |           |     |      |                          |       |      |    | Ì     |       |        |     | 4   | 10-8         |
| 04        | 15_6  | 6.70             | 9 | 4  | ç : |                                                  | 2           | •    | 3  |     | ,         | 10  | า      |     | 10  | 2"  | ٦    |    | 27  | <i>&gt;</i> |   |   | ,,,      | .30       | 1 '  |      | <b>1</b> (). | 1.20            | -      |    | ٠,٢,             | )<br>25:                                | 75         |    | r            | , ,       | ú  |      | . 1         | 196       | j   |      |                          | 17    | 63   |    | 2 10  | ) 10  | )<br>} | 2   |     |              |
| Ef        | ;     | h 15             | С |    |     |                                                  | 5 3         |      |    |     | 4 6<br>1^ | -   |        |     | 3 4 |     |      |    | 3 3 |             |   |   |          |           |      |      |              | 1               |        |    |                  |                                         |            | Ì  |              |           |    |      |             |           |     |      |                          |       |      |    |       |       |        |     | 42  | 10 -7        |
| 04        | 15    | ь <sup>7</sup> 0 | 9 | ۱۷ |     | <b>+ +</b>                                       | ٠. ً        | ₹' € |    |     | 3.1       |     | 1      |     | • 5 | 1   |      |    | ήr  | ur          | 1 | î | 1        | 1         |      | ř    |              | 1               |        |    |                  | 100                                     | 7.         | 25 |              |           | -  | ٠,   | ^           | ****      | 18  | ,    |                          | ,U.   | 61   | ,  | ,     |       | ,) 11  | -   |     |              |
| Ff        | 15    | h 15             | С |    |     |                                                  | ٠. ا        |      |    |     |           | 7   |        |     | "   |     |      |    |     |             | 1 |   |          |           |      |      |              |                 |        |    |                  |                                         |            |    |              |           |    |      |             |           |     |      |                          |       |      |    |       |       |        |     | 4   | 10 -6        |

#### EXPLICATIONS

### - Prélèvements

0 = désignation du point d'eau surveillé

I - 4.. =n° du prélèvement

Ef - étude des concentrations en fluorescéine dans l'eau

Pf = étude des concentrations en fluorescéine sur le filtrat (charbon actif · solution de potasse alcoolique)

### - Montage du\_fluorimetre

S = Porte contenant l'échantillon sans lame de quartz teinte sensible

Q = Porte contenant l'échantillon avec lame de quartz teinte sensible

ID 200 ; 2A 12 = Filtres placés entre échantillon et analyseur (à gauche de l'appareil)

47 o ; 2 A = Filtres placés entre source de rayon UV et échantillon (à droite de l'appareil)

## fluorescéine

## - Craduation concentration

- = Graduations de l'enregistreur du fluorimètre
- C Concentrations correspondantes à 2 d'après abaque
- 1 = Graduations lues sur l'enregistreur
- B = 'raduations de l'enregistreur correspondant à l'inalyse de l'eau avant injection (terme de correction)
- b = Craduations de l'enregistreur correspondant à l'analyse de la solution alcoolique de potasse avant chaque des analyses des filtrats (terme de correction)
- i. = Graduations de l'enregistreur corrigées Analyse de l'eau L = L BAnalyse des filtrats  $L = L - (B \cdot b)$

- b) Avant l'injection en chaque point de prélèvement, nous avons récupéré un échantillon d'eau dont nous avons noté les concentrations en fluorescéine. C'est ce que nous avons appelé faire le blanc. Les valeurs obtenues ont été soustraites des valeurs obtenues à l'appareil une fois l'injection faite. Cette règle a été appliquée pour les échantillons d'eau et pour les éluats (solution alcoolique de potasse + charbon). Ceci nous permettait d'annuler des colorations antérieures éventuelles. Il ne faut pas oublique que cette région est assez fréquemment étudiée de cette manière par des administrations diverses et des spéléologues. Toutes les personnes susceptibles d'exécuter de telles colorations avaient été informées de notre expérience.
- c) Avant chaque série d'analyses des éluats, la solution alcoolique de potasse qui servait à préparer ceux-ci était analysée à l'appareil. C'est ce que nous avons appelé faire le bleu. La présence de trouble dans la solution réagissant au passage des rayons UV comme une eau chargée en colorant. Les valeurs obtenues étaient elles aussi soustraites de la lecture des éluats.
  - d) Le laboratoire d'analyse se trouvait en aval des points d'émergences étudiés. Après chaque série d'analyses, tous les ustensils de laboratoire et de prélèvement étaient lavés à l'eau de javel et rincés à l'eau distillée.

Enfin rappelons que les personnes chargées de la préparation des colorants et de leur injection, étaient différentes de celles qui ont mis en place, récupéré et analysé les prélèvements.

## 52 - DETERMINATION DES POINTS DE SORTIE DES COLORANTS

521 - Détermination à l'oeil nu sur place et en flacon

La coloration verte de la fluorescéine était visible à l'oeil nu sur place :

- a) au Bouillon de Clavisy à partir du 14 juin jusqu'au 29 juin 1970,
- b) au lavoir de Perrigny du 20 juin au 4 juillet 1970

c) à Vermenton du 24 juin au 9 juillet 1970.

Cette coloration ne fut visible en flacon :

- a) au Bouillon de Clavisy que du 14 au 20 juin 1970,
- b) au lavoir de Perrigny les 20, 21, 22 juin 1970,
- c) à la source du Moulinot, à la Fontaine ronde, au petit et au grand lavoir de Vermenton le 27 juin 1970, uniquement ; au captage de Vermenton du 27 au 29 juin 1970.

Aucune coloration verte ne fut notée aux autres points de prélèvement. Jamais la rhodamine ne fut visible.

#### 522 - Détermination au fluorimètre

Le tableau ci-dessous donne pour les différents points étudiés (eau - fluocapteurs) les maximaux, les minimaux, le rapport maxima-minima, ainsi que la moyenne des concentrations hors des pics de réapparition.

Dans l'eau les concentrations notées en fluorescéine sont comprises entre  $3.6.10^{-10}$  kg/l (captage de Vermenton) et  $4.2.10^{-7}$  kg/l (Bouillon de Clavisy), dans les éluats entre  $6.10^{-10}$  kg/l (Cours gouffre amont) et  $6.10^{-6}$  kg/l (Bouillon de Clavisy), l'écart le plus important entre maximum et minimum a été trouvé au Bouillon de Clavisy (eau = 300) et au Moulinot (éluat = 260).

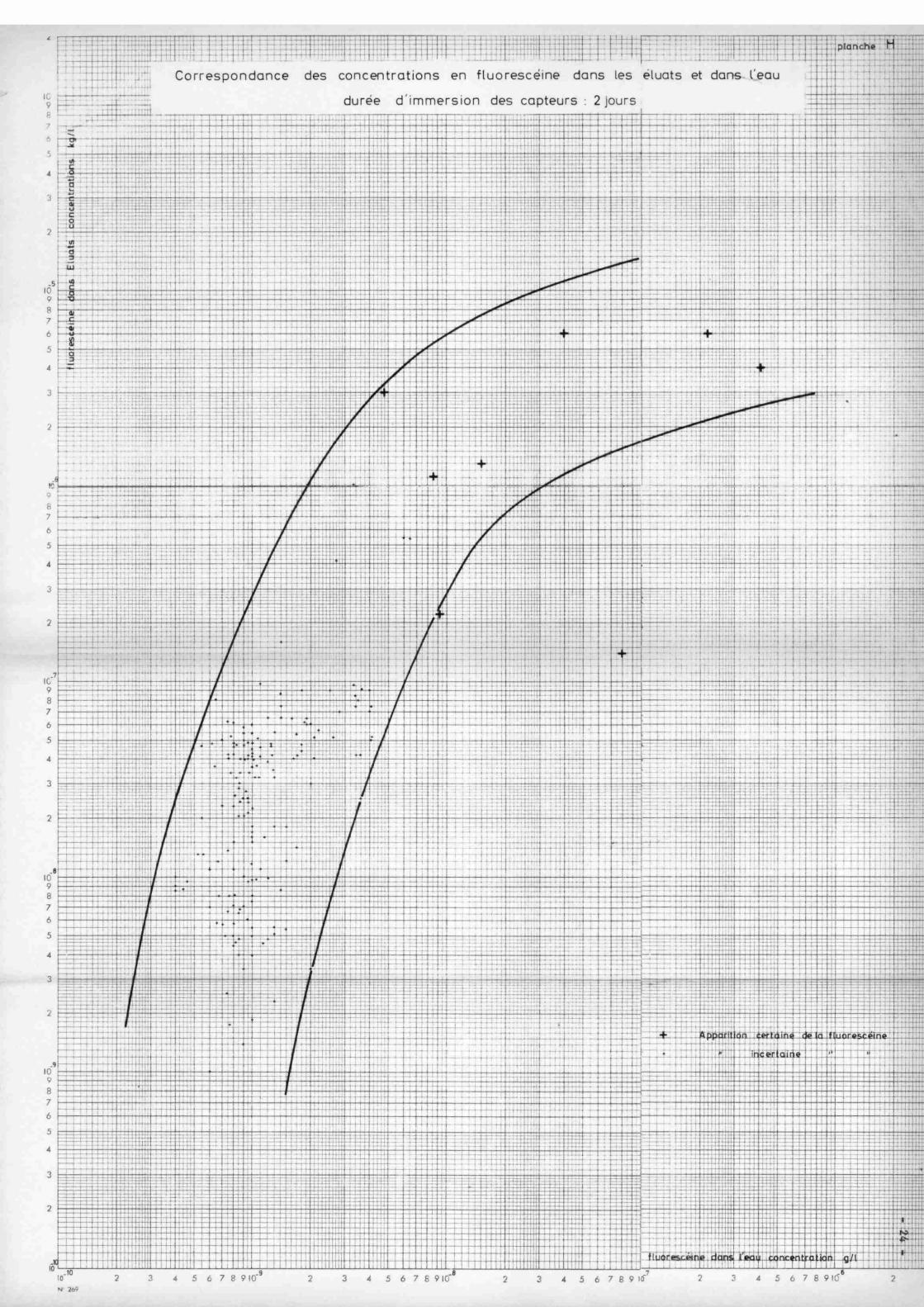
Pour être sûr que la fluorescéine soit réapparue, il faut d'une part que les diagrammes d'évolution (eau - capteur) aient une forme significative (\*): croissance rapide vers un pic, puis décroissance plus lente (il peut y avoir plusieurs pics en relation avec les précipitations (exemple: Bouillon de Clavisy ler pic maxima le 15 juin (4,2.10<sup>-6</sup> kg/l le 15 juin 1970), le 2ème pic plus faible (1,4.10<sup>-8</sup> kg/l le 20 juin 1970, de l'autre que le rapport maximum par minimum soit supérieur à 10 pour l'eau.

|         | FL    | JORESCEINE | - CONCENTRA     | ATION EN           | 10 <sup>-10</sup> kg/ | 1       |      |
|---------|-------|------------|-----------------|--------------------|-----------------------|---------|------|
| POINTS  |       | EAU        |                 |                    |                       | CHARBON |      |
| ETUDIES | Max.  | Min.       | M/m             | M/m<br>hors<br>pic | Max.                  | Min.    | M/m  |
| Α       | 88    | 4          | 22 ±            | 10                 | 2600                  | 10      | 260  |
| В       | 150   | "3,6"      | 42 <del>*</del> | 6                  | 4500                  | 52      | 86   |
| C       | 100   | 6,2        | 16 <b>*</b>     | 3                  | 5500                  | 56      | 98   |
| D       | . 120 | 6,2        | 19 <del>*</del> | 4                  | 9000                  | 205     | 44   |
| E /     | 100   | ; 7        | 14 *            | 2                  | 7500                  | 39      | 192  |
| F       | 38    | 7,5        | 5               |                    | . ; 700               | 90      | 8:   |
| G       | 100   | 7,5        | $(13,3_{*})$    |                    | 250                   | 18,5    | 13,5 |
| H       | 40    | 10         | 4               |                    | 970                   | 520     | 2    |
|         | 41    | 14         | 3               |                    | 810                   | 10      | 81   |
|         | 27    | 5,5        | 5               |                    | 440                   | "6"     | 73   |
| K /     | 25    | 5,5        | 5               |                    | 2700                  | 57      | 47   |
| L       | 17    | 7,1        | . 2             |                    | 1200                  | 240     | 5    |
| M       | 25    | 7          | 4               |                    | 920                   | 60      | 15   |
| N       | 33    | 7          | .5              |                    | 630                   | 50      | 19   |
| 0       | 4200  | 14         | 300 <b>*</b>    | 10                 | 60000                 | 400     | 150  |
| P       | 150   | 8          | 19 🛧            | 6                  | 13000                 | 440     | 29   |
| Q       | 30    | 8          | 4               |                    | 670                   | 87      | 8    |
| R       | 40 .  | 8,5        | 5               |                    | 3800                  | 48      | 79   |
| S       | 19    | 9,3        | 2               |                    | 530                   | 55      | 9    |
| T       | 28    | 5,7        | 5               | :                  | <b>3100</b>           | 340     | 9    |

Max 4200 Min. "3,6" Cette deuxième règle n'est pas applicable pour les éluats sans tenir compte du temps d'immersion et du fait que la fluorescéine ne se fixe pas toujours parfaitement sur les charbons. Cette seconde correction étant particulièrement délicate (exemple : gouffres de Cours amont et médian). Pour les éluats, il faut donc se baser sur la forme de la courbe d'évolution pour être certain que le point observé est en relation avec les pertes.

Compte tenu des remarques ci-dessus, l'appareil nous permet d'affirmer que la fluorescéine n'est réapparue à la source du Moulinot, au captage de Vermenton, à la Fontaine ronde, au petit et au grand lavoir de Vermenton, au Bouillon de Clavisy, enfin au lavoir de Perrigny. Au captage de Nitry, la forme de la courbe obtenue et le décalage dans le temps par rapport à Vermenton ne nous permet pas d'affirmer que la fluorescéine soit réapparue.

#### 53 - REMARQUES SUR LES COLORATIONS


531 - Comparaison des concentrations en fluorescéine dans l'eau et les éluats

Le diagramme de correspondance des concentrations en fluorescéine dans les éluats et dans l'eau (planche H) montre que les capteurs concentrent la fluorescéine, et que la relation entre ces 2 valeurs doit être de forme exponentielle. Bien que nous ayons éliminé le facteur temps, la relation exacte entre ces différentes concentrations ne peut être précisée ici.

Cette relation ne peut être déterminée qu'en laboratoire en utilisant un milieu d'immersion unique (eau distillée), des liqueurs de concentrations étalonnées et un nombre statistiquement suffisant d'échantillons.

Ce n'est qu'ainsi que les facteurs perturbateurs (dus aux milieux naturels différents de notre expérience : pureté de l'eau variable - débit variables - exposition à la lumière variables ...) pourront être éliminés.

Le tableau des rapports des concentrations en fluorescéine fluocapteurs sur eau (planche I) montre d'une part que lors que nous sommes sûrs



RAPPORT DES CONCENTRATIONS EN FLUORESCEINE (fluocapteur/nappe)

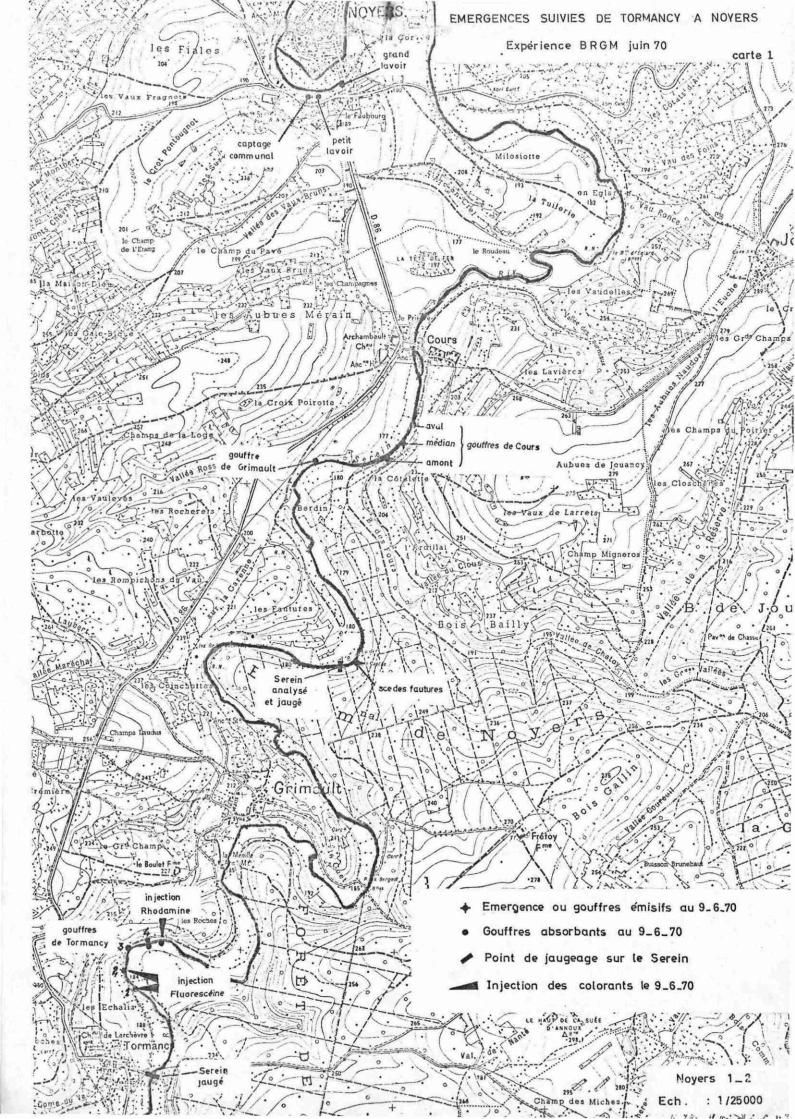
| •                                                          | (fluocapte                                                                                                   | sur/naj                    | ppe)          |            |                |                                                       | - 25                             |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------|---------------|------------|----------------|-------------------------------------------------------|----------------------------------|
|                                                            |                                                                                                              | Nom-<br>bre<br>de<br>jours | max           | min        | (méd.)         | Variation du<br>rapport pour<br>80 % des mesu-<br>res | Nombre de<br>mesures             |
| Sans tenir compte de la durée d'immersion des fluocapteurs | A) en tenant compte<br>de toutes les me-<br>sures                                                            |                            | 638<br>       | 1.         | 29<br>         | 6-88                                                  | 304                              |
|                                                            | B) en tenant compte<br>uniquement des me-<br>sures où l'appari-<br>tion de la fluores-<br>céine est certaine |                            | 638           | 2          | 45             | 7-230                                                 | 50                               |
| En tenant com-<br>pte de la durée                          | A)                                                                                                           |                            | 638           | 1          | 22             | 5-57                                                  | 176(1/2 to<br>tal)               |
| d'immersion des<br>fluocapteurs                            | B)                                                                                                           | 2 j                        | 638           | 2          | 25             | 4-150                                                 | 22 ( <del>//</del> 1/2<br>total) |
|                                                            | A)                                                                                                           | 3 ј                        | 318           | 5          | 35_            | 8-70                                                  | 22                               |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                      | в)                                                                                                           |                            | 318           | 16         | 45             | 16-318                                                | 7                                |
|                                                            | <u>A</u> )                                                                                                   | 4 <b>j</b>                 | <u>104</u>    | <u>3</u> _ | <u>31</u>      | 6-55                                                  | _ 29                             |
|                                                            | B)                                                                                                           |                            | 76            | 17         | 52             | 17-76                                                 | 66                               |
|                                                            | <u>A</u> )                                                                                                   | 5 j                        | _63           | 2_         | <u>3</u> 6_    | 11-53                                                 | _ 10                             |
|                                                            | B)                                                                                                           | <u> </u>                   |               |            |                |                                                       |                                  |
|                                                            | A)                                                                                                           | 6 j                        | 6             |            | <u>62</u>      | 62                                                    | 1                                |
|                                                            | B)                                                                                                           | <del></del>                |               |            |                |                                                       |                                  |
|                                                            | <u>A</u> )                                                                                                   | 7 ј                        | <u>390</u>    | 5_         | _ 37_          | <u>17-150</u>                                         | <sup>16</sup>                    |
|                                                            | B)                                                                                                           |                            | 390           | 27         | 112            | 27-390                                                | 6                                |
|                                                            | <u>A)</u><br>B)                                                                                              | 8 j                        | _9 <u>6</u>   | <u>3</u> 1 | _ 72_          | _ <u>31-96</u>                                        | 3                                |
|                                                            | A)                                                                                                           | 9 j                        | 230           | 2_         | · 48_          | 21-144                                                | 23                               |
|                                                            | B)                                                                                                           | <i>y</i> J                 | 180           | 2          | 49             | 2-180                                                 | 4                                |
|                                                            | A)                                                                                                           | 10 j                       | <u>508</u>    | _3_        | <u>61</u>      | 8-205                                                 | 21                               |
|                                                            | B)                                                                                                           |                            | <b>2</b> 50   | 34         | 126            | 34-250                                                | 5                                |
|                                                            | A)                                                                                                           | 11 j                       | <u>310</u>    | _8_        | _1 <u>5</u> 9_ | 8_310                                                 | 2                                |
|                                                            | B)                                                                                                           |                            |               |            |                |                                                       |                                  |
|                                                            | A)<br>B)                                                                                                     | 16 j                       |               | 78         | _ 78_          | <u></u>                                               | 1                                |
|                                                            | A)                                                                                                           | 26 j                       | _1 <u>1</u> 0 | 95         | _102_          | <u>95-110</u>                                         | 2                                |
|                                                            | B)                                                                                                           | :                          |               |            |                |                                                       |                                  |

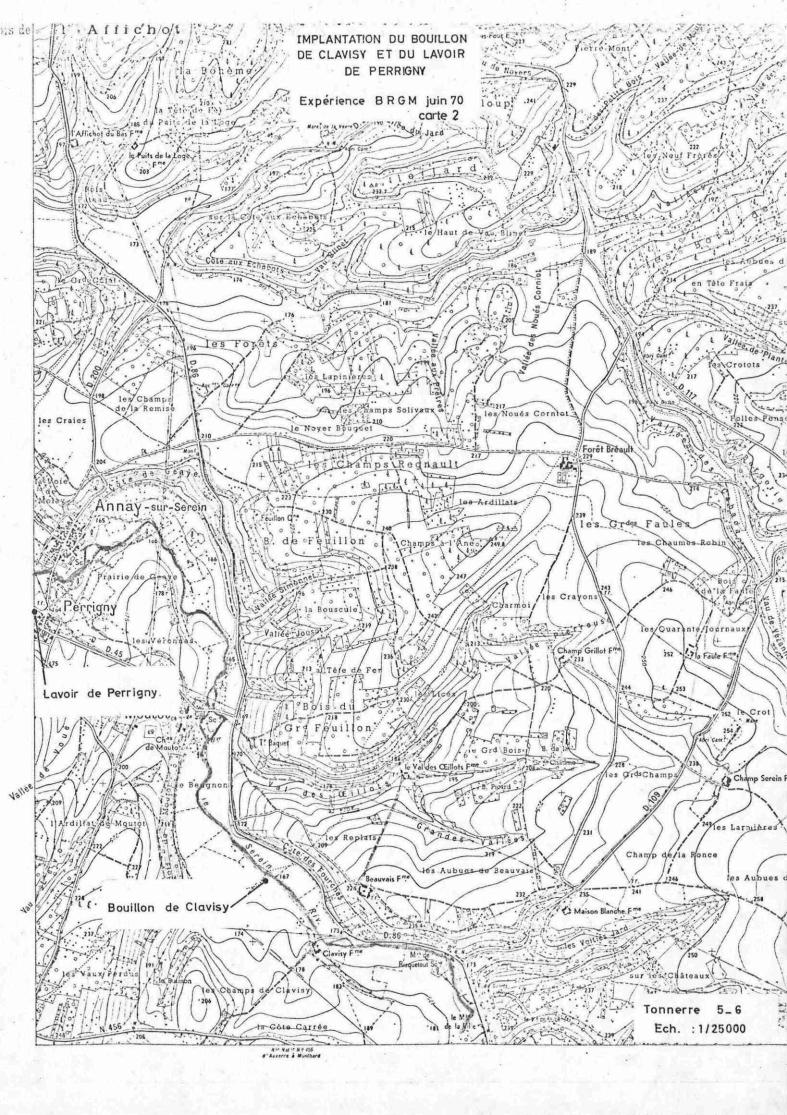
de la présence de la fluorescéine, ce rapport est plus fort que quand nous n'en sommes pas certains : de l'autre que le rapport ci-dessus est une fonction exponentielle du temps d'immersion des capteurs.

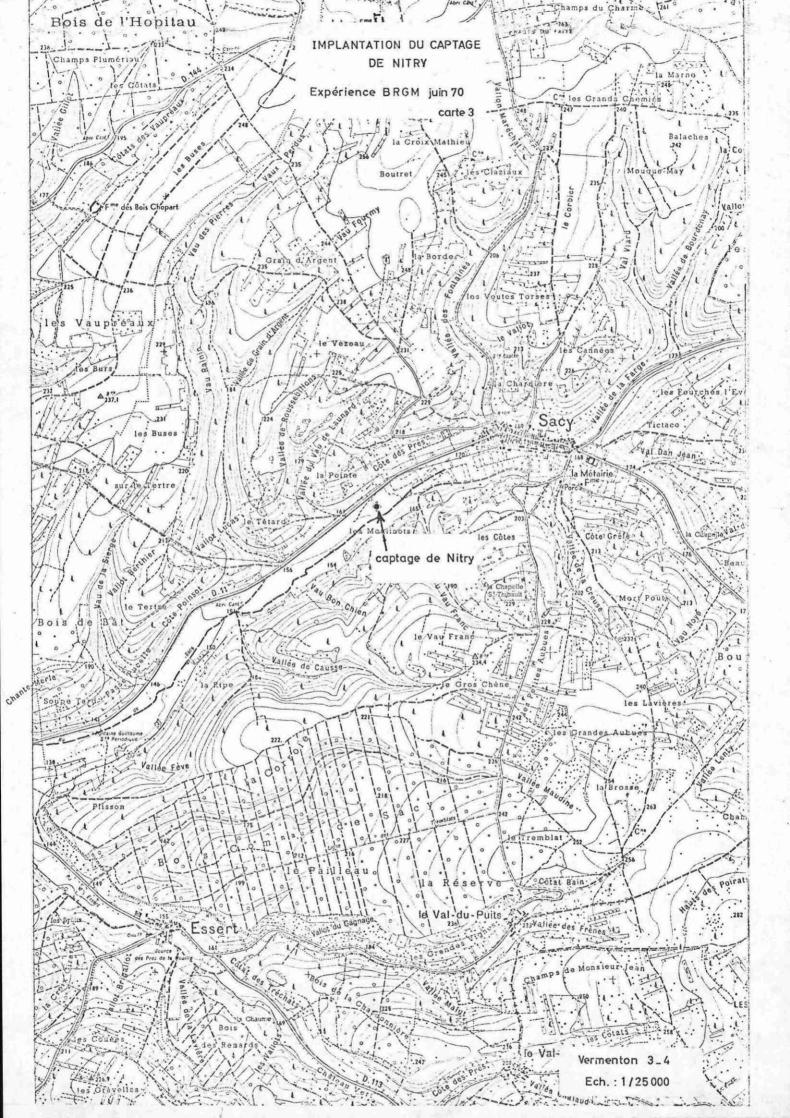
Dans la planche H, si nous avions reproduit les points correspondants aux concentrations en fluorescéine dans les éluats et l'eau pour les durées d'immersion croissant, nous verrions aussi que les concentrations dans les capteurs varient aussi exponentiellement par rapport aux durées d'immersion. Cette loi devrait aussi être précisé en laboratoire.

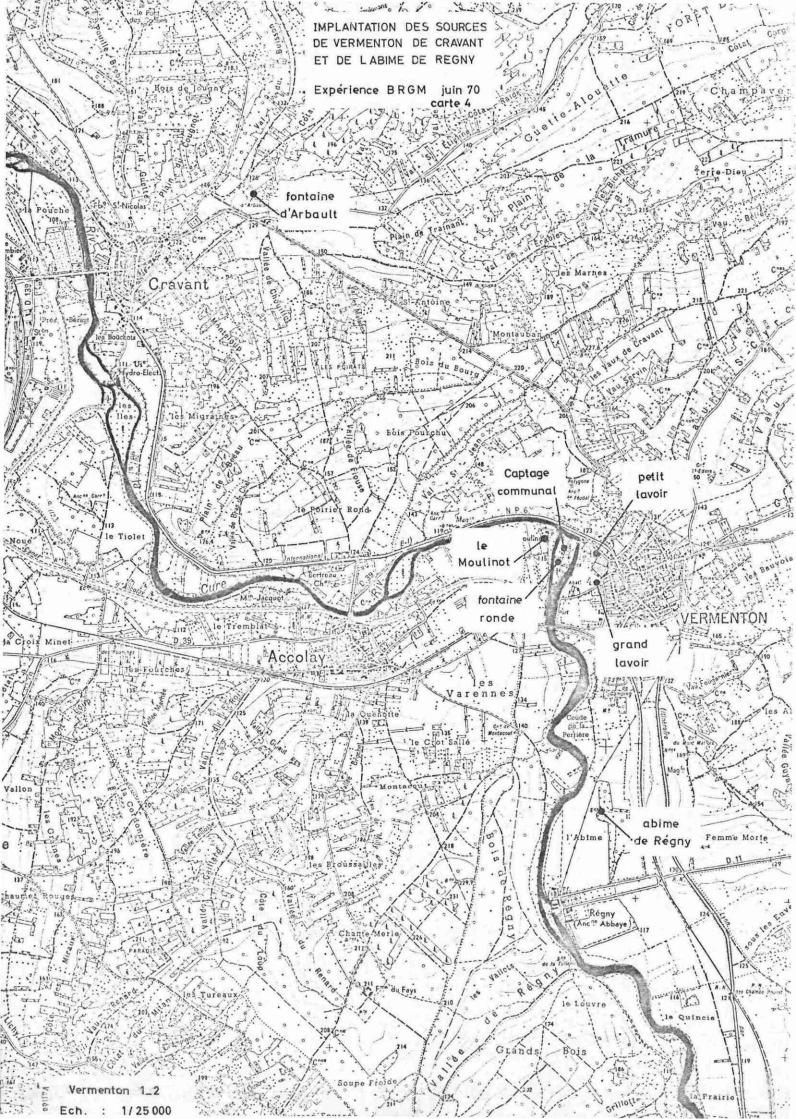
## 532 - Comparaison des diverses méthodes de détection de la fluorescéine

La méthode de détermination à l'oeil nu sur flacon et surtout sur place nous a donné les mêmes résultats qualitatifs que les méthodes d'étude à l'appareil. Grâce à la forte quantité de fluorescéine injectée, nous avons pu déterminer les temps séparant l'injection de l'apparition, la durée de l'apparition et même grossièrement le temps séparant l'injection du pic maximum et comparer les concentrations des diverses émergences entre elles. Cette méthode reste cependant grossière uniquement qualitative et nécessite une présence constante de personnel.

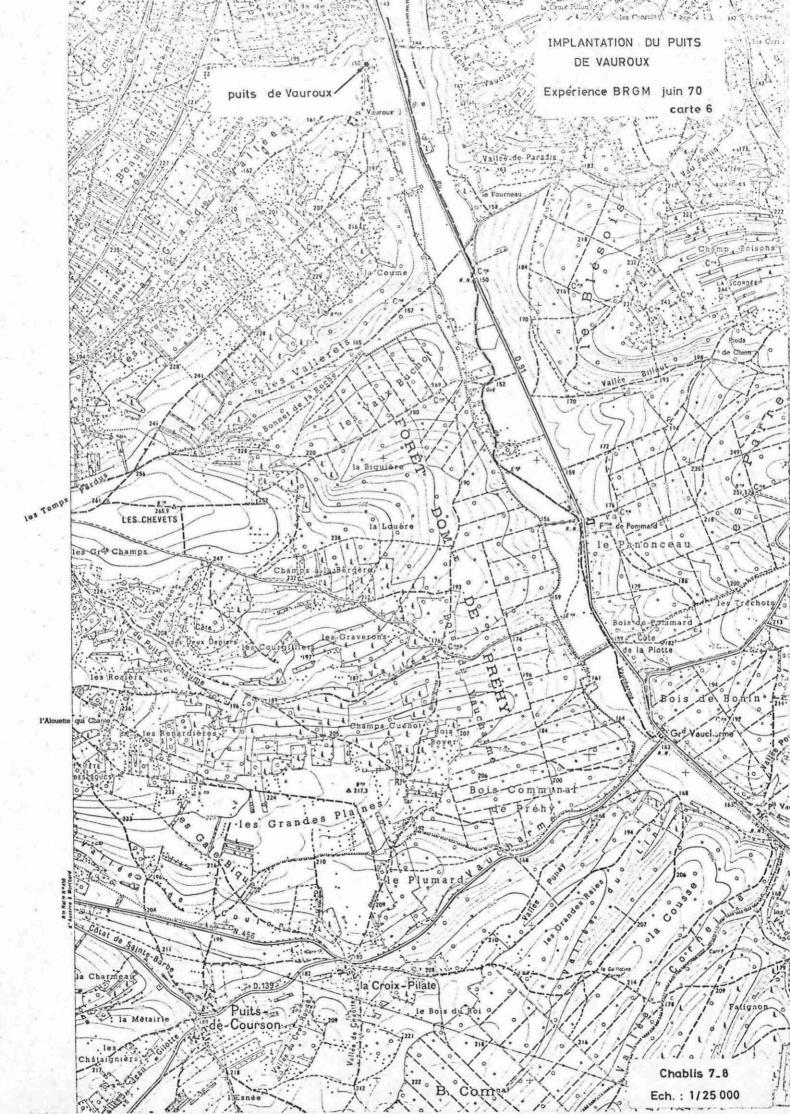

L'étude de l'eau au fluorimètre Turner nous a donné tous les résultats ci-dessus en les affirmant quantitativement. Les concentrations obtenues sont exactes. Il faut une présence constante de personnel.

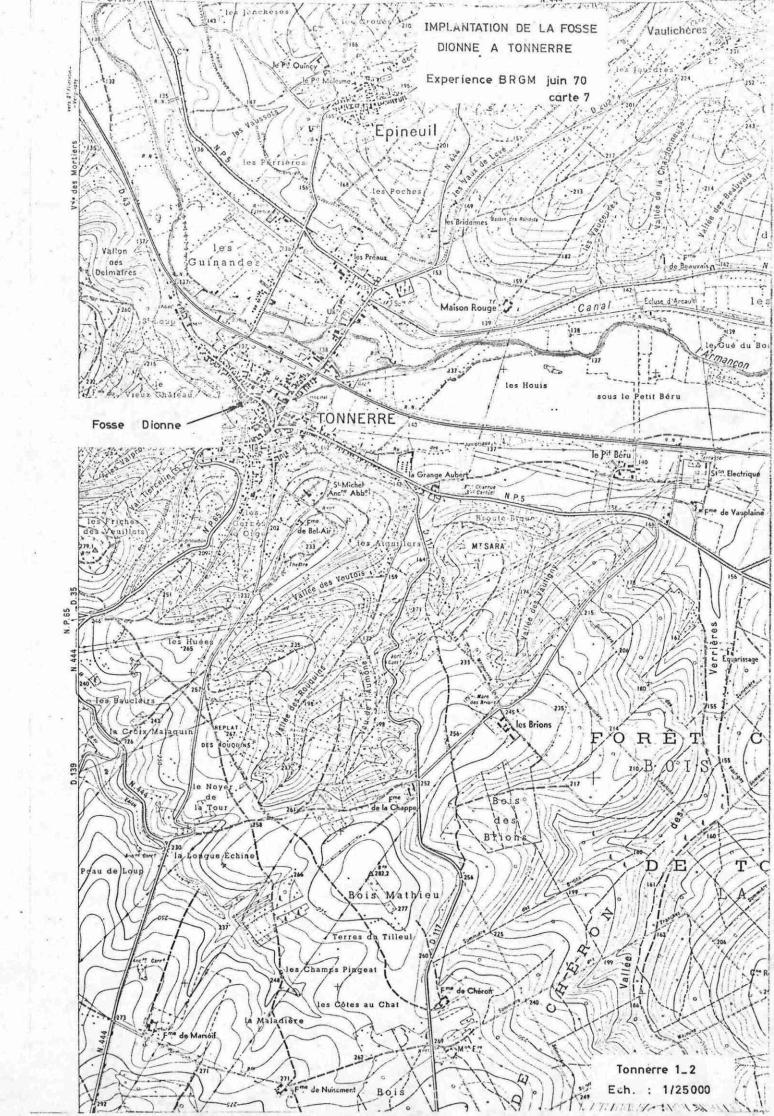

L'étude des capteurs avec l'appareil nous donne les mêmes résultats que ci-dessus, mais avec des temps parfois décalés et des concentrations plus fortes que celles de l'étude de l'eau avec le fluorimètre. Une relation existe surement entre ces valeurs, mais nous n'avons pu ici la déterminer avec précision. Si cette loi était mise en évidence, l'utilisation des fluocapteurs permettrait un gain de temps appréciable.

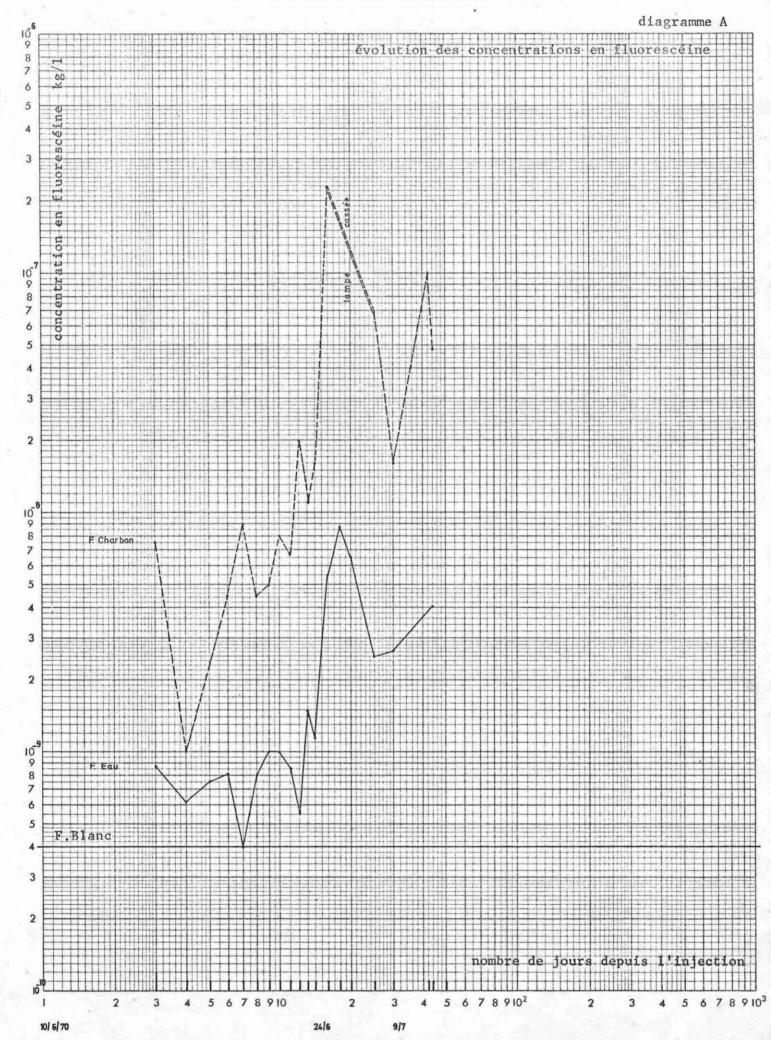

En résumé dans l'état actuel de nos connaissances, si nous voulons voir des concentrations exactes et si le temps séparant l'injection de la réapparition du colorant n'est pas trop long, la méthode idéale est l'étude de l'eau au fluorimètre. Si ce temps est trop long, il faut utiliser les fluocapteurs qui rappelons-le augmentent variablement les concentrations.

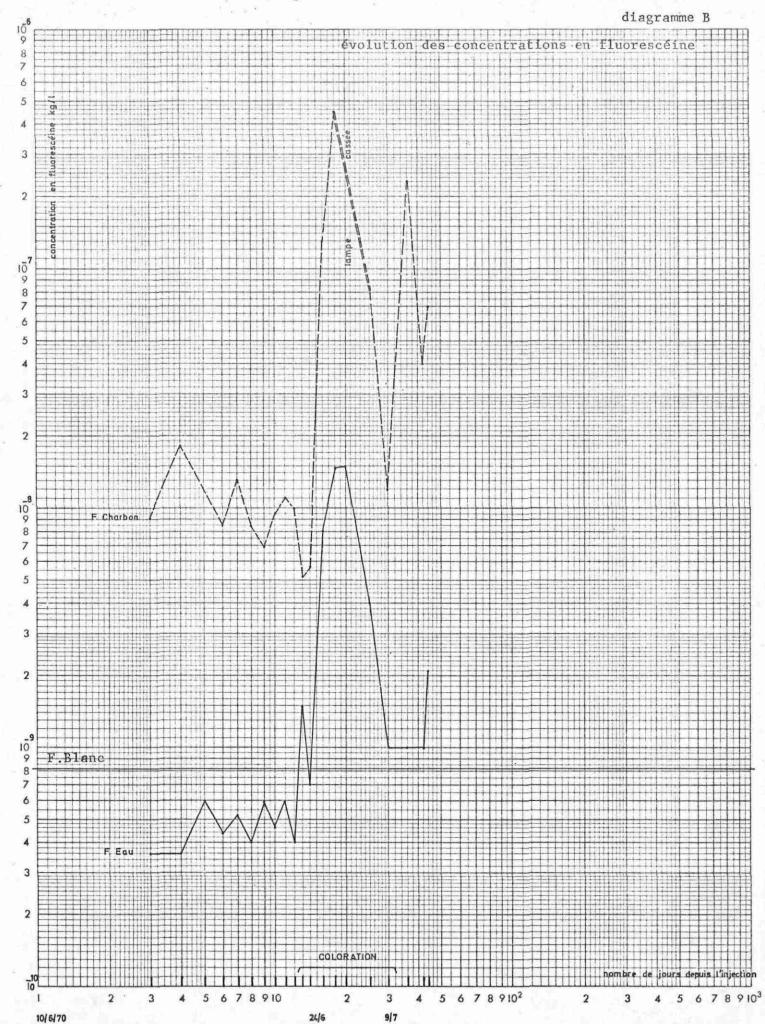

### 54 - TERRAINS GEOLOGIQUES TRAVERSES PAR LES PERTES

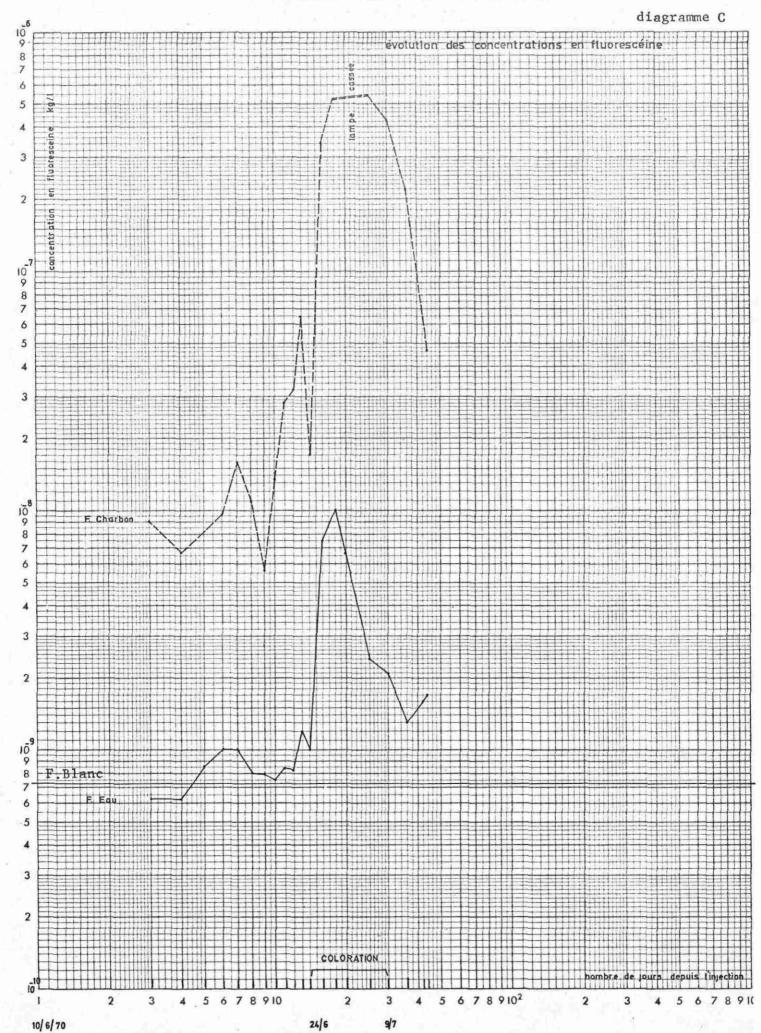
| (LUX      | ES NOUVEAU<br>EMBOURG<br>1962) | ETAGE ANCIEN                                                                                                       | APPELLATIONS LOCALES ET LACUNES<br>LOCALES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TERRAINS TRAVERSES PAR LES PERTES EN- TRE INJECTION ET RESURGENCES |
|-----------|--------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| OXFORDIEN | supérieur                      | "RAURACIEN"                                                                                                        | Terres pouries ou marnes de con control con control co | Résurgences                                                        |
| ΧO        | moyen                          | "ARGOVIEN"                                                                                                         | Calcaires à chailles ou rocail-<br>leux<br>Calcaires à Spongiaires inférœur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,s                                                                 |
|           | inférieur                      | "OXFORDIEN"                                                                                                        | Oolithes ferrugineuses<br>Lacune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |
| Z         | · supć                         | s.s.<br>rieur                                                                                                      | Lacune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| LLOVIEN   | moy                            | ve <b>n</b>                                                                                                        | Calcaires oolithiques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| CALLO     | infé                           | irieur                                                                                                             | Calcaires à chailles<br>Calcaires marneux à Digonella<br>divionensis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |
| ATHONIEN  | Supérieur                      | Calcaires bicolores et Marnes à<br>Eudesia Cardium<br>Calcaires compacts ou comblan-<br>chien<br>Oolithes blanches | Pertes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |
| ВАТНС     | m                              |                                                                                                                    | Marnes à Pholadomyes ou "Vésu-<br>lien"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |

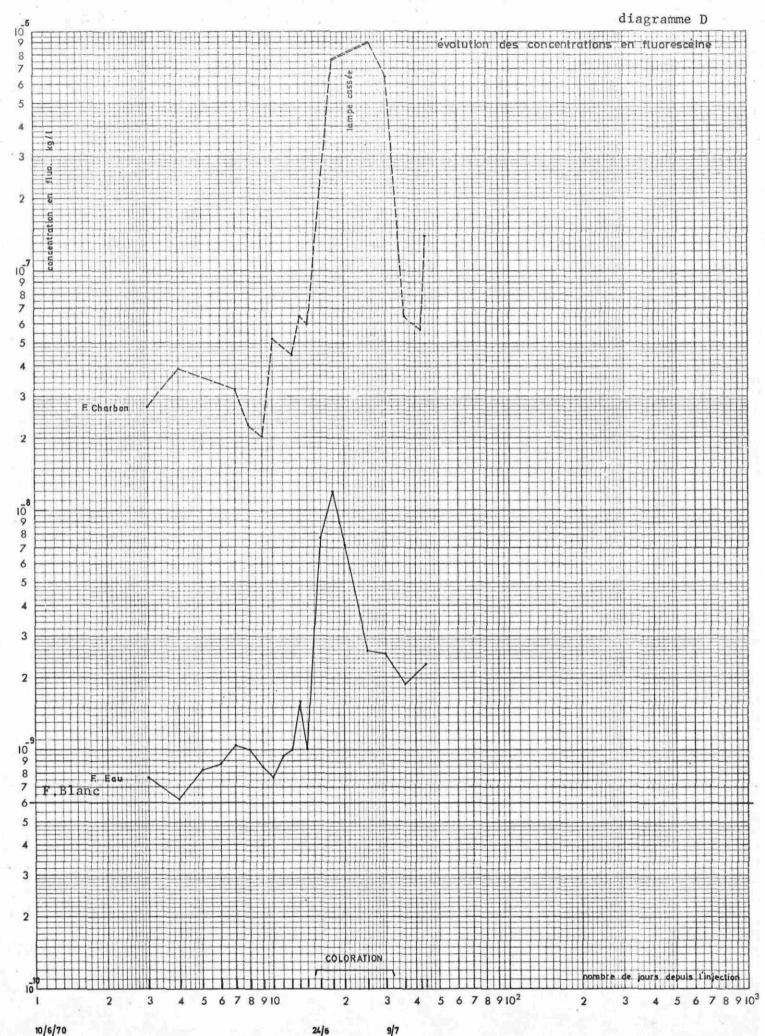


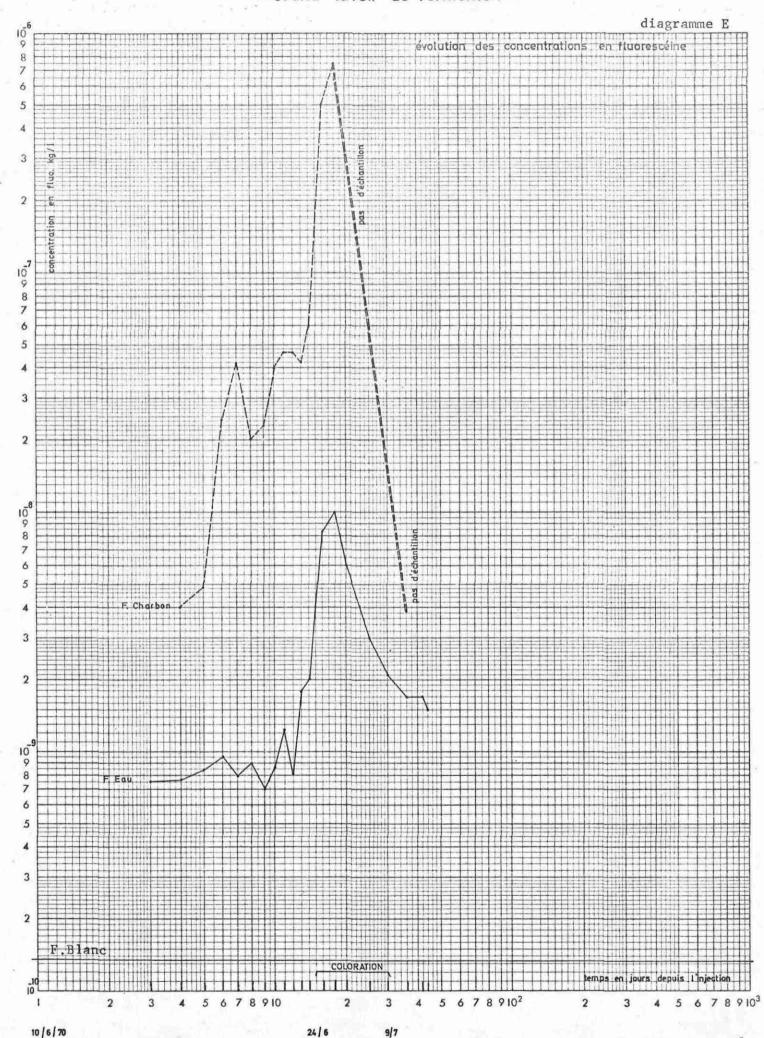



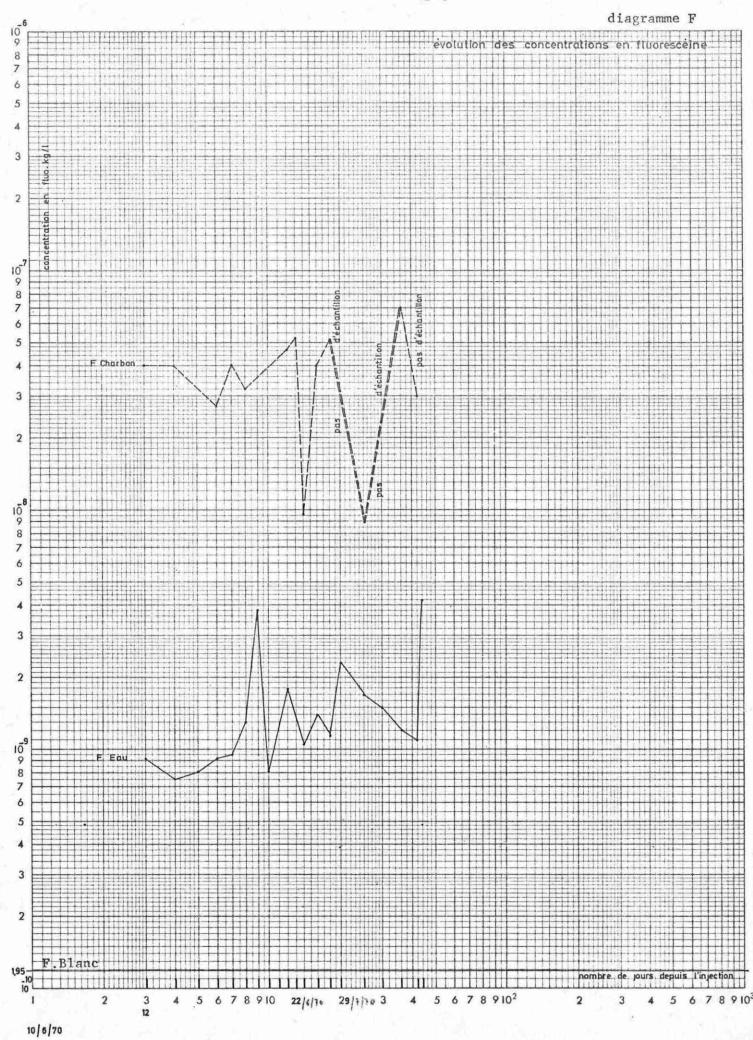



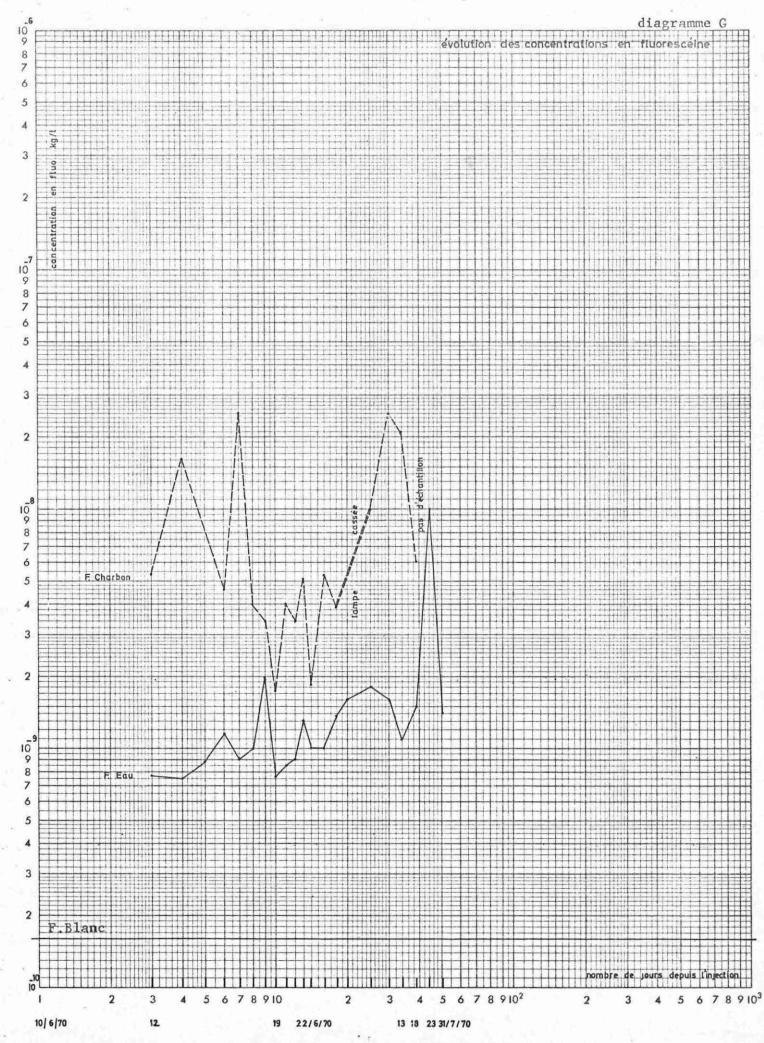



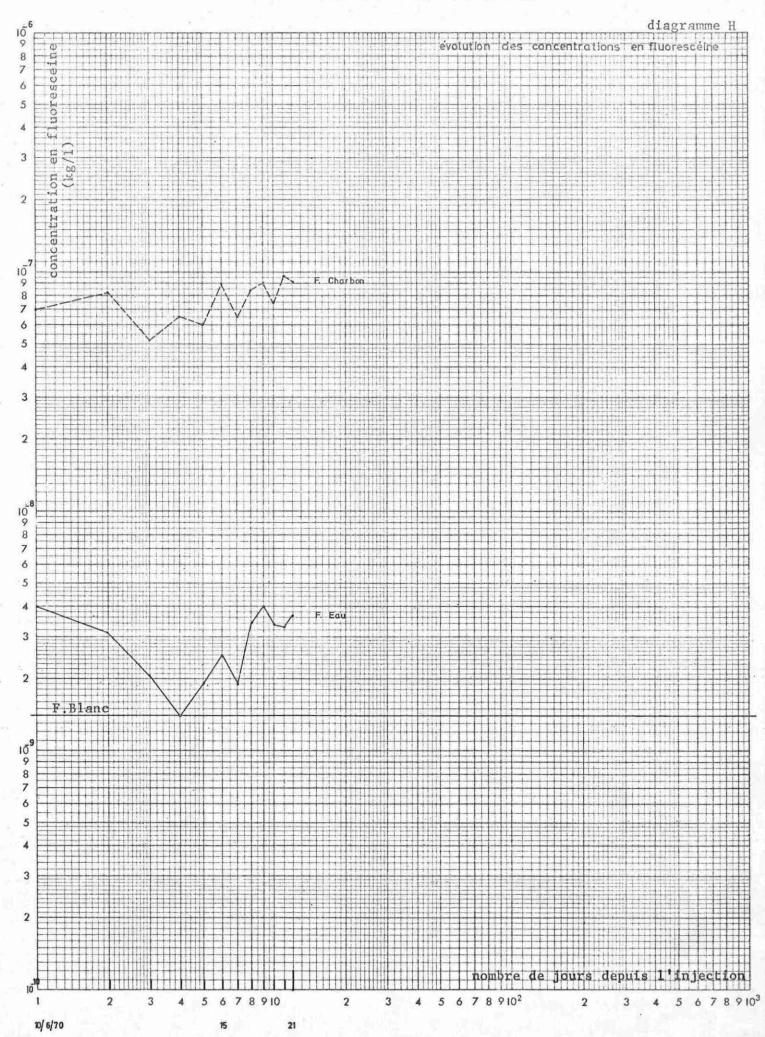



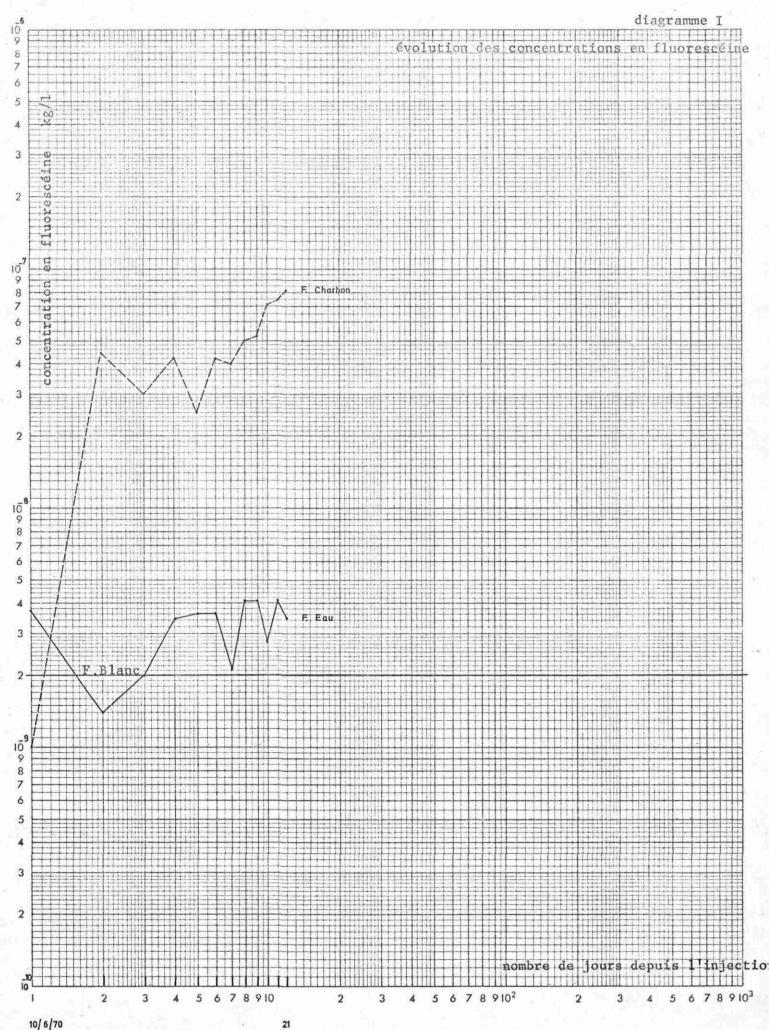



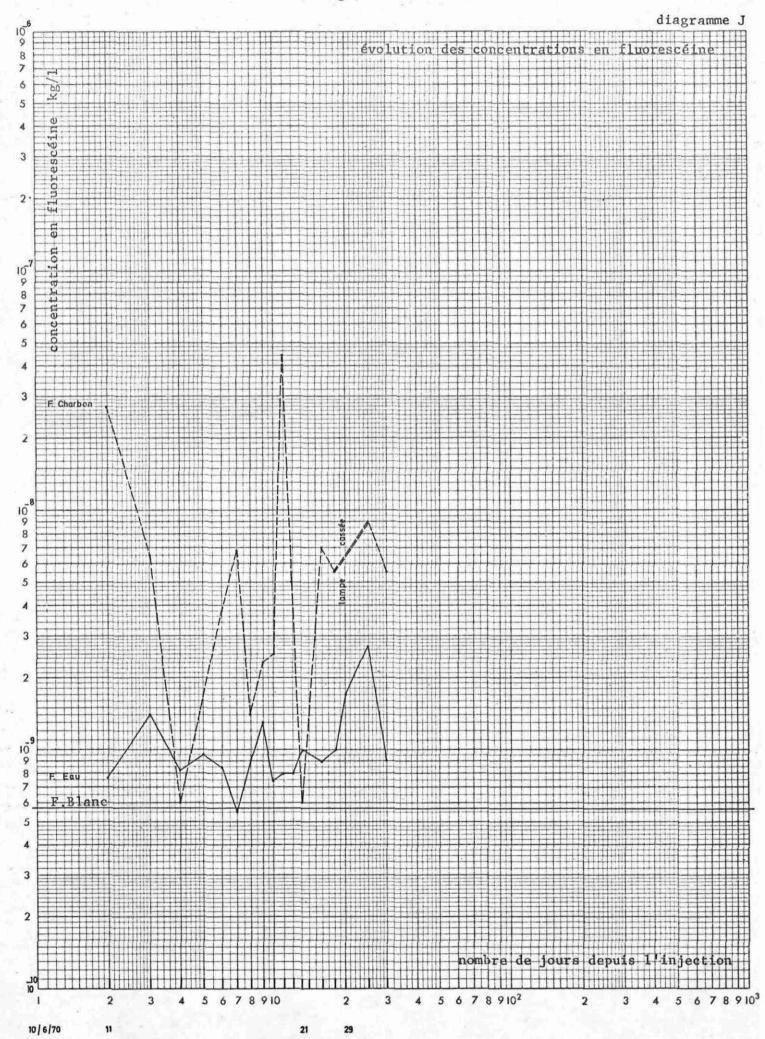



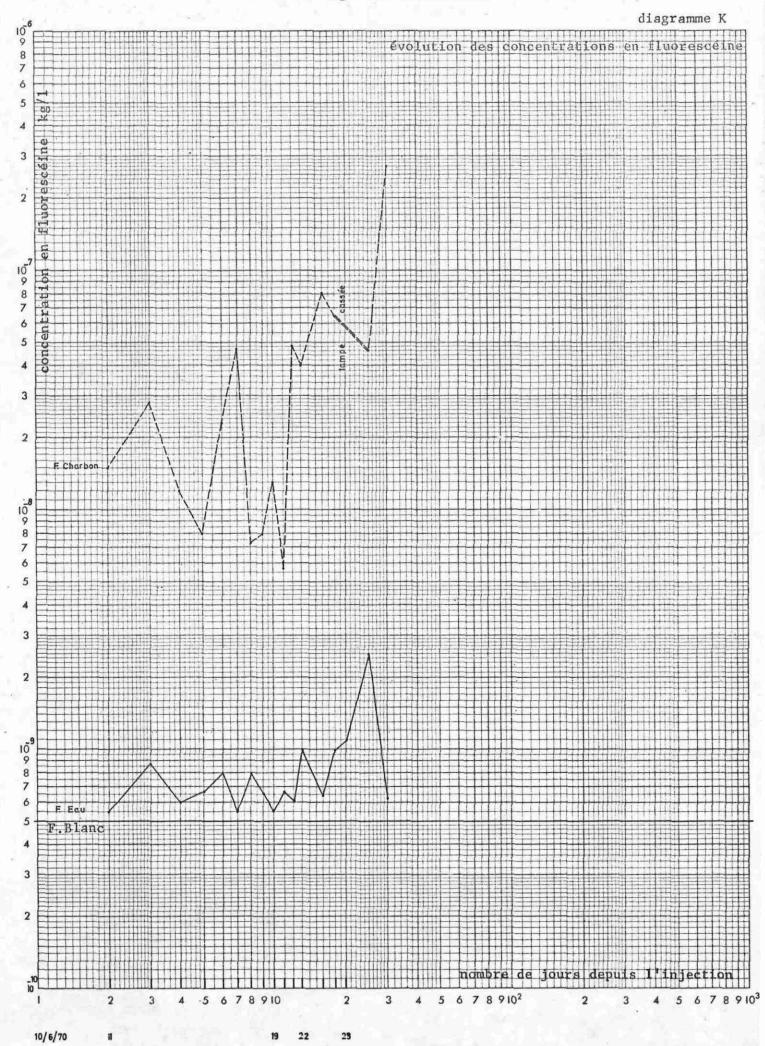



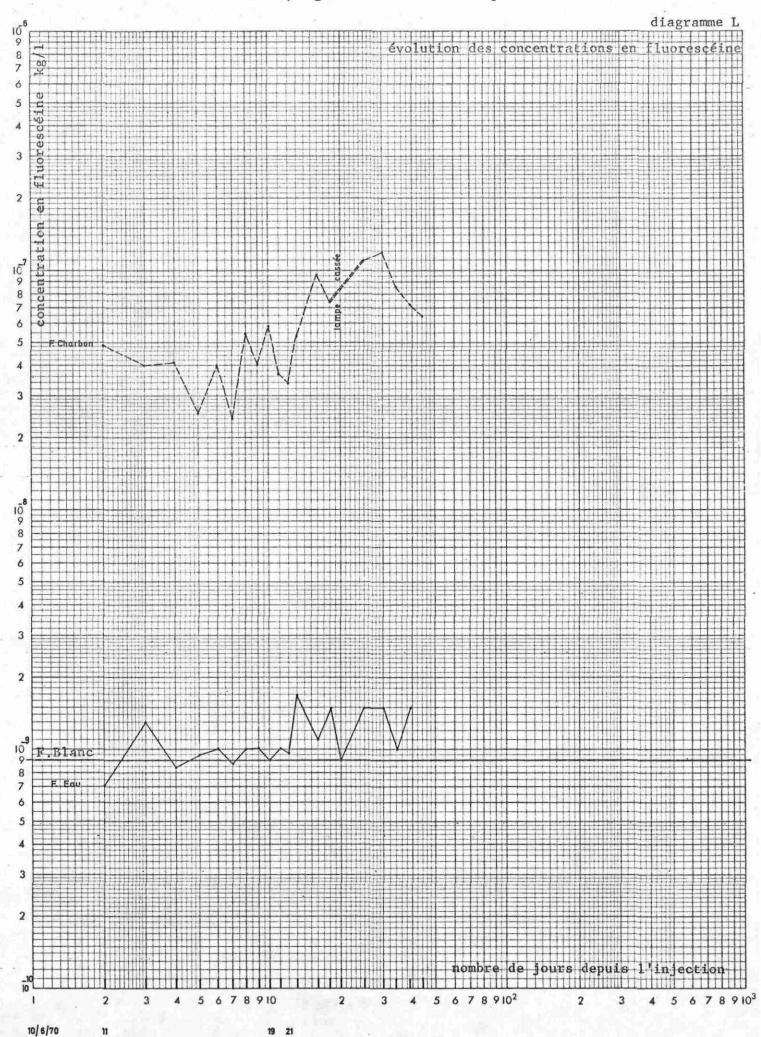



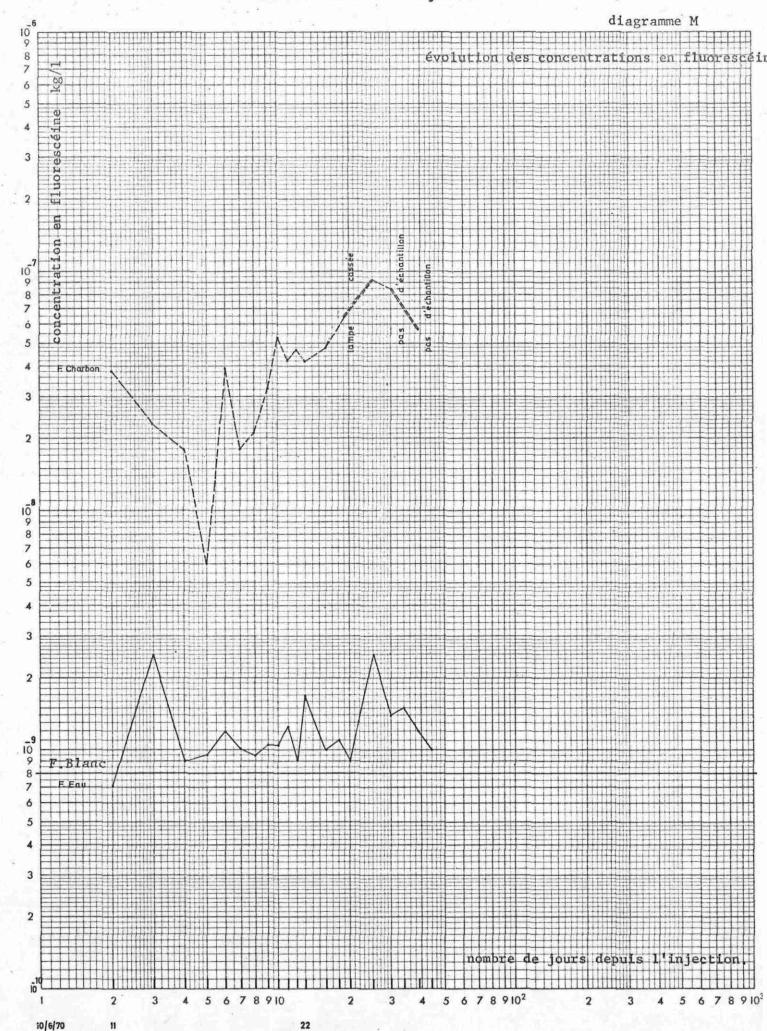



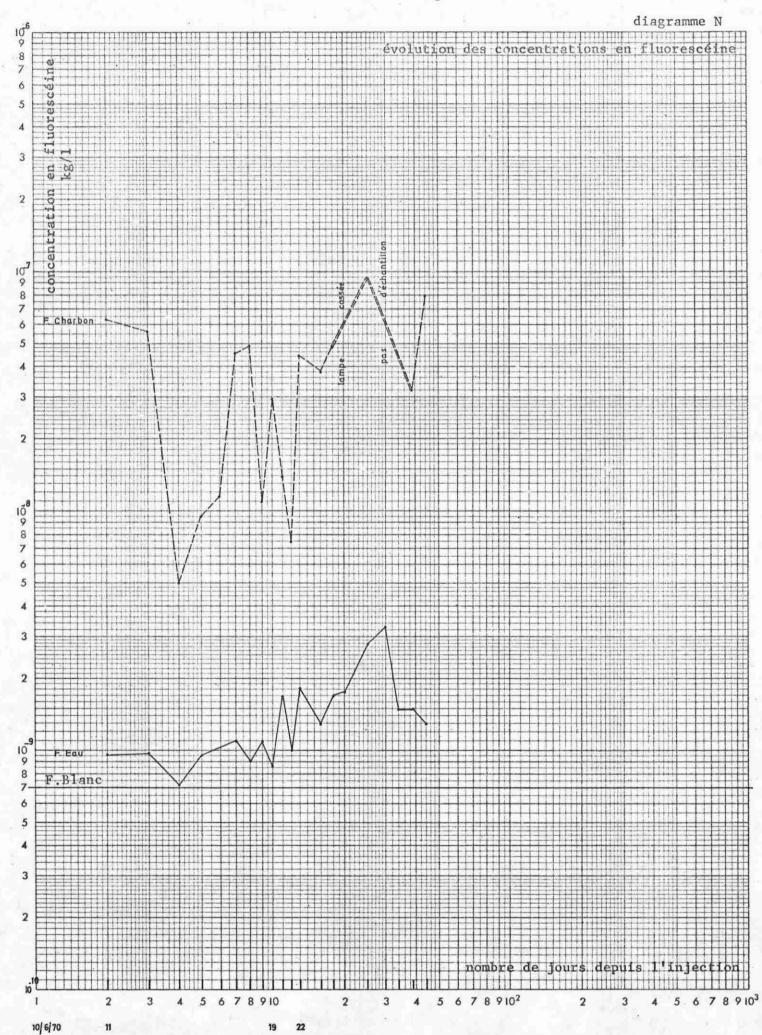



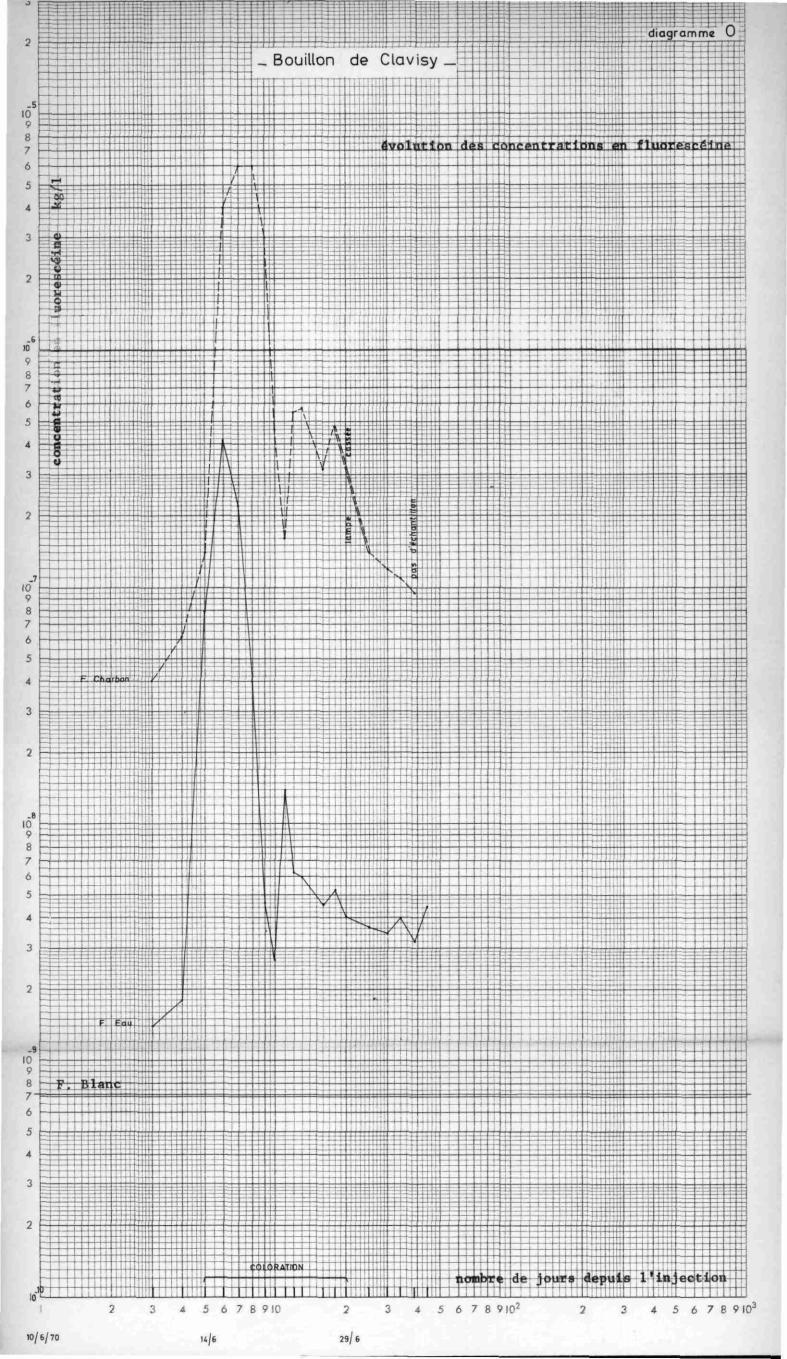



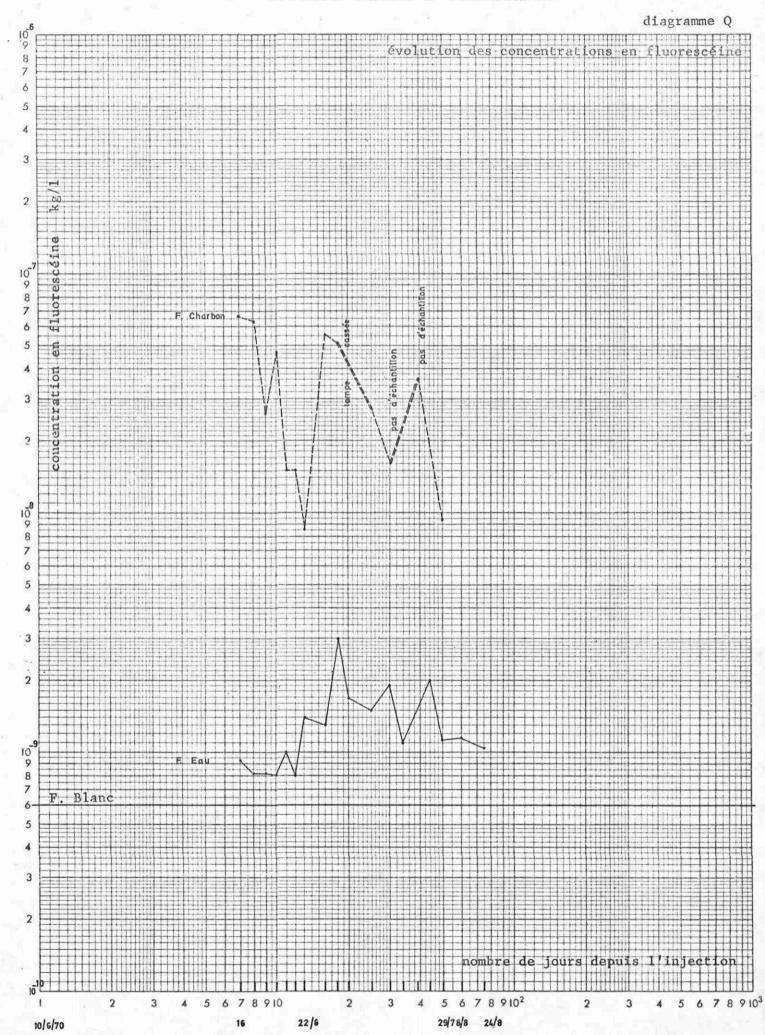



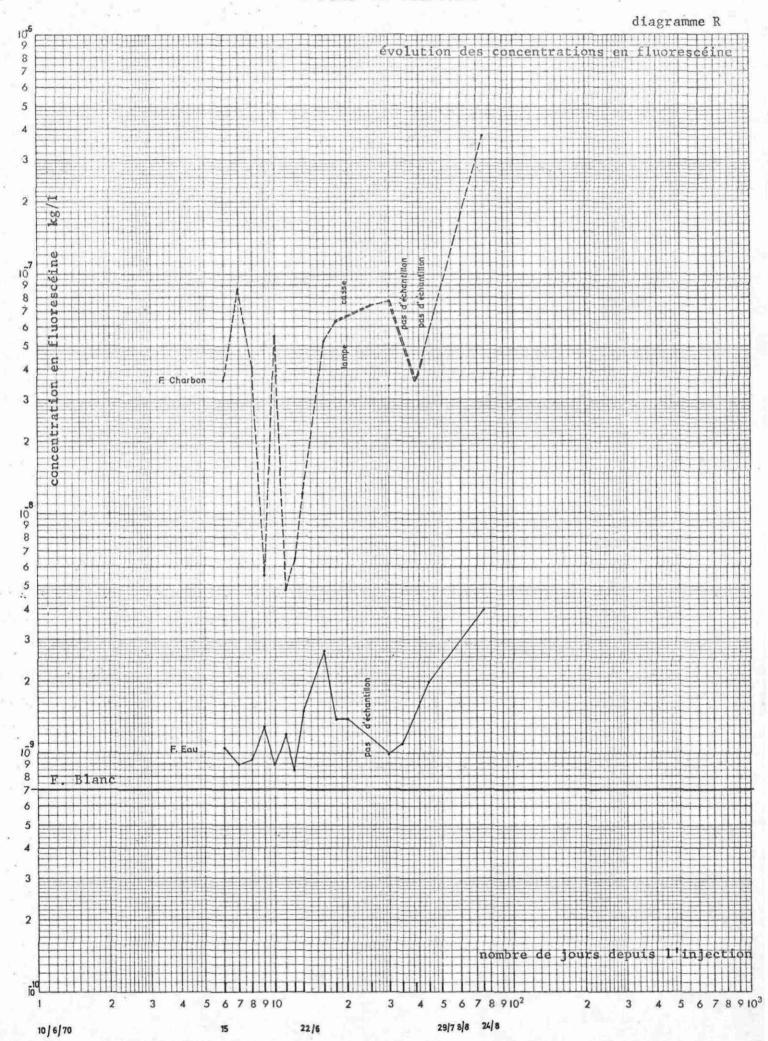



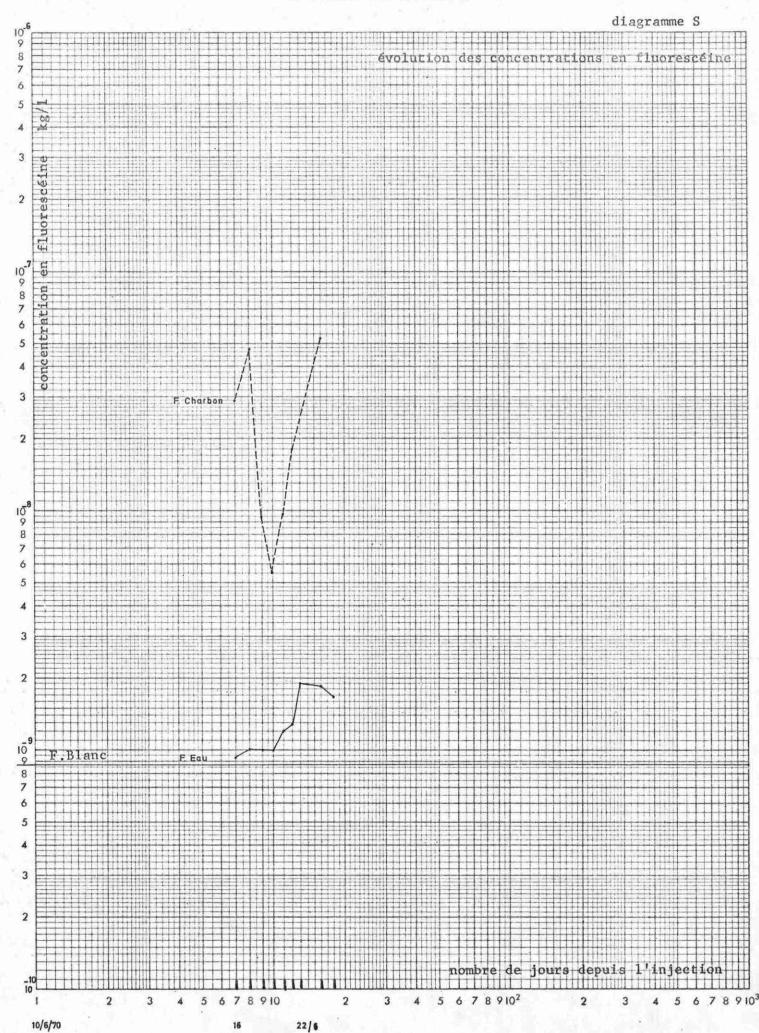




















22/6

10 6 70

7 8 9 102

29/7 8/8 24/8