

Ministère de l'Industrie, des Postes et Télécommunications et du Commerce extérieur

S.I.A.E.P. de la Demoiselle S.H.A. de la Trégonce

gestion des ressources en eau du bassin de la Trégonce (Indre)

phase 4 - modélisation

phase 4.1 - Etude des écoulements de la nappe du Jurassique supérieur par modélisation hydrodynamique

> décembre 1994 Rapport du BRGM R 38254

numéro de référence P05200136

BRGM

Service Géologique Régional Centre Département Utilisation et Protection de l'Espace Géologique Groupe Dynamique des Hydrosystèmes B.P. 6009 - 45060 ORLÉANS CEDEX 2 - France - Tél. : (33) 38.64.34.34

Étude réalisée dans le cadre des actions de Service public du BRGM

94 - D <u>- 108</u>

Mots clés : MARTHE, Modélisation, Hydrodynamique, Géologie, Jurassique, Trégonce (Indre).

En bibliographie, ce rapport sera cité de la façon suivante :

MARTIN J.-C., LE NINDRE Y.M. (1995) - Gestion des ressources en eau du bassin de la Trégonce (Indre). Phase 4 : modélisation. Phase 4.1 : étude des écoulements de la nappe du Jurassique supérieur par modélisation hydrodynamique. Rap. BRGM R 38254, 69 p., 21 fig., 6 tabl., 1 ann.

© BRGM, 1994, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM

Résumé

L'étude de la modélisation de la nappe du Jurassique supérieur du bassin de la Trégonce (Indre) correspond à la phase 4 du marché négocié de travaux, du 6 février 1992, entre le Syndicat Intercommunal d'Alimentation en Eau Potable de la Demoiselle (maître d'ouvrage) et le BRGM.

A partir des données recueillies sur le terrain, au cours des étapes précédentes du projet phase 1 : état des lieux, phase 2 : travaux, phase 3 : mesures -, il a été élaboré un modèle hydrodynamique de simulation des écoulements souterrains de la vallée de la Trégonce. Ce modèle est parfaitement calé en régime permanent sur la piézométrie de septembre 1994, et en régime transitoire sur les débits de la Trégonce et les historiques piézométriques observés sur les forages PZ1, PZ4 et PZ5.

Cet outil a permis de simuler deux scénarios d'exploitation différents afin de mettre en évidence l'impact des prélèvements agricoles sur les débits de la Trégonce :

- Simulation 1 : sur la période 1992 à juillet 1994, on a simulé les débits de la Trégonce en l'absence de prélèvement agricole. On constate une augmentation significative de ces débits, en particulier la rivière n'aurait pas été asséchée durant les mois de juillet à septembre 1992 ;
- Simulation 2 : sur la période 1992 à juillet 1994, on a simulé les débits de la Trégonce en majorant de 50 % les prélèvements agricoles. On constate une baisse significative de ces débits, en particulier l'assèchement de la rivière durant l'été 1992 aurait débuté un mois plus tôt.

Dès les premières pluies de septembre, quelles que soient les conditions d'exploitation de la nappe lors de la période d'irrigation, on retrouve rapidement les débits naturels de la rivière. Ce schéma de fonctionnement s'explique par le fait que l'aquifère est peu capacitif. Les pluies rechargent rapidement le réservoir, mais la réserve n'est pas suffisante pour assurer un volume de prélèvement supérieur annuel aux pompages actuels qui sont de 1,3 Mm³/an.

.

TABLE DES MATIERES

INTRODUCTION	9
1. CARACTERISTIQUES GEOLOGIQUES DE L'AQUIFERE	11
1.1. Stratigraphie	
1.1.1. Calcaires jurassigues	
1.1.2. Crétacé	
1.1.3. Eocène	
1.1.4. Plio-Quaternaire	16
1.2. Structure	17
1.2.1. Les failles	
1.2.2. Les déformations souples	19
1.3. L'aquifère	20
1.3.1. Faciès des calcaires à l'affleurement	20
1.3.2. Reconstitution géométrique de l'aquifère	21
1.3.3. Piézométrie	
1.3.4. Coupes géologiques	27
1.4. Le système hydrogéologique	
2. CARACTERISTIQUES HYDROGEOLOGIQUES DE L'AQUIFERE	35
2.1. Paramètres hydrodynamiques de l'aquifère	35
2.2. Données piézométriques	35
2.3. Données hydrométriques et régime hydrologique de la Trégonce	
2.4. Recharge par les pluies efficaces	
2.5. Prélèvements agricoles et AEP	
3. LE MODELE HYDRODYNAMIQUE	41
3.1. Logiciel utilisé pour la modélisation	41
3.2. Caractéristiques du modèle	41
3.2.1. Maillage	

.

.

ł

.

3.2.3. Superficie du modèle
3.3. Données du modèle
4. CALAGE DU MODELE
4.1. Démarche du calage
4.2. Calage en régime permanent45
4.2.1. Piézométrie calculée454.2.2. Champ de perméabilité454.2.3. Bilan hydraulique moyen annuel49
4.3. Calage en régime transitoire
4.3.1. Historique des débits de la Trégonce
5. EXPLOITATION DU MODELE
5.1. Simulation de l'arrêt des prélèvements agricoles (simulation 1)
5.2. Simulation d'une augmentation des prélèvements agricoles (simulation 2)
CONCLUSION
BIBLIOGRAPHIE
ANNEXE - Résultats piézométriques de la campagne de septembre 1994

ź

LISTE DES FIGURES

- Fig. 1a Situation de l'étude.
- Fig. 1b Bassin versant de la Trégonce Ecorché des calcaires jurassiques.
- Fig. 2 Bassin versant de la Trégonce Les formations argilo-sableuses de recouvrement.
- Fig. 3 Schéma structural de la Champagne berrichonne, par S. Debrand-Passard et Y. Gros (1980).
- Fig. 4 Carte des isohypses du mur du Calcaire de Levroux.
- Fig. 5 Topographie du bassin de la Trégonce.
- Fig. 6 Epaisseur de l'aquifère du bassin de la Trégonce.
- Fig. 7 Carte piézométrique de la campagne de septembre 1994, et variogramme des données.
- Fig. 8 Coupe géologique 1 (WNW-ESE) de Argy à Châteauroux.
- Fig. 9 Coupe géologique 2 (NNW-SSE) passant par les piézomètres PZ5 et PZ3.
- Fig. 10 Coupe lithostratigraphique au piézomètre PZ3.
- Fig. 11 Coupe géologique 3 (WNW-ESE) passant par le vallée de l'Indre.
- Fig. 12 Emplacement des forages agricoles et AEP, et limites des parcelles irriguées.
- Fig. 13 Schéma du maillage et des conditions aux limites du modèle hydrodynamique.
- Fig. 14 Carte des piézométries observée (septembre 1994) et calculée en régime permanent.
- Fig. 15 Corrélation entre les valeurs de piézométrie observée et calculée en régime permanent.
- Fig. 16 Carte du champ de perméabilité du modèle hydrodynamique.
- Fig. 17 Reconstitution des débits de la Trégonce (période 1992 1994).
- Fig. 18 Reconstitution des variations piézométriques.
- Fig. 19 Débits simulés de la Trégonce pour trois hypothèses d'exploitation de l'aquifère : situation de 1993, arrêt et augmentation des prélèvements agricoles.
- Fig. 20 Débits souterrains à l'exutoire aval, simulés pour trois hypothèses d'exploitation de l'aquifère : situation de 1993, arrêt et augmentation des prélèvements agricoles.

LISTE DES TABLEAUX

- Tabl. 1 Valeurs des transmissivités et perméabilités disponibles.
- Tabl. 2 Valeurs des débits et débits spécifiques disponibles.
- Tabl. 3 Débits moyens de la Trégonce
- Tabl. 4 Estimation des prélèvements agricoles (résultats de l'année 1993).
- Tabl. 5 Bilan hydraulique moyen annuel.
- Tabl. 6 Débits observés de la Trégonce et valeurs simulées par le modèle hydrodynamique (résultats du calage et simulations).

Fig. 1a - Situation de l'étude.

INTRODUCTION

L'étude de la modélisation de la nappe du Jurassique supérieur (localisation : fig. 1a) du bassin de la Trégonce (Indre) correspond à la phase 4 du marché négocié de travaux, du 6 février 1992, entre le Syndicat Intercommunal d'Alimentation en Eau Potable de la Demoiselle (maître d'ouvrage) et le BRGM.

La modélisation hydrodynamique, présentée dans ce rapport (phase 4.1), a été précédée d'une étude de la recharge de l'aquifère par une modélisation hydrologique globale pluie-débit faite avec le logiciel GARDENIA et qui figure dans le rapport R 38155 (phase 4.2).

Ce document est composé de trois parties :

- la première partie décrit les caractéristiques géologiques et hydrogéologiques du système aquifère de la nappe du Jurassique supérieur (chap. 1 et 2);
- la seconde partie expose les caractéristiques du modèle hydrodynamique réalisé avec le logiciel MARTHE, et les résultats du calage en régime permanent et transitoire (chap. 3 et 4);
- la troisième partie présente les simulations effectuées avec le modèle pour mettre en évidence et chiffrer l'impact des pompages agricoles sur les débits d'étiage de la Trégonce (chap. 5).

La réalisation de l'ensemble du projet (mesures de terrain et interprétation des données) a été suivie par un comité de pilotage composé de la DIREN, de l'Agence de Bassin Loire-Bretagne et du BRGM.

L'étude de la ressource en eau souterraine de la vallée de la Trégonce, tel qu'elle a été menée dans ce projet, constitue une étude à caractère méthodologique.

Les résultats des phases précédentes ont fait l'objet des rapports suivants :

- phase 1 : rapport BRGM R 35686 CEN 4S/92 (septembre 1992) ;
- phase 2 : rapport BRGM R 37799 CEN 4S/93 (septembre 1993) ;
- phase 3 : rapport BRGM R 38007 (mai 1994).

1. CARACTERISTIQUES GEOLOGIQUES DE L'AQUIFERE

La Trégonce est un petit affluent de l'Indre, en rive droite. Son bassin versant topographique, de forme losangique couvre une surface d'environ 100 km². Les terrains qui le constituent sont sommairement de deux types :

- des calcaires d'âge jurassique supérieur qui forment le substratum de la région (fig. 1b),

- des formations de couverture, épaisses généralement de un à quelques mètres seulement, plus récentes et géométriquement discordantes sur les calcaires, de nature argilo-sableuse ou caillouteuse (fig. 2).

La répartition de ces formations est donnée par la carte géologique à 1/50 000 de Châteauroux (Debrand-Passard *et al.*, 1972).

1.1. STRATIGRAPHIE

La série s'organise de bas en haut en quatre groupes séparés par trois discontinuités majeures :

- calcaires du jurassique supérieur (Oxfordien supérieur à Kimméridgien);

- argiles et sables du Cénomanien (Crétacé supérieur), qui tronquent obliquement les calcaires du nord vers le sud ;
- sables, graviers et silex résiduels de l'Eocène ;
- limons, sables et graviers du Plio-Quaternaire.

Chaque discontinuité correspond à des surfaces d'érosion, par transgression ou émersion, et de karstification accompagnée, ailleurs dans le Berry (région du Blanc et plus largement, territoire de la feuille à 1/320 000 Bourges), de silicification et ferruginisation des calcaires sous-jacents.

1.1.1. Calcaires jurassiques

Ils représentent quantitativement l'essentiel des formations géologiques et constituent ici l'aquifère (fig. 1). On distingue de bas en haut trois formations (Debrand-Passard, 1982) : les calcaires de Von, les calcaires lités supérieurs et les calcaires de Buzançais.

a) Les calcaires de Von et leurs équivalents latéraux

("~" : "épaisseur ~" 50 m, Oxfordien supérieur, sommet de la zone à Bimammatum et base de la zone à Planula)

Les calcaires de Von sont visibles à l'affleurement à l'est de Saint-Maur et notamment dans la localité type, en carrière (~ 10 m). Ce sont des calcaires fossilifères à Spongiaires, bien développés à l'est de Saint-Maur. Ils se sont déposés à l'Oxfordien supérieur dans un fossé d'orientation nord-sud situé entre l'Indre et le Cher et limité par les failles de Saint-Maur et d'Issoudun.

Fig. 1b - Bassin versant de la Trégonce - Ecorche des calcaires jurassiques.

Calcaires de Buzançais

Calcaires de Levroux

Calcaires de Montierchaume

Calcaires à Spongiaires de Von

Mardelles (fontis, dolines)

Coupe 1 d'Argy à Châteauroux

Ressources en eau du bassin de la Trégonce - Phase 4 : modélisation

-1

Fig. 2 - Bassin versant de la Trégonce - Les formations argilo-sableuses de recouvrement.

Formation d'épandage de la croix Pascaud

Complexe fluviatile du Bois Bézard

Complexe détritique du bois de la Tuilerie

Cénomanien possible

Cénomanien

Ils se distinguent des formations de plate-forme qui s'étendent de part et d'autre : calcaires craveux de Bourges et calcaires de Brenne, par l'absence d'oolithes de gravelles et de la faune associée, riche en polypiers. Corrélativement, les spongiaires et les ammonites y sont en plus grande abondance. Ceci implique qu'à l'affleurement, à proximité de Châteauroux on observe les calcaires de Von sous leur faciès à biohermes à spongiaires, mais qu'en subsurface, sous le bassin de la Trégonce, il s'agit des Calcaires subrécifaux de Brenne.

b) Les calcaires lités supérieurs

(Oxfordien supérieur et Kimméridgien inférieur)

Comme leur nom l'indique, ils se caractérisent dans l'ensemble, par un débit plaqueté dû à une sédimentation en bancs minces séparés par des lits faiblement argileux. Ils comprennent deux membres définis localement : les calcaires de Montierchaume et les calcaires de Levroux.

• Les calcaires de Montierchaume

(~ 50 m, Oxfordien supérieur, sommet de la zone à Planula)

Ce sont des calcaires fins peu ou pas fossilifères à pseudomorphoses de gypse à interlits argileux plus ou moins nombreux et épais. On les subdivise en deux unités lithologiques :

- les Calcaires de Saint-Maur (~ 40 m), calcaires fins mudstone à pseudomorphoses de gypse, lentilles gréseuses et interlits argileux subordonnés;
- les Marno-calcaires de Déols (~ 10 m), alternances de calcaires, marnes (dominantes à ~ 50 % de CaCO₃), et argiles (~ 30 %) finement plaquetées ou feuilletées, gris, riches en petites ammonites. L'existence de ce terme plus marneux au sommet des calcaires de Montierchaume a pu être suivi avec certitude jusque sur le territoire couvert par la feuille à 1/50 000 de Bourges.

Les calcaires de Montierchaume étaient autrefois décrits comme composés de trois unités (Debrand-Passard et al., 1972):

- calcaires de Saint-Maur (40 m);
- marno-calcaires de Déols (10 m);
- calcaires du Crevant (40 m).

Il y a en fait identité entre les calcaires de Saint-Maur et les calcaires du Crevant dont la présence était simplement due à une remontée anticlinale des premiers (Debrand-Passard, 1982 et comm. orale).

• Les Calcaires de Levroux

(~ 80 m, au maximum 100 m, Kimméridgien inférieur, zones à Rupellensis et à Cymodoce (pars))

Ce sont des calcaires fins à débit en dalles plus ou moins prismatiques de quelques centimètres à 10 cm d'épaisseur avec des intercalations de niveaux fossilifères lumachelliques à faciès plus

Rapport BRGM R 38254

massif dit "en têtes de chat" et des lentilles de calcaire gréseux. Dans le détail, deux unités peuvent être distinguées par l'examen des fossiles :

- le calcaire de Levroux inférieur (~ 50 m, zone à Rupellensis Hantzpergue et Debrand-Passard, 1980), contenant lamellibranches, brachiopodes, annélides, crinoïdes. Les lamellibranches dominent et les niveaux fossilifères deviennent plus nombreux, mais plus minces vers le sommet;
- le calcaire de Levroux supérieur (~ 30 m, zone à Cymodoce), bien exposé à l'affleurement et traversé par les forages peu profonds, notamment sur une trentaine de mètres par le forage stratigraphique de la Trégonce (prairie de Trégonce, commune de Levroux, x : 548,4; y : 217,1 ; z : + 162 m NGF). Ils se distinguent des premiers par la disparition des brachiopodes et la fréquence d'un petit gastéropode de la famille des Nérinées, groupe commun à cette époque. Ils ne contiennent gère plus de 10 % d'argile et quartz.

c) Les calcaires de Buzançais

(~40 m, Kimméridgien inférieur, zone à Cymodoce (pars)).

Affleurant au nord et à l'ouest du bassin de la Trégonce et érodés en amont en direction du sudest, les calcaires de Buzançais sont constitués par la superposition ou la juxtaposition de calcaires variés, bioturbés, souvent riches en faune, parfois oolithiques. Dans son intégralité, la formation se subdivise en trois membres :

- membre inférieur : alternance de calcaires à pâte fine, de lumachelles, de grès et de marnes, dénommée Marnes et calcaires marneux à fucoïdes (Douvillé et Jourdy, 1874);
- membre moyen : calcaires et marnes à oolithes ferrugineuses ou Oolithe à nérinées (Douvillé et Jourdy, 1874);
- membre supérieur : calcaires gris à pâte fine, bioturbés : *Marnes et calcaires noduleux* (Douvillé et Jourdy, 1874).

Dans l'emprise de la carte de Châteauroux, à l'ouest de la Trégonce, seule la partie inférieure à moyenne de la formation est exposée ; la description en est donnée, outre les échantillons récoltés dans les labours, par le levé d'une tranchée d'adduction entre Saint-Lactencin et Argy : ce sont des calcaires fins, argileux, avec un débit rognoneux qui s'oppose au débit en plaquettes des formations précédentes. Différents niveaux correspondant à des sédimentations condensées s'y intercalent : microconglomérats calcaires, lumachelles à huitres, surfaces et oolithes ferrugineuses.

1.1.2. Crétacé

Les dépôts attribués au Crétacé (fig. 2) comprennent des formations argilo-sableuses du Cénomanien et des épandages de silex résiduels du Crétacé supérieur.

a) Cénomanien

Ces terrains sont constitués d'argiles, argiles sableuses, sables et grès d'épaisseur limitée (0 à 3,70 m estimés par sondage à la tarrière).

Ils appartiennent à un complexe transgressif incluant régionalement : argiles, sables propres, grès, sables glauconieux qui reposent en discordance sur des niveaux variés du Jurassique et moulent des paléotopographies. Le Cénomanien est plutôt argileux en surface et inclut des chailles jurassiques roulées. Sous la surface de transgression, le calcaire jurassique tronqué apparaît globalement moins altéré que dans d'autres localités quoiqu'il soit parfois décalcifié sur une quarantaine de centimètres (ferme de Baugy).

L'attribution stratigraphique au Cénomanien a été faite soit par datation directe (grès et marnes à Orbitolines (coupe du Méez sur la carte voisine de Levroux) soit par analogie de faciès (morphoscopie des sables) ou présence de minéraux caractéristiques (glauconie).

b) Silex du Crétacé supérieur

Il s'agit d'une formation résiduelle reposant sur le Cénomanien et caractérisée par des silex bruns à cortex blanc renfermant une faune silicifiée de plate-forme externe et notamment des foraminifères planctoniques du Crétacé supérieur.

1.1.3. Eocène

Il est représenté par des dépôts continentaux silico-clastiques d'origine fluviatile : sables, graviers et silex résiduels. Il comprend (fig. 2) :

- le complexe détritique du bois de la Tuilerie (épaisseur inconnue, Eocène inférieur probable) : ensemble continental comprenant des conglomérats à chailles, des grès blancs ou tachetés et des argiles grises ou versicolores. D'après l'expérience de F. Bavouzet (CERATERA, communication orale *in*: Debrand-Passard *et al.*, 1972), cette formation, dont l'extension est limitée ici à la localité type, représente la base du Tertiaire continental ;
- le complexe fluviatile Bois Bézard (épaisseur supérieure à 5 m, Eocène supérieur probable par déduction régionale), à argiles, sables, galets (dont silex jurassiques) et poudingues, dont l'extension correspond au tracé d'une ancienne rivière s'écoulant du sud vers le nord. Son épaisseur (0,8 à 5 m environ) a été appréciée par des sondages à la tarière. Il semblerait, par construction géométrique, qu'il atteigne des épaisseurs plus importantes au point culminant du bois de Nizerolles (Villegongis).

1.1.4. Plio-Quaternaire

Outre les alluvions présentes dans le lit des rivières, les épandages quantitativement les plus représentés et possédant une expression cartographique importante sont (fig. 2) :

- la formation d'épandage de la croix Pascaud (0 à 1 m, âge incertain, probablement Pliocène) : sables quartzeux et granules ferrugineux ;
- la couverture éolienne "Würm" (un mètre maximum, âge possible par référence à une industie paléolithique décrite par A. Rigaud dans le périmètre de la feuille de Velles; Lorenz *et al. in*: Debrand-Passard *et al.*, 1972): limons argileux et sableux. La base de cette couverture repose indifféremment sur les calcaires jurassiques ou sur les dépôts meubles cénomaniens, tertiaires ou plio-quaternaires.

1.2. STRUCTURE

Dans l'emprise de la carte géologique à 1/50 000 de Châteauroux, la structure générale des calcaires jurassiques est conforme à un pendage général vers le nord-ouest. Les formations décrites ci-dessus s'empilent donc comme des prismes qui s'épaississent dans cette direction et se biseautent par érosion à l'affleurement en amont-pendage. Leur épaisseur varie donc respectivent du sud-est au nord-ouest de zéro à l'épaisseur nominale.

Des déformations souples et cassantes apparaissent déjà par une première interprétation de la cartographie géologique complétée par des arguments de terrain.

1.2.1. Les failles

Il convient d'introduire des nuances dans le degré d'évidence des failles. Une faille est un objet géologique qui se mesure (rejet, direction, pendage, sens). Dans le contexte cartographique particulier du Berry, si la carte géologique réalisée à partir des observations faites dans les labours s'est révélée fiable et précise, il est cependant difficile de toucher du doigt des contacts tectoniques qui sont le plus souvent déduits de la reconstitution cartographique. Nous distinguerons donc : les failles observées et explicitées sur la carte géologique, celles déduites d'information, et régionales.

a) les failles observées et explicitées par la carte géologique

• Faille du Bois de Caillereau

Un point remarquable (*) permet d'observer au Marchais Véron un contact anormal, marqué par une importante brèche, entre le calcaire de Levroux (compartiment haut, au sud - l'étude sismique montre un anticlinal du socle de direction parallèle) et le calcaire de Buzançais (compartiment bas, au nord) de part et d'autre d'une faille de direction ~N135° qui se suit bien en photo aérienne dans le bois de Caillereau. Cette faille décale cartographiquement la base du calcaire de Levroux selon un sens dextre (Debrand-Passard, 1980, *in:* Debrand-Passard, 1982, ann. 1).

• Faille de la Chapelle-Orthemale

Cette faille recoupe la première selon une direction ~ N110°. Elle est mal caractérisée mais cependant argumentée par (* D 67, \star point coté 158) :

Fig. 3 - Schéma structural de la Champagne berrichonne, par S. Debrand-Passard et Y. Gros (1980).

18

- des brèches et des "têtes de chat" (faciès fossilifère du calcaire de Levroux, décalé par la faille) qui la jalonnent ;
- un pendage important pour la région, qui peut être mesuré dans une petite carrière.

• Faille de Saint-Lactencin

De direction ~ N160°, cette faille a été indiquée sur la carte de Châteauroux en raison :

- de la présence du calcaire de Levroux, en position anormalement haute par rapport au contexte environnant (calcaire de Buzançais);
- de la présence probable d'un accident de socle indiqué par la carte magnétique.

Notons que, à la différence des deux premières, cette faille sera sans effet sur la reconstruction géométrique exposée au chapitre suivant qui rend compte de la configuration observée par un système d'anticlinaux et de synclinaux.

b) Les failles déduites d'un faisceau convergent d'informations : la faille de la Trégonce

Dans les limites de la feuille Châteauroux, la partie inférieure rectiligne de la Trégonce et son prolongement par la vallée de Longueville au S-SW de Villedieu-sur-Indre suggèrent la présence d'une faille. Dans cette vallée, près de Villepied, l'extrême abondance du faciès fossilifère à "têtes de chat" dans le compartiment occidental (symboles sur la carte) et leur absence totale dans le compartiment oriental conduisent à déduire que ce dernier est relevé. D'un point de vue géométrique, la reconstitution structurale du mur des calcaires de Levroux (§ 1.3) montre, à cet endroit, une flexure raide qui abaisse le compartiment ouest, totalement cohérente avec l'interprétation précédente. Plus au sud, sur la feuille Velles à 1/50 000, la faille pourrait être observée (Bavouzet, CERATERA, com. orale *in*: Debrand-Passard *et al.*, 1972).

c) Faille régionale : la faille de Saint-Maur

Située à l'ouest de Châteauroux (village de Saint-Maur), cette faille orientée sensiblement N15° (Debrand-Passard, 1982, ann. 1) est un accident majeur qui correspond actuellement à un décrochement sénestre (fig. 3 ; Debrand-Passard et Gros, 1980). Elle se superpose à un accident profond du socle (Debéglia et Debrand-Passard, 1980). Elle participe au système de failles qui délimitaient au Jurassique les grands domaines de sédimentation et marque la limite entre les Calcaires subrécifaux de Brenne à l'ouest et les calcaires à spongiaires de Von (Debéglia et Debrand-Passard, 1980). A la fin du Jurassique supérieur, son rôle semble mineur. Située en dehors du bassin versant de la Trégonce, elle intervient peu dans le schéma hydraulique étudié ici, sinon comme éléments structurant conjugué avec le système d'anticlinaux et de synclinaux.

1.2.2. Les déformations souples

La compression pyrénéenne nord-sud a pour résultat, dans la région de la Trégonce, la création d'un système d'anticlinaux et de synclinaux d'orientation WNW-ESE, associés au décrochement sénestre de Saint-Maur, qui se superposent au pendage général vers l'ouest et aux flexures qui

l'accompagnent (fig. 3, d'après Debrand-Passard et Gros, 1980 et Debrand-Passard et al., 1972). On distingue du sud au nord :

- la zone haute du bois de Caillereau située au sud de la faille du même nom ;
- la zone basse de l'Indre, au nord de la même faille ;
- la zone haute du bois de Villegongis, axe majeur (fig. 3);
- la zone basse des Ferrières au sud de Levrou ;
- la zone haute de Brion et la zone basse située au sud.

Cette architecture est précisée par la reconstitution géométrique qui suit.

1.3. L'AQUIFERE

Le bassin versant topographique de la Trégonce s'inscrit en totalité dans les affleurements des calcaires de Levroux. Au voisinage du piézomètre PZ3 (fig. 4), dans le sud-est du bassin versant, des calcaires plus finement lités et plaquetés à interlits argileux indiquent le contact très proche avec les marno-calcaires de Déols. Au voisinage du piézomètre PZ1, dans l'ouest du bassin versant, on observe des matériels provenant du contact proche entre la formation du Bois Bézard (Eocène), les calcaires de Buzançais et les calcaires de Levroux.

1.3.1. Faciès des calcaires à l'affleurement

a) Aspects généraux

Une tournée de terrain d'une journée sur le site de Trégonce a montré que les calcaires affleurants sont essentiellement des calcaires fins compacts (mudstone) se débitant en dalles qui ne possèdent à priori aucune propriété de réservoir due à une porosité matricielle comme cela aurait pu être le cas avec des calcaires grenus.

Dans les calcaires de Levroux, pour chaque symbole de fossile porté sur la carte géologique, on rencontre des intercalations de calcaire fossilifère (wackestone à packstone), quantitativement subordonnées contenant principalement des mollusques (faciès lumachellique) associés parfois à des annélides, des échinodermes et des coraux.

Les calcaires de Montierchaume ont été observés en dehors du bassin versant de la Trégonce, à l'ouest de Déols (Mauvis, le Pressoir). Ce sont des calcaires de type mudstone se débitant en petites dalles, à cassure grise, contenant des pseudomorphoses de sulfate par la calcite ou des moules de cristaux dissouts de 1 à 2 mm.

b) Faciès au voisinage des principaux piézomètres (localisation fig. 4)

PZ1: bordure du bois de Nizerolles (Eocène) - Sol brun assez argileux à petites plaquettes calcaires. Marne gris-beige à reliques de calcaire beige. Galets de silex noirs et chailles noires (jurassiques) remaniés à l'Eocène.

PZ2 : *la Grouaille* - Calcaire mudstone beige à cassure gris-beige ; rares "têtes de chat" à lamellibranches flottants, limoniteux.

PZ3: *Treuillaut* - Calcaire mudstone pur, parfaitement affleurant, blanc à cassure gris-beige à rares petits lamellibranches *cf.* astartes, traces de clapotis. Débit beaucoup plus plaqueté que les calcaires de Levroux traditionnels, litage interne bien exprimé, joints argileux. Cassure franche et facile. Culture de Tournesol. Prairie sur les argiles du Cénomanien à proximité immédiate.

PZ4 : Puy d'Or - Calcaire de Levroux très bien lavé sur la pente, gélif, avec des niveaux fossilifères à débit plus rognoneux que les mudstones ("têtes de chat") : wackestone (packstone) à nombreux lamellibranches ornementés, foraminifères, et quelques gastéropodes. On note des coquilles costulées mesurant jusqu'à 5 cm, mais les lamellibranches sont plus ou moins dissouts.

PZ5 : *l'Ardillet* - Calcaire empâté par les formations superficielles dans le bas du thalweg ; large dominance des mudstones crème avec quelques lits peu fossilifères : packstones et le plus souvent wackestones à lamellibranches et pistes. On note un saupoudrage de gravillons de quartz rose plus abondants vers le haut de la pente, résiduels du complexe fluviatile du Bois Bézard.

PZ6: *le Pré long* - Calcaire sain mudstone blanc à beige, dur et plus ou moins gris ou beige à la cassure, assez massif, à débit en gros prismes ou dalles de 10 à 20 cm, contenant quelques lamellibranches minces. La texture mudstone est dominante, avec des intercalations de wackestone (packstone) brun à débit en boules à lamellibranches, gastéropodes, échinodermes, brachiopodes (R), annélides : fossiles entiers centimétriques et quelques gros gastéropodes de 5 ou 6 cm.

c) Autres observations

La grande rivière (3 pompes à 100 m³/h) : calcaire mudstone assez massif à débit en grosses dalles de 20 cm ; cassure gris pâle ; pas de faciès fossilifère. Le débit est plus fin en se rapprochant du thalweg (2 - 20 cm) et plus grossier en amont vers le sud-est (10 - 30 cm).

Moulin neuf (puits d'irrigation) : calcaire mudstone à petit débit (moins de 20 cm), sain, à cassure gris pâle, sans fossiles.

La maison neuve (Bergougnan, forage) : langue d'argile sableuse du Cénomanien (1,10 m d'épaisseur) mal drainée. Culture de maïs.

La Beauce (forage, pompe à $65 \text{ m}^3/\text{h}$) : calcaire mudstone bien affleurant.

1.3.2. Reconstitution géométrique de l'aquifère

Pour l'ensemble de l'étude géologique, les opérations faisant intervenir des calculs ou des représentations graphiques utilisant un logiciel informatique ont toutes été réalisées à l'aide de GDM (BRGM-GEOMATH®). Les modélisations numériques des géométries et de la piézométrie ont été réalisées selon un maillage commun à toute l'étude couvrant sensiblement

Fig. 4 - Carte des isohypses du mur du Calcaire de Levroux.

Rapport BRGM R 38254

la feuille à 1/50 000 Châteauroux, le modèle hydrodynamique étant limité à sa partie centrale correspondant au bassin versant de la Trégonce. Les caractéristiques en sont les suivantes :

- origine (coordonnées Lambert zone 2 étendue) : 532 000, 2 201 000 m ;
- taille d'une maille en x et en y : 200 x 200 m ;
- nombre de mailles en x et en y : 130 x 95.

a) Mur des calcaires de Levroux

Ce niveau stratigraphique a servi de base à la reconstitution structurale. Il correspond en effet :

- à un horizon dont l'altitude peut être déterminée à l'aide des indications cartographiques existantes : contacts avec le calcaire de Buzançais (explicite sur la carte) et le calcaire de Montierchaume (tracé à partir des extensions de faciès dans les labours), épaisseur présumée (déduit de la carte, des coupes en carrière et des forages existants);
- à une limite marquée par un contraste de faciès et de perméabilité avec les horizons sousjacents (marno-calcaires de Déols).

Pour construire cette surface, nous avons successivement :

- noté sur la carte géologique l'altitude du toit au contact des calcaires de Buzançais ;
- retranché l'épaisseur nominale de la formation (80 m);
- noté l'altitude du mur au contact du calcaire de Montierchaume ;
- consolidé cette esquisse par une coupe géologique transversale NW-SE d'Argy à Châteauroux construite à la main sur la carte géologique donnant les cotes du mur d'est en ouest, depuis la limite externe de la formation (épaisseur 0) jusque sous le recouvrement des calcaires de Buzançais (fig. 1 et 4).

L'altitude a ensuite été estimée en tous points d'une grille à maille régulière $(200 \times 200 \text{ m})$ superposable à celle du modèle hydrodynamique en utilisant un modèle géostatistique obtenu par analyse variographique. Les paramètres du modèle sont les suivants (fig. 4a) :

- dérive linéaire de degré 1 vers le NW et minimale selon N35° traduisant l'effet du pendage ;
- pas d'effet de pépite ;
- modèle du type k.H α avec k = 20 et α = 1,5 conforme au variogramme expérimental classique pour des données topographiques (Mandelbrot);
- le voisinage est calculé par le programme de krigeage dans les limites d'un polygone conforme à l'extension du bassin versant.

Les failles sont introduites dans le calcul et dans la représentation graphique. Les rejets ne sont pas imposés mais résultent de l'estimation des altitudes de part et d'autre de la faille. La faille de la Trégonce n'a été introduite qu'après confirmation d'une structure conforme à sa présence. Elle vient donc parfaire le modèle géologique et explique une certaine répartition des perméabilités dans le modèle hydrodynamique (fig. 4b). On retrouve d'une manière plus concrète et plus précise sur cette carte structurale les grandes entités décrites plus haut, notamment la superposition d'une flexure NE-SW et d'ondulations NW-SE, ainsi qu'une zone basse limitée par deux faille, au sud-ouest. La rivière Trégonce emprunte le pied de la flexure puis la zone faillée.

Fig. 5 - Topographie du bassin de la Trégonce.

Rapport BRGM R 38254

b) Toit des calcaires de Levroux

Les calcaires de Levroux inférieurs (50 m maximum) et supérieurs (30 m maximum) ont été distingués. Le toit des calcaires de Levroux est placé à 80 m maximum au-dessus du mur ou remplacé par le mur des formations argilo-sableuses discordantes post-jurassiques ou la surface topographique jusqu'à une épaisseur égale à 0 en amont-pendage.

c) Autres formations calcaires

Les altitudes des surfaces correspondant aux limites des formations calcaires sous-jacentes (calcaires de Brenne *pro parte*, calcaire de Saint-Maur (40 m), marno-Calcaires de Déols (10 m) sont calculées à partir du mur des calcaires de Levroux conformément à leurs épaisseurs respectives.

Les calcaires de Buzançais correspondent au volume compris entre le toit des calcaires de Levroux et le mur des formations post-jurassiques ou la surface topographique.

d) Formations post-jurassiques

L'altitude du mur de ces formations (Cénomanien, Eocène, Pliocène et Würm) est calculée en trois étapes :

- digitalisation des contours permettant une cartographie (fig. 2);
- estimation des altitudes des contours par référence au modèle numérique de terrain IGN à la maille de 100 m ;
- estimation des altitudes sur toute la surface du mur (et seulement cette surface) aux noeuds de la grille de référence par krigeage selon un variogramme linéaire sans dérive et dans les limites d'un voisinage (500 m) respectant l'extension des formations résiduelles.

e) Topographie

La surface topographique est donnée par un modèle numérique de terrain IGN acquis à la maille de 100 x 100 m et transposé dans la grille de référence (fig. 5).

f) Epaisseur

On considère l'ensemble des formations situées au-dessus du substratum semi-perméable costitué par les marno-calcaires de Déols comme potentiellement aquifères dans les limites du bassin versant. L'épaisseur de l'aquifère est égale à la différence d'altitude entre la surface topographique et le mur des calcaires de Levroux. L'aquifère est un prisme calcaire dont l'épaisseur varie de 0 à 116 m d'est en ouest (fig. 6). L'épaisseur varie de manière particulièrement brutale au passage de la faille de la Trégonce, du fait de la position haute du compartiment oriental.

Ressources en eau du bassin de la Trégonce - Phase 4 : modélisation

Fig. 6 - Epaisseur de l'aquifère du bassin de la Trégonce.

Rapport BRGM R 38254

1.3.3. Piézométrie

Pour permettre une représentation complète de l'aquifère montrant les relations entre la surface piézométrique, la topographie et les formations géologiques, la piézométrie a été estimée dans le maillage de référence et la surface correspondante tracée sur les coupes géologiques qui suivent.

Les données utilisées présentent trois qualités :

- nombreuses : 106 points de mesure ;
- synchrones et récentes (26 29 septembre 1994) ;
- réparties à l'intérieur et à l'extérieur du bassin versant hydrographique de manière à délimiter en toute rigueur un bassin versant piézométrique.

L'interpolation des valeurs ponctuelles a été faite par krigeage, après analyse variographique, en utilisant un modèle géostatistique dont les paramètres sont les suivants : modèle linéaire, isotrope, sans effet de pépite de pente égale à 20 (fig. 7a). L'utilisation d'un modèle géostatistique permet non seulement une meilleure fiabilité des estimations mais aussi de disposer des écarts-types de krigeage à chaque noeud de la grille et donc d'optimiser éventuellement la répartition des stations de mesure.

L'aspect de la surface piézométrique (fig. 7b) montre :

- une limite de bassin versant un peu plus large au nord-est que le bassin versant hydrographique (porté en noir);
- une zone d'incertitude où les écoulements tendent à se faire vers l'WNW près de la source de la Trégonce ;
- un axe de drainage confondu avec la vallée de la Trégonce ;
- des lignes de courant qui montrent que dans la zone la plus aval une partie des écoulements échappe à la Trégonce et se dirige vers l'Indre.

1.3.4. Coupes géologiques

Au travers du modèle géologique de multiples coupes verticales donnant l'allure des terrains peuvent alors être pratiquées. Nous avons choisi de présenter trois coupes, deux transversales et une oblique au travers du système aquifère (cf. fig. 4b).

Les coordonnées sont les suivantes :

Coupe	X1	Y 1	X 2	Y 2
1	531.50	2 218.00	552.75	2 206.00
2	536.15	2 220.00	547.20	2 205.00
3	532.00	2 209.00	546.00	2 202.00

Fig. 7 - Carte piézométrique de la campagne de septembre 1994, et variogramme des données.

Rapport BRGM R 38254

Elles comportent

- les calcaires de Brenne (en jaune);
- le calcaire de Saint-Maur (figuré de calcaire argileux, en vert) ;
- les marno-calcaires de Déols (en vert tendre, uni) ;
- les calcaires de Levroux inférieurs (figuré de calcaire coquillier, en bleu) ;
- les calcaires de Levroux supérieurs (en bleu pâle, uni) ;
- les calcaires de Buzançais (en bleu foncé) ;
- les formations résiduelles post-jurassiques (en orangé) ;
- la surface topographique (en brun);
- la surface piézométrique (en bleu violacé) ;
- les "mardelles" (fontis, dolines) sous la forme de triangles bleus pointe vers le bas ;
- les piézomètres (PZ1 à 6), le cas échéant.

La coupe 1, NW-SE d'Argy à Châteauroux, est la restitution de la coupe dressée manuellement à l'origine (fig. 8). Elle montre :

- la superposition de la vallée de la Trégonce à une zone synclinale des calcaires jurassiques, le plongement ouest sous les calcaires de Buzançais ;
- le recouvrement pelliculaire par les formations résiduelles argilo-sableuses ;
- la remontée d'un substratum peu perméable vers l'est ;
- l'extension latérale des bassins versants hydrographiques et piézométriques.

La coupe 2, NNW-SSE passant par PZ5 et PZ3 montre (fig. 9) :

- un pendage accentué en rive gauche de la Trégonce et la même correspondance entre structure et réseau hydrographique;
- la discordance des formations post-jurassiques sur les calcaires qu'elles recoupent ;
- la présence des Calcaires de Buzançais sous le recouvrement des formations postjurassiques;
- une densité notable de mardelles en rive gauche sur les Calcaires de Levroux ;
- la situation géologique du piézomètre PZ3, foré en grande partie dans les marnes comme le montre sa coupe lithostratigraphique (fig. 10). Cette configuration a des conséquences dans l'interprétation de l'hydrodynamisme qui seront discutées plus loin.

La coupe 3, WNW-ESE passant par la vallée de l'Indre est située dans la partie aval de la Trégonce au voisinage de son confluent avec l'Indre (fig. 11). Elle montre :

- le dispositif synclinal correspondant à un compartiment abaissé au nord de la faille du bois de Caillereau et à l'ouest de la faille de la Trégonce ;
- un rejet d'une trentaine de mètres accentuant l'effet de la flexure au niveau de la faille de la Trégonce, située ici exactement dans l'axe de la rivière ;
- une surface piézométrique assez plate montrant qu'il n'y a pas convergence totale des écoulements en direction de la rivière, mais probablement un drainage complémentaire par la vallée de l'Indre.

Fig. 9 - Coupe géologique 2 (NNW-SSE) passant par les piézomètres PZ5 et PZ3.

Rapport BRGM R 38254

Fig. 10 - Coupe lithostratigraphique au piézomètre PZ3.

1.4. LE SYSTEME HYDROGEOLOGIQUE

L'aquifère de la Trégonce est donc constitué par un réservoir calcaire dont la perméabilité est essentiellement due à une porosité discontinue due à :

- la dissolution des coquilles ou des fossiles dans les horizons des calcaires de Levroux qui en contiennent ;
- une décompression et une microfissuration au voisinage de l'affleurement ;
- une fracturation plus importante dans certaines zones, confirmée par les taux de récupération sur carotte (RQD) assez mauvais dans le sondage stratigraphique de Trégonce, sauf vers la base du sondage.

D'autre part, les calcaires jurassiques ont subi au cours de leur histoire géologique de multiples phases d'érosion et de karstification qui ont créé des discontinuités et des réseaux poreux secondaires.

Compte tenu du schéma structural et de l'expérience acquise dans les carbonates, il faut s'attendre à de meilleures transmissivités tout au long de la zone de flexure parallèle à la Trégonce et notamment à proximité de la zone faillée et dans le compartiment soulevé, plus sensible à la karstification. La présence des mardelles souligne l'existence de points de soutirage dus à des circulations dans les calcaires, notamment en rive gauche, vers l'aval de la rivière.

Ce schéma hydrogéologique est classique dans la région et bien connu dans les processus d'alimentation des sources de Châteauroux depuis la région de Montierchaume.

On notera, dans ce contexte, l'importance :

- du recouvrement et des sols, variés, sur la réserve utile et sur l'infiltration ;
- des débits de fuite par drainage latéral, notamment en direction de l'Indre, ou éventuellement en aval-pendage vers le compartiment effondré au sud-ouest.

Fig. 11 - Coupe géologique 3 (WNW-ESE) passant par le vallée de l'Indre.

2. CARACTERISTIQUES HYDROGEOLOGIQUES DE L'AQUIFERE

2.1. PARAMETRES HYDRODYNAMIQUES DE L'AQUIFERE

Les paramètres hydrodynamiques de l'aquifère (transmissivité et débit spécifique) sont connus grâce d'une part aux pompages d'essai réalisés pour le projet, d'autre part aux indications qui figurent dans les fichiers de la banque de données du sous-sol du BRGM.

Cinq pompages d'essai permettent de connaître avec précision la valeur de la transmissivité de l'aquifère, ils sont reportés dans le tableau 1. Connaissant la géométrie de l'aquifère (altitude du substratum) et le niveau piézométrique de la nappe, il est possible d'en déduire la perméabilité au droit de ces points de mesure.

A ces données, s'ajoutent 25 forages pour lesquels on connaît le débit d'exploitation, et pour certains d'entre eux le rabattement correspondant, ce qui permet de caractériser la productivité de l'aquifère par un débit spécifique. Ces dernières valeurs sont indiquées dans le tableau 2.

Ces valeurs mettent en évidence une forte variabilité de la productivité hydraulique de l'aquifère. La perméabilité mesurée varie dans un rapport de 1 à 200, avec un couloir à forte perméabilité le long de l'axe de la Trégonce, où sont développés les forages agricoles. Sur les bordures du bassin versant par contre les perméabilités restent faibles.

On ne possède pas de donnée sur la valeur du coefficient d'emmagasinement de l'aquifère.

2.2. DONNEES PIEZOMETRIQUES

La piézométrie de l'aquifère est connue à partir de plusieurs cartes réalisées aux dates suivantes :

- juin 1992 (rapport phase 1),
- décembre 1992 (rapport phase 3),
- juillet 1993 (rapport phase 3),
- octobre 1993 (rapport phase 3),
- décembre 1993 (rapport phase 3),
- septembre 1994,

et de façon continue sur six forages sur lesquels sont installés des enregistreurs MADO.

La campagne de septembre 1994 a été faite à partir de 161 points de mesure, répartis dans le bassin versant de la Trégonce et également à l'extérieur de celui-ci afin de mettre en évidence la crête piézométrique de la nappe qui constituera les limites du modèle hydrodynamique. La carte piézométrique et le variogramme des valeurs mesurées sont indiqués sur la figure 7 (cf. p. 28).

Les cartes piézométriques mettent en évidence un écoulement NE-SW dans l'axe de la vallée, avec un drainage très marqué de la nappe par la Trégonce.

Forage	Débit	Rabattement	Transmissivité	Epaisseur	Perméabilité
(indice BRGM)	(m ³ /h)	(m)	(m²/s)	mouillée	(m/s)
				(m)	
PZ1 (544-2X-117)	3,3	9,65	7,5 x 10 ⁻⁵	58	1,3 x 10 ⁻⁶
PZ2 (544-3X-141)	2,2	12,59	4,5 x 10 ⁻⁵	41	1,1 x 10 ⁻⁶
PZ3 (544-7X-139)	0,52	11,25	1,1 x 10 ⁻⁵	(dénoyé)	(dénoyé)
PZ4 (544-6X-138)	0,55	16,90	5,7 x 10 ⁻⁶	26	0,2 x 10 ⁻⁶
AEP Chézelles	45	12,20	1,6 x 10 ⁻³	52	3,1 x 10 ⁻⁵
(544-6X-139)					

Tabl. 1 - Valeurs des transmissivités et perméabilités disponibles.

Forage	X Lambert II	Y Lambert II	Débit	Rabattement	Débit
(indice	(km)	(km)	(m³/h)	(m)	spécifique
BRGM)					(m³/h/m)
544-2X-049	543,950	216,070	20	25	0,8
544-2X-099	543,000	211,250	130	-	-
544-2X-100	543,825	213,965	60	0,9	66,7
544-2X-103	543,025	213,000	60	3,0	20,0
544-2X-105	543,625	212,550	200	-	-
544-2X-106	542,300	210,700	150	0,2	750,0
544-2X-109	545,325	214,425	75	0,7	107,1
544-2X-112	543,375	211,950	50	0,1	500,0
544-2X-113	543,525	215,800	30	25	1,2
544-2X-114	544,525	212,650	75	1,5	50,0
544-3X-078	546,650	214,550	70	-	-
544-3X-079	549,170	215,540	80	1,7	47,1
544-3X-083	549,030	215,500	80	1,0	80,0
544-3X-084	548,500	211,700	76	2,3	33,0
544-3X-091	548,425	216,935	140	2,0	70,0
544-3X-104	546,125	214,525	150	-	-
544-3X-108	547,110	214,410	200	-	-
544-3X-114	545,675	214,650	50	2,5	20,0
544-3X-117	545,975	214,000	160	7	22,9
544-6X-112	541,450	208,010	60	1	60,0
544-6X-118	541,300	208,075	75	1	75,0
544-6X-128	543,875	209,020	80	23	3,5
544-6X-129	541,730	208,730	120	-	-
544-6X-131	544,300	208,400	150	15	10
544-7X-126	548,125	210,050	45	12	3,8

Tabl. 2 - Valeurs des débits et débits spécifiques disponibles.

2.3. DONNEES HYDROMETRIQUES ET REGIME HYDROLOGIQUE DE LA TREGONCE

Les données hydrométriques ont été fournies par la DIREN Centre qui, dans le cadre de ce projet, est en charge de l'acquisition des mesures de débit des cours d'eau de la Trégonce et du ruisseau des Fontaines.

Deux stations hydrométriques ont été installées sur la Trégonce en janvier 1992 (rapport R38155, phase 4.2 : fig. 1 :

- Pont-de-Pierre (en amont) (21 km²);

- Villedieu (en aval) (77 km²).

Les débits moyens de la Trégonce sur ces deux stations, pour les années entières 1992 et 1993, sont indiqués dans le tableau 3.

Année		Pont-de	e-Pierre	Villedieu		
	Précipitation (mm)	moyenne annuelle (l/s)	débit spécifique (l/s/km ²)	moyenne annuelle (l/s)	débit spécifique (l/s/km ²)	
1991	599	-	-	-	-	
1992	729	50	2,4	203	2,6	
1993	781	103	4,9	329	4,3	

Tabl. 3 - Débits moyens de la Trégonce.

Le débit spécifique de la Trégonce aux deux stations est identique. Cela montre le caractère homogène du comportement hydrologique du bassin versant entre l'amont et l'aval.

Entre 1992 et 1993, on constate une très forte augmentation des débits moyens annuels (rapport 1,6 à Villedieu entre ces deux années) alors que pour la même période les précipitations n'ont augmentées que de 10 %. Pour expliquer les débits moyens annuels de la rivière, il faut prendre en compte non seulement les précipitations de l'année civile correspondante, mais aussi les précipitations de la période d'hiver précédente comprise entre le mois d'octobre et le mois de mars.

Période	Précipitation d'hiver	Débit moyen annuel (l/s) à Villedieu			
Octobre 91 - mars 92	269,5	203 (1992)			
Octobre 92 - mars 93	334,1	329 (1993)			

Le débit moyen annuel de la Trégonce en 1992 s'explique ainsi par une faible recharge de l'aquifère au cours de la période d'hiver précédente d'octobre 1991 à mars 1992. Le rapport des précipitations des périodes d'hiver (1,2) est sensiblement égal aux rapports des débits moyens annuels (1,6) de l'année suivante. On met ainsi en évidence l'importance des pluies d'hiver sur le débit moyen annuel de la rivière.

2.4. RECHARGE PAR LES PLUIES EFFICACES

L'alimentation de l'aquifère est assurée uniquement par les infiltrations de la pluie efficace sur le bassin versant hydrogéologique de la Trégonce.

Une étude de cette recharge par une modélisation hydrologique globale a été faite dans le rapport R 38155 (phase 4.2). Elle permet de donner un ordre de grandeur de cette recharge, qui servira de point de départ pour l'étude de l'aquifère par le modèle hydrodynamique, au cours de laquelle cette recharge sera alors précisée.

Rappel des résultats de l'étude hydrologique globale :

- réserve utile maximale : 58 mm ;

- recharge moyenne annuelle : entre 150 et 180 mm.

2.5. PRELEVEMENTS AGRICOLES ET AEP

Pour connaître le volume des prélèvements agricoles, il a été adopté la démarche suivante :

- mesure précise des volumes d'eau prélevés pour l'irrigation de 5 forages agricoles sur 21 recensés (compteurs C1 à C5);
- estimation des volumes prélevés dans les autres exploitations après enquête auprès des irriguants.

On a indiqué dans le tableau 4 les valeurs mesurées et les estimations des prélèvements mensuels sur la base des données de l'année 1993. On possède ainsi des données sur onze exploitations sur treize.

A ces consommations s'ajoutent les prélèvements d'eau pour les besoins d'arrosage du terrain de golf (environ 75 000 m³/an) et ceux du forage d'eau potable de Chézelles, réalisé en 1990 et mis en service en 1993.

Prélèvement AEP de Chézelles :

1993 : 2 189 m³ 1994 : 58 461 m³ sur 7 mois valeur moyenne annuelle : 100 219 m³

Le volume annuel total des prélèvements d'eau dans la nappe est estimé à 1,3 Mm³.

Sur la figure 12, il a été indiqué l'emplacement des forages agricoles et AEP dans le bassin de la Trégonce, ainsi que les limites des parcelles irriguées.

	-
GΜ	
	Т
18	
04	
06	
12	
91	

Nom de l'irrigant	(*)	INDICE BRGM	Ligne-colonne	Superficie			Volume	e des prélèvemen	nts agricoles en r	m ³ /mois		
			du modèle	(ha)								
	1				MARS	AVRIL	MAI	JUIN	JUILLET	TUOA	SEPTEMBRE	TOTAL
AMARY	C5	544-6X-118	60-17	200	0	6662	6662	0	14818	16842	2833	47817
AUDON		544-2X-104	42-22									
		544-2X-106	46-23	236	16062	16062	0	0	0	0	0	32124
	C3	544-2X-112	41-27					-				
BACHELET		544-3X-091	16-52	396	13200	0	0	25313	25313	25313	25313	114450
	C1	544-3X-107	20-54	l[4400	0	0	8438	8438	8438	8438	38150
BERGOUGNAN		544-6X-108bis	59-32									
	C4	544-6X-128	56-30	240	0	10500	9625	2625	22050	22050	0	66850
DES PLACES		544-3X-084	42-53	136								4500
GOLF		544-6X-121	71-08		0	0	0	18697	18697	18697	18697	74788
GRENOUILLOUX	1	544-3X-078	28-39									
		544-3X-104	28-41	164	22000	22000	27500	31500	76500	60000	15000	254500
	1	544-3X-114	28-39				<u> </u>					
MARMASSE	I	544-2X-113	21-28	120	0	0	0	6150	17000	6000	750	29900
MAUCHIEN	1	544-2X-099	44-25	188					}	· · · ·		
NIVET	PZ6	544-3X-079	23-56	200	0	8250	6346	6347	84466	84467	0	189876
PAILLAULT	1	544-2X-103	36-26	136								
	1	544-2X-105	38-28									
PERON / BLANCHARD		544-2X-109	28-32	272	0	9800	9800	0	35770	35770	0	91140
		544-2X-114	38-33	1				}				
PICAULT	1	544-2X-100	31-30	132	0	2500	2500	0	15000	15000	0	35000
RENAUD	C2	544-3X-117	31-40	244	0	37700	22000	14500	60000	60000	17250	211450
			TOTAL	2664	55662	113474	84433	113569	378051	352576	88280	1190545

••

i

.

1

(*) On a indiqué dans cette colonne le numéro du compteur volumétrique installé et la présence d'un enregistreur MADO.

.

Tabl. 4 - Estimation des prélèvements agricoles (résultats de l'année 1993).

Fig. 12 - Emplacement des forages agricoles et AEP, et limites des parcelles irriguées.

3. LE MODELE HYDRODYNAMIQUE

3.1. LOGICIEL UTILISE POUR LA MODELISATION

L'aquifère de la Trégonce a été modélisé avec le logiciel de simulation des écoulements souterrains MARTHE du BRGM, qui utilise la méthode de résolution des équations hydrodynamiques par différences finies. Les paragraphes suivants décrivent les caractéristiques du modèle, la démarche suivie dans l'étude des écoulements en régime permanent puis transitoire, ainsi que l'usage qui est fait de cet outil dans un but de compréhension des phénomènes hydrodynamiques et de prédiction du comportement de la nappe pour différentes hypothèses d'exploitation.

3.2. CARACTERISTIQUES DU MODELE

Le choix de la taille des mailles du modèle a été fait avec l'objectif de pouvoir restituer, à l'échelle du bassin, la surface piézométrique de la nappe, le sens et la direction des écoulements, et de calculer le bilan des débits au pas de temps mensuel.

Par ailleurs, la taille des mailles doit être cohérente avec la densité et la variabilité des données disponibles, de façon à ne pas lisser exagérément les hétérogénéités hydrogéologiques, et d'autre part à ne pas donner l'illusion d'une précision des résultats qui ne reposerait pas sur une précision équivalente des données de terrain. L'importance du rôle de la rivière Trégonce sur les écoulements de l'aquifère nous a conduits à retenir des mailles carrées de 200 m de côté qui permettent de représenter parfaitement les conditions hydrauliques de drainage du fond de la vallée par la rivière et le canal latéral qui alimente des moulins. La largeur totale de ce système représente environ 250 m de large dans la plus grande partie de la vallée.

Les limites du bassin versant hydrogéologique s'inscrit dans un modèle de 80 lignes par 75 colonnes, ce qui représente 6 000 mailles au total, mais seulement 2 681 sont utilisées dans les calculs. Ce nombre de mailles limité présente de plus l'avantage de ne pas allonger exagérément les temps de calcul du modèle.

3.2.1. Maillage

Le maillage du modèle est indiqué sur la figure 13. Les mailles à potentiel imposé sont représentées avec des croix, les mailles qui correspondent au cours d'eau de la Trégonce figurent sur ce schéma avec des croix mais ont été simulées par des mailles à débordement, les mailles dans lesquelles existe un pompage sont noires.

Fig. 13 - Schéma du maillage et des conditions aux limites du modèle hydrodynamique.

3.2.2. Conditions aux limites

la Trégonce est représentée par 62 mailles à cote de débordement, qui présentent l'avantage de pouvoir simuler des situations d'étiage dans lesquelles la rivière est à sec ;

le potentiel hydraulique aval du système est commandé par le niveau piézométrique de la vallée de l'Indre. On supposera que celui-ci est constant dans le temps. Les 29 mailles situées en aval du modèle seront à potentiel imposé, constant au cours des différents pas de calcul ;

les contours du modèle définis par la crête piézométrique de la nappe sont représenté par des mailles à flux nul.

3.2.3. Superficie du modèle

Le modèle représente 2 681 mailles carrées de 200 m de côté, soit 2 681 x $0,2 \times 0,2 = 107,240 \text{ km}^2$. Par rapport à la surface du bassin versant topographique qui est de 100 km², le bassin versant hydrogéologique représente une augmentation de 7 % environ.

3.3. DONNEES DU MODELE

Le modèle comprend une seule couche représentant les calcaires de Levroux décrit dans le premier paragraphe du rapport. Les limites du réservoir sont définies par la base de ces calcaires qui reposent sur un substratum imperméable constitué par le niveau argileux des marno-calcaires de Déols.

Les données du modèle sont :

- un substratum;
- une topographie ;
- un champ de perméabilité ;
- un coefficient d'emmagasinement supposé constant sur tout le domaine ;
- une piézométrie observée qui fixera les conditions imposées aval du modèle ;
- une recharge supposée constante sur tout le domaine ;
- des prélèvements agricoles et AEP.

•

•

4. CALAGE DU MODELE

4.1. DEMARCHE DU CALAGE

Le calage du modèle a été fait en deux étapes :

- un calage en régime permanent sur la piézométrie de septembre 1994 ;
- un calage en régime transitoire sur les débits de la Trégonce, et sur des variations ponctuelles de la nappe, observées sur six piézomètres, au cours de la période qui va de janvier 1992 à juillet 1994.

4.2. CALAGE EN REGIME PERMANENT

Le calage en régime permanent a consisté à ajuster le champ de perméabilité de l'aquifère, et une recharge moyenne annuelle qui permettent de reconstituer la surface piézométrique de septembre 1994.

4.2.1. Piézométrie calculée

La figure 14 présente en superposition les courbes isopièzes observées (en trait continu) et les courbes isopièzes calculées par le modèle (en trait discontinu). On constate une bonne adéquation d'ensemble entre ces deux familles de courbes. Ce résultat montre l'authenticité des hypothèses retenues sur les conditions d'écoulement de l'aquifère. La figure 15 présente la corrélation entre les valeurs ponctuelles mesurées et calculées par le modèle. Les écarts ne dépassent pas 2 m pour la majorité des points.

4.2.2. Champ de perméabilité

La figure 16 montre la carte du champ de perméabilité qui résulte du calage du modèle.

On distingue quatre zones dont la valeur de la perméabilité varie d'un facteur dix à chaque fois. Les forages d'irrigation sont situés dans une zone de perméabilité comprise entre 10^{-4} et 10^{-3} m/s (couleur bleu clair), localisée le long de l'axe de la Trégonce. Sur les bordures du bassin, la perméabilité diminue progressivement. Elle est comprise entre 10^{-5} et 10^{-4} m/s (couleur verte) dans une zone reconnue par le forage AEP de Chézelles (K mesurée = 3,1 x 10^{-5} m/s), puis elle est inférieure à 10^{-5} m/s (couleur rouge) sur les zones de crête reconnues par les forages PZ1, PZ2 et PZ4. Dans la partie aval de la vallée, le calage du modèle met en évidence une zone à très forte perméabilité (couleur bleu foncé), supérieure à 10^{-3} m/s, qui correspond à un secteur fortement fracturé reconnue par les études géologiques. Sur le plan hydrogéologique, cette zone à forte perméabilité est mise en évidence par un gradient hydraulique très faible (3 ‰).

Fig. 14 - Carte des piézométries observée (septembre 1994) et calculée en régime permanent.

Fig. 15 - Corrélation entre les valeurs de piézométrie observée et calculée en régime permanent.

Fig. 16 - Carte du champ de perméabilité du modèle hydrodynamique.

4.2.3. Bilan hydraulique moyen annuel

Le bilan moyen annuel calculé par le modèle en régime permanent est le suivant :

- entrée : recharge moyenne annuelle : 555 l/s (17,5 Mm³);
- sortie : prélèvement par pompage : 42 l/s (1,3 Mm³) ; débit souterrain aval : 104 l/s (3,3 Mm³) ; débit de drainage par la Trégonce : 409 l/s (12,9 Mm³).

Pour une superficie du bassin versant hydrogéologique de 108 km², on arrive au bilan indiqué dans le tableau 5.

Tabl. 5 - Bilan hydraulique moyen annuel.

Le débit total retrouvé dans la Trégonce (15,4 Mm³) par le calcul est à comparer au débit moyen annuel mesuré en 1993 à la station de Villedieu qui est de 329 l/s pour une superficie de 77 km². En ramenant ce débit à une superficie de 108 km², on arrive à un volume annuel de 14,6 Mm³. Le calage du modèle en régime permanent se traduit par :

- un bon ajustement de la surface piézométrique de l'aquifère,

- un bon ajustement des débits moyens de la Trégonce.

4.3. CALAGE EN REGIME TRANSITOIRE

Le calage en régime transitoire a consisté à estimer la recharge au pas de temps mensuel et la valeur du coefficient d'emmagasinement moyen de l'aquifère afin de reproduire les historiques des débits de la Trégonce, et les historiques piézométriques observés sur forages PZ1, PZ4 et PZ5.

4.3.1. Historique des débits de la Trégonce

Les historiques des débits observés et calculés de la Trégonce sont présentés dans le tableau 6, et sur la figure 17. Le tableau 6 présente les résultats du calage en régime transitoire et ceux des simulations 1 et 2 étudiées dans le chapitre 5. Dans ce tableau sont indiqués les débits moyens

ANNEE	MOIS	Débit obs.	Pluie	Recharge	Débits simulés (l/s)			
		(l/s)	(mm)	(mm)	Calage	Simul. 1	Simul. 2	
	Janvier	101	13,5	4	117	123	113	
	Février	81	24,5	2	79	83	76	
	Mars	74	48,6	4	48	93	33	
	Avril	177	53,4	10	124	188	90	
	Mai	52	43,8	2	42	97	23	
1992	Juin	4	70,4	0	11	45	0	
	Juillet	0	43,2	0	0	29	0	
	Août	0	110,8	0	0	19	0	
	Septembre	0	32,1	0	0	12	0	
	Octobre	81	111	15	97	172	55	
	Novembre	927	120,5	· 40	761	823	708	
	Décembre	1656	56,7	60	1500	1525	1482	
Total o	u moyenne	263	729	137	232	267	215	
	Janvier	839	26,1	16	783	795	774	
	Février	573	10,1	11	538	545	533	
	Mars	383	9,7	8	333	393	302	
	Avril	235	73,6	5	207	269	176	
	Mai	227	93,2	7	192	257	159	
1993	Juin	216	86,3	5	138	201	107	
	Juillet	56	27,5	0	40	95	21	
·	Août	1	32,7	0	16	56	3	
	Septembre	53	161,6	6	48	115	22	
	Octobre	1025	112,6	42	826	867	792	
	Novembre	697	32	20	641	654	631	
	Décembre	818	115,7	25	748	754	743	
Total o	u moyenne	427	781	145	627	706	355	
	Janvier	2540	99	82	2078	2082	2075	
	Février	1965	89,2	53	1816	1818	1814	
	Mars	1296	43,5	32	1285	1346	1254	
1994	Avril	1306	92	34	1209	1275	1176	
	Mai	788	93,6	20	854	921	821	
	Juin	477	66,5	4	397	463	365	
	Juillet	166	69,8	0	173	233	143	
Total o	u moyenne	1220	554	225	1116	1163	1093	

Tabl. 6 - Débits observés de la Trégonce et valeurs simulées par le modèle hydrodynamique(résultats du calage et simulations).

Fig. 17 - Reconstitution des débits de la Trégonce (période 1992 - 1994).

mensuels observé et calculé, la pluie mesurée et la recharge estimée. Les débits observés de la Trégonce correspondent aux débits mesurés à Villedieu ramenés à une surface de 100 km². Comme la superficie du bassin versant hydrogéologique à Villedieu n'est pas connue exactement il existe une incertitude sur les débits réels ramenés au bassin versant entier, mais celle-ci n'exède pas quelques pour cent.

Au cours des mois de juillet à septembre 1992, le débit observé de la Trégonce est nul. Le modèle reconstitue parfaitement par le calcul ce phénomène. Cette situation est due aux faibles précipitations de l'hiver 91-92 (269,5 mm). En mars 1992, le débit de la Trégonce n'est que de 74 l/s.

Au cours de la même période, en 1993, on n'observe pas d'assèchement de la rivière et cela grâce d'une part aux précipitations d'hiver 92-93 (334,1 mm), d'autre part à l'épisode pluvieux de mai et juin où il est tombé 179,5 mm de pluie. En mars 1993, le débit de la Trégonce est égal à 383 l/s. Ces conditions favorables ont empêché l'assèchement de la rivière en fin de période estivale.

Le coefficient d'emmagasinement de l'aquifère a été fixé pour ces simulations à 0,4 %. Il représente un coefficient global pour l'ensemble du bassin versant.

4.3.2. Historique des charges

Les historiques piézométriques observés (en traits continus) et calculés (en traits discontinus) sur les forages PZ1, PZ4 et PZ5 sont représentés sur la figure 18. L'ajustement a été obtenu avec les recharges mensuelles déterminées au paragraphe précédent, pour un coefficient d'emmagasinement égal à 2 % affecté à l'ensemble de l'aquifère mais pour traduire des variations piézométriques ponctuelles. L'adéquation entre valeurs observées et valeurs calculées est satisfaisante :

- piézomètre PZ4 : situé en aval de l'aquifère, à proximité des potentiels constants imposés par la vallée de l'Indre, ses évolutions piézométriques sont très faibles (inférieures à 2 m) pour une altitude moyenne de 130 m NGF;
- piézomètre PZ5 : situé plus en altitude (142 m NGF en moyenne), il présente des variations inter annuelles faibles (inférieures à 3 m) car il est situé à proximité du cours d'eau de la Trégonce qui impose également son potentiel;
- piézomètre PZ1 : celui-ci se trouve à proximité des crêtes piézométriques de l'aquifère, ce qui explique l'importance de ses amplitudes (plus de 20 m entre une période de basses eaux et de hautes eaux).

Le coefficient d'emmagasinement de l'aquifère est difficile à estimer car on ne possède aucune mesure de terrain. De plus il existe probablement une forte variabilité de ce paramètre, en fonction de l'importance de la fracturation des calcaires, identique à celle de la perméabilité étudiée plus haut. Les valeurs obtenues lors du calage des historiques de débits et des charges donnent une fourchette de ce coefficient d'emmagasinement ajusté sur des débits globaux pour l'ensemble du bassin versant et des variations piézométriques ponctuelles.

Fig. 18 - Reconstitution des variations piézométriques

. .

5. EXPLOITATION DU MODELE

A partir des résultats obtenus au cours du calage en régime permanent et transitoire, on a réalisé deux simulations d'exploitation différentes de l'aquifère afin d'étudier l'impact de l'irrigation sur les débits de la Trégonce. Les résultats des simulations sont indiqués dans le tableau 6, et sur les figures 19 et 20.

5.1. SIMULATION DE L'ARRET DES PRELEVEMENTS AGRICOLES (SIMULATION 1)

On a simulé les débits de la Trégonce sur la période 1992 à juillet 1994, en supprimant totalement les débits d'exploitation agricole. Les débits de la rivière ne sont jamais nuls, même au cours de la période critique comprise entre juillet et septembre 1992.

5.2. SIMULATION D'UNE AUGMENTATION DES PRELEVEMENTS AGRICOLES (SIMULATION 2)

On a simulé les débits de la Trégonce sur la période 1992 à juillet 1994, en majorant de 50 % les prélèvements agricoles.

En 1992, la Trégonce est à sec dès le mois de juin (4 mois au lieu de 3 en situation actuelle).

En 1993, grâce à l'épisode pluvieux de mai et juin, la Trégonce ne se trouve jamais à sec.

La figure 19 montre que les débits de la Trégonce sont identiques dans les trois cas de figure dès les premières pluies de septembre.

La figure 20 montre l'évolution des débits souterrains en aval du bassin. Ils sont compris entre 30 et 300 l/s au cours de la période étudiée, et ne sont jamais nuls même en période d'étiage sévère. Ce qui montre qu'il existe toujours un écoulement souterrain même lorsque que les cours d'eau sont à sec.

Fig. 19 - Débits simulés de la Trégonce pour trois hypothèses d'exploitation de l'aquifère : arrêt et augmentation des prélèvements agricoles.

Fig. 20 - Débits souterrains à l'exutoire aval, simulés pour trois hypothèses d'exploitation de l'aquifère : situation de 1993, arrêt et augmentation des prélèvements agricoles.

•

. .

CONCLUSION

Le modèle hydrodynamique, élaboré aux cours de cette étude, grâce aux nombreuses données disponibles sur le site, permet de représenter parfaitement le fonctionnement hydraulique du bassin de la Trégonce. On a pu reconstituer la piézométrie de septembre 1994, les débits de la Trégonce et les évolutions piézométriques entre 1992 et 1994 sur trois points d'observation.

Les historiques de débits montrent que l'aquifère est peu capacitif : les décrues sont rapides, mais la recharge de l'aquifère s'effectue dès les premières pluies de septembre.

Les débits d'étiage sont conditionnés par la recharge hivernale. La valeur du débit de la Trégonce au mois de mars permet d'estimer la situation des cours d'eau en fin de période estivale, dans les conditions actuelles d'exploitation.

Les trois simulations réalisées montrent que les débits de la Trégonce, en période d'été, sont largement influencés par les prélèvements agricoles. Une augmentation de 50 % des prélèvements aurait conduit en 1992 à avancer d'un mois l'assèchement de la rivière, qui a été observé entre le mois de juillet et le mois de septembre.

Par contre les effets d'une surexploitation de la nappe sont rapidement dissipés par les pluies d'hiver. Pour les trois scénarios de pompage, les débits de la Trégonce sont sensiblement les mêmes dès l'arrêt des prélèvements en septembre.

La gestion de l'exploitation de l'aquifère doit donc être définie en fonction des débits minimum d'étiage du cours d'eau de la Trégonce, qui sont sensibles aux pompages agricoles.

BIBLIOGRAPHIE

DEBEGLIA N., DEBRAND-PASSARD S. (1980) - Principaux accidents issus des corrélations entre les données de géophysique et les données de terrain (au sens large), dans le sud-ouest du Bassin de Paris. *Bull. Soc. géol. Fr.*, (7), 22, n° 4, pp. 639-645.

DEBRAND-PASSARD S. (1982) - Le Jurassique supérieur du Berry (sud du Bassin de Paris). Mém. BRGM, n° 119, 227 p., 108 fig., 20 pl. photo., 6 annexes, 7 cartes au 1/2 millions h.t.

DEBRAND-PASSARD S., GROS Y. (1980) - La fracturation de la Champagne berrichonne. Bull. Soc. géol. Fr., (7), 22, n° 4, pp. 647-653.

DEBRAND-PASSARD S., LABLANCHE G., FLAMAND D., SOULAS J.P. (1977) - Carte Géologique de la France à 1/50 000 avec notice, feuille Bourges, n° 519. Editions du BRGM.

DEBRAND-PASSARD S., LABLANCHE G., HALFON J., BUISSON J.L., BAVOUZET F. (1972) - Carte Géologique de la France à 1/50 000 avec notice, feuille Châteauroux, n° 544. Editions du BRGM.

DOUVILLLE H., JOURDY E. (1874) - Note sur la partie moyenne du terrain jurassique dans le Berry. Bull. Soc. géol. Fr., 3, pp. 93-112.

HANTZPERGUE P. (1979) - Biostratigraphie du Jurassique supérieur nord-aquitain. Bull. Soc. géol. Fr., 21, n° 6, pp. 715-726, 2 fig.

HANTZPERGUE P., DEBRAND-PASSARD S. (1980) - L'Oxfordien supérieur et le Kimméridgien des Charentes (Bassin Aquitain) et du Berry (Bassin Parisien). Extension géographique des repères ammonitiques. *Bull. Soc. géol. Fr.* (7), 22, n° 3, pp. 369-375.

LORENZ C., J., DEBRAND-PASSARD S. et al. (--) - Carte Géologique de la France à 1/50 000 avec notice, feuille Velles, n° 570. Editions du BRGM.

.

.

ANNEXE

Résultats de la campagne piézométriques de septembre 1994

.

.

.

.

NUMERO	TYPE		Coord	onneés		PROF		COTE
DU			Lambert			DE LA		NGE
DONT	DONT	COMMUNE	Zone II étendue				DATE	
POINT	POINT	COMMONE	Lone			NAPPE	DATE	DELA
D'	D,		X	Ŷ	z	/ SOL		NAPPE
EAU	EAU		(en km)	(en km)	(en m)	(en m)		(en m)
8	puits	Vineuil	545,120	211,625	167,00	10,40	27/09/1994	156,60
10	puits	Vineuil	544,875	212,075	152,00	4,20	27/09/1994	147,80
11	puits	Vineuil	544,180	211,455	157,00	11,60	27/09/1994	145,40
12	puits	Vineuil	544,550	212,670	148,00	3,60	26/09/1994	144,40
13	puits	Villegongis	544,980	213,350	152,00	3,95	26/09/1994	148,05
18	puits	St Martin de lamps	542,010	219,010	144,00	6,10	26/09/1994	137,90
26	puits	Francillon	539,855	217,385	182,50	11,60	26/09/1994	170,90
30	puits	Francillon	538,905	216,030	176,00	11,70	26/09/1994	164,30
31	puits	Francillon	540,375	217,075	181,00	10,40	26/09/1994	164,60
32	puits	Francision	541,900	217,600	158,00	13,60	26/09/1994	144,40
	puits	Levroux	543,050	218,900	149,00	11,15	26/09/1994	137,85
34	puits	Levroux	542,860	217,230	182,00	23,30	26/09/1994	158,70
39	puits	Argy	538,945	215,650	172,50	10,80	26/09/1994	161,70
40	puits	Francillon	540,460	216,000	189,00	13,00	26/09/1994	174,00
43	puits	Francision	540,965	210,085	188,00	15,00	26/09/1994	172,40
44	puits	Villagongia	541,300	210,000	190,00	12.50	26/09/1994	174,70
40	puits	Villegongis	542,075	214,400	162.00	8 40	20/09/1994	154,50
47 50	puits	Vinegorigis	543,400	215,275	166,00	0,40	26/09/1994	154,00
50	puits	Levroux	544 110	218 960	160,00	14.00	26/09/1994	140.50
51	puits	Levroux	544,110	218,300	159,50	9.00	26/09/1994	140,50
52	puits	Levroux	544 995	217,010	178.00	21 30	28/09/1994	156,50
55	puits	Levroux	545.075	216 230	173.00	15 50	28/09/1994	157.50
56	puits	Levroux	544,175	217.060	177.00	12.00	26/09/1994	165.00
58	puits	Villegongis	544.575	214,245	160.50	12,00	26/09/1994	148 40
60	puits	Villegongis	543,445	212,910	155.50	11.50	26/09/1994	144.00
61	puits	Villegongis	541.950	212.850	158.00	13.15	29/09/1994	144.85
62	puits	Villegongis	541.415	212.980	158.00	8.40	29/09/1994	149.60
64	puits	St Lactencin	538.520	214.160	167.00	6.95	29/09/1994	160.05
66	puits	St Lactencin	538,605	213,125	159.00	11.30	29:09/1994	147.70
71	puits	Villegongis	543.625	212.125	150.00	7.30	26/09/1994	142.70
78	puits	chezelles	541,875	211.585	154.50	14.25	29/09/1994	140,25
79	puits	Chezelles	540,985	211,985	151,00	7,10	29/09/1994	143,90
80	puits	Chezelles	539,550	212,430	156,00	7,95	29/09/1994	148,05
82	 puits	Chezelles	539,030	210,855	159,00	15,65	29/09/1994	143,35
83	puits	Chezelles	539,330	211,265	155,00	10,00	29/09/1994	145,00
84	puits	Chezelles	539,875	211,180	165,00	18,80	29/09/1994	146,20
86	puits	Chezelles	540,025	210,500	156,00	15,60	29/09/1994	140,40
88	puits	Chezelles	540,560	211,095	162,50	16,85	29/09/1994	145,65
91	puits	Chezelles	539,560	210,450	155,00	15,50	29/09/1994	139,50
99	forage agri.	chezelles	543,000	211,250	141,00	0,00	27/09/1994	141,00
103	forage agri.	Villegongis	543,025	213,000	150,00	2,60	29/09/1994	147,40
104	forage agri.	Chezelles	542,200	211,800	143,00	0,90	29/09/1994	142,10
105	forage agri.	Villegongis	543,625	212,550	144,50	1,00	27/09/1994	143,50
108	puits	chezelles	543,050	211,150	145,00	4,45	27/09/1994	140,55
112	forage agri.	Villegongis	543,375	211,950	145,00	1,60	27/09/1994	143,40
1	puits	Chezelles	539.675	212.900	161,00	7.60	29/09/1994	153.40

Tableau - Inventaire et caractérisation des points d'eau situés sur le huitième 544 - 2X

~

NUMERO	TYPE		Coordonneés			PROF.		COTE
DU	DE		Lambert			DE LA		N.G.F.
POINT	POINT	COMMUNE	Zone II	Zone II étendue		NAPPE	DATE	DELA
. c	D'	USIMIONE	V V			1 601	DAIL	NADDE
5					2	7302		
EAU	EAU		(en km)	(en km)	(en m)	(en m)	00/00/1000	(en m)
8	puits	Levroux	540,125	217,450	177,50	17,55	28/09/1994	159,95
10	puits	Levroux	550,525	219,330	167.50	6 20	29/09/1994	162,50
12	puits	Levroux	546 220	217,775	156.00	11 75	28/09/1994	144 25
13	puits	Levroux	546.425	218 315	159.00	8 50	28/09/1994	150.50
15	puits	Levroux	547.390	217,800	175.00	14.15	28/09/1994	160,85
16	puits	Levroux	548,640	216,610	172.50	11.40	28/09/1994	161,10
17	puits	Brion	551,780	215,750	183.00	14.00	28/09/1994	169.00
18	puits	Vineuil	550,625	215,150	183,00	16,70	28/09/1994	166,30
21	puits	Levroux	545,525	218,550	165,00	15,55	28/09/1994	149,45
22	puits	Levroux	545,600	215,950	166,00	11,50	28/09/1994	154,50
23	puits	Levroux	546,800	215,950	170,00	15,70	29/09/1994	154,30
24	puits	Levroux	547,250	216,950	172,50	13,20	28/09/1994	159,30
25	puits	Villegongis	545,615	214,660	156,50	4,20	28/09/1994	152,30
26	puits	Levroux	547,075	220,235	162,50	14,65	29/09/1994	147,85
29	puits	Levroux	550,270	219,845	167,50	11,00	29/09/1994	156,50
43	puits	Vineuil	547,170	214,000	161,50	7,10	28/09/1994	154,40
44	puits	Vineuil	550,540	212,800	172,50	7,90	27/09/1994	164,60
45	puits	Vineuil	549,700	213,325	171,00	4,60	27/09/1994	166,40
47	puits	Vineuil	549,960	213,890	171,00	6,80	27/09/1994	164,20
48	puits	Vineuil	549,020	213,750	180,00	14,65	27/09/1994	165,35
49	puits	Vineuil	547,900	212,810	175,00	12,35	27/09/1994	162,65
51	puits	Vineuil	547,450	212,915	175,00	12,30	27/09/1994	162,70
52	puits	Vineuil	548,750	212,915	172,50	5,70	27/09/1994	166,80
54	puits	Vineuil	548,225	212,400	170,50	4,40	27/09/1994	166,10
55	puits	Vineuli	548,950	211,800	173,00	15,50	28/09/1994	157,50
<u>50</u>	puits	Vineuli	547,900	211,270	1/2,50	0,10	27/09/1994	160,40
62	puits	Vineuil	546,290	212,275	100,00	5,20	28/09/1994	162,80
65	puits	Vineuli	540,050	211,550	173,00	0.25	27/09/1994	167,30
67	puits	Vineuil	547 140	212,050	175,00	9.45	27/09/1994	165 55
70	puits	Vineuil	545.775	212,000	166.00	9,10	27/09/1994	156.90
71	puits	Vineuil	545,570	211.375	171.50	11.30	27/09/1994	160,20
72	puits	Vineuil	546,430	210,530	171.00	7.10	29/09/1994	163.90
73	puits	Vineuil	545,890	210,550	170,80	9,60	29/09/1994	161,20
80	forage agri.	Vineuil	549,150	215,400	165,00	2,10	28/09/1994	162,90
82	puits	Vineuil	547,425	211,225	173,00	8,20	27/09/1994	164,80
98	forage agri.	Brion	551,225	216,450	186,00	20,40	28/09/1994	165,60
99	forage agri.	Brion	551,325	216,280	188,00	18,55	28/09/1994	169,45
101	forage agri.	Brion	551,725	213,690	171.00	2.70	28/09/1994	168.30
104	forage agri.	Villegongis	546,125	214,525	154,00	1,10	28/09/1994	152,90
105	forage agri.	Levroux	546,020	215,925	160,50	5,75	28/09/1994	154,75
108	torage agri.	Vineuil	548,750	214,425	155,00	1,20	28/09/1994	153,80
128	puits	Vineuil	546,325	211,500	175,00	11,20	27/09/1994	163,80
130	puits	Vineuil	546,550	211,190	172,50	2,40	27/09/1994	170,10
133	puits	Vineuil	549.725	214.950	178,00	13,55	28/09/1994	164,45
н	puits	Vineuil	546 730	214,875	157,50	1,70	28/09/1994	155,80
	puits	Levroux	548.725	220.075	159,00	5,70	29/09/1994	153,30

Tableau - Inventaire et caractérisation des points d'eau situés sur le huitième 544 - 3X

_

L

		· · · · · · · · · · · · · · · · · · ·					1	
NUMERO	ТҮРЕ		Coord	onneés	[PROF.		COTE
DU	DE		Larr	nbert		DE LA		N.G.F.
POINT	POINT	COMMUNE	Zone II	étendue	ſ	NAPPE	DATE	DE LA
D'	D'		XY		z	/ SOL		NAPPE
EAU	EAU		(en km)	(en km)	(en m)	(en m)		(en m)
6	puits	Brion	555,725	218,480	195,00	11,25	28/09/1994	183,75
11	puits	Brion	554,250	219,775	194,00	14,25	28/09/1994	179,75
12	puits	Brion	552,950	220,030	180,00	8,80	28/09/1994	171,20
17	puits	Brion	552,075	216,355	185,50	16,15	28/09/1994	169,35
18	puits	Brion	552,650	216,820	183,00	11,20	28/09/1994	171,80
19	puits	Brion	554,020	216,000	172,00	2,50	28/09/1994	169,50
25	puits	Brion	553,120	214,215	172,00	4,00	28/09/1994	168,00
27	puits	Brion	553,950	215,475	170,00	1,80	28/09/1994	168,20
28	puits	Brion	552,980	216,840	182,50	11,40	28/09/1994	171,10
29	puits	Brion	554,000	213,850	172,50	5,30	28/09/1994	167,20
47	puits	Coings	553,200	211,865	161,00	2,20	28/09/1994	158,80
48	puits	Coings	552,875	211,065	159,50	3,50	28/09/1994	156,00
49	puits	Coings	552,350	213,090	167,00	3,15	28/09/1994	163,85
50	puits	Coings	552,030	211,575	161,00	1,65	28/09/1994	159,35
51	puits	Brion	553,200	217,920	182,00	9,50	28/09/1994	172,50
A	puits	Brion	553.700	217.600	178,50	6,65	28/09/1994	171,85

Tableau - Inventaire et caractérisation des points d'eau situés sur le huitième 544 - 4X

Tableau - Inventaire et caractérisation des points d'eau situés sur le huitième 544 - 5X

NUMERO	TYPE		Coord	onneés		PROF.		COTE
עם	DE		Larr	nbert		DE LA		N.G.F.
POINT	POINT	COMMUNE Zone		Zone II étendue		NAPPE	DATE	DELA
D.	D.		x	Y	z	/ SOL		NAPPE
EAU	EAU		(en km)	(en km)	(en m)	(en m)		(en m)
34	puits	St Lactencin	537,125	209,25	155	18,40	30/09/1994	136,60
36	puits	St Lactencin	537,870	209,250	150	18,40	30/09/1994	131,60
103	puits	Villedieu sur Indre	536,495	207,555	150	17,40	30/09/1994	132,60

~

NUMERO	ТҮРЕ		Coord	onneés		PROF.		СОТЕ
עם	DE		Larr	nbert		DE LA		N.G.F.
POINT	POINT	COMMUNE	Zone II étendue			NAPPE	DATE	DELA
D'			- v		1 ,	(60)		NADOC
D			^		2	1 SUL		NAPPE
EAU	EAU		(en km)	(en km)	(en m)	(en m)		(en m)
15	puits	villedieu / indre	540,075	207,425	143,00	13,75	30/09/1994	129,25
17	puits	Chezelles	542,050	210,130	145,00	8,40	27/09/1994	136,60
19	puits	Villers-les-Ormes	544,390	207,425	154,00	16,20	29/09/1994	137,80
20	puits	Villers-les-Ormes	544,805	208,330	155,00	17,60	27/09/1994	137,40
21	puits	Villers-les-Ormes	543,425	208,750	162,00	24,20	27/09/1994	137,80
22	puits	Villedieu / indre	542,000	207,675	157,50	27,05	27/09/1994	130,45
24	puits	Chezelles	542,750	209,550	145,00	11,30	27/09/1994	133,70
25	puits	Chezelles	539,150	209,780	152,00	20,90	30/09/1994	131,10
27	puits	Chezelles	540,625	209,550	145,00	10,90	27/09/1994	134,10
28	puits	Chezelles	542,875	209,275	135,00	1,90	27/09/1994	133,10
29	puits	Villedieu / indre	541,475	208,040	135,00	5,00	27/09/1994	130,00
33	puits	Villedieu / indre	538,900	205,760	130,00	8,60	30/09/1994	121,40
36	puits	Villers-les-Ormes	544,250	206,780	160,00	24,90	29/09/1994	135,10
43	puits	St Maur	543.425	203.780	130.5	1.85	30/09/1994	128.65
50	puits	Niherne	541,725	205,015	159,50	31,20	29/09/1994	128,30
51	puits	Niherne	541,320	204,875	150,00	23,50	30/09/1994	126,50
53	puits	Niherne	541,200	204,325	135,00	6,00	30/09/1994	129,00
93	puits	Villedieu / indre	539,660	205,410	145,00	18,70	30/09/1994	126,30
94	puits	Villedieu / indre	539,380	205,375	130,00	10,70	30/09/1994	119,30
108	puits	Villers-les-Ormes	544,400	208,375	155,00	19,40	27/09/1994	135,60
118	forage agri.	Villedieu / indre	541,300	208,075	130,00	0,70	27/09/1994	129,30
123	puits	Villedieu / indre	540,275	206,390	130,00	1,40	30/09/1994	128,60
132	forage agri.	Vineuil	544,800	210,130	165,00	18,00	29/09/1994	147,00
133	puits	Chezelles	540,725	209,600	144,00	9,20	27/09/1994	134,80
A	puits	Villedieu / indre	539,250	205,675	125,00	2,60	30/09/1994	122,40
F	puits	Villedieu / indre	538,510	205,920	140,00	17,45	30/09/1994	122,55
н	puits	Niherne	541.200	204.325	129,00	2,00	30/09/1994	127,00
1	puits	Niherne	542.175	203.700	130,00	1,90	30/09/1994	128,10
L	puits	St Maur	544.550	204.150	151,00	15,10	30/09/1994	135,90

Tableau - Inventaire et caractérisation des points d'eau situés sur le huitième 544 - 6X

NUMERO	ТҮРЕ		Coordonneés			PROF.		COTE
DU	DE		Lan	nbert		DE LA		N.G.F.
POINT	POINT	COMMUNE	Zone II	Zone II étendue		NAPPE	DATE	DELA
D'	D'		x	Y	z	/ SOL		NAPPE
EAU	EAU		(en km)	(en km)	(en m)	(en m)		(en m)
29	puits	St Maur	545,130	205,525	160,00	25,00	29/09/1994	135,00
31	puits	Villers-les-Ormes	546,150	206,800	162,00	19,10	29/09/1994	142,90
32	puits	Villers-les-Ormes	546,065	207,765	162,50	7,20	27/09/1994	155,30
34	puits	Villers-les-Ormes	546,450	207,725	165,00	9,70	27/09/1994	155,30
36	puits	Vineuil	546,250	209,600	169,00	9,20	29/09/1994	159,80
37	puits	Villers-les-Ormes	545,920	208,725	164,00	14,80	29/09/1994	149,20
39	puits	Vineuil	547,205	209,805	170,00	6,00	29/09/1994	164,00
40	puits	Vineuil	547,510	210,200	171,00	4,85	29/09/1994	166,15
41	puits	Vineuil	547,350	209,330	167,00	5,50	29/09/1994	161,50
45	puits	Coings	550,000	209,455	159,00	8,30	29/09/1994	150,70
48	puits	Vineuil	548,200	208,505	153,00	4,25	29/09/1994	148,75
53	puits	Villers-les-Ormes	546,340	208,820	160,00	4,10	29/09/1994	155,90
54	puits	Villers-les-Ormes	546,675	208,650	165,00	6,50	29/09/1994	158,50
62	puits	Villers-les-Ormes	548,020	207,770	153,00	5,10	29/09/1994	147,90
126	forage agri.	Vineuil	548,125	210,050	163,00	6,40	29/09/1994	156,60

.

 Tableau
 - Inventaire et caractérisation des points d'eau situés sur le huitième 544 - 7X

RÉALISATION BRGM

.

•

.

.

•

impression et façonnage : SERVICE REPROGRAPHIE