

Evaluation des ressources en eaux souterraines du Plateau de Sault -

Amélioration des connaissances sur les potentialités de la ressource et cartographie de la vulnérabilité

h1b-2

d7-h1a

.89 3740,46 -625.5

Rapport final

BRGM/RP-67528-FR Juin 2018

Evaluation des ressources en eaux souterraines du Plateau de Sault -Amélioration des connaissances sur les potentialités de la ressource et cartographie de la vulnérabilité

Rapport final

BRGM/RP-67528-FR

Juin 2018

Étude réalisée dans le cadre des opérations de Service public du BRGM

V. Bailly-Comte, B. Ladouche, C. Allanic, A. Bitri, F. Moiroux, B. Monod, P. Vigouroux, JC. Maréchal Avec la collaboration de A. Grandemange, M. Bardeau et F. Tilloloy

Vérificateur :

Nom : JB Charlier

Fonction : Hydrogéologue

Date : 29 juin 2018

Approbateur :
Nom : A Blum
Fonction: Directrice
Date : 29 juin 2018
A

Le système de management de la qualité et de l'environnement est certifié par AFNOR selon les normes ISO 9001 et ISO 14001. Contact : <u>qualite@brgm.fr</u>

Mots-clés : modèle géologique 3D, sismique réflexion, eau souterraine, hydrogéologie, système karstique, vulnérabilité, source, essai de traçage, forage

En bibliographie, ce rapport sera cité de la façon suivante :

Bailly-Comte V., Ladouche B., Allanic C., Bitri A., Moiroux F., Monod B., Vigouroux P., Maréchal JC. (2018) – Evaluation des ressources en eaux souterraines du Plateau de Sault - Amélioration des connaissances sur les potentialités de la ressource et cartographie de la vulnérabilité. Rapport final. BRGM/RP-67528-FR, 304 p., 196 fig., 76 tabl., ann.

© BRGM, 2018, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

A la mémoire d'Alain Mangin

Les auteurs de ce rapport ainsi que les partenaires du projet scientifique « Plateau de Sault » souhaitent rendre hommage à la mémoire d'Alain Mangin, décédé le 15 août 2017. Alain Mangin était un pionnier de l'hydrogéologie karstique en France. Géologue, spéléologue, ancien directeur du Laboratoire Souterrain du CNRS de Moulis, il a contribué fortement au développement de nouvelles techniques et approches pour mieux comprendre ce milieu souterrain très complexe. En tant qu'expert du karst et grand connaisseur du secteur d'étude, il était membre du comité scientifique du projet « Plateau de Sault » et nous a fait profiter avec rigueur de ses connaissances multiples. Il avait en effet beaucoup travaillé sur les calcaires du Plateau, et notamment sur la source intermittente de Fontestorbes dont il avait expliqué le fonctionnement dans sa thèse d'Etat en 1975.

Ce rapport lui est dédié.

Synthèse

e secteur du Plateau de Sault est actuellement desservi en eau potable par de nombreux captages souvent faiblement productifs et vulnérables aux contaminations. Il apparaît donc nécessaire d'améliorer la connaissance sur les eaux souterraines du secteur afin d'identifier une ressource structurante tant du point de vue de la quantité que de la qualité.

Dans ce contexte, une étude de la géologie et de l'hydrogéologie du Plateau de Sault a été réalisée en collaboration entre les Agences de l'Eau Adour-Garonne (AEAG) et Rhône Méditerranée Corse (AERMC), les deux Conseils Départementaux de l'Ariège et de l'Aude, le Conseil Régional Occitanie et le BRGM. Le projet a pour objectif d'acquérir de nouvelles connaissances concernant le fonctionnement, la structure et la localisation des réserves en eaux souterraines des systèmes karstiques présents au niveau du Plateau de Sault, dans un environnement géologique complexe de par sa position pyrénéenne. Les résultats du projet proposent une hiérarchisation des secteurs potentiellement favorables en termes de ressources à faible vulnérabilité.

Le projet déroule la méthodologie d'investigation des aquifères karstiques décrite dans le guide méthodologique d'étude des aquifères karstiques (Dörfliger 2010) en y intégrant l'approche KARSYS (Jeannin et al. 2013).

La cartographie géologique, l'analyse structurale, la sismique réflexion, la prospection microgravimétrique et la réalisation de forages de reconnaissance ont permis d'élaborer un modèle géologique tridimensionnel des formations constituant le Plateau de Sault. Pour les formations du Secondaire, ce modèle a été confronté aux résultats hydrogéologiques (essais de traçages artificiels et jaugeages différentiels des pertes sur les cours d'eau de surface) au moyen de l'approche KARSYS afin de valider l'organisation des écoulements souterrains. Cette méthode a permis d'identifier l'extension minimale de la zone noyée des systèmes karstiques, les secteurs libres et captifs, les zones de recharge directe et indirecte et la localisation la plus probable des axes de drainage karstique. Ces résultats ont alimenté l'analyse de cartographie de la vulnérabilité des ressources en eau souterraine du Plateau de Sault.

Les deux systèmes karstiques majeurs de Fontmaure et de Fontestorbes qui drainent le plateau sont assez similaires en termes de débits et d'extension de leur bassin d'alimentation. Une zone de partage des eaux entre les deux systèmes, fluctuante au cours du temps, a été mise en évidence, accompagnée d'un mécanisme de diffluence au profit du Blau en crue, mais également de Fontestorbes. Celui-ci a été confirmé par le résultat du traçage de la perte des Coumeilles qui présente une restitution rapide en régime de crue au Blau, associé à une restitution plus lente à la source de Fontmaure. L'analyse des débits classés montre qu'en hautes eaux, une partie des écoulements drainés habituellement vers Fontmaure se dirigent vers le Blau et Fontestorbes. L'interprétation du modèle géologique 3D selon la méthode KARSYS permet d'expliquer ces résultats : les mises en charge et la saturation des réseaux drainant les pertes d'eau de surface favorisent la réactivation des paléo-karsts développés à une altitude supérieure, et permettent ainsi aux circulations d'eau de franchir des limites imperméables liées à la remontée du substratum au cœur des structures anticlinales. Pour ces conditions de saturation, des échanges sont alors possible entre les systèmes de Fontmaure et du Blau, et entre les systèmes de Fontestorbes et du Blau.

Les jaugeages différentiels effectués sur le Rébenty montrent que les pertes y sont faibles, présentes uniquement lors de la traversée de la ZIM (Zone Interne Métamorphique). Elles alimentent probablement le système karstique de Fontmaure. Les mesures effectuées sur le

système de Contes montrent qu'il n'y a pas de lien entre les pertes du Moulin et la source de Fontestorbes.

A l'issue de cette étude, plusieurs secteurs apparaissent comme favorables pour mener des prospections d'eau plus ciblées. C'est le cas notamment du secteur situé à l'amont du Blau, où un aquifère perché a été identifié. Le sous-système du Blau ne serait pas qu'un simple système de trop-plein de Fontmaure et pourrait être considéré comme un petit système karstique indépendant en basses eaux. Le forage du Blau réalisé au cours de l'étude y montre l'existence d'une zone noyée épaisse accessible à une profondeur moindre que sur le Plateau. La qualité de l'eau y est très bonne. Un questionnement persiste sur l'importance de la ressource stockée.

A Fontmaure, l'analyse géochimique des eaux à l'aide des isotopes du sulfate confirme l'origine triasique profonde des sulfates dont les teneurs augmentent de façon corrélée avec la température de la source. Les teneurs en nitrates et autres traceurs d'activités anthropiques sont détectés de façon plus récurrente sur les sources de Fontmaure, Cailla et Belfort-sur-Rébenty ; les concentrations demeurent pour l'heure très inférieures à la limite de 50 mg/l fixée pour l'AEP. La source de Belfort-sur-Rébenty, faisant l'objet d'un captage AEP, n'est pas alimentée par les pertes des Quirines ni par le fossé situé à l'aval de la station d'épuration d'Espezel. Le siège du réservoir aquifère de cette source serait situé sur le plateau d'Espezel dans la vallée du paléo-Rébenty creusée dans les marnes albiennes et n'aurait pas un caractère karstique.

Le suivi hydrologique et géochimique des sources du Dévonien a permis d'identifier la source des Adouxes comme constituant la ressource d'eau souterraine la plus prometteuse du Haut-Rébenty. Son pouvoir régulateur relativement élevé lui confère des capacités de stockage d'eau importantes. Son volume dynamique proche de 3 millions de m³ est élevé et la qualité de l'eau est excellente. Il n'y a par ailleurs aucune pression anthropique sur son bassin d'alimentation. Avant d'envisager une exploitation de cette ressource, il conviendra d'en évaluer l'impact sur les débits du Rébenty dont elle constitue un contributeur majeur.

En terme d'instrumentation future, nous suggérons de poursuivre les suivis de la source des Adouxes qui constitue une ressource significative au sein des calcaires du Dévonien. Le suivi du forage du Blau permettra de mieux comprendre le fonctionnement de la zone de diffluence entre les systèmes de Fontmaure et de Fontestorbes. Le suivi de la source de Fontmaure nécessite une amélioration de l'instrumentation de façon à mieux mesurer les basses eaux. Il conviendra notamment d'établir une courbe de tarage entre les débits du Blau et les niveaux du forage du Blau, ce qui pose la question du maintien du seuil aval qui avait été installé au début du projet (2015). Pour la source de Fontmaure, les jaugeages différentiels sur l'Aude par la méthode de dilution seront à poursuivre pour préciser la courbe de tarage.

Parmi les éventuels traçages qu'il serait opportun de réaliser, figure celui de la perte Nord du Sarrat de l'étreuil (avec suivi de Fontmaure, Blau, Moulin de Labeau et source des Graviers) dont un ancien traçage montre une connexion avec Fontmaure peu compatible avec notre compréhension de l'organisation des écoulements souterrains. La question des sousécoulements qui échappe à la station de jaugeage de la source de Fontestorbes reste un élément de progrès pour mieux cerner les volumes écoulés.

En terme de vulnérabilité, la plupart des bassins versants alimentant les pertes karstiques constituent des secteurs fortement vulnérables. Pour l'instant, les pressions sur la ressource restent modestes du fait du caractère rural de la zone, à l'exception du bassin d'alimentation de la source de Belfort-sur-Rébenty qui est fortement influencée par les activités agricoles sur la plaine d'Espezel.

Sommaire

1. Introduction	21
1.1. CONTEXTE ET OBJECTIF	21
1.2. DEROULEMENT DU PROJET	21
2. Mise à jour du modèle géologique 3D	23
2.1. INTRODUCTION	23
	29
2.2. PROSPECTION GEOPHISIQUE : SISIVIQUE REFLEXION	20 28
2.2.7. Objectilo	29
2.2.3. Résultats de la sismigue réfraction	
2.2.4. Résultats de la sismique réflexion	32
	27
2.3.1 Introduction	
2.3.2 Forage d'Espezel	
2.3.3. Forage de Blau à Puivert	50
2.4. MISE A JOUR DE LA MODELISATION GEOLOGIQUE 3D	56
2.4.1. Introduction	56
2.4.2. Secteur du forage d'Espezel	59
2.4.3. Secteur du forage du Blau	61
3. Hydrogéologie des principaux systèmes karstiques	65
3.1. INTRODUCTION	65
3.1.1.Contexte hydrogéologique	65
3.1.2. Instrumentation et réseau de surveillance	67
3.2. METHODES D'ANALYSES MISES EN ŒUVRE	68
3.2.1. Analyse des Débits classés	68
3.2.2. Analyse des courbes de récession	69
3.2.3. Analyse du volume de régulation	73
3.2.4. Analyse du fonctionnement et estimation des bilans hydrogé logiciel Gardenia (©BRGM)	ologiques à l'aide du
3.2.5. Approche géochimique	79
3.3. SYSTEMES KARSTIQUES DU PRIMAIRE	82
3.3.1. Source des Adouxes (ou des Adoux)	85
3.3.2. Source des Adoucis	95
3.3.3. Source SRE du Syndicat Roquefeuil-Espezel	101

3.3.4. Source du Moulin (ou de la Fajolle)	. 107
3.3.5. Apports des données géochimiques	. 114
3.3.6. Synthèse des caractéristiques hydrodynamiques des sources	. 119
3.4. INFORMATIONS APPORTEES PAR LES TRAÇAGES ARTIFICIELS	. 120
3.4.1. Présentations de la méthode	. 120
3.4.2. Bilan des données existantes	. 121
3.4.3. Objectifs et réalisation des nouveaux essais	. 125
3.4.4. Résultats des nouveaux essais de traçage et interprétation qualitative	130
3.4.5. Interprétation quantitative et modélisation 1D	. 136
3.5. SYSTEMES KARSTIQUES DU SECONDAIRE	. 142
3.5.1. Résultats des suivis réalisés sur les systèmes karstiques étudiés	. 143
3.5.2. Fonctionnement et évaluation des ressources des systèmes karstique	es169
3.5.3. Apports des informations géochimiques	. 178
3.6 JAUGEAGES DIFFERENTIELS	192
3.6.1. Relation hydraulique entre les systèmes karstiques de Contes et de F 192	ontestorbes
3.6.2. Relation hydraulique entre le Rébenty et le système karstique de Font 194	tmaure
3.7. ANALYSE DES INTERMITTENCES DU SYSTEME DE FONTESTORBES.	. 195
3.7.1. Analyse de la dernière intermittence	. 195
3.7.2. Analyse de la reprise de l'intermittence pour les bas débits	. 197
3.7.3. Analyse de la fin de l'intermittence pour les hauts débits	. 197
3.7.4. Analyse de la reprise de l'intermittence pour les hauts débits	. 198
3.7.5. Influence de la recharge sur la forme des intermittences et sur les trar solutés	nsferts de . 199
3.7.6. Conclusion et discussion	. 200
3.7.7. Amélioration de la relation hauteur/débit à Fontestorbes	. 201
4. Mise à jour du modèle hydrogéologique conceptuel et de la géométrie des karstiques	aquifères . 205
4.1. INTRODUCTION	.205
4.2. CARTOGRAPHIE DES ZONES NOYEES, ORGANISATION DU DRAINAG	205
4 2 1 Méthode	205
4 2 2 Système de Fontestorbes	207
4 2 3 Système de Fontmaure/Ginoles et sous-système du Rlau	213
4.2.4 Système de Relfort sur Répenty	210
4.2.5 Systèmes de Contos, Cailla et Eago	· 2 1 3 2 2 1
4.2.6 Systèmes de Contes, Calila et Fayo	225
4.2.0. Jysternes karstiques un Frindire	. 220

4.3. SYNTHESE SU	IR LES BASSINS D'ALIMEN	JTATION DES PRINC	IPALES SOURCES
226			

5. Potentialités des aquifères et vulnérabilité	229
5.1. INTRODUCTION	229
5.2. VULNERABILITE INTRINSEQUE DE LA RESSOURCE EN EAU 5.2.1. Démarche globale 5.2.1. Résultats	229 229 235
 5.3. PRESSIONS ANTHROPIQUES 5.3.1. Méthodologie 5.3.2. Résultats à l'échelle des zones d'études principales 5.3.3. Résultats à l'échelle des bassins d'alimentation des sources 	256 256 259 273
5.4. DEFINITION DE SECTEURS AQUIFERES POTENTIELS 5.4.1. Méthodologie 5.4.2. Résultats	279 279 279
6. Conclusion et perspectives	293
7. Bibliographie	301

Liste des figures

Figure 12 : Exempl	le de boites de cuttings récupérées par le foreur, ici de 0 à 114 mètres de
pro	ofondeur, permettant la description géologique du forage. On observe les argiles
des	s 2 premiers mètres, la cavité karstique et le passage des calcaires beige du
Cre	étacé inférieur au calcaires noirs du Jurassique
Figure 13 : Coupe	géologique du forage d'Espezel obtenue par croisement des descriptions de
cut	ttings et des données de diagraphie du gamma natruel
Figure 14 : Image on noi	de la paroi du forage entre 280 et 283 mètres de profondeur dans les calcaires irs du Jurassique. Exemple des structures observables et de leur pendage 43
Figure 15 : Représ	entation des structures observées par le bureau d'étude
Figure 16 : Statistic	ques structurales des plans observés dans le forage entre 148 et 195 m de
pro	ofondeur. Gauche : Direction des plans. Droite : Direction de plongement et valeur
de	pendage
Figure 17 : Statistic	ques structurales des plans observés dans le forage entre 196 et 319 m de
pro	ofondeur. Gauche : Direction des plans. Droite : Direction de plongement et valeur
de	pendage
Figure 18 : Statistic	ques structurales des plans observés dans le forage entre 320 et 374 m de
pro	ofondeur. Gauche : Direction des plans. Droite : Direction de plongement et valeur
de	pendage
Figure 19 : Position	n du forage d'Espezel sur le profil sismique P2
Figure 20 : Position	n et profondeur atteinte par le forage d'Espezel sur un extrait de la coupe
str	ucturale n°2 du rapport BRGM RP/BRGM-65888-FR
Figure 21 : Carte d	e situation du forage Blau (département de l'Aude). Haut : carte topographique à
1/2	25 000 source IGN ; Bas : carte géologique du projet sur fond de carte IGN à 1/25
00	0
Figure 22 : Coupe	géologique synthétique du forage Blau et photos 1) des calcaires bréchiques à
l'af	fleurement, 2) brèches et fractures à 53 m, 3) fracture ouverte à 93 m, 4) niveau
de	calcaire argileux noir intercalé à 221 m53
Figure 23 : Positior	n du forage Blau (en rouge) sur la coupe géologique n°5 de Bousquet JP. (1975) 55
Figure 24 : diagrap	hies de production naturelle du forage du Blau (réalisées le 13/11/2017)56
Figure 25 : Profil si	smique est-Ouest (en orange sur la carte de la Figure 3) avec les bases
pré	édictives des formations géologiques, d'après le modèle géologique 3D
pré	éliminaire construit. Le code couleur est donné en bas à droite par la pile
gée	ologique modélisée
Figure 26 : Extrait or rep	de BD cavités (points noirs) et de BDmvt dont les effondrements ou fontis sont présentés en jaune. Les forages prévisionnels sont en rouge
Figure 27 : Profil si	smique Sud-Nord P1 (en rouge sur la carte Figure 3) avec les bases prédictives
de:	s formations géologiques, d'après le modèle géologique 3D préliminaire construit.
Le	code couleur est donné en bas à gauche par la pile géologique modélisée.58
Figure 28 : Compa	raison pour le forage d'Espezel entre les interfaces géologiques prédictives à
pai	rtir du modèle géologique 3D préliminaire (log de droite) et celles décrites par B.
Mc	pnod dans le forage réalisé (log de gauche)
Figure 29 : A gaucl	he : Avant corrections, comparaison pour le forage d'Espezel entre les interfaces
gé	ologiques prédictives à partir du modèle géologique 3D préliminaire et celles
dé	crites par B. Monod dans le forage réalisé superposé au profil sismique est-
Ou	lest. A droite : La même coupe après corrections
Figure 30 : En haut	t : Avant corrections, comparaison pour le forage d'Espezel entre les interfaces
géo	ologiques prédictives à partir du modèle géologique 3D préliminaire et celles

	décrites par B. Monod dans le forage réalisé superposé au profil sismique Sud- Nord. En bas : La même coupe après corrections
Figure 31	: Comparaison pour le forage du Blau entre les interfaces géologiques prédictives à partir du modèle géologique 3D préliminaire (log de droite) et celles décrites par B. Monoc dans le forage réalisé (log de gauche)
Figure 32	: Intersection du modèle géologique 3D mis à jour, avec la topographie (haut) dans le secteur Blau. Bas : Coupe Sud-Nord localisée en rouge sur la carte passant par le forage Blau (entourée en rouge. Les interfaces géologiques sont issues du modèle géologique 3D mis à jour
Figure 33	: Vue vers l'Ouest du modèle géologique 3D mis à jour (sans l'Albien) avec la position des 2 nouveaux forages
Figure 34	: Carte de localisation des entités hydrogéologiques du Plateau de Sault (fond : cartes géologiques harmonisées au 1/50 000 de l'Ariège et de l'Aude)
Figure 35.	Différents cas de rupture de pente de la droite représentative des débits classés (Marsaud, 1997)
Figure 36.	Décomposition de la récession selon la méthode de Mangin (1970)
Figure 37.	Classification des systèmes karstiques à partir de l'analyse des courbes de récession (Mangin, 1975, modifié d'après El-Hakim et Bakalowicz, 2007)
Figure 38.	Schéma de modélisation adopté pour décrire le fonctionnement des sources karstiques
Figure 39.	Emprise des mailles SAFRAN sur la zone d'étude, fond IGN 100000. Les impluvium de Fontestorbes et Fontmaure sont également reportés
Figure 40.	Emprise des mailles SAFRAN sur la zone d'étude du Haut-Rébenty, fond IGN 100000.
Figure 41.	Processus d'échanges isotopiques susceptibles d'affecter la signature isotopique (¹⁸ O, ² H) de l'eau (d'après Clark et Fritz 1997)
Figure 42.	Evolution de rapport isotopique du strontium des carbonates depuis le Cambrien (d'après, Burke et al.,1982)
Figure 43.	Localisation des principales sources de la vallée du haut Rébenty située dans le Dévonien de la zone axiale (fond géoloqique au 1/50 000, extrait du rapport BRGM/RP-64209-FR)
Figure 44.	Vues de l'émergence de la source des Adouxes (10882X0215/ADOUX) située en rive gauche du Rébenty
Figure 45.	Vues de l'entrée du Barenc situé au dessus de la source des Adouxes (10882X0215/ADOUX) et vues partielles de l'équipement existant mis en place par le CD11 et du puits de mesure et équipement installés par Hydrogéosphère (tube gris) dans la cavité (Photos Hydrogéosphère)
Figure 46.	Evolutions des niveaux d'eau mesurés au plan d'eau de la cavité de la source des Adouxes (moyenne journalière)
Figure 47.	Evolutions des paramètres physico-chimiques mesurés à la source des Adouxes (moyenne journalière)
Figure 48.	Courbe de tarage de la source des Adouxes
Figure 49.	Evolution des débits moyen journalier de la source des Adouxes sur la période 2010- 2017
Figure 50.	Estimation du volume de régulation du système karstique de la source des Adouxes90
Figure 51.	Analyse des débits classés de la source des Adouxes (classes de 0.05 m ³ /s) 90

Figure 52. Exemple d'analyse de courbe de recession de la source des Adouxes par l'approche de Mangin modifiée
Figure 53. Source des Adouxes : report des paramètres I et K déduit de l'analyse des courbes de récession dans la classification de Mangin
Figure 54. Modélisation du débit à la source des Adouxes par le modèle Gardenia (période 2000- 2017)
Figure 55. Décomposition de l'hydrogramme de la source des Adouxes (flux exprimés en mm)94
Figure 56. Réponse impulsionnelle du système karstique à 100 mm/jour de pluie efficace (2 types de représentations)
Figure 57. Vues de l'émergence de la la source des Adoucis (10882X0212/ADOUCI) située en rive droite du Rébenty
Figure 58. Courbe de tarage de la source des Adoucis
Figure 59. Evolution du débit de trop-plein du captage de la source des Adoucis
Figure 60. Evolutions des paramètres physico-chimiques mesurés à la source des Adoucis (moyenne journalière)
Figure 61. Analyse des débits classés de la source des Adoucis (classes de 0.04 m ³ /s)98
Figure 62. Source des Adoucis : report des paramètres I et K déduit de l'analyse des courbes de récession dans la classification de Mangin
Figure 63. Modélisation du débit à la source des Adoucis par le modèle Gardenia (période 2000- 2017)
Figure 64. Vue des captages du syndicat Roquefeuilles-Espezel
Figure 65. Vues des seuils mis en place dans les captages (10882X0214/BASSE et 10882X0211/REBENT)
Figure 66. Courbe de tarage (établie à partir du débit cumulé de débordement des sources basse et haute)
Figure 67. Evolution du débit de la source « SRE » la période 2015-2017
Figure 68. Evolutions des paramètres physico-chimiques mesurés à la source SRE (moyenne journalière)
Figure 69. Analyse des débits classés de la source « SRE » (classes de 0.01 m3/s) 105
Figure 70. Report des paramètres I et K déduit de l'analyse des courbes de récession de la source SRE dans la classification de Mangin106
Figure 71. Modélisation du débit des sources « SRE » par le modèle Gardenia (période 2000-2017)
Figure 72. Vues de la chambre de captage de la source Moulin (10882X0203/MOULIN) et du seuil mis en place
Figure 73. Vue du trop-plein de la source du Moulin à l'extérieur de la chambre de captage 109
Figure 74. Courbes de tarage de la source du Moulin109
Figure 75. Evolution du débit journalier et des debits moyens mensuels mesurés à la source du Moulin (Fajolle)110
Figure 76. Evolutions des paramètres physico-chimiques mesurés à la source du Moulin (Fajolle)
Figure 77. Analyse des débits classés de la source du Moulin (classes de 0.01 m ³ /s)111
Figure 78. Report des paramètres I et K déduits de l'analyse des courbes de récession de la source du Moulin dans la classification de Mangin

Figure 79.	Source du Moulin (Fajolle) : évolution du débit simulé par le modèle Gardénia sur la période 2010-2017 113
Figure 80.	Report des dates de prélèvement des sources dans le contexte d'évolution hydrogéologique
Figure 81.	Evolution des sources du Dévonien dans le diagramme ternaire Ca-Mg-Sr 116
Figure 82.	Evolution des rapports ⁸⁷ Sr/ ⁸⁶ Sr des eaux du secteur d'étude en fonction des signatures isotopiques en oxygène 18
Figure 83.	Evolution des rapports ⁸⁷ Sr/ ⁸⁶ Sr des eaux du secteur d'étude en fonction du rapport 1/Sr
Figure 84:	Injection de fluoréscéine à la perte de Camurac (a) et de sulforhodamine B à la perte du ruisseau des Taillades au lieu-dit du Rébounédou (b) lors du multi-traçage MT1 le 07/05/2015
Figure 85:	Injection de fluorescéine à la perte des Quirines (a) et de sulforhodamine B à la perte de la dépression de Coudons (b) complétée par un apport d'eau avant et après l'injection (c) lors du multi-traçage MT3 le 15/06/2017 127
Figure 86:	Injection de 500g d'uranine dans le puits P1 des Mijanes, photo L. Ruiz 128
Figure 87:	Position du point d'injection dans le P1 des Mijanes (topo d'après Cau, 1980) 129
Figure 88:	Résultats des essais de traçages artificiels 131
Figure 89:	Signaux obtenus sur le fluorimètre placé à la source de Belfort sur Rébenty pendant le MT2 et répartition des prélèvements manuels (carrés rouges) pour la recherche de fluorescéine et de sulforhodamine
Figure 90:	Données brutes obtenues lors du suivi du MT3133
Figure 91:	Relations mises en évidence par traçage sur le plateau de Sault distinguées selon la fiabilité du résultat. Les points d'injection nommés correspondent aux points utilisés pour les nouveaux traçages MT1 à MT5 et T6
Figure 92	: Calage de la solution analytique (rouge) sur les DTS mesurées (noir), l'évolution du débit est également reportée (gris)138
Figure 93:	Report probable des drains karstiques majeurs empruntés par les traceurs lors des opérations de traçages MT1 à MT5 et T6 sur le fond IGN (1/100000) et géologique (1/50000)
Figure 94.	Carte de localisation des systèmes karstiques du Secondaire142
Figure 95.	Vues du contexte d'émergence de la source de Fontmaure au niveau du seuil pour différents contextes hydrologiques
Figure 96.	Vues de l'écoulement au seuil la source de Fontmaure en période de très basses eaux
Figure 97.	Courbe de tarage du seuil de Fontmaure établie à partir des mesures au seuil (1) et courbe de tarage global de la source établie à partir des jaugeages différentiels sur l'Aude (2)
Figure 98.	Estimation du débit de fuite non jaugé par le seuil de fontmaure en fonction de la hauteur d'eau mesurée au seuil
Figure 99.	Courbes de tarage de la source de Fontmaure147
Figure 100	 Evolution des débits de la source de Fontmaure calculés à l'aide des deux courbes de tarage147
Figure 10 ²	1. Evolution des paramètres physico-chimiques et du débit de la source de Fontmaure calculé à l'aide de la courbe de tarage A148

Figure 102. Vues de la source de Ginoles en périodes de hautes et basses eaux et vue du seuil installé à l'aval immédiat de la source
Figure 103. Courbe de tarage de la source de Ginoles 151
Figure 104. Evolution de la hauteur d'eau du seuil de Ginoles et des débits estimés
Figure 105. Evolution des paramètres physico-chimiques et des débits de la source de Ginoles (moyenne journalière)
Figure 106. Vue du forage de Quillan et de la tête de forage
Figure 107. Vue du site à l'emplacement du forage en juillet 2017 154
Figure 108. Evolution de la piézométrie mesurée au forage de Quillan (les débits de Fontmaure sont également représentés)
Figure 109. Carte de localisation de la station du Blau.
Figure 110. Vue du site avant aménagement et vues du seuil du Blau et de la chambre de mesure de la sonde de pression, conductivité et température
Figure 111. Courbe de tarage de la station de mesure du trop-plein du Blau 158
Figure 112. Evolution des débits horaires et journaliers de la station du Blau 159
Figure 113. Evolutions de la conductivité et de la température de l'eau mesurées à la station de mesure du débit
Figure 114: Evolution piézométrique mesurée au forage du Blau. Les débits du Blau sont également reportés
Figure 115. Vues de Fontestorbes dans différents contextes hydrogéologiques
Figure 116: Comparaison des débits journaliers mesurés pour la source de Fontestorbes depuis 1965 (extrait du rapport BRGM/RP-64209-FR)
Figure 117: Courbe de restitution du T6 et vue de la source de Fontestorbes lors de la restitution
Figure 118 : Report des jaugeages historiques, des points déduits par calculs théoriques et des nouveaux jaugeages sur les relations hauteur/débit disponibles pour la source de Fontestorbes
Figure 119: Comparaison des chroniques de hauteur, température et conductivité électrique de l'eau mesurées à Fontestorbes et aux Mijanes (P1)
Figure 120. Vues du piézomètre de la Frau (BSS002MFSD ;10765X0203/PZFRAU) 167
Figure 121. Evolution du niveau d'eau mesurée au piézomètre de la Frau et comparaison aux mesures réalisées à Fontestorbes
Figure 122. Vues de la source de trop-plein de l'Esqueille (BSS002MFSE ;10765X0204/S) 168
Figure 123. Comparaison des débits des sources de Fontmaure (tarage A et B) et Fontestorbes (Débit journaliers de l'annuaire de A. Mangin)169
Figure 124. Estimation du volume de régulation du système karstique de Fontestorbes 169
Figure 125. Comparaison des débits classés des sources de Fontmaure et Fontestorbes (Q Annuaire Mangin)171
Figure 126. Comparaison des débits mesurés à Fontmaure (exutoire majeur) aux débits mesurés à Ginoles (exutoire secondaire) et au Blau (source de trop plein)
Figure 127. Comparaison des débits mesurés à Fontestorbes (exutoire majeur) à la piézométrie mesurée au piézomètre de la Frau située près de la source de trop plein de l'Esqueille
Figure 128. Débit classé de la chronique de débit cumulé (QFontestorbes+ QFontmaure) 173

Figure 129. Comparaison du débit du Blau au débit cumulé (Fontestorbes+Fontmaure) 173
Figure 130. Report des paramètres I et K déduit de l'analyse des courbes de récession des sources de Fontmaure et Fontestorbes dans la classification de Mangin modifiée 175
Figure 131. Modélisation du débit de la source de Fontmaure par le modèle Gardenia (période 2000-2017) 177
Figure 132. Modélisation du débit de la source de Fontestorbes par le modèle Gardenia (période 2000-2017) 177
Figure 133. Evolution des teneurs en sulfate au cours du cycle hydrologique 179
Figure 134. Evolution de la signature isotopique du soufre des sulfates (δ^{34} S_SO4) en fonction de rapport 1/SO ₄ et de la signature isotopique de l'oxygène des sulfates
Figure 135. Evolution de la signature isotopique du soufre des sulfates (δ^{34} S_SO4) en fonction de la signature isotopique de l'oxygène des sulfates (δ^{18} O_SO4)
Figure 136. Evolution de la signature isotopique du strontium (⁸⁷ Sr/ ⁸⁶ Sr) en fonction de rapport chimique (S04/Sr)
Figure 137. Zoom de l'évolution des rapports ⁸⁷ Sr/ ⁸⁶ Sr des eaux en fonction des signatures isotopiques en oxygène 18 et altitude (en bleu), focalisé sur les systèmes karstiques du secondaire
Figure 138. Evolution des teneurs en sulfate des eaux en fonction des signatures isotopiques en oxygène 18 186
Figure 139. Evolution des teneurs en nitrate des eaux en fonction des signatures isotopiques en oxygène 18 187
Figure 140. Evolution des teneurs en bore des eaux en fonction des signatures isotopiques en oxygène 18 189
Figure 141. Evolution des teneurs en bore des eaux en fonction des concentrations en chlorures
Figure 142. Evolution des teneurs en bore des eaux en fonction des concentrations en nitrate191
Figure 143: Comparaison de l'évolution de la hauteur d'eau mesurée au P1 des Mijanes et à Fontestorbes lors de la dernière intermittence du 01/11/2016 pour un débit faible d'alimentation du réservoir d'intermittence
Figure 144 : Comparaison des hydrogrammes à Fontestorbes lors de la dernière intermittence selon les relations A et B, en réponse à la vidange du réservoir d'intermittence observé aux Mijanes
Figure 145: Comparaison de l'évolution de la hauteur d'eau mesurée au P1 des Mijanes et à Fontestorbes lors de la reprise des intermittences le 06/11/2016 pour un débit faible d'alimentation du réservoir
Figure 146: Comparaison de l'évolution de la hauteur d'eau mesurée au P1 des Mijanes et à Fontestorbes lors de l'interruption des intermittences le 13/11/2016 suite à un épisode de faible recharge
Figure 147: Comparaison de l'évolution de la hauteur d'eau mesurée au P1 des Mijanes et à Fontestorbes lors du déclenchement des intermittences le 16/11/2016 pour un débit élevé d'alimentation du réservoir
Figure 148 : Comparaison des hydrogrammes de Fontestorbes avec les suivis hydrodynamiques aux P1 des Mijanes et au forage de la Frau
Figure 149: Evolution comparée des hauteurs d'eau et de la conductivité électrique au P1 des Mijanes et à la source de Fontestorbes
Figure 150: Proposition d'une nouvelle courbe de tarage pour la source de Fontestorbes 202

Figure 151: Comparaison des hydrogrammes obtenues lors de la première et la dernière intermittence à Fontestorbes pour les différentes relations hauteur/débit203
Figure 152: Représentation simplifiée de l'extension des zones noyées de 2 systèmes karstiques selon l'approche KARSYS
Figure 153: Schéma structural du Pays de Sault
Figure 154: Cartographie de la zone noyée du système karstique de Fontestorbes
Figure 155: Légende de la Figure 154210
Figure 156: Représentation schématique des étapes de calcul du réseau de drainage karstique (NK : Maille non-karstique ; K : Maille karstique)211
Figure 157: Organisation du réseau de drainage karstique simulé en amont de la source de Fontestorbes dans la zone d'infiltration et les zones noyées libres (bleu clair) et captives (bleu foncé)212
Figure 158: Bassin d'alimentation de la source de Fontestorbes
Figure 159: Cartographie de la zone noyée du système karstique de Fontmaure
Figure 160: Légende de la Figure 159 218
Figure 161: Bassin d'alimentation des sources de Fontmaure, Ginoles et du Blau219
Figure 162: Bassin d'alimentation de la source de Belfort sur Rébenty 221
Figure 163 : Cartographie de la zone noyée pour le système de Contes
Figure 164 : Bassin d'alimentation de la source de Contes
Figure 165 : Cartographie de la zone noyée pour le système de la Fago
Figure 166 : Bassin d'alimentation de la source de la Fago223
Figure 167 : Cartographie de la zone noyée pour le système de Cailla224
Figure 168 : Bassin d'alimentation de la source de Cailla
Figure 169: Bassins d'alimentation des sources étudiées drainant les formations primaires 225
Figure 170: Courbes hypsométriques des bassins d'alimentation de Fontestorbes et de Fontmaure (sous-bassin de Ginoles et du Rébenty amont exclus)
Figure 171: Schéma conceptuel d'un aquifère karstique avec le positionnement des différents critères (d'après COST 620, Zwalhen et al., 2004)
Figure 172: Carte de localisation des bassins versants des pertes connues et des zones potentielles de pertes pour chaque système karstique
Figure 173: Carte de localisation des formations superficielles
Figure 174: Carte de localisation des zones imperméabilisées (BD TOPO, CLC2012)
Figure 175: Carte de localisation des bassins d'alimentations des différentes sources d'intérêt du plateau de Sault241
Figure 176: Carte du sous-critère ES état de surface (uniquement pour les bassins versants des pertes)242
Figure 177: Carte du sous-critère S sol
Figure 178: Carte du sous-critère E épikarst (uniquement pour les bassins d'alimentation directe des sources)
Figure 179 : Carte du sous-critère ZNS zone non-saturée (uniquement pour les bassins d'alimentation directe des sources)
Figure 180. Carte du critère P protection246

Figure 181: Carte de localisation des zones noyées obtenues par modélisation KARSYS, et des formations « réservoirs » des sources Sud
Figure 182: Carte de localisation des éléments morphologiques liés au karst
Figure 183: Carte du critère R roche réservoir 250
Figure 184. Carte du critère I infiltration 251
Figure 185: Carte du critère Ka karstification 252
Figure 186: Carte de vulnérabilité des bassin versants non-karstiques des pertes
Figure 187: Carte de vulnérabilité de la ressource en eau karstique du plateau de Sault 255
Figure 188: Sectorisation de la recherche d'informations concernant les pressions anthropiques256
Figure 189: Localisation de la carrière de Talc de Trimouns et des bacs de décantation (sur le ruisseau de Font Albe, affluent du Basqui)
Figure 190: Carte des pressions liées aux activités domestiques et urbaines, sur le plateau de Sault
Figure 191: Carte des pressions liées aux activités agricoles, sur le plateau de Sault 272
Figure 192: Carte des principales pressions anthropiques recensées sur le bassin d'alimentation des sources de Fontmaure, Ginoles et Blau (légende commune avec la Figure 193)275
Figure 193: Carte des principales pressions anthropiques recensées sur le bassin d'alimentation de la source de Fontestorbes (pour la légende, se référer à la Légende de la Figure 192)
Figure 194: Localisation approximative des 13 secteurs vulnérables et/ou à plus forte concentration des pressions anthropiques, tels que définis du Tableau 70 au Tableau 76 (fond : carte de vulnérabilité)
Figure 195: Analyse spatiale de l'accessibiliité de la ressource en eau karstique reportée sur le fond géologique au 1/50000 et le fond IGN au 1/100000
Figure 196. Carte de synthèse des principales informations hydrogéologiques du Plateau de Sault

Liste des tableaux

Tableau 1: Tab	leau des caractéristiques générales du forage Espezel	38
Tableau 2 : Co	upe géologique synthétique du forage d'Espezel	41
Tableau 3 : Inte	erprétation lithologique des valeurs de mesure du gamma naturel proposée dan rapport d'exécution de l'ouvrage	ns le 41
Tableau 4: Tab	leau des caractéristiques générales du forage Blau	52
Tableau 5 : List	te des points d'eau suivis sur le Plateau de Sault durant cette étude	67
Tableau 6. Inte	rprétation des ruptures de pente de la droite représentative des débits classés (Marsaud, 1997)	68
Tableau 7. Elér	nents de statistiques descriptives des chroniques d'entrées (1959-2017) utilisé pour étudier les systèmes karstiques de Fontestorbes et Fontmaure. Les vale pour la période d'étude du projet « Plateau de Sault » sont reportées	ees urs 78
Tableau 8. Elér	nents de statistiques descriptives des chroniques d'entrées (1959-2017) pour l systèmes karstiques du Dévonien du Haut-Rébenty. Les valeurs pour la pério d'étude du projet « Plateau de Sault » sont reportées	les de 79
Tableau 9. Syn	thèse des jaugeages différentiels réalisés à la source des Adouxes	88

Tableau 10. Sources des Adouxes : évolution des débits moyens mensuels et annuels sur la période 2010-2017
Tableau 11. Source des Adouxes : synthèses des paramètres des 8 recessions étudiées entre 2010 et 2017
Tableau 12. Bilans annuels calculés par le modèle Gardenia de la source des Adouxes95
Tableau 13. Sources des Adoucis : évolution des débits moyens mensuels et annuels sur la période 2013-2017
Tableau 14. Source des Adoucis : synthèses des paramètres des 5 recessions étudiées entre 2015 et 2017. 98
Tableau 15. Bilans annuels en mm calculé par le modèle Gardenia de la source des Adoucis (S = 6.89 km2)
Tableau 16. Evolution du débit journalier des trop-pleins des captages et des débits moyensmensuels sur la période 2015-2017.Mensuels sur la période 2015-2017.
Tableau 17. Source « SRE » : synthèse des paramètres des 3 recessions étudiées entre 2015 et2017
Tableau 18. Bilans annuels (en mm) calculé par le modèle Gardenia des sources « SRE » (S = 2.5km2)
Tableau 19. Source du Moulin (Fajolle) : synthèse des paramètres des 3 recessions étudiées entre 2015 et 2017. 112
Tableau 20. Bilans annuels en mm calculés par le modèle Gardenia de la source du Moulin (S = 2.3 km2)
Tableau 21. Synthèse des paramètres mesurés aux sources karstiques du Dévonien situées dans leHaut-Rébenty
Tableau 22. Synthèse des paramètres déduits de l'analyse des courbes de récession par l'approche de Mangin
Tableau 23. Synthèse des bilans hydrogéologiques annuels des sources étudiées (période decalcul : 2010 à 2017) estimés à l'aide du modèle réservoir Gardenia
Tableau 24 : Tableau de synthèse des résultats des traçages historiques 123
Tableau 25: Données sur les conditions d'injection et de surveillance des traçages 129
Tableau 26: Coordonnées des points130
Tableau 27: Eléments caractéristiques des courbes de distribution des temps de séjour 135
Tableau 28. Jaugeages de la source de Fontmaure144
Tableau 29. Jaugeages de la source de Ginoles 151
Tableau 30. Jaugeages du trop plein du Blau au niveau de la station de mesure
Tableau 31 : Inventaire des jaugeages historiques (Mangin, 1975), des relations hauteur/débit définies par le calcul (Mangin, 1975) et des nouveaux jaugeages réalisés dans le cadre du projet164
Tableau 32. Statistiques descripitive des paramètres de l'analyse des courbes de récession parl'approche de Mangin modifée
Tableau 33. Synthèse des paramètres déduits de l'analyse des courbes de récession par l'approche de Mangin (S=103 et 135 km2 pour Fontestorbes et Fontmaure respectivement, cf. Tableau 39)
Tableau 34. Concentrations moyennes et écart-type des principaux éléments majeurs et trace (Sr)des points d'eau échantillonnés entre octobre 2014 et juin 2016

Tableau 35.	Comparaison des concentrations mesurées au forage du Blau (Décembre 2017) aux concentrations moyennes du Blau (calculées sur la période d'octobre 2014 à juin 2016)
Tableau 36:	Résultats des jaugeages différentiels réalisés sur le Lasset par dilution de traceur193
Tableau 37:	Résultats des jaugeages différentiels réalisés sur le Rébenty par dilution de traceur complétés par les débits journaliers à la station de St Martin Lys (station Y1105010)
Tableau 38	: Bilan hydrologique réalisé sur la dernière intemittence du 1 ^{er} Novembre 2016 selon la relation hauteur/débit utilisée
Tableau 39	: Caractéristiques des bassins d'alimentation des sources étudiées (z⇔ altitude en mNGF)
Tableau 40.	Description de l'état de surface dans les bassins versants des pertes (Dörfliger et Plagnes, 2009)231
Tableau 41.	Tableau de détermination de la nature d'un sol en fonction de sa texture et saproportion de cailloux (Dörfliger et Plagnes, 2009)231
Tableau 42.	Tableau de détermination des classes du critère S par croisement de la nature du sol et de son épaisseur (Dörfliger et Plagnes, 2009)231
Tableau 43.	Tableau de description du critère E (Dörfliger et Plagnes, 2009)
Tableau 44.	Tableau décrivant la lithologie de la zone non saturée (Dörfliger et Plagnes, 2009)232
Tableau 45.	Tableau de l'attribution de la valeur de l'indice ZNS en croisant les paramètres épaisseur, lithologie et fracturation (Dörfliger et Plagnes, 2009)
Tableau 46.	Tableau de description des indices du critère R (Dörfliger et Plagnes, 2009) 233
Tableau 47.	Tableau de description des indices du critère I (Dörfliger et Plagnes, 2009) 233
Tableau 48.	Classification typologique des captages (modifiée à partir de Technic'eau) (Dörfliger et Plagnes, 2009)234
Tableau 49.	Tableau de description de l'indice Ka (Dörfliger et Plagnes, 2009)
Tableau 50.	Tableau des classes de vulnérabilité globale 235
Tableau 51.	Tableau récapitulatif des regroupements de lithologies et des indices ES associés236
Tableau 52.	Tableau récapitulatif des regroupements de lithologies et des indices Lzns associés240
Tableau 53.	Tableau récapitulatif des regroupements de lithologies et des indices R associés248
Tableau 54	: Liste des organismes contactés dans le cadre de l'étude des pressions anthropiques sur le plateau de Sault258
Tableau 55	Nombre de communes et d'habitants par commune pour la grande et la petite zone d'étude (chiffres INSEE)
Tableau 56	: Informations sur les dispositifs de traitements des eaux usées présents sur le plateau de Sault
Tableau 57:	Informations concernant la gestion des boues d'épuration des STEP côté Aude d'après les données de l'Agence de l'Eau RMC
Tableau 58:	Informations concernant l'épandage des boues d'épuration des STEP côté Aude d'après les données de la DDT11261
Tableau 59:	Informations concernant la gestion des boues d'épuration des STEP côté Ariège d'après les données de l'Agence de l'Eau AG. MS : matière sèche
Tableau 60	: Informations concernant les dispositifs ANC côté Ariège (source: CD 09) 262

Tableau 61 : Informations sur les sites industriels, commerciaux, agricoles et de loisirs recensés sur les différentes bases de données en ligne
Tableau 62: Exploitations agricoles ICPE référencées sur la GZE (en vert, communes situées entièrement ou partiellement sur la PZE), d'après les données des DDCSPP09 et 11
Tableau 63. Tableau des déchets produits par l'entreprise Talc de Luzenac, rencensés par l'IREP
Tableau 64 : Informations sur les zones bâties indifférenciées, industrielles, commerciales, agricoles et de loisirs, les aires d'activités et les voies de transports recensées dans la BD TOPO
Tableau 65 : Informations relatives au type d'activité agricole par îlot (RPG)
Tableau 66: Récapitulatif des pressions anthropiques principales recensées sur chaque bassin d'alimentation de source (* la source de Belfort-sur-Rébenty n'est pas alimentée par un système karstique)
Tableau 67: Synthèse des paramètres déduits de l'analyse des courbes de récession par l'approche de Mangin
Tableau 68: Synthèse des bilans hydrogéologiques des sources étudiées (période du calcul : 2010 à2017 et 2000 à 2017 pour Fontmaure et Fontesorbes) estimé à l'aide du modèleréservoir Gardenia
Tableau 69: Définition du Risque à partir de l'évaluation de la vulnérabilité et des pressions . 281
Tableau 70: Liste des secteurs de plus forte pression anthropique pour le système de Fontmaure
Tableau 71: Liste des secteurs de plus forte pression anthropique pour le système de Ginoles283
Tableau 72: Liste des secteurs de plus forte pression anthropique pour le système du Blau284
Tableau 73: Liste des secteurs de plus forte pression anthropique pour le système de Fontestorbes
Tableau 74: Liste des secteurs de plus forte pression anthropique pour le système de Fontestorbes
Tableau 75: Liste des secteurs de plus forte pression anthropique pour le système de Cailla 286
Tableau 76: Liste des secteurs de plus forte pression anthropique pour les systèmes du Primaire

1. Introduction

1.1. CONTEXTE ET OBJECTIF

Le secteur du Plateau de Sault est actuellement desservi en eau potable par de nombreux captages souvent faiblement productifs et vulnérables aux contaminations. Il apparaît donc nécessaire d'améliorer la connaissance sur les eaux souterraines du secteur afin d'identifier une ressource structurante tant du point de vue de la quantité que de la qualité.

Le système aquifère du Plateau de Sault est situé sur deux bassins hydrographiques différents : celui d'Adour-Garonne et celui de Rhône-Méditerranée & Corse. Il occupe une position stratégique de premier niveau pour l'alimentation en eau des populations audoises et ariègeoises, d'où l'intérêt d'une approche trans-bassin.

Bien que la question de l'exploitation des ressources en eau souterraine du karst du Plateau de Sault remonte à plusieurs décennies, elle n'avait jamais été complètement résolue. Hormis les études conduites sur la source de Fontestorbes, aucun programme opérationnel d'investigation à l'échelle de l'ensemble du Plateau n'avait été mené jusqu'à aujourd'hui.

Dans ce contexte, une étude de la géologie et de l'hydrogéologie du Plateau de Sault a été réalisée en collaboration entre les Agences de l'Eau Adour-Garonne (AEAG) et Rhône Méditerranée Corse (AERMC), les deux Conseils Départementaux de l'Ariège et de l'Aude, le Conseil Régional Occitanie et le BRGM. Le projet a pour objectif d'acquérir de nouvelles connaissances concernant le fonctionnement, la structure et la localisation des réserves en eaux souterraines des systèmes karstiques présents au niveau du Plateau de Sault, dans un environnement géologique complexe de par sa position pyrénéenne. Les résultats du projet proposent une hiérarchisation des secteurs potentiellement ifavorables en termes de ressources à faible vulnérabilité.

1.2. DEROULEMENT DU PROJET

Le projet déroule la méthodologie d'investigation décrite dans le guide méthodologique d'étude des aquifères karstiques (Dörfliger 2010). Il est divisé en quatre modules.

Le **module 1 (Synthèse géologique et hydrogéologique)** vise à produire une synthèse sur la région d'étude en faisant ressortir l'état des connaissances ainsi que les éléments sur lesquels les phases ultérieures devront s'appuyer, tant du point de vue géologique (connaissances relatives à la paléogéographie et aux environnements de dépôt, à l'histoire tectonique, au développement de la karstification), géomorphologique, qu'hydrogéologique (données hydrométriques, climatiques, hydrochimiques ; directions d'écoulements, suivi de débits, pertes, niveaux d'eau, ...).

Le rapport RP-64209-FR (Bardeau et al., 2015) a constitué la synthèse bibliographique des données existantes sur le Pays de Sault, et a visé à caractériser la région, et tout particulièrement les systèmes aquifères karstiques présentant des potentialités intéressantes. Pour cela, il a été nécessaire de repositionner le Pays de Sault dans ses différents contextes paléogéographiques, ainsi que dans ses phases tectoniques et d'érosion, afin de caractériser les entités, les systèmes hydrogéologiques et les sources karstiques qui leurs sont associés.

Le module 2 (Modèle géologique 3D et mise en place de la karstification) vise à (i) établir une représentation tridimensionnelle de la zone d'étude et (ii) disposer d'un schéma de mise en place de la karstification au cours des différentes périodes clefs.

Le rapport RP-65888-FR (Monod et al., 2016) a décrit l'étude structurale menée sur le secteur d'étude, l'établissement d'un modèle géologique 3D, sa confrontation à une acquisition de données gravimétriques et l'analyse de l'histoire de la karstification du secteur. Un modèle hydrogéologique 3D de la géométrie des aquifères karstiques du Secondaire a également été présenté.

Le module 3 (Acquisition de connaissances complémentaires) vise à : (i) préciser les bassins d'alimentation des deux principaux systèmes karstiques Fontestorbes et Fontmaure et des systèmes connexes, (ii) préciser le rôle des pertes dans l'alimentation de chacun des systèmes, (iii) préciser l'origine des sulfates au niveau de la source de Fontmaure, (iv) caractériser les réserves du système karstique de Fontmaure, (v) évaluer la participation du Rébenty à l'alimentation du système karstique de Font Maure et (vi) apporter des éléments nouveaux concernant la géologie – géométrie des formations carbonatées. Il repose sur les reconnaissances hydrogéologiques complémentaires mises en œuvre dans le cadre de ce projet : sismique réflexion, forages de reconnaissance, suivi hydrométrique et physico-chimique des principales sources, essais de traçage artificiels, campagnes hydrochimiques et isotopiques...

Ces nouvelles connaissances ont permis d'améliorer le modèle géologique 3D proposé dans le rapport précédent (Monod et al., 2016) et en conséquence le modèle 3D de la géométrie des aquifères. Ces nouveaux résultats font l'objet du chapitre 2. Ils permettent également de mieux caractériser le fonctionnement hydrodynamique et la structure des aquifères du Plateau. Ces nouveaux résultats sont interprétés au sein des chapitres 3 et 4.

Le **module 4 (Hiérarchisation des zones à potentialité hydrogéologique)** vise à (i) caractériser la vulnérabilité des systèmes karstiques notamment à partir de la méthode de cartographie PaPRIKa, (ii) caractériser la pression anthropique à l'échelle de la zone d'étude et (iii) définir des zones à potentialité hydrogéologique favorable.

Les résultats acquis dans le cadre de ce module font l'objet du chapitre 5 de ce rapport.

2. Mise à jour du modèle géologique 3D

2.1. INTRODUCTION

Dans le cadre du projet, une étude pluridisciplinaire reposant sur des caractérisations géologiques (cartographie, tectonique), géophysique (gravimétrie) a permis l'élaboration d'un modèle géologique 3D dont l'objectif est d'améliorer la connaissance géologique et structurale du système et la compréhension de sa géométrie afin de mieux évaluer les transferts de fluides au sein du plateau de Sault. Les principaux résultats de cette étude ont été consignés dans le rapport BRGM/RP-65888-FR (Monod et al, 2016) et dont des éléments de synthèse sont brièvement rappelé ci-après.

La carte géologique à 1/50 000 produite synthétise les 343 observations nouvelles de terrain, les données de la carte géologique de la France ainsi que les travaux cartographiques réalisés dans les années 70. La réalisation de quatre coupes géologiques permet d'affiner le style tectonique de la déformation des terrains proposé par ces mêmes travaux. La modélisation géologique a permis de tester plusieurs scenarii de géométries 3D et, in fine, de proposer une géologie cohérente en trois dimensions. La carte géologique produite par le modèle 3D comptabilise 85% de corrélation avec la carte géologique simplifiée du projet. Afin d'apporter des contraintes en profondeur au modèle géologique 3D, 258 stations gravimétriques ont ensuite été levés sur le plateau de Sault. Ces résultats de gravimétrie, ainsi que les mesures de densités des roches échantillonnées, ont été intégrés dans le modèle géologique 3D. Puis, les calculs directs et calculs d'inversion ont permis de restreindre les possibilités d'interprétation et de mettre à jour ce modèle géologique 3D.

Cette approche intégrée a permis de corréler les différences d'orientation des structures géologiques cartographiées sur la zone nord-pyrénéenne entre l'Est et l'Ouest du plateau de Sault, avec une dichotomie de l'anomalie gravimétrique résiduelle. Un fort gradient gravifique orienté E-W sous la surface d'Espezel sépare une anomalie positive dans la partie orientale, d'une anomalie négative dans la partie occidentale. Cette limite jusqu'alors non cartographiée a été modélisée comme une faille aveugle d'orientation N040° présente dans le socle antétriasique. L'interprétation structurale propose qu'un socle, correspondant au prolongement vers le Nord du massif de Bessède-de-Sault, structure les terrains placés au-dessus dans la partie orientale, avec une faible intercalation de Trias évaporitique entre les deux. Dans la partie occidentale au contraire, la structure implique une importante épaisseur de Trias évaporitique assurant le rôle d'un niveau de décollement sur un socle peu dense. Des anomalies négatives bien circonscrites sont relevées au niveau de la ZIM (Zone Interne Métamorphique). Celles-ci ont été interprétées comme des surépaisseurs locales de marbre. Une discontinuité majeure de direction N120°, liée à une anomalie gravimétrique fortement négative (-10 mgal), est relevée au Nord-Ouest de la zone d'étude, provenant à la fois d'une importante épaisseur des dépôts sénoniens dans la zone sous-pyrénéenne et de la présence d'un corps granitique dans le substratum.

Pour lever les doutes, des profils géophysiques de sismique réflexion ont été proposés et réalisés pour mieux contraindre la géométrie du modèle géologique sous le plateau d'Espezel, et notamment la position des remontées du socle qui définissent les limites entre les systèmes karstiques de Fontestorbes et Fontmaure-Ginoles. Deux forages de reconnaissance géologique ont été ensuite réalisés Les résultats de ces investigations complémentaires sont présentés ciaprès dans ce chapitre, la localisation de la zone d'étude est reportée sur les cartes suivantes (Figure 1 et Figure 2).

Figure 1. Carte géologique simplifiée de la zone d'étude (le rectangle pointillé localise la zone où des profils sismiques ont été réalisés)

varier.

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

Marnes noires Parfois > 1000m Calcaires urgoniens 200m à ~20m Marnes de Quirbajou 200m à Ø Calcaires urgoniens. 200m à l'Est et 50m à l'Ouest 200m à 50m Marnes sombres > 300m à Ø Calcaires urgoniens $\sim 150 - 200m$ Calcaires (trocholines – roux – graveleux – jaunes) -130 – 150m à Ø Dolomies + calcaires dolomitiques ~ 300m

Figure 2. Superposition des axes et discontinuités gravimétriques (lignes noires parallèles aux axes) sur la carte géologique synthétique (Monod et al, 2016), Les contours de l'anomalie résiduelle (mGal) sont réportés (courbes noires).

Sur le plateau d'Espezel, le profil sismique Est-Ouest (orange sur la Figure 3) a été positionné ainsi pour éclaircir la jonction entre l'Est et l'Ouest de la région. En effet, les investigations faites au début du projet ont mis en évidence une forte dichotomie des structures géologiques entre l'Est et l'Ouest du Plateau de Sault, en surface (carte géologique) et en profondeur (anomalies gravimétriques) sans structure majeure apparente en carte (faille Nord-Sud?) permettant d'expliquer l'interruption des différents plis Est-Ouest. Par exemple, l'anticlinal Est-Ouest du bois de la Bénague passant très rapidement (2.5 km) vers l'Est au synclinal de Belfort-sur-Rébenty est relativement difficile géométriquement à représenter sans insérer dans le schéma structural une faille N-S segmentant ainsi l'Est et l'Ouest se déformant ainsi tous deux indépendamment. C'est pourquoi après l'acquisition gravimétrique, une faille N20° avait été ajoutée dans le modèle 3D pour tester cette hypothèse qui a été conservée ensuite dans le modèle 3D comme structure possible. Le profil sismique Sud-Nord (en rouge sur la Figure 3) a été positionné orthogonalement par rapport au profil orange afin d'obtenir une cohérence des structures en 3D.

Figure 3 : Tracés des profils sismiques réalisés dans le cadre de cette étude (orange et rouge) sur fond de la carte géologique synthétique (Monod et al, 2016). Les autres points et courbes tracés proviennent du modèle géologique 3D.

L'acquisition et les résultats de la campagne de sismique sont décrits au paragraphe 2.2. Les deux forages de reconnaissance sont ensuite décrits (§ 2.3). Ces nouvelles observations ont permis d'améliorer les connaissances géologiques dans les deux secteurs d'investigation. Ils ont été intégrés dans le modèle géologique 3D qui a été mis à jour (§ 2.4).

2.2. PROSPECTION GEOPHYSIQUE : SISMIQUE REFLEXION

2.2.1. Objectifs

La localisation des profils sismiques sur le Plateau d'Espezel est reporté sur la la Figure 4

Figure 4 : Implantation des profils sismiques sur fond de carte géologique(A) et IGN (B)

L'objectif du profil Nord-Sud est de préciser les questionnements géologiques suivants :

- le passage de deux zones faillées verticales (rose et marron sur la Figure 3) en pointillés noirs sur la carte de la Figure 4A
- l'épaisseur des marnes albiennes (vert clair, Figure 4A)
- la présence des calcaires de l'Urgonien et leur épaisseur (orange, Figure 4A)

 la nature du soubassement : Trias ou socle (si le Trias est présent, normalement il est assez profond).

L'objectif du profil Est-Ouest est de préciser :

- l'épaisseur des marnes albiennes (vert clair) à l'Est du profil
- le passage d'une zone faillée NE-SW (rouge sur la Figure 3), à priori avec un fort pendage (auquel cas, l'architecture proposée des couches dans le bloc Est peut présenter des différences assez fortes avec la géométrie proposée, puisqu'on ne trouve que les marnes albiennes à l'affleurement)
- ou une continuité Est-Ouest des couches pour former un anticlinal ?

2.2.2. Travaux réalisés

En pratique, la campagne sismique s'est articulée autour de la réalisation de trois profils dont un profil P1 (Nord-Sud) de 3250 m, un profil P2 (Est-Ouest) de 1880 m et un autre profil (Nord-Sud) de 455 m soit un linéaire total investigué de 5575 m (Figure 4). On constate que, pour des raisons pratiques d'occupation du sol, le profil Est-Ouest n'a pu avoir le caractère parfaitement rectiligne comme initialement envisagé. Le profil P3 supplémentaire a été réalisé pour identifier le prolongement vers l'Ouest des structures identifiées sur le profil P1.

La campagne de mesures sismiques s'est déroulée du 30 mai au 8 juin 2016 et a été effectuée par A. Bitri, géophysicien de l'unité DRP/RAI du BRGM, assisté par B. Maurice et Th. Prunet, techniciens en géophysique de la même unité. La compilation des données et le traitement ont été réalisés par A. Bitri.

L'acquisition des profils sismiques a été réalisée à l'aide de centrales d'acquisition sismiques Stratavizor 48 traces et 3 Geode 24 traces (Geometrics, USA) connectées à 5 flûtes de 24 traces, soit 120 traces régulièrement espacées de 5 mètres sur 595 m. La source sismique était de type chute de poids accélérée A200P. L'espacement entre les points sources était de 10 m. Le matériel utilisé comprend :

- 1 Stratavizor NZ 48 traces Geometrics
- 3 Geode 24 traces Geometrics
- 5 flûtes sismiques d'inter-trace 5 m
- 120 géophones de fréquence centrale 10 Hz
- 1 source sismique chute de poids accélérée
- 2 claies de portages
- 5 batteries de voiture 110 Ah
- 1 GPS différentiel Trimble
- 1 micro-ordinateur portable
- 2 véhicules

Mise en œuvre

Les différents matériels utilisés sont implantés manuellement et/ou au moyen d'un véhicule léger assurant des rotations entre les extrémités du dispositif.

La partie Sud du profil P1 s'est déroulée dans des conditions de bruit très défavorables (pluie et vent violent). Pour augmenter le rapport signal sur bruit (S/B), quatre frappes ont été réalisées à chaque point de tir. Malgré cela le rapport S/B reste faible pour les données Sud du profil P1 (Figure 5).

Figure 5 : Exemples de tirs sismiques bruts du profil P1 avec application d'un gain de type AGC. On observe un meilleur rapport S/B pour les tir Nord (gauche)

Positionnement des profils sismiques

Les profils sismiques ont été positionnés (coordonnées X, Y dans le système Lambert 93) avec un GPS Trimble GeoXH 6000 associé à une antenne externe de type Tornado. Ce récepteur permet de capter les satellites GPS ainsi que les satellites GLONASS (en moyenne entre 14 et 20 satellites). Les valeurs obtenues sont corrigées en post-traitement, à l'aide des éphémérides de l'IGN. Ce post-traitement permet d'aboutir à une précision en X, Y de l'ordre de 10 cm (dans les conditions optimales d'utilisation).

La précision sur les levés altimétriques (Z) est fonction de la couverture végétale et du relief. Les valeurs de Z qui paraissent aberrantes (par rapport à la carte IGN au 1/25 000 et par rapport aux observations de terrain) ont été rejetées et ne sont donc pas prises en compte dans la construction du profil topographique. La précision finale sur Z est de l'ordre de quelques dizaines de centimètres en absolu. Le traitement des données est décrit en Annexe 1.

2.2.3. Résultats de la sismique réfraction

La Figure 6 présente les résultats de la sismique réfraction. Sur les trois images, on observe les terrains proches de la surface (épaisseur d'environ 10 m) dont la vitesse sismique est comprise entre 600 et 800 m/s, ensuite des terrains de vitesses sismiques comprises entre 1500 et 2000 m/s qui peuvent correspondre aux formations marneuses connues dans la zone d'étude suivie du socle acoustique calcaire (vitesses supérieures à 2500 m/s).

Figure 6 : Distribution des vitesses le long des profils 1, 2 et 3 obtenue par inversion des premières arrivées de l'onde P

2.2.4. Résultats de la sismique réflexion

La coupe-temps et la coupe migrée - convertie en profondeur du profil Nord-Sud P1 sont présentées sur respectivement la Figure 7 et la Figure 8. On y observe un réflecteur de profondeur variable le long de la coupe sismique. Dans la partie Sud de la coupe sismique, entre PM (point métrique) 0-1000 mètres, la profondeur du marqueur sismique est de l'ordre de 80 mètres. Une zone « sourde » est observée entre PM 1000-1200 probablement due à la forte fracturation et la présence de zone karstifiées. Le même phénomène est observé entre PM 2200-2600. Dans la partie Nord (PM 2600-3200) du profil sismique, on remarque le synclinal qui correspond probablement au synclinal d'albien figurant sur la carte géologique du secteur.

La Figure 10 présente la conversion en profondeur de la coupe migrée du profil E-O P2 (coupetemps sur laFigure 9). Entre les PM 0-400 m, on observe une succession de réflecteurs subhorizontaux avec probablement le toit du Jurassique supérieur autour de 170 m. La partie centrale (PM 450-1100) de la coupe est caractérisée par une zone de rupture de continuité des marqueurs sismiques qui peut être un indice de fracturation et de présence de phénomènes karstiques. Le forage de reconnaissance géologique a été implanté à cet endroit (PM 800) de façon à caractériser cette zone : il a rencontré des cavités karstiques peu profondes (§ 2.3.2). Dans la partie Ouest (PM 1200-1900) de la coupe sismique, on distingue une série de marqueurs sismiques entre 50 et 160 m de profondeur avec un pendage Ouest-Est faiblement faillé.

La coupe-temps et la coupe migrée - convertie en profondeur du profil Nord-Sud P3 sont présentées en annexe 1.

Les apports de la prospection sismique au modèle géologique 3D, ainsi que ceux des deux forages de reconnaissance, sont décrits au § 2.4 ci-dessous.

6éosciences pour une Terre durable

Paramètre d'acquisition

Type de dispositif: Roll-along Nombre de géophones: 120 Distance inter-trace: 5 m Type de géophones: 10 Hz Ecart points source: 10 m Source d'énergie: chute de poids Responsable d'acquisition: A. Bitri Ecart point milieux commun (cdp): 2.5 m Ordre de couverture: 30 Instrumentation: Geometrics Pas d'échantillonage: 0.5 ms Temps d'écoute: 1500 ms Date: 07/07/2016

Séquence de traitement numérique

Contrôle de la géométrie Analyse de la qualité des données Correction statique du t0 et topographique Mute premières arrivées AGC avec fenêtre glissante 200 ms Filtre FK (Karunen & Love) Déconvolution spike maxlag=0.02 s Filtre passe-bande (16-20-100-120 Hz) Mise en collection CDP Analyse de vitesse (stacks à vitesse constance, CVS) Correction Normal Move Out (NMO) Correction statiques résiduelles surface consistente Sommation points milieux communs (Stack) Filtre fréquentiel (16-20-100-120 Hz) Déconvolution spatiale FX Convertion en profondeur

P1, stack converti en profondeur *Figure 7 : Coupe sismique temps du profil P1*

Paramètre d'acquisition

Type de dispositif: Roll-along Nombre de géophones: 120 Distance inter-trace: 5 m Type de géophones: 10 Hz Ecart points source: 10 m Source d'énergie: chute de poids Responsable d'acquisition: A. Bitri Ecart point milieux commun (cdp): 2.5 m Ordre de couverture: 30 Instrumentation: Geometrics Pas d'échantillonage: 0.5 ms Temps d'écoute: 1500 ms Date: 07/07/2016

Séquence de traitement numérique

Contrôle de la géométrie Analyse de la qualité des données Correction statigue du t0 et topographique Mute premières arrivées AGC avec fenêtre glissante 200 ms Filtre FK (Karunen & Love) Déconvolution spike maxlag=0.02 s Filtre passe-bande (16-22-120-140 Hz) Mise en collection CDP Analyse de vitesse (stacks à vitesse constance, CVS) Correction Normal Move Out (NMO) Correction statiques résiduelles surface consistente Sommation points milieux communs (Stack) Filtre fréquentiel (16-20-100-120 Hz) Déconvolution spatiale FX Migration et convertion en profondeur

P1, stack migré converti en profondeur

Figure 8 : Coupe sismique migrée du profil P1.
Paramètre d'acquisition

Type de dispositif: Roll-along Nombre de géophones: 120 Distance inter-trace: 5 m Type de géophones: 10 Hz Ecart points source: 10 m Source d'énergie: chute de poids Responsable d'acquisition: A. Bitri Ecart point milieux commun (cdp): 2.5 m Ordre de couverture: 30 Instrumentation: Geometrics Pas d'échantillonage: 0.5 ms Temps d'écoute: 1500 ms Date: 07/07/2016

Séquence de traitement numérique

Contrôle de la géométrie Analyse de la qualité des données Correction statique du t0 et topographique Mute premières arrivées AGC avec fenêtre glissante 200 ms Filtre FK (Karunen & Love) Déconvolution spike maxlag=0.02 s Filtre passe-bande (16-20-100-120 Hz) Mise en collection CDP Analyse de vitesse (stacks à vitesse constance, CVS) Correction Normal Move Out (NMO) Correction statiques résiduelles surface consistente Sommation points milieux communs (Stack) Filtre fréquentiel (16-20-100-120 Hz) Déconvolution spatiale FX Convertion en profondeur

P2, stack converti en profondeur Figure 9 : Coupe sismique temps du profil P2. brgm

Paramètre d'acquisition

Type de dispositif: Roll-along Nombre de géophones: 120 Distance inter-trace: 5 m Type de géophones: 10 Hz Ecart points source: 10 m Source d'énergie: chute de poids Responsable d'acquisition: A. Bitri Ecart point milieux commun (cdp): 2.5 m Ordre de couverture: 30 Instrumentation: Geometrics Pas d'échantillonage: 0.5 ms Temps d'écoute: 1500 ms Date: 07/07/2016

Séquence de traitement numérique

Contrôle de la géométrie Analyse de la qualité des données Correction statique du t0 et topographique Mute premières arrivées AGC avec fenêtre glissante 200 ms Filtre FK (Karunen & Love) Déconvolution spike maxlag=0.02 s Filtre passe-bande (16-22-120-140 Hz) Mise en collection CDP Analyse de vitesse (stacks à vitesse constance, CVS) Correction Normal Move Out (NMO) Correction statiques résiduelles surface consistente Sommation points milieux communs (Stack) Filtre fréquentiel (16-20-100-120 Hz) Déconvolution spatiale FX Migration et convertion en profondeur

Figure 10: Coupe sismique migrée du profil P2.

2.3. FORAGES DE RECONNAISSANCE

2.3.1. Introduction

Deux forages de reconnaissance ont été réalisés dans le cadre de ce projet : (i) le forage dit d'Espezel, situé sur le Plateau du même nom, dans le but de préciser la géologie locale dans une zone apparaissant comme perturbée sur le profil de sismique réflexion (§ 2.2) et (ii) le forage dit Blau à proximité de la source temporaire du même nom dans le but de recouper la zone noyée correspondant à cet aquifère perché afin d'en suivre les évolution piézométriques.

Ces deux forages ainsi que les nouvelles données géologiques acquises sont décrits ci-dessous. Ils ont par ailleurs fait l'objet d'un Dossier de l'Ouvrage Exécuté : rapport RP-66699-FR pour le forage d'Espezel (Vigouroux, 2017a) et rapport RP-67479-FR pour le forage de Blau (Vigouroux, 2017b).

2.3.2. Forage d'Espezel

Implantation de l'ouvrage

Le forage se situe sur la commune d'Espezel (11) à environ un kilomètre au Nord du village.

Département : Aude (11) -	Commune : Espezel
Coordonnées Lambert II et :	X = 574 551 m
	Y = 1 759 195 m
	Z = 890 m NGF
N° Banque du Sous-Sol (BSS)	: BSS002PZYL

La carte de la Figure 11 ci-après permet de visualiser la position relative de l'implantation retenue (point jaune sur la Figure 11), à l'intersection des routes départementales D613 et D120. Le forage Espezel est situé à l'intersection de profils sismiques P1 et P2 réalisés, dans le cadre du projet, sur le plateau (§ 2.2.1).

Figure 11 : Carte de situation du forage Espezel (département de l'Aude)

Les caractéristiques générales du forage ESPEZEL sont résumées sur le tableau ci-après (Tableau 1). Le forage a été rebouché après réalisation, sa coupe technique est présentée en Annexe 2.

Dénomination		Forage ESPEZEL	
N°BSS		BSS002PZYL	
Coordonnées	Х	574 551 m	
(Lambert 93)	Y	1 759 195 m	
Altitude		890 m	
Profondeur totale forée		423 m	
Profondeur équipée		Ouvrage rebouché	
Type de foration		MFT à l'air en 254 mm de o à 6 m et 165 mm de 6 à 103 m	
Venues d'eau productivité		Pas de test de pompage Très faibles venues d'eau en foration	
Situation fin de travaux		Rebouchage remblai puis ciment + terre en tête	

Tableau 1: Tableau des caractéristiques générales du forage Espezel

Données géologiques

• Observation des cuttings

Le forage réalisé au marteau fond de trou (MTF), d'une profondeur totale de 423 mètres, a traversé principalement des formations de calcaires recristallisés dans lesquels aucun fossile n'a pu être observé dans les cuttings. La recristallisation générale empêche la description de la texture des calcaires. Ces éléments rendent très difficile l'attribution des niveaux observés à des formations décrites dans la littérature d'après des observations d'affleurements sur le terrain. Le meilleur élément de calage est l'observation de dolomie fétide au sein de calcaires noirs, bien décrite en bibliographie mais mal datée en raison de l'absence de fossile, attribuée au Jurassique supérieur au sens large.

Dans les 100 premiers mètres, le forage démarre dans les argiles déposées sur le plateau de Sault, traverse ensuite une cavité, puis les calcaires beiges du Crétacé inférieur jusqu'aux calcaires noirs du Jurassique (Figure 12). La synthèse des observations est disponible dans le Tableau 2. Les formations du Barrémien et Néocomien sont moins épaisses qu'attendu, ce qui peut être expliqué par l'érosion d'une partie des formations étant donné leur présence à l'affleurement sur le plateau d'Espezel. L'épaisseur de 300 m des formations du Jurassique correspond à la partie supérieure des estimations proposées dans la littérature. Ces données sont confirmées par l'imagerie de paroi (cf. annexe du rapport DOE) qui montre bien une stratification subhorizontale des couches.

Figure 12 : Exemple de boites de cuttings récupérées par le foreur, ici de 0 à 114 mètres de profondeur, permettant la description géologique du forage. On observe les argiles des 2 premiers mètres, la cavité karstique et le passage des calcaires beige du Crétacé inférieur au calcaires noirs du Jurassique

Forage Espezel				
Cote (m)	Epaisseur (m)	Formation	Age	
0	2	Argilas à blass allashtanas	Die Quaternaire	
2	2	Aignes a blocs anochtones	Pilo-Quaternalle	
2	7	Covitá korstigue		
9	/	Cavite karstique		
9	6	Calcaira gris /baiga racristallisé à mousbaturas poiras	Parrámian inf	
15	Calcaire gris/beige recristailise a mouchetures		Darrennlen mi	
15	40	Calcaire beige et calcaire gris sombre à oxydes de fer	Néocomien	
55	40	Calcalle beige et calcalle glis sollible a oxydes de lei	Neoconnen	
55	24	Calcaire poir plus ou moins argileux à pyrite	Transition	
79	24	Calcalle non plus ou monts argheux a pyrite	Néocomien-Jurassique	
79		Alternance de calcaire arcileux neir, calcaire		
	315 Alternance de calcaire argineux noir, calcaire		Jurassique supérieur	
394		dolomitique, dolomie, calcaire gris recristallise		
394	20	Calcaire gris/marron à noir recristallisé avec petits	lies	
423	29	niveaux de dolomie	LIdS	

Tableau 2 : Coupe géologique synthétique du forage d'Espezel

• Interprétation des données de mesure du gamma naturel

Comme le mentionne le rapport d'exécution de l'ouvrage, la mesure du gamma naturel permet d'individualiser deux grands ensembles, le premier compris entre 0 et 155 m de profondeur et caractérisé par des valeurs plus élevées que le second situé entre 155 et 370 m de profondeur (Figure 13). L'interprétation proposée dans ce rapport mentionne que l'ensemble supérieur serait constitué de calcaires argileux du Barrémien et Néocomien, alors que l'ensemble inférieur correspondrait à des calcaires moins argileux et dolomies du Jurassique. Dans le détail, l'interprétation proposée décrit les niveaux présentés dans le Tableau 3.

Profondeur (m)	Valeurs du gamma naturel (cps)	Corrélation log géologique		
0-10	50	Recouvrement quaternaire et zone de cavité		
		probablement remplie d'argile		
10-18	20à30	Calcaire gris-beige probablement peu argileux		
18-67	30	Calcaire beige recristallisé un peu plus argileux		
67-74	15 à 25	Niveau peu argileux au sein des calcaires noirs ?		
74-140	30 à 40	Calcaire argileux noir		
140-155	50 à 75	Calcaire noir très argileux		
155-165	30	Zone de transition avec passage d'un calcaire noir		
		argileux à un calcaire gris peu argileux		
165-186	10 à 20	Calcaire gris peu argileux		
186-195	30 à 50	Niveaux dolomitiques probablement plus riches en		
		minéraux radioactifs		
195-370	10	Calcaires gris très peu argileux		

Tableau 3 : Interprétation lithologique des valeurs de mesure du gamma naturel proposée dans le rapport
d'exécution de l'ouvrage

Le croisement des données du gamma naturel avec les observations des cuttings montre une forte corrélation entre la profondeur des changements de faciès décrits le long de la coupe géologique et celle des discontinuités de gamma naturel mesurées. L'intégration de l'ensemble des données permet de proposer la description lithologique suivante pour le forage d'Espezel (Figure 13) :

Figure 13 : Coupe géologique du forage d'Espezel obtenue par croisement des descriptions de cuttings et des données de diagraphie du gamma natruel

Etude structurale issue des données du forage

Des données d'imagerie de paroi ont pu être acquises dans le forage entre 144 et 375 mètres de profondeur. Elles montrent une stratification générale tabulaire à faiblement pentée, recoupée par des nombreuses fractures tectoniques, diaclases et veines de calcite (Figure 14). En revanche seulement 2 fractures ouvertes ont été observées le long du forage.

Figure 14 : Image de la paroi du forage entre 280 et 283 mètres de profondeur dans les calcaires noirs du Jurassique. Exemple des structures observables et de leur pendage

L'étude structurale réalisée par le bureau d'étude « Idées Eaux » prend en compte tous les plans recoupant le forage sans distinction. La synthèse des résultats montre (Figure 15) :

- Un ensemble majoritaire (cercle bleu) de plans à pendage vers le Sud, plongeant de 10° à 75°,
- Un ensemble secondaire (cercle violet) de plans à pendage NNE, plongeant de 50° à 85°,
- Un ensemble secondaire (cercle vert) de plans à pendage Ouest, plongeant de 50° à 85°.

Figure 15 : Représentation des structures observées par le bureau d'étude

Si on analyse la direction des plans et celle du pendage en fonction des unités géologiques décrites, on observe des différences pour chacun :

 De 148 à 195 m de profondeur (Figure 16), les plans sont majoritairement orientés NW-SE, plongeant de 50° à 80° vers le NE ou le SW

Figure 16 : Statistiques structurales des plans observés dans le forage entre 148 et 195 m de profondeur. Gauche : Direction des plans. Droite : Direction de plongement et valeur de pendage

- De 196 à 319 m de profondeur (Figure 17), les plans sont majoritairement orientés E-W, plongeant de 30° à 80° principalement vers le S

Figure 17 : Statistiques structurales des plans observés dans le forage entre 196 et 319 m de profondeur. Gauche : Direction des plans. Droite : Direction de plongement et valeur de pendage

 De 320 à 374 m de profondeur (Figure 18), les plans sont majoritairement orientés E-W, et dans une moindre mesure N-S. Le plongement des plans E-W se fait vers le Sud, et celui des plans N-S vers l'Ouest. Les valeurs de pendages sont comprises entre 50° et 80°.

Figure 18 : Statistiques structurales des plans observés dans le forage entre 320 et 374 m de profondeur. Gauche : Direction des plans. Droite : Direction de plongement et valeur de pendage

En conclusion il semble qu'il existe une limite structurale d'orientation des plans de fractures à 195 m de profondeur. Au-dessus, les plans sont orientés NW-SE à pendage dans les deux directions NE et SW. En dessous, les plans sont orientés E-W à pendage Sud au moins jusqu'à

375 m de profondeur. Ces plans peuvent être rattachés aux failles majeures cartographiées (

Figure 4 et Figure 21). A partir de 320 m de profondeur et au moins jusqu'à 375 m, des plans supplémentaires orientés N-S à pendage Ouest font leur apparition. Ils pourraient correspondre

aux nombreuses failles d'orientation subméridienne mises en évidence sur la carte géologique (

Figure 4).

Structure générale des terrains et amélioration du modèle géologique 3D

Le croisement des observations de forage avec les données de sismique (Figure 19) montre que :

L'absence de réflecteurs imagés de 0 à 50 mètres de profondeur correspond aux formations calcaires du Barrémien inférieur au Néocomien, l'énergie ayant été absorbée par les dépôts superficiels,

- Les réflecteurs bien individualisés de 50 à 160 mètres de profondeur correspondent aux formations de calcaires argileux du sommet du Jurassique supérieur,
- La perte de réflecteur pour les profondeurs supérieures à 160 mètres au droit du forage correspond aux formations calcaires et dolomitiques du Jurassique supérieur,
- Le faible pendage des réflecteurs montre bien la structure quasi tabulaire des formations observées dans le forage.

Figure 19 : Position du forage d'Espezel sur le profil sismique P2

D'un point de vue de la structure, les données du forage viennent pour l'essentiel confirmer la géométrie des couches proposées sur la coupe n°2 du rapport BRGM RP/BRGM-65888-FR (Figure 20) et dans le modèle géologique 3D. Les données du forage pourront être intégrées au modèle géologique 3D afin de créer un point de contrainte sur les épaisseurs des formations au droit du forage (§ 2.5). Les épaisseurs des formations seront diminuées pour le Barrémien et le Néocomien, celles du Jurassique augmentées, la structure des couches étant conservée.

Figure 20 : Position et profondeur atteinte par le forage d'Espezel sur un extrait de la coupe structurale n°2 du rapport BRGM RP/BRGM-65888-FR

Conclusion

Les données apportées par le forage peuvent être résumées comme suit :

- la pile stratigraphique communément décrite sur le plateau de Sault a été traversée du Barrémien inférieur au Jurassique,
- l'épaisseur du Néocomien est moins importante qu'attendue, alors que celle du Jurassique (s. l.) se situe dans la marge haute des estimations faites à partir des données cartographiques,
- la lithologie fine des terrains est décrite par l'observation des cuttings couplée à des mesures de radiométrie gamma naturel entre 148 et 375 m de profondeur : 1) les calcaires du Crétacé inférieur sont riches en calcite et recristallisés, les fortes teneurs en gamma naturel étant interprétés comme provenant des argiles remplissant les cavités karstiques , 2) les carbonates du Jurassique, eux aussi recristallisés, sont argileux et riches en matières organiques vers le sommet, puis deviennent moins argileux vers le bas où ils sont intercalés avec des passés dolomitiques et/ou riches en matière organique,
- les calcaires du Crétacé inférieur sont karstifiés avec des cavités ouvertes de grande dimension,
- les calcaires du Jurassique sont également karstifiés mais les fractures sont souvent peut ouvertes et remplies d'argiles ; seules deux fractures ouvertes ont été observées à 188 et 281 m de profondeur,
- la structure des couches est subhorizontale en accord avec l'interprétation de la sismique,
- les calcaires sont fortement fracturés selon deux styles structuraux dont la limite se situe à 195 m de profondeur ; Au-dessus, les plans sont orientés NW-SE à pendage dans les deux directions NE et SW ; En dessous, les plans sont orientés E-W à pendage Sud au moins jusqu'à 375 m de profondeur, puis à partir de 320 m de profondeur, des plans orientés N-S à pendage Ouest font leur apparition. Les directions des plans mesurés dans le forage sont en accord avec celles cartographiées.

2.3.3. Forage de Blau à Puivert

Implantation de l'ouvrage

Le forage se situe sur la commune de Puivert (11) à environ 5 km au Sud du village.

Département : Aude - Commune : Puivert Coordonnées Lambert 93 : X = 621678 mY = 6198152 mZ = 688,33 m (NMM) Précision GNSS 4 cm

N° Banque du Sous-Sol (BSS) : BSS003YFXQ

La carte de la Figure 21 ci-après permet de visualiser la position relative de l'implantation retenue (étoile rouge sur la Figure 21), sur le chemin qui relie le hameau « L'Escale » au relai des maquisards. Le forage Blau a été réalisé à proximité de la source du Blau, située à une altitude de 620 m.

Figure 21 : Carte de situation du forage Blau (département de l'Aude). Haut : carte topographique à 1/25 000 source IGN ; Bas : carte géologique du projet sur fond de carte IGN à 1/25 000

L'ouvrage, foré au Marteau Fond de Trou (MFT 222 mm) à l'air dans les calcaires du Néocomien basal et Jurassique, a atteint 285 m de profondeur. Il a été équipé en PVC après foration (plein de 0 à 49 m puis crépiné de 49 m à 285 m). Les caractéristiques générales du forage du Blau sont résumées dans le Tableau 4. La coupe technique du forage est présentée en Annexe 2.

Dénomination		Forage BLAU	
N°BSS		BSS003YFXQ	
Coordonnées	Х	621 678 m	
(Lambert 93)	Y	6 198 152 m	
Altitude		685 m	
Profondeur totale forée		285 m/sol	
Profondeur équipée		285 m	
Type de foration		MFT à l'air en 311 mm de 0 à 11,5 m et 222 mm de 11,5 m à 285 m	
Venues d'eau productivité		Pas de test de pompage Venues d'eau en foration vers 230 m Débit mesuré en soufflage = 2,2 m ³ /h	
Situation fin de travaux		Tubage PVC plein de 0 à 49 m tubage PVC crépiné de 49 m à 285 m Margelle de protection en tête d'ouvrage	

Tableau 4: Tableau des caractéristiques générales du forage Blau

Données géologiques

• Observation des cuttings et mesure du gamma naturel

Le forage, d'une profondeur totale de 285 mètres, a traversé des formations de calcaires bréchiques dans lesquels aucun fossile n'a pu être observé dans les cuttings. Il s'agit de la fameuse formation dite « brèche limite » affleurant sur l'ensemble des Pyrénées et caractérisant le passage du Jurassique au Crétacé inférieur (Peybernès, 1976). L'absence de fossile n'a pas permis d'apporter plus de précision sur l'âge de la formation, dont l'attribution stratigraphique du Néocomien au Jurassique se base sur les informations de la carte géologique de Lavelanet (feuille n° 1076 ; Cosson et al., 1984).

L'observation des cuttings du forage offre une description lithologique sans pareil de la brèche limite, sur la longueur totale du forage. Au moins quatre lithologies de calcaires, présentes depuis le haut jusqu'en bas du forage, composent la brèche limite (Figure 22) :

- des calcaires noirs recristallisés,
- des calcaires gris finement recristallisés,
- des calcaires blancs pouvant présenter une teinte orangée liée à une altération, et
- de la calcite présente sous forme de très nombreuses veines.

Figure 22 : Coupe géologique synthétique du forage Blau et photos 1) des calcaires bréchiques à l'affleurement, 2) brèches et fractures à 53 m, 3) fracture ouverte à 93 m, 4) niveau de calcaire argileux noir intercalé à 221 m

Ces lithologies se retrouvent sur toute la hauteur du forage témoignant du faciès bréchique des calcaires comme ils peuvent être observés à l'affleurement (Figure 22). Une cavité probablement karstique, avec perte d'air lors de la foration, a été traversé entre 7 et 9 mètres de profondeur.

Les données de diagraphie montrent des valeurs du gamma naturel comprises entre 0 et 30 cps (Coups par secondes), donc plutôt faibles, en accord avec la lithologie carbonatée des calcaires. Un pic à plus de 75 cps est observé à 256 mètres de profondeur, provenant probablement d'une intercalation d'un niveau argileux. D'autre pics sont observés en dessous, à 272 et 282 mètres de profondeur, annonçant probablement la transition vers les calcaires argileux du Jurassique.

L'imagerie de paroi permet d'observer et de détailler de façon unique la composition et la structure de la brèche limite le long des 285 mètres de l'ouvrage (Figure 22). Les caractéristiques principales sont :

- le faciès bréchique des calcaires sur la presque totalité de l'ouvrage,
- le nombre important de veines de calcite,
- la fracturation importante dans les cents premiers mètres,
- les intercalations de niveaux de calcaires argileux noirs à partir de 220 mètres de profondeur.

Structure générale des terrains et amélioration du modèle géologique 3D

D'après les travaux de géologie structurale réalisés (Bousquet, 1975), le forage a été implanté dans une écaille d'unités placées au-dessus du chevauchement frontal Nord-pyrénéen le long duquel sont injectées des argiles à évaporites du Trias supérieur (Figure 23). L'orientation du pendage des couches représentées sur la coupe est confirmée par les observations dans le forage. En effet, les mesures de pendage des couches dans le forage d'après l'imagerie optique montrent une valeur de 80° vers le Sud. Cette valeur est plus importante que ce qui est représenté sur la coupe (Figure 23).

L'épaisseur totale de la brèche limite ne peut être quantifiée en raison de l'absence dans le forage du toit et du mur de cette formation ainsi que de son fort pendage.

Le modèle géologique 3D va pouvoir être amélioré grâce aux contraintes en profondeur sur le pendage des couches. Malheureusement la transition avec les formations du Jurassique vers 220 m de profondeur est trop spéculative pour être intégrée au modèle.

Figure 23 : Position du forage Blau (en rouge) sur la coupe géologique n°5 de Bousquet JP. (1975)

Données hydrogéologiques

Le forage du Blau a rencontré une seule venue d'eau significative $(2.2 \text{ m}^3/\text{h})$ située à environ 235 m de profondeur. En fin d'ouvrage, les essais au soufflage donnent un débit légèrement supérieur, de l'ordre de 3 à 4 m³/h.

Lorsque la diagraphie de production naturelle est réalisée (13 novembre 2017), le niveau statique est stabilisé à 86,15 m sous le repère (soit 85,95 m sous le niveau du sol), ce qui est proche de la mesure effectuée le 6 novembre (87,23 m sous le niveau du sol). La très faible augmentation de température (+1,2 °C) entre le niveau statique et la profondeur de 235 mètres (Figure 24), suggère l'existence de circulations verticales naturelles au sein de l'ouvrage entre ces deux profondeurs. La constance de la conductivité électrique sur ce même tronçon conforte cette interprétation. Au-delà de 235 mètres de profondeur, la température augmente plus significativement, suggérant une diminution des flux verticaux sur ce tronçon.

L'altitude mesurée du forage est de 688.33 m NGF. Le niveau piézométrique mesuré dans le forage est donc situé à une altitude d'environ 602 m NGF. Celle-ci est très proche de l'altitude du niveau d'eau le plus bas observé dans le siphon du système du Blau (605 m NGF). Il est donc probable que le niveau piézométrique mesuré dans le forage du Blau corresponde au niveau d'eau au sein de la zone noyée du système karstique de la source du Blau.

Cet ouvrage a été équipé d'une sonde piézométrique afin de suivre l'évolution du niveau au cours du temps et la comparer aux intermittences de la source du Blau (voir § 3.5.1).

Figure 24 : diagraphies de production naturelle du forage du Blau (réalisées le 13/11/2017)

2.4. MISE A JOUR DE LA MODELISATION GEOLOGIQUE 3D

2.4.1. Introduction

Sur les figures suivantes sont présentés, les profils sismiques réalisés, les tracés superposés (de couleurs) qui correspondent à la prédiction de la géologie d'après le modèle géologique 3D préliminaire (avant corrections). Aucune mise à jour (sismique et forages) n'a été effectuée, d'où la non-cohérence sur les images entre les structures géologiques imagées en sismique et le modèle 3D.

Les résultats de l'acquisition sismique (Figure 25) laissent apparaitre des réflecteurs subhorizontaux (légers synclinaux) bien marqués à l'Est et à l'Ouest d'une structure « en dôme » sans réflecteurs apparents. Le passage de la faille (en rouge sur la coupe), interprétée lors de la 1ère phase de construction du modèle, reste possible un peu plus à l'Est que positionnée initialement, même si la qualité de l'image sismique ne permet pas de l'authentifier avec certitude. Les pendages des couches sont également à ajuster (à horizontaliser) légèrement pour les mettre en cohérence avec ces nouvelles acquisitions.

Figure 25 : Profil sismique est-Ouest (en orange sur la carte de la Figure 3) avec les bases prédictives des formations géologiques, d'après le modèle géologique 3D préliminaire construit. Le code couleur est donné en bas à droite par la pile géologique modélisée.

La position à 800 m sur le profil a été choisie comme première option de forage (F. Espezel Figure 25) car l'origine de cette zone bruitée reste énigmatique (socle ou zone tectonisée?) et relativement peu profonde (-200 m) pour permettre en théorie sa caractérisation. De plus, ce secteur fait état de plusieurs effondrements recensés dans le rapport BRGM RP-52843-FR (Colas 2003). Ces fontis de tailles variables sont répertoriés le long de la D120, alignés sur une direction N20° (Figure 26), et peuvent suggérer du soutirage de matériaux vers un réseau profond de cavités karstiques (localisées potentiellement le long d'une zone fracturée N20°).

Figure 26 : Extrait de BD cavités (points noirs) et de BDmvt dont les effondrements ou fontis sont représentés en jaune. Les forages prévisionnels sont en rouge.

Le profil Sud-Nord P1 (Figure 27) met en évidence une zone bruitée à 1200m verticale, correspondant probablement à une zone tectonisée. Le pendage des couches est visiblement subhorizontal alors que le modèle 3D prédit un léger pendage des couches vers le Nord. On peut considérer que les positions des zones de failles du modèle 3D sont à peu près bien localisées au Nord du profil. La partie Nord, quant à elle mériterait d'être mise à jour dans le modèle 3D avec le synclinal albien figurant sur la sismique (repère 2800m).

Figure 27 : Profil sismique Sud-Nord P1 (en rouge sur la carte Figure 3) avec les bases prédictives des formations géologiques, d'après le modèle géologique 3D préliminaire construit. Le code couleur est donné en bas à gauche par la pile géologique modélisée.

2.4.2. Secteur du forage d'Espezel

Dans le secteur d'Espezel, la prédiction du modèle géologique 3D diffère grandement des formations interprétées dans le forage (Figure 28). Dès 55 m de profondeur, on passe dans les formations jurassiques alors qu'initialement, on ne devait les traverser qu'à partir de 300 m de profondeur.

Figure 28 : Comparaison pour le forage d'Espezel entre les interfaces géologiques prédictives à partir du modèle géologique 3D préliminaire (log de droite) et celles décrites par B. Monod dans le forage réalisé (log de gauche).

Le Barrémien se trouve en subsurface directement sous le Plioquaternaire et le Néocomien, par rapport aux prédictions, est très peu épais (env. 35 m). A noter que la perte des réflecteurs semble se faire au passage dans le Jurassique (dû à une intense fracturation ?) (Figure 29, Figure 30).

Figure 29 : A gauche : Avant corrections, comparaison pour le forage d'Espezel entre les interfaces géologiques prédictives à partir du modèle géologique 3D préliminaire et celles décrites par B. Monod dans le forage réalisé superposé au profil sismique est-Ouest. A droite : La même coupe après corrections.

Les interfaces géologiques ont ainsi été corrigées pour être mises en cohérence avec le nouveau forage Espezel et les géométries visibles en sismique. Les interfaces du Barrémien, Néocomien et Jurassique sont maintenant nettement plus superficielles avec par conséquent un socle également plus proche de la surface. La présence de la faille N20° (en rouge sur la Figure 29) a été testée : elle ne possède en section qu'un jeu vertical très faible mais sa présence est tout de même requise pour permettre la non cylindricité des structures. Elle a donc été conservée dans le modèle 3D final.

Figure 30 : En haut : Avant corrections, comparaison pour le forage d'Espezel entre les interfaces géologiques prédictives à partir du modèle géologique 3D préliminaire et celles décrites par B. Monod dans le forage réalisé superposé au profil sismique Sud-Nord. En bas : La même coupe après corrections.

2.4.3. Secteur du forage du Blau

Dans le secteur du Blau le deuxième forage effectué démarre en théorie, d'après la carte géologique dans le n1-3 correspondant aux calcaires du Néocomien. D'après les descriptions géologiques du forage, la transition entre le Néocomien et le Jurassique est difficile à établir avec précision faute de fossile (passage progressif?). Les prévisions des interfaces géologiques d'après le modèle 3D comparées à celles interprétées dans le forage Blau sont en bonne cohérence (Figure 31). La seule incertitude concerne la profondeur du Néocomien qui a été conservée à 50m de profondeur dans le modèle 3D car le Néocomien doit être présent au début du forage au de la carte géologique et des géométries construites en 3D.

Figure 31 : Comparaison pour le forage du Blau entre les interfaces géologiques prédictives à partir du modèle géologique 3D préliminaire (log de droite) et celles décrites par B. Monod dans le forage réalisé (log de gauche).

Le forage se trouve ainsi situé dans le flanc Nord du synclinal du Blau déversé vers le Sud (Figure 32). Le pendage des couches y est d'environ 40° ce qui, en conservant les formations géologiques dans la même série, donne les épaisseurs suivantes pour le Barrémien, Néocomien, Jurassique, respectivement 200, 100 et 250 m. Ces épaisseurs sont tout à fait cohérentes avec ce que l'on connait régionalement.

Le forage a permis ainsi de confirmer la structuration géologique établie initialement dans le modèle 3D et d'affiner les profondeurs des formations en présence (Figure 33).

Figure 32 : Intersection du modèle géologique 3D mis à jour, avec la topographie (haut) dans le secteur Blau. Bas : Coupe Sud-Nord localisée en rouge sur la carte passant par le forage Blau (entourée en rouge. Les interfaces géologiques sont issues du modèle géologique 3D mis à jour.

Figure 33 : Vue vers l'Ouest du modèle géologique 3D mis à jour (sans l'Albien) avec la position des 2 nouveaux forages

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

3. Hydrogéologie des principaux systèmes karstiques

3.1. INTRODUCTION

Ce chapitre a pour principal objectif de présenter les principaux résultats des investigations hydrogéologiques et géochimiques réalisées au cours du projet. Après une brève présentation du contexte hydrogéologique la zone d'étude et des méthodes d'analyses mise en œuvre, les principales caractéristiques hydrodynamiques des systèmes karstiques sélectionnés en début de projet seront présentées et commentées en terme de ressources et réserves. En fin de chapitre, de nouveaux résultats sur l'étude de l'intermitence de la source de Fontestorbe seront également présentés.

3.1.1. Contexte hydrogéologique

Les élements d'informations présentés ci-après sont extrait du rapport de synthèse de l'état de la connaissances géologiques et hydrogéologiques sur le plateau de Sault (Aude-Ariège), rapport BRGM/RP-64290-FR (Bardeau et al, 2015).

D'un point de vue des eaux souterraines, plusieurs entités hydrogéologiques ont été distinguées sur la zone d'étude (cf. Figure 34) dans l'Atlas hydrogéologique du Languedoc-Roussillon et dans le référentiel hydrogéologique français (BD LISA).

Les « formations variées primaires et secondaires du Pays de Sault » (code Atlas LRO : 144A1; code national BDLISA : 402AR), constituent l'aquifère majeur du Plateau de Sault. Localisées à l'extrémité sud occidentale du département de l'Aude, elles s'étendent partiellement sur les départements de l'Aude (partie orientale) et le département de l'Ariège (partie occidentale). Les calcaires, qui peuvent présenter des indices de karstification importants, sont parfois intercalés ou recouverts de marnes du Néocomien au Cénomanien. Le substratum correspond au Paléozoïque du massif de Saint-Barthélémy, sur lequel repose une semelle de Trias et un horizon de calcaires et cornéennes du Lias. Cette entité est composée de plusieurs systèmes karstiques, dont les plus importants sont ceux de Fontestorbes à l'Ouest et Fontmaure à l'Est. L'entité 402AR a été découpée de manière plus détaillée en trois entités hydrologique :

- La première, les « Calcaires crétacés du Pays de Sault » (code Atlas LRO : 144A1A ; code national BDLISA : 402AR01) représente la partie la plus septentrionale du Pays de Sault. Elle en constitue l'aquifère majeur, fortement karstifié, où l'essentiel du drainage est assuré souterrainement par les formations calcaires qui atteignent 600 mètres d'épaisseur, aussi bien dans les zones où elles affleurent que dans les zones où elles sont sous couvertures des marnes albiennes (679AB00). Ces marnes albiennes constituent un horizon très peu productif. Les circulations souterraines alimentent des sources jalonnant le contour du massif. Ce drainage donne lieu à des résurgences qui participent aux écoulements d'une part de l'Hers et son affluent rive gauche, le Lasset, et d'autre part de l'Aude.
- Plus au Sud, on trouve les « Calcaires et marnes métamorphisés du Pays de Sault » (code Atlas LRO : 144A1B ; code national BDLISA : 402AR02), au centre de l'entité principale 402AR. A proximité de la faille nord-pyrénéenne et donc à proximité des formations paléozoïques, les calcaires et localement les marnes du crétacé ont subi un métamorphisme de contact. Cependant, en terme hydrogéologique, ces formations ont un comportement très semblable aux calcaires crétacés rencontrés plus au Nord dans le Pays de Sault. Il faut noter que les marnes peuvent localement avoir une épaisseur

conséquente, ce qui permet la protection des eaux souterraines rencontrées dans les calcaires sous-jacents.

 La dernière entité, dans la partie méridionale de la zone d'étude, correspond aux « Calcaires dévoniens du Pays de Sault » (code Atlas LRO : 144A1C ; code national BDLISA : 402AR04). A la faveur des fissures et de fractures éventuellement agrandies par des phénomènes de karstification, il existe des circulations souterraines alimentant des sources dont les principales sont situées sur les communes de Niort-de-Sault, de Mérial ou de La Fajolle. La karstification des formations dévoniennes peut être très développée comme le temoigne le réseau karstique des grottes d'Aguzou (http://www.grotte-aguzou.com/) et de la réserve naturelle du TM71 (http://www.reservetm71.fr/), dans les gorges de l'Aude, à Fontanès-de-Sault.

Figure 34 : Carte de localisation des entités hydrogéologiques du Plateau de Sault (fond : cartes géologiques harmonisées au 1/50 000 de l'Ariège et de l'Aude)

Les « Marnes et marno-calcaires de l'Albien du Pays de Sault au Verdouble » (code Atlas LRO : 145A3 ; code national BDLISA : **679AB00**) constituent l'autre principal domaine hydrogéologique de la zone d'étude. Il se localise sur la partie orientale des Pyrénées et s'étend

à cheval entre le département de l'Aude et celui des Pyrénées-Orientales, entre le cours du Verdouble à l'Est (non représente sur la carte de la Figure 34) et les Gorges du Rébenty à l'Ouest.

Les formations de cette entité constituent le cœur des synclinaux de Saint-Paul-de-Fenouillet et de Boucheville à l'Est du Pays de Sault et s'étendent vers l'Ouest au-delà du fleuve Aude, sur sa rive gauche, dans le Pays de Sault. Leur substratum correspond alors aux calcaires du Jurassique et du Crétacé inférieur (jusqu'à l'Aptien), constituant l'entité 402AR, décrite ci-dessus. Les marnes albiennes peuvent avoir une épaisseur de plusieurs centaines de mètres, notamment au cœur des structures synclinales. Les marnes albiennes constituent des formations très peu productives, voire même un écran imperméable pour le réservoir karstique sous-jacent. Seuls de très petits débits peuvent être obtenus dans les premiers mètres de cette formation soumise à l'altération. La ressource en eau très limitée possède localement des teneurs élevées en sulfate.

La ressource en eau des « Chainons calcaires du Secondaire du Pays de Sault » est très peu exploitée mise à part pour l'AEP de quelques villages. Par ailleurs, les prélèvements sont peu importants étant donnée la taille très réduite de la population des communes alimentées.

A l'exception de certains secteurs où la teneur en sulfates est importante, la qualité chimique de l'eau est bonne. La qualité bactériologique quant à elle peut se révéler médiocre. La vulnérabilité de l'aquifère est d'autant plus grande sur la partie affleurante des calcaires urgoniens du Pays de Sault où la circulation rapide des eaux à travers les nombreuses diaclases et fissures ouvertes dans l'épikarst, n'offre que peu de possibilités de filtration.

3.1.2. Instrumentation et réseau de surveillance

Les différentes sources et principaux points d'eau des aquifères karstiques du Plateau de Sault ont fait l'objet d'une instrumentation spécifique en vue d'un suivi hydrométrique et physicochimique. Le marché relatif à cette instrumentation a fait l'objet d'un rapport spécifique (RP-63824-FR). Les points d'eau suivis entre l'automne 2014 et l'automne 2017 sont listés dans le Tableau 5.

Nom	n° BSS	Commune	X (m) L93	Y (m) L93
Source de Fontmaure	10775X0004/S	BELVIANES-ET- CAVIRAC (11035)	634776	6194053
Source de Fontestorbes	10766X0089/HY	BELESTA (09300)	612289	6199835
Piézomètre de la Frau	10765X0203/PZFRAU	COMUS (11340)	608097	6194477
Source de Ginoles et ruisseau le Coulent	10775X0077/S	GINOLES (11165)	631802	6197026
Source de l'Esqueille	10765X0204/S	MONTSEGUR (09211)	607949	6194708
Source des Adoucis (ou de Mérial)	10882X0212/ADOUCI	MERIAL (11230)	616079	6187756
Source des Adouxes (ou des Adoux)	10882X0215/ADOUX	MERIAL (11230)	615881	6187642
Source du Moulin (ou de la Fajolle)	10882X0203/MOULIN	FAJOLLE(LA) (11135)	615259	6185511
Source de Roquefeuil- Espezel	10882X0211/REBENT 10882X0214/BASSE	FAJOLLE(LA) (11135)	615302	6185563
Ruisseau Le Blau		PUIVERT (11303)	622562	6199791

Tableau 5 : Liste des points d'eau suivis sur le Plateau de Sault durant cette étude.

Ces points d'eau ainsi que d'autres plus secondaires ont fait l'objet de prélèvements ponctuels pour analyses hydrochimiques et isotopiques. Plusieurs crues ont également fait l'objet d'un suivi temporel. Des analyses bactériologiques ont également été conduites. Les résultats et interprétations de ces suivis font l'objet de ce chapitre.

3.2. METHODES D'ANALYSES MISES EN ŒUVRE

Ce paragraphe présente de manière succincte les principales méthodes d'investigation mises en œuvre dans cette étude pour caractériser le fonctionnement des principaux systèmes karstiques qui ont fait l'objet d'une instrumentation dans le cadre du projet « Plateau de Sault ».

3.2.1. Analyse des Débits classés

La méthode proposée par Mangin (1971) consiste à classer les débits par classes de débit afin de mettre en évidence des valeurs de débits critiques : valeurs anormalement élevées ou faibles. Une loi statistique (Log-Normal dans notre cas) est ajustée liant les classes de débit à leurs fréquences d'apparition.

L'interprétation des graphes de débits classés repose sur l'identification d'anomalies affectant la droite représentative ; ces anomalies se marquent par des modifications de la pente de la droite. Nous utiliserons la classification de Marsaud (1997) pour aider à l'interprétation des résultats (Tableau 6 et Figure 35.).

Tableau 6. Interprétation des ruptures de pente de la droite représentative des débits classés (Marsaud,

1	99	7).
	~~	

Cas A	Pentes des droites α2 > α1	Position de la rupture Forts pourcentages	Interprétation - Mise en fonctionnement de trop-plein - Fuites vers un autre système - Stockage momentané
			- Fuites ou débordement de la station de jaugeage lors des hautes eaux
в	α2 < α1		 Apports en provenance d'un autre système La station de jaugeage prend en compte lors des crues des écoulements n'appartenant pas au système
С	α2 < α1	Faibles	- Apports d'une réserve issue d'un cycle antérieur
D	α2 > α1	pourcentages	- Constitution d'une réserve
E	α2 > α1 α3 < α2	Double rupture	- Piégeage d'une réserve lors de la décrue et restitution au cours du tarissement

Cette méthode permet notamment de :

- mettre en évidence la présence d'un impluvium fluctuant au travers des fuites ou d'apports éventuels pouvant se produire entre différents systèmes karstiques ;
- déterminer les conditions de mise en fonctionnement de trop-pleins ;
- vérifier la qualité de la station de jaugeage de l'exutoire.

Figure 35. Différents cas de rupture de pente de la droite représentative des débits classés (Marsaud, 1997).

3.2.2. Analyse des courbes de récession

L'analyse des courbes de récession consiste à étudier la partie décroissante de l'hydrogramme de crue d'une source ou d'un cours d'eau, appelée récession, à partir d'un modèle de type global ou « boîte noire » qui assimile le système à des réservoirs se vidangeant les uns dans les autres.

L'approche couramment utilisée suppose que l'hydrogramme d'une source résulte de la vidange de deux réservoirs indépendants représentants la zone noyée aquifère et la zone d'infiltration.

Deux parties sont donc distinguées sur les courbes de récession et correspondent à un comportement hydraulique d'un des deux réservoirs définis par :

- la décrue, durant laquelle l'infiltration influence la vidange du réservoir,

 et le tarissement non influencé, qui débute à l'instant où le débit d'infiltration devient nul, qui correspond à la vidange du réservoir de la zone noyée aquifère (réservoir principal).

L'estimation du coefficient de récession de l'aquifère est réalisée sur le tarissement non influencé du débit en supposant que la vidange de la zone noyée est décrite par le modèle de Maillet¹ de formule suivante :

$$\varphi(t) = \mathsf{Q}_{\mathsf{Ro}}^* \, \mathbf{e}^{-\alpha t}$$

avec α le coefficient de tarissement et Q_{Ro} le débit initial de début de récession. Le débit Q_{Ro} n'a aucune réalité physique, il correspond à l'extrapolation de la courbe de tarissement à l'instant de la pointe de crue. Il renseigne sur l'état de saturation du système karstique au début de la période d'étiage.

Le volume dynamique annuel déduit de l'analyse des courbes de récession permet une estimation des réserves mobilisables, il est calculé par la formule suivante :

Vdyn annuel = $0.0864 * \frac{Q_{R0}}{\alpha}$ (en million de m3/an) (Equation 2)

Pour les systèmes karstiques, Mangin (1970) a développé une approche originale pour décrire et valoriser les informations du début de la récession qui est très majoritairement influencée par l'infiltration. Le modèle utilisé pour décrire la fonction d'infiltration a été établi de manière empirique à partir de l'analyse de nombreuses décrues et de l'infiltration dans une grotte (Mangin, 1970). C'est une fonction homographique :

$$\psi(t) = \mathbf{q}_{o} \frac{1 - \eta t}{1 - \varepsilon t}$$
 (Equation 3)

avec q_o: débit d'infiltration à l'instant t_o marquant la pointe de crue,

- ε: coefficient d'hétérogénéité d'écoulement,
- η: coefficient de vitesse d'infiltration, est égal à l'inverse du temps d'infiltration (ti).

La description analytique du modèle qui permet d'analyser les courbes de récession se fait à l'aide de la formule suivante (Figure 36) :

 $Q(t) = \varphi(t) + \psi(t)$

(Equation 4)

(Equation 1)

¹ D'autres formulations existent dans la littérature pour décrire la récession des aquifères (Formule de Boussinesq (1904), Formule de Coutagne (1948), toutefois dans cette étude, seule la formulation de Maillet a été utilisée.

Figure 36. Décomposition de la récession selon la méthode de Mangin (1970).

L'ajustement des paramètres de la loi décrivant la récession conduit à :

- la caractérisation du fonctionnement de la zone d'infiltration,
- l'estimation du volume d'eau contenu dans le réservoir, responsable de la décroissance des débits observée.

Une classification a été établie par Mangin (1975) à partir des résultats de l'analyse des courbes de récession dans le but de comparer les systèmes karstiques entre eux.

Cette classification repose sur le calcul de deux coefficients :

- le paramètre k qui est égal au rapport entre la plus grande valeur de volume dynamique (volume stocké dans la zone noyée = intégration du tarissement) observée sur une grande période et le volume de transit inter-annuel calculé sur la même période. Il traduit l'aptitude du système à stocker les précipitations et à les restituer progressivement au cours du temps, c'est à dire son *pouvoir régulateur*. Dans le cas des aquifères karstiques, k est en général inférieur à 0.5 ; une valeur proche de zéro indique un pouvoir régulateur peu important.
- le coefficient i, compris entre 0 et 1, caractérise les retards à l'infiltration. Il est égal à la valeur de la fonction homographique deux jours après la pointe de la crue. Une forte valeur traduit une infiltration lente ou complexe contribuant à une meilleure régulation de l'écoulement, alors qu'à l'inverse une faible valeur est le signe d'un transit rapide des eaux vers la zone noyée (Marsaud, 1997).

Le report des valeurs de k et de i sur un diagramme permet d'établir une comparaison avec des systèmes de référence. Les données obtenues sur différents systèmes ont ainsi conduit Mangin à définir quatre domaines (Figure 37). En 2007, cette classification a été modifiée par El-Hakim et Bakalowicz, la principale modification concerne le paramètre k qui est dorénavant exprimé en année. Un cinquième domaine a été également défini pour décrire les systèmes karstiques sous couverture présentant une importante inertie.

- le domaine 1 des systèmes complexes, généralement des systèmes de grande taille et dont la structure est faite de nombreux sous-systèmes,

- le domaine 2 des systèmes karstiques plus karstifiés à l'amont qu'à l'aval, et avec des retards dans l'alimentation dus soit à la présence de terrains non karstiques, soit à une couverture neigeuse importante,
- le domaine 3 des systèmes possédant un réseau de drainage très développé, avec une zone noyée peu importante ;
- le domaine 4 des systèmes possédant un réseau spéléologique bien développé et débouchant à l'aval sur karst noyé important.
- le domaine 5 des systèmes karstiques avec une zone phréatique profonde, partiellement ou totalement confinée sous des sédiments imperméables et largement karstifiés.

Modifié d'après El-Hakim and Bakalowicz, 2007, doi:10.1016/j.jhydrol.2006.09.003 Figure 37. Classification des systèmes karstiques à partir de l'analyse des courbes de récession (Mangin, 1975, modifié d'après El-Hakim et Bakalowicz, 2007)

L'application de la méthode de Mangin permet de décrire les récessions de durées « classiques » de l'ordre de 3 mois en moyenne mais la méthode s'avère parfois non appropriée en contexte de très basses eaux lorsque les récessions peuvent durer plusieurs mois. Ce phénomène a été mis en évidence par exemple, à la source karstique de la fontaine de Nîmes lors de l'étiage 2004-2005 qui a duré plus de 250 jours (Marechal et al, 2006 - BRGM/RP-54723-FR).

Pour décrire les récessions des systèmes karstiques complexes, il peut donc s'avérer judicieux de prendre en compte de manière différenciée les dynamiques d'écoulements au sein de la zone d'infiltration, ce qui revient à introduire la notion de composantes lente et rapide de l'infiltration. Ces deux composantes sont décrites par des fonctions homographiques distinctes [$\Psi_1(t)$ et $\Psi_2(t)$]:

Infiltration rapide :

$$\psi_1(t) = q_{ol} \frac{1 - \eta_1 t}{1 - \varepsilon_1 t}$$
(Equation 5)

Infiltration lente (ou retardée) :

$$\psi_2(t) = q_{\sigma^2} \frac{1 - \eta_2 t}{1 - \varepsilon_2 t}$$
(Equation 6)

La description analytique du modèle de récession devient donc ::

 $Q(t) = \varphi(t) + \psi 1(t) + \psi 2(t)$ (Equation 7)

Dans la classification de Mangin, c'est le paramètre d'infiltration déduit de $\Psi_1(t)$ qui est alors reporté.

3.2.3. Analyse du volume de régulation

L'étude de l'évolution de l'état du réservoir d'un aquifère peut être abordée par l'analyse de la courbe des débits cumulés. En hydrologie, cette technique est utilisée pour l'étude de régularisation des débits des cours d'eau au moyen de retenues ou barrage (Réménieras, 1960). Elle consiste à estimer à partir des écarts entre volumes cumulés et volume moyen, la capacité nécessaire au réservoir pour réguler le débit à une valeur moyenne. Par analogie, cette technique peut être mise en œuvre sur les débits d'une source pour étudier la capacité de régulation des réservoirs karstiques.

La capacité de stockage du réservoir est estimée par le segment d'ordonnée compris entre les deux tangentes extrêmes (à la courbe des débits naturels) parallèles à la droite du débit moyen. Cet intervalle correspond, pour une retenue, à la variation entre les volumes minimum et maximum d'exploitation (par analogie, cotes mini et maxi). Le suivi de plusieurs cycles hydrologiques (> 5) est généralement nécessaire pour que les résultats de l'approche soient jugés significatif.

3.2.4. Analyse du fonctionnement et estimation des bilans hydrogéologiques à l'aide du logiciel Gardenia (©BRGM)

GARDÉNIA est un modèle hydrologique global à réservoirs. Le modèle fournit à l'utilisateur des bilans des différentes composantes de l'écoulement. Avec Gardenia, il est possible de prendre en compte la fonte de la neige et donc d'évaluer l'importance de la neige dans le fonctionnement global de l'hydrosystème. Ce dernier point apparait intéressant dans le contexte montagnard de la zone d'étude. Des représentations graphiques permettent de comparer les observations et simulations disponibles ainsi que des critères numériques d'évaluation de la qualité de l'ajustement.

Schéma conceptuel de modélisation adopté

Le schéma adopté pour la modélisation des systèmes karstiques à l'aide du logiciel Gardenia est présenté sur la Figure 38. Le modèle hydrologique globale simule les principaux mécanismes du cycle de l'eau (pluie, évapotranspiration, infiltration, écoulement) par des lois physiques simplifiées décrites par un écoulement à travers une succession de 3 réservoirs : le premier réservoir symbolise les premières dizaines de centimètres du sol dans lesquelles se produit l'évapotranspiration, le second réservoir symbolise une zone intermédiaire (zone non saturée) qui produit un écoulement rapide et un flux de recharge vers un troisième réservoir, l'aquifère, qui produit l'écoulement lent. Les transferts d'un réservoir à l'autre sont régis par des lois simples décrites par des paramètres dimensionnels du modèle (capacité de rétention du sol, temps de transfert, seuils de débordement, etc). Dans cette étude, le débit des sources karstiques est supposé caractérisé par la somme de l'écoulement rapide et lent issu des réservoirs H et G respectivement.

Figure 38. Schéma de modélisation adopté pour décrire le fonctionnement des sources karstiques

En raison du caractère global de cette schématisation et de la complexité du système hydrogéologique réel, ces paramètres, bien qu'ayant un sens physique, peuvent difficilement être déduit a priori des caractéristiques physiographiques ponctuelles du bassin versant (géologie, couverture végétale...). Dans la pratique, le calage du modèle est réalisé en considérant les données journalières de débits mesurés (moyenne journalière) et les données d'entrées (précipitation, ETP). Les calculs sont réalisés au pas de temps journalier. La calibration se fait par une méthode semi-automatique. L'utilisateur fournit un jeu de paramètres initiaux et indique les paramètres qui seront à optimiser. À partir de ceux-ci, le modèle fait varier ces paramètres (dans une gamme de valeurs définie par l'utilisateur) et recherche, par un algorithme d'optimisation non-linéaire adapté de la méthode de Rosenbrock (1960), un jeu de paramètres fournissant les résultats les plus proches possibles de la série d'observations. Le modèle réalise un bilan entre les apports (précipitations) et les sorties (écoulements ou évaporation) à chacun des pas de calcul considéré (jour, décadaire, mensuel).

Stratégie de calibration

Dans cette étude, les superficies du bassin d'alimentation des sources ont été imposées lorsqu'elles étaient connues (Fontmaure, Fontestorbe). Lorsque des doutes subsistaient quant à la délimitation de l'impluvium, la superficie a été considérée comme un paramètre de calage et optimisé par la procédure de calage automatique.

Le logiciel Gardenia permet, si l'utilisateur le décide, une correction globale des chroniques de pluie et d'ETP. Cette option n'a pas été activée pour les sources karstiques de Fontmaure et Fontestorbes contrairement aux sources du Haut Rébenty situées en altitude pour lesquelles nous avons considéré que les précipitations (pluie et neige) pouvaient être mal connues en région montagneuse :

 <u>Correction globale des Pluies et de l'ETP.</u> C'est un coefficient de correction de la lame d'eau exprimé en pourcentage. Les variables de tous les pas de temps sont corrigées globalement d'un même pourcentage

Pour le module de fonte de Neige du modèle Gardenia, les paramètres sont au nombre de 7. Dans cette étude, 4 ont été fixés et 3 ont été optimisés :

- <u>Correction globale des températures (paramètre optimisé)</u>: la température de l'air moyenne la plus représentative du bassin versant n'étant pas toujours connue exactement à partir des stations météorologiques les plus proches, on applique une correction constante (un décalage positif ou négatif) pour la corriger globalement. Cette correction ne devrait pas dépasser plus ou moins 3 degrés, sauf si la station est vraiment éloignée du bassin.
- Taux de rétention de la neige (paramètre fixé) : c'est le pourcentage de rétention maximale d'eau liquide d'un stock neigeux. Quand la neige fond ou reçoit de la pluie à sa surface supérieure, une partie de cette eau (liquide) est retenue par capillarité. Cette rétention est proportionnelle à la hauteur de neige (si on suppose une densité à peu près constante... ce qui n'est qu'une approximation). La rétention dans la neige est donc exprimée en %. <u>C'est la valeur conseillée qui a été considérée : 5 %</u>.
- Facteur d'évaporation de la neige (paramètre fixé): C'est un coefficient caractérisant la sublimation du manteau neigeux dans une atmosphère où l'ETP n'est pas totalement satisfaite par les apports pluviométriques. Quand l'évapotranspiration potentielle n'est pas satisfaite par les précipitations, le reste peut être prélevé à la neige par sublimation. Cependant, le taux d'évaporation n'est pas le même pour l'eau dans la réserve du sol ou dans la neige. Ce coefficient est donc un coefficient correcteur. Un coefficient correcteur de 20 par exemple, indique que l'évapotranspiration potentielle, quand elle est appliquée à la neige, doit être augmentée de 20 %. C'est la valeur conseillée par défaut qui a été considérée : 0 %, soit pas de correction.
- <u>Correction de la fonte de la neige par la pluie (paramètre fixé)</u>: C'est un pourcentage de correction de la fonte d'un stock neigeux, par les calories contenues dans une pluie à une température audessus de 0°._La quantité de neige susceptible de fondre par ce phénomène vaut : Pluie x (1 + Correction en %) x Température / 80 (la chaleur latente de fusion de l'eau valant 79 calories par gramme, arrondie à 80). La fonte par la pluie est donc corrigée par un facteur global : Par exemple : 20 signifie une augmentation de 20 %. Il convient de remarquer cependant que la fonte par les calories de la pluie est très faible devant la fonte par la température de l'air. C'est la valeur conseillée par défaut qui a été considérée : 0 % soit pas de correction.
- <u>Seuil de fonte naturelle de la neige (paramètre optimisé)</u>: C'est le seuil de température au-dessus duquel commence la fonte de la neige. Cette température est généralement très proche de 0 °C, mais elle peut être un peu différente pour tenir compte de la différence entre la température de l'air mesurée et la température réelle à l'interface air-neige.

- <u>Constante de fonte par la température ("degré-jour") (paramètre optimisé)</u> : C'est le coefficient « degré-jour », c'est la hauteur d'eau équivalente à la quantité de la neige susceptible de fondre quotidiennement (si le stock neigeux est suffisamment fourni) sous l'action d'un excès de température de 1 °C au-dessus du seuil de fonte. Les valeurs courantes sont de 3 à 5 mm de fonte de neige par degré par jour. [Fonte = Degré-Jour x (Température Seuil_Fonte) x Durée]
- Fonte de la neige au contact du sol (paramètre fixé) : C'est la hauteur d'eau équivalente à la quantité de neige susceptible de fondre quotidiennement (si le stock neigeux est suffisamment fourni) sous l'action des calories dégagées par le sol. C'est la valeur conseillée par défaut qui a été considérée : 5-10 mm par jour.

Les paramètres des réservoirs H et G du modèle Gardénia pour calculer le débit des sources sont au nombre de 4 :

- <u>Capacité de la réserve superficielle progressive (optimisé)</u>: Cette réserve a un comportement plus physique qu'une "réserve utile" en "tout ou rien". Dans la réserve progressive l'évaporation réelle et la production de pluie efficace suivent des lois quadratiques, fonction de l'état de remplissage de cette réserve.
- Hauteur de répartition Ruissellement-Percolation (optimisé) : C'est la hauteur du réservoir H conduisant à une égale répartition entre écoulement rapide (ruissellement) et percolation alimentant l'écoulement lent. Quand le niveau dans le réservoir intermédiaire est égal à n fois cette hauteur, l'écoulement rapide instantané est égal à n fois la percolation. Réciproquement, quand le niveau est égal à 1/n fois cette hauteur, la percolation est égale à n fois l'écoulement rapide.
- <u>Temps de 1/2 montée (=temps de 1/2 percolation) (optimisé)</u> C'est le temps caractérisant la vitesse de réaction entre une pluie efficace et un accroissement de la composante lente du débit souterrain (temps en mois)
- <u>Temps de 1/2 tarissement de la composante souterraine (optimisé)</u>. C'est le temps au bout duquel, en l'absence de recharge, le débit de la composante lente est divisé par deux (temps en mois)

Données d'entrées utilisées pour la modélisation

Les données des mailles SAFRAN (maille = 64 km^2) de la zone d'étude de la période 1958-2014 (01 aout 1958 au 31 juillet 2014) ont été utilisées.

Pour les sources de Fontestorbes et Fontmaure, les lames d'eau journalières d'évapotranspiration potentielle et de précipitations (Pluie+Neige) pour chacun des systèmes ont été calculées à l'aide d'une pondération surfacique des données Météo-France des mailles SAFRAN n° 9536 à 9538 ; 9579 à 9582 et 9621 à 9623 sur l'emprise définie par les impluviums des sources (Figure 39) :

Fonction de pondération utilisée pour Fontestorbes :

Input_Fontes=1.54*(9535) + 4.19*(9536) + 10.44*(9578) + 32.99*(9579) + 10.65*(9620) + 30.59*(9621)

(le facteur multiplicatif représente le % de la maille Safran qui concerne l'impluvium de la source)

Fonction de pondération utilisée pour Fontmaure :

Input_Fontmaure= [3.0*(9536)+0.4*(9537)+2.9*(9579)+43.5*(9580)+21.4*(9581)+9.3*(9582)+15.7*(9621)+ 3.8*(9622)]

(le facteur multiplicatif représente le % de la maille Safran qui concerne l'impluvium de la source)

Figure 39. Emprise des mailles SAFRAN sur la zone d'étude, fond IGN 100000. Les impluvium de Fontestorbes et Fontmaure sont également reportés.

Les chroniques de températures moyennes journalières sur les impluviums des sources de Fontmaure et Fontestorbes ont été également calculées à l'aide des fonctions de pondérations précédentes.

Concernant la période récente, 01/08/2014-31/12/2017, les données d'entrées de Précipitation (Pluie+Neige), d'ETP et de température des impluviums des sources de Fontmaure et de Fontestorbes ont été évaluées à partir des corrélations établies sur la période 2012-2014 à l'aide des données de la station Météo-France de Belcaire (N°11028001). Les corrélations sont présentées en Annexe 3.

Des éléments de comparaison des chroniques d'entrées des 2 bassins sont présentés (Tableau 7). Les évolutions annuelles des paramètres sont présentées en Annexe 3 du rapport. Sur la période considérée (1959-2017), la valeur moyenne du cumul annuel de précipitation sur l'impluvium de Fontestorbes ainsi que les valeurs extrêmes, médiane et moyenne apparaissent supérieures aux valeurs de l'impluvium de Fontmaure. Pour l'ETP et la température, c'est l'inverse qui est observé. Ces résultats s'expliquent par l'altitude différentes des impluviums des systèmes karstiques, l'altitude de Fontestorbes (moyenne = 1284 m) étant supérieure à l'altitude de Fontmaure (moyenne = 1000 m, sans l'impluvium de Ginoles)².

Les valeurs de cumul de précipitation des années 2015, 2016 et 2017 apparaissent très inférieures aux valeurs moyennes de la période 1959-2017 calculées pour les 2 systèmes karstiques. A l'inverse, pour l'ETP et la température, les valeurs apparaissent supérieures aux valeurs moyennes de la période 1959-2017.

² Des éléments complémentaires de statistiques sont rassemblés dans la figure 57

Fontestorbes	Precipitation (mm)	ETP (mm)	Temp(°C)	Fontmaure	Precipitation (mm)	ETP (mm)	Temp(°C)
Min	827	636	7.3	Min	702	652	8.3
Max	1655	954	10.1	Max	1573	947	10.7
Moyenne	1187	794	8.8	Moyenne	1080	811	9.6
Médiane	1191	785	8.8	Médiane	1078	799	9.6
Fontestorbes	Precipitation (mm)	ETP (mm)	Temp(°C)	Fontmaure	Precipitation (mm)	ETP (mm)	Temp(°C)
2015	1008	894	9.4	2015	1032	947	10.1
2016	827	889	9.1	2016	846	942	9.8
2017	883	889	9.3	2017	904	942	10.0

Tableau 7. Eléments de statistiques descriptives des chroniques d'entrées (1959-2017) utilisées pour étudier les systèmes karstiques de Fontestorbes et Fontmaure. Les valeurs pour la période d'étude du projet « Plateau de Sault » sont reportées.

Figure 40. Emprise des mailles SAFRAN sur la zone d'étude du Haut-Rébenty, fond IGN 100000.

Pour les sources du Dévonien du Haut-Rébenty (Sources Moulin, SRE, Adouxes et Adoucis), les données Safran utilisées concernent les mailles 9621 et 9622 (Figure 40). En suivant une approche similaire, les données de la période récentes 2014-2017, ont été évaluées à partir des corrélations établies sur la période 2012-2014 à l'aide des données de la station Météo-France de Belcaire (11028001). Les corrélations sont également présentées en Annexe 3.

	Precipitation (mm)	ETP (mm)	ETP (mm)	ETP (mm)	Temp(°C)	Temp(°C)
Maille	9621	9622	9621	9622	9621	9622
Min	694	695	629	653	5.8	6.8
Max	1863	1732	989	955	8.9	9.3
Moyenne	1291	1146	785	813	7.3	8.2
Médiane	1295	1156	768	807	7.3	8.2
			1			
2015	847	848	882	955	8.0	8.9
2016	694	695	877	950	7.6	8.5
2017	741	742	877	950	7.9	8.8

Tableau 8. Eléments de statistiques descriptives des chroniques d'entrées (1959-2017) pour les systèmes karstiques du Dévonien du Haut-Rébenty. Les valeurs pour la période d'étude du projet « Plateau de Sault » sont reportées.

Le même commentaire est fait au sujet des valeurs de cumul de précipitation des années 2015, 2016 et 2017 qui apparaissent très inférieures aux valeurs moyennes calculées pour la période 1959-2017. A l'inverse, pour l'ETP et la température des années 2015 à 2017, les valeurs apparaissent supérieures aux valeurs moyennes de la période 1959-2017.

3.2.5. Approche géochimique

Suivis temporels et campagnes spatiales de prélèvements

Des analyses chimiques (majeurs et traces) et isotopiques (δ^{18} O et δ^{2} H, ⁸⁷Sr/⁸⁶Sr) ont été réalisées au cours du projet sur les sources qui ont fait l'objet d'une instrumentation : **Fontestorbes, Fontmaure, Ginoles, Blau, Adouxes, Adoucis, SRE et Moulin**. Un suivi complémentaire des eaux des **sources Cailla et Conte, du trop-plein de l'Esqueille** et des eaux des **pertes de Camurac, du Rébounédou et des Bouychettes** à l'aval de la STEP Roquefeuille et des eaux des **pertes de l'Hers en amont de Prades** ont été réalisés. Ces suivis de fréquence mensuelle (majeurs et traces) ont permis de caractériser les évolutions chimiques des systèmes karstiques sur une période de 12 à 16 mois selon les sites. Sur la base des évolutions chimiques mesurées (majeurs et traces), quelques analyses isotopiques (δ^{18} O et δ^{2} H, ⁸⁷Sr/⁸⁶Sr) ont été réalisées dans le but d'apprécier la variabilité isotopique pour des contextes hydrogéologiques différents.

En complément à ces suivis temporels, deux campagnes spatiales (en basses et hautes eaux) ont été réalisées sur des points d'eau complémentaires afin de replacer les évolutions mesurées aux sources dans le contexte géochimique plus global du Plateau de Sault et au delà (source Contes et vallée du Lasset). Une carte de localisation des points d'eau échantillonnés est présentée en Annexe 4.

Enfin, quelques analyses complémentaires sur les isotopes des sulfates ($\delta^{18}O_SO_4$ et $\delta^{34}S_SO_4$) ont été réalisées en basses eaux sur les sources présentant des concentrations en sulfates importantes (>100 mg/l, Fontmaure, Argelier et Gesse), les signatures mesurées ont été comparée à celle mesurée à Fontestorbes (9 mg/l).

Les protocoles de prélèvement et les résultats des analyses sont consignés en Annexe 6, ainsi qu'une carte de localisation des ouvrages et points d'eau échantillonnés.

Ci-après sont présentées les généralités sur les outils isotopiques mis en œuvre dans cette étude.

Généralités sur les isotopes de la molécule d'eau (δ^{18} O et δ^{2} H)

Les variations des compositions isotopiques des isotopes stables de l'eau (¹⁸O/¹⁶O et ²H/¹H) dans le cycle hydrologique résultent soit de fractionnement isotopique qui intervient lors des changements de phase (évaporation, condensation), soit de mélanges d'eaux de compositions isotopiques différentes. A l'échelle mondiale, les teneurs en deutérium des pluies sont reliées aux teneurs en oxygène 18 par la relation suivante : $\delta^2 H = 8 * \delta^{18} O + 10$; couramment appelée droite mondiale des eaux météoriques (Craig 1961).

L'oxygène 18 et le deutérium (²H) sont des traceurs intrinsèques de la molécule d'eau. La détermination des teneurs en oxygène 18 et deutérium de l'eau permet la comparaison avec la recharge (fonction d'entrée) par l'intermédiaire de la droite des eaux météoriques. Ces investigations permettent ainsi de préciser si les eaux d'un aquifère ont été modifiées par échange isotopique (cf Figure 41) au sein du réservoir et de mettre en évidence le cas échéant, l'existence d'un mélange avec des eaux extérieures au système.

Figure 41. Processus d'échanges isotopiques susceptibles d'affecter la signature isotopique (¹⁸O, ²H) de l'eau (d'après Clark et Fritz 1997)³.

³ Sous certaines conditions (temps de résidence élevé, faible rapport Eau/Roche, température élevée du réservoir, échange avec du CO_2 , du H_2S), les interactions Eau-Roche peuvent modifier la composition isotopique initiale de l'eau de recharge. L'évaporation entraîne toujours la formation de vapeur appauvrie en isotopes lourds par rapport au liquide d'origine (fractionnement isotopique), les eaux qui subissent le phénomène d'évaporation s'alignent le long de droite de pente < à 8‰ (5.5‰ à 6.5‰).

La signature isotopique des pluies évolue au cours du cycle hydrologique, les pluies des périodes estivales sont globalement enrichies en isotopes lourds par rapport aux précipitations hivernales. La signature des pluies évolue également en fonction de l'altitude, les précipitations en altitude étant appauvries en isotopes lourds par rapport aux pluies des altitudes plus basses (plaines). Le gradient isotopique altitudinal pour l'oxygène 18 est généralement compris entre -0.1 ‰ à -0.3 ‰/100 m. Cette propriété singulière des isotopes de l'eau est fréquemment utilisée dans les études environnementales pour évaluer les altitudes de recharge des eaux souterraines.

Dans cette étude, on va s'appuyer sur l'important travail réalisé par Krimissa (1995) pour l'interprétation des résultats. Pour la zone les Pyrénées orientales, Krimissa a pu définir, à partir des données isotopiques de Fouillac (non publiées) des eaux superficielles, une droite locale des précipitations d'équation : $\delta^2 H = 8^* \delta^{18} O + 14.2$. Cette droite est comparable à celle établie pour les départements de l'Hérault et le Gard : $\delta^2 H = 8^* \delta^{18} O + 14$ (Ladouche et al, 2009). Le gradient isotopique altitudinal définis pour l'oxygène 18 est le suivant (Krimissa, 1995) :

 δ^{18} O = -6.4‰(±0.2‰) - 2.39(±0.02) *H(m)/1000, n=26. Equation 8

Généralités sur les isotopes du strontium ⁸⁷Sr/⁸⁶Sr

Le strontium (Sr) est un élément chimique de type alcalino-terreux dont les propriétés physicochimiques sont proches de celles du calcium (Ca). Cette similarité permet au Sr de se substituer au Ca dans les réseaux cristallins.

Figure 42. Evolution de rapport isotopique du strontium des carbonates depuis le Cambrien (d'après, Burke et al., 1982)

Le rapport isotopique du strontium (⁸⁷Sr/⁸⁶Sr) d'une eau est directement lié à celui du minéral ou de l'assemblage minéralogique avec lequel l'eau a interagi. Ainsi, les eaux qui drainent des roches silicatées (granite par exemple) présentent des rapports ⁸⁷Sr/⁸⁶Sr relativement élevés, celles qui drainent des roches carbonatées ont des signatures plus faibles (moins radiogéniques). Le rapport ⁸⁷Sr/⁸⁶Sr des roches carbonatées (et des évaporites) suit fidèlement celui de l'eau de mer de l'époque du dépôt (Faure, 1986). Un exemple d'évolution du rapport ⁸⁷Sr/⁸⁶Sr au cours

des temps géologiques est présenté (Figure 42). Pour notre contexte d'étude, les eaux en interaction géochimique avec le Dévonien présenteront des rapports ⁸⁷Sr/⁸⁶Sr plus élevés que les eaux en interaction avec les réservoirs carbonatés du Jurassique et/ou Crétacé.

Les variations du rapport isotopique du strontium des eaux dans un hydrosystème donnent des informations sur (1) l'origine et potentiellement les proportions de mélange des différents types d'eau, et (2) la nature et l'intensité des interactions eau-roche notamment liées à l'altération ou la dissolution.

Généralités sur les isotopes des sulfates

Une source potentielle de sulfates dissous dans les eaux souterraines est l'apport par les eaux de pluie. Les signatures isotopiques attendues pour les eaux de pluie sont globalement les suivantes : δ^{34} Ssulfate = -1-+7‰ et δ^{18} Osulfate = +10-+17‰ (Berger et al., 1976 ; Brenot et al., 2007 ; Otero et al., 2008). Les concentrations dans les pluies sont généralement faibles (quelques mg/l) comme le témoigne par exemple, le suivi des pluies de l'Hérault (Ladouche et al., 2009).

Les sulfates peuvent également provenir de l'altération des lithologies locales. En absence de gypse, les sulfates proviennent de l'oxydation de sulfure. Les bactéries catalysant l'oxydation du soufre tirent leur énergie de l'oxydation des composés sulfurés en produisant des sulfates. Plusieurs genres de bactéries peuvent catalyser cette réaction, en présence d'oxygène dissous ou en condition anoxique :

FeS2+3/2 O2+H2O -> Fe2+ + 2SO42-+2H+ (Thiobacillus thiooxidans)

FeS2+14Fe3+ +8H2O -> 15Fe2+ + 2SO42-+16H+ (Thiobacillus ferrooxidans)

14NO32++ 5FeS2 + 4H+ -> 7N2+5Fe2+ + 10SO42++2H2O (Thiobacillus ferrooxidans)

Le fractionnement observé pendant l'oxydation des sulfures dépend de la source du soufre mais également fortement de l'agent oxydant (chimique ou biologique). Lors de l'oxydation des sulfures par l'oxygène dissous, un fractionnement (α) de 5 ‰ est observé, le fractionnement (α) peut atteindre 20 ‰ si des bactéries aérobies catalysent la réaction.

Nous ne disposons pas des signatures isotopiques des sulfures (pyrite) contenus dans les formations géologiques de la zone d'étude. A titre d'information, les signatures isotopiques (δ^{34} S_SO4) attendues pour les sulfures sédimentaires (pyrites sédimentaires par exemple) sont inférieures à 0‰ et peuvent aller jusqu'à -50‰ (Thode, 1991). La gamme théorique de signature isotopique δ^{18} O-SO4 attendue pour les sulfates libérés lors de l'oxydation de sulfures est de -10+10‰ (Clark et Fritz, 1997).

Concernant, la signature isotopique des sulfates issue de la dissolution des évaporites, nous considérons dans cette étude les signatures isotopiques caractérisées sur les eaux sulfatées du synclinorium du Fenouillet comme référence régionale pour le pôle des évaporites du Trias (Dörfliger et Ladouche (2004), Batiot et al, (2012).

3.3. SYSTEMES KARSTIQUES DU PRIMAIRE

Ce chapitre est consacré à l'étude du fonctionnement hydrogéologique des systèmes karstiques de la commune de la Fajoles, (source du Moulin et source SRE du Syndicat Requefeuil-Espezeld)

et de la commune de Mérial (source Adouxes et source Adoucis). La localisation des sources étudiées est reportée sur la carte suivante (Figure 43) extraite du rapport de l'état des connaissances de juin 2015 (BRGM/RP-64209-FR).

Ces systèmes karstiques ont fait l'objet d'un équipement et d'un suivi hydrodynamique et géochimique dans le cadre de cette étude (entre 2015 et 2017). Pour les sources des Adouxes et des Adoucis, l'interprétation hydrodynamique s'appuiera également sur les données antérieures acquises par le Conseil Départemental de l'Aude (Source Adouxes) et par Hydrogéosphère (source Adoucis) pour le compte de la commune de Mérial. Après une présentation des sites d'étude et des investigations réalisées dans le projet, des éléments d'informations en termes de fonctionnement et d'évaluation des réserves en eau souterraine seront présentés.

Figure 43. Localisation des principales sources de la vallée du haut Rébenty située dans le Dévonien de la zone axiale (fond géologique au 1/50 000, extrait du rapport BRGM/RP-64209-FR).

3.3.1. Source des Adouxes (ou des Adoux)

Située en rive gauche du Rébenty sur la commune de Mérial, la source des Adouxes (10882X0215/ADOUX) se situe en amont du défilé d'Adouxes (Figure 43). Du point de vue géologique, la source émerge au sein des calcaires dolomitiques du Praguien-Emsien de la série du Pic d'Ourtiset. Cette série est chevauchante sur la série autochtone de la Fajolle. Au niveau du ruisseau de la Coume (Figure 43), les dolomies sont en discordance tectonique sur les formations du Dévonien moyen de la Fajolle, contenant des pélites et calcaires argileux. Il est supposé qu'il existe un continuum hydraulique entre ces deux unités, notamment par l'intermédiaire des pertes dans le ruisseau de la Coume observées à la frontière entre ces deux unités.

Figure 44. Vues de l'émergence de la source des Adouxes (10882X0215/ADOUX) située en rive gauche du Rébenty.

La source pérenne des Adouxes n'est pas captée. La sortie principale est située dans une zone d'éboulis à proximité du Rébenty (Figure 44). A quelques mètres au-dessus de la zone d'émergence, il existe un barrenc au pied de la falaise qui surplombe la source. Cet orifice vertical est pénétrable sur les 15 premiers mètres, jusqu'au réseau karstique (Figure 45). L'historique spéléologique fait état d'une plongée de ce siphon le 26 juillet 1978 par le G.S. Orions de Tourcoing, en collaboration avec la Société Spéléologique du Plantaurel (Hydrogéosphère 2004). Le plan d'eau fait actuellement (depuis mars 2010, Figure 46) l'objet d'un suivi limnigraphique dans le cadre du réseau départemental de suivi quantitatif des eaux souterraines de l'Aude (CD11). Un complément d'instrumentation a été mis en place par Hydrogéospère en décembre

2014 afin de compléter le suivi par une sonde^₄ de conductivité, température et hauteur d'eau (cf. Figure 45). Les données complémentaires acquises dans le cadre du projet sont présentées sur la Figure 47.

Figure 45. Vues de l'entrée du Barenc situé au dessus de la source des Adouxes (10882X0215/ADOUX) et vues partielles de l'équipement existant mis en place par le CD11 et du puits de mesure et équipement installés par Hydrogéosphère (tube gris) dans la cavité (Photos Hydrogéosphère).

⁴ Sonde Van Essen Instrument CTD 1bar (capteur absolu). La compensation barométrique est réalisée à l'aide du capteur barométrique 0.1bar (Sonde Van Essen Instrument)

Figure 46. Evolutions des niveaux d'eau mesurés⁵ au plan d'eau de la cavité de la source des Adouxes (moyenne journalière).

Figure 47. Evolutions des paramètres physico-chimiques mesurés à la source des Adouxes (moyenne journalière)

⁵ Les données présentées avant 2015 sont celles mesurées par le Conseil Départemental de l'Aude. Les données ont été normalisées à celles du suivi réalisé dans le projet Sault afin d'établir les comparaisons. A noter, le capteur de pression installé par le CD11 ne permet pas de mesurer les variations supérieures à 4 m (capteur hors gamme de mesure au-delà de 4 m)

Informations sur le fonctionnement hydrogéologique

Les évolutions des paramètres physico-chimiques de la source des Adouxes sont présentées sur la Figure 47. La température de la source des Adouxes présente des variations annuelles de l'ordre de 0.8 °C (entre 7.4 °C et 8.2 °C), celles de la conductivité électrique de l'eau sont de l'ordre de 60 µs/cm (entre 250 µS/cm et 310 µS/cm). A noter que les crues de reprise qui font suite aux étiages estivaux se caractérisent par une élévation brutale de la température et de la conductivité électrique, les évolutions observées évoquant un phénomène d'effet piston sur les composantes plus profondes du réservoir aquifère. Les crues printanières se caractérisent globalement par une diminution significative de la température des eaux de la source (ce qui témoigne de la conductivité électrique apparaissant globalement faibles comparées à celles enregistrées lors des crues de reprise.

Le caractère karstique de la source des Adouxes se manifeste par d'importantes variations piézométriques en période de crue (+ de 6 m de variation). Compte tenu de la configuration de la zone d'émergence, les débits de la source des Adouxes ont été évalués par des campagnes de jaugeages différentiels sur le Rébenty pour différents contextes hydrogéologiques. La synthèse des jaugeages réalisés par Hydrogéosphère est présentée ci-après (Tableau 9). A noter que les débits estimés sont entachés d'une importante incertitude (>10% au minimum) car les erreurs liées aux jaugeages différentiels se cumulent. La courbe de tarage est présentée sur la Figure 48.

L'évolution des débits estimés de la source des Adouxes ainsi que l'évolution des débits moyens mensuels et annuels sur la période 2010-2017 sont présentés (Figure 49). Sur la période de suivi (2010-2017), le débit moyen est estimé à 0.213 m³/s (2σ =0.230 m³/s), le débit médian est estimé à 0.135 l/s. Les débits minimums mesurés en fin d'étiages sont estimés à 0.04 m³/s. Le volume de régulation du système karstique est estimé à 16 millions de m³ (Figure 50).

Date Heure	Hauteur d'eau au dessus de la sonde (m), validée	Débit jaugé (l/s) Dillution	incertitude (l/s)	Débit jaugé (l/s) Courantomètre	incertitude (l/s)	Méthode	Q Amont Rébenty (I/s)	Q Aval Rébenty (I/s)
12/12/2014 15:00	1.81	206	21			Dilution chimique (fluorescéine), par différence (Amont-Aval)	170	376
19/02/2015 14:30	1.9	211	21			Dilution chimique (fluorescéine), par différence (Amont-Aval)	77	288
12/03/2015 12:00	4.4	857	86			Dilution chimique (fluorescéine), par différence (Amont-Aval)		
09/04/2015 11:15	3.7	528	53	629	63	Dilution chimique (fluorescéine), par différence (Amont-Aval) et courantomètre		
10/06/2015 12:30	1.9	216	22	179	18	Dilution chimique (fluorescéine), par différence (Amont-Aval) et courantomètre		
04/09/2015 13:30	1.2	50	5			Dilution chimique (fluorescéine), par différence (Amont-Aval)	33	83

Tableau 9. Synthèse des jaugeages différentiels réalisés à la source des Adouxes.

Figure 48. Courbe de tarage de la source des Adouxes

Figure 49. Evolution des débits moyen journalier de la source des Adouxes sur la période 2010-2017

	Année							
Mois	2010	2011	2012	2013	2014	2015	2016	2017
1		0.08	0.22	0.21	0.43	0.17	0.15	0.04
2		0.10	0.12	0.34	0.36	0.31	0.28	0.16
3	0.31	0.32	0.25	0.54	0.47	0.88	0.29	0.40
4	0.28	0.21	0.51	0.88	0.79	0.71	0.45	0.25
5	0.55	0.10	0.33	0.85	0.36	0.22	0.21	0.14
6	0.20	0.21	0.17	0.52	0.24	0.21	0.19	0.11
7	0.13	0.13	0.10	0.17	0.21	0.12	0.10	0.07
8	0.09	0.12	0.07	0.11	0.18	0.09	0.07	0.05
9	0.07	0.07	0.06	0.08	0.12	0.07	0.05	0.04
10	0.07	0.06	0.06	0.07	0.09	0.06	0.04	0.04
11	0.12	0.13	0.06	0.23	0.07	0.08	0.05	0.04
12	0.13	0.16	0.19	0.27	0.23	0.12	0.05	0.05
Moy=	0.19	0.14	0.18	0.36	0.30	0.25	0.16	0.12

Tableau 10. Sources des Adouxes : évolution des débits moyens mensuels et annuels sur la période2010-2017.

Figure 50. Estimation du volume de régulation du système karstique de la source des Adouxes

Figure 51. Analyse des débits classés de la source des Adouxes (classes de 0.05 m³/s)

L'analyse des débits classés de la source des Adouxes est présentée sur la Figure 51. Premier constat, la sous-estimation des débits de crue de la période 2010-2014 pour les débits > 1 m³/s est nettement perceptible sur la courbe des débits classés pour une probabilité cumulée de 96%. Un autre point d'inflexion est mis en évidence autour de 0.4 m³/s pour une probabilité cumulée de l'ordre de 85%, la pente α_2 (pour Q > 0.4 m³/s est inférieure à α_1 (Q<0.4 m³/s). Lorsque le débit excède 0,4 m³/s, les propriétés hydrauliques du système changent, le système évacue plus facilement les eaux (les débits classés augmentent plus rapidement). Ce changement de comportement traduit vraisemblablement l'existence d'une modification des conditions d'émergence des eaux (l'évacuation des eaux de crue apparaît favorisée). Cette rupture peut également traduire une diminution de la capacité de stockage du milieu lorsque la pression d'eau au-dessus du capteur de la grotte devient supérieure à 4 m (Figure 46). Pour les débits inférieurs à 0.4 m³/s, le comportement du système est plus inertiel et traduit globalement la vidange du réservoir du système. Notons que la médiane des débits (probabilité cumulée = 50%) est faible et correspond à 0,14 m³/s environ.

Figure 52. Exemple d'analyse de courbe de recession de la source des Adouxes par l'approche de Mangin modifiée.

Année	Début	Fin	Q0	Qf	К	i(q1)	i (q2)	alpha	QR0	q1	t1	q2	t2	Vi_rapide	Vi_lente	Vdyn	Nash	EQM
			m3/s	m3/s					m3/s	m3/s	(j)	m3/s	(j)	Mm3	Mm3	Mm3		
2017	10/03/17	20/10/17	1.235	0.040	0.300	0.33	0.95	0.0059	0.137	0.818	6	0.280	120	0.158	0.972	2.015	0.964	0.195
2016	06/06/16	16/01/17	0.381	0.040	0.331	0.28	0.89	0.0025	0.064	0.108	20	0.209	106	0.025	0.432	2.221	0.986	0.079
2015	02/04/15	26/11/15	2.140	0.056	0.445	0.37	0.89	0.0039	0.135	1.366	20	0.639	120	0.381	1.409	2.983	0.958	0.258
2014	05/05/14	06/11/14	0.733	0.076	0.503	0.68	0.98	0.0038	0.150	0.425	10	0.158	120	0.168	0.797	3.377	0.827	0.229
2013	04/06/13	04/11/13	1.072	0.060	0.586	0.75	0.84	0.0020	0.091	0.306	8	0.674	100	0.121	1.072	3.933	0.995	0.071
2012	24/05/12	20/10/12	0.418	0.057	0.387	0.64	0.90	0.0028	0.085	0.122	6	0.212	92	0.035	0.439	2.595	0.997	0.029
2011	06/06/11	02/11/11	0.451	0.054	0.310	0.74	0.74	0.0062	0.150	0.100	8	0.201	100	0.037	0.223	2.078	0.866	0.212
2010	14/05/10	10/10/10	1.071	0.058	0.325	0.85	0.74	0.0060	0.150	0.310	14	0.611	100	0.196	0.678	2.178	0.984	0.13
EQM : Ec	art quadratio	que moyen																

Tableau 11. Source des Adouxes : synthèses des paramètres des 8 recessions étudiées entre 2010 et2017

Pour la source des Adouxes, 8 périodes de décrues ont été traitées à l'aide de l'approche de Mangin modifiée. Les paramètres des ajustements ainsi que la fiabilité des résultats (critère de Nash et écart-quadratique moyen) sont rassemblés dans le Tableau 11. L'exemple de la courbe de récession de 2017 (Figure 52) permet d'illustrer les difficultés rencontrées lorsque la récession

est influencée par les précipitations. Le temps de fin d'infiltration de la composante rapide de l'écoulement est relativement court (11 jours \pm 6) et les vitesses moyennes d'infiltration rapide indiquent qu'une partie de la zone d'infiltration est bien connectée d'un point de vue hydraulique à la zone noyée du système. L'écoulement de crue apparait majoritairement assuré par la composante rapide de l'écoulement. Le temps de fin d'infiltration de la composante lente de l'écoulement est important (107 jours \pm 11 jours), les récessions apparaissent donc longtemps influencées par cette composante. La contribution relative de l'infiltration lente apparait variable d'un cycle hydrologique à l'autre, les contributions maximales étant observées lors des récessions 2013, 2014 et 2015 qui correspondent à des années pluvieuses (cf. Annexe 3). L'importance de la composante lente au cours de la récession (jusqu'à 30% du volume écoulé pendant la récession) est probablement corrélée à l'importance du flux d'eau de fontes de neige.

Les coefficients de tarissement (0.004 \pm 0.002) déduits des récessions non influencées par l'infiltration (temps > 107 jours \pm 11 jours) sont relativement faibles ce qui indique que la zone noyée du système karstique se vidange lentement (ou difficilement). Le volume dynamique du réservoir est estimé à 2.7 \pm 0.7 millions de m³, le volume moyen écoulé sur la période 2010-2017 étant de 6.7 millions de m³, le pouvoir régulateur du système karstique (K) est estimé à 0.40 \pm 0.05. Le paramètre d'infiltration moyen (i) est estimé à 0.58 \pm 0.11. Le report des valeurs moyennes (K, i) dans le diagramme de classification de Mangin (Figure 53) permet de comparer les résultats avec d'autres systèmes étudiés dans la littérature. La valeur moyenne des paramètres se positionne dans le domaine 1. Ces valeurs sont représentatives d'un système complexe caractérisé par de forts retards à l'alimentation. Le pouvoir régulateur élevé du système karstique est propice à l'accumulation de réserves.

Figure 53. Source des Adouxes : report des paramètres I et K déduit de l'analyse des courbes de récession dans la classification de Mangin.

Informations apportées par la modélisation Gardenia

La description des données d'entrées du modèle et les modalités de mise en œuvre de l'approche de modélisation ont été précédemment détaillées (cf.3.2.4). Dans cette modélisation, le débit de la source karstique est supposé assuré par 2 composantes d'écoulements (cf. Figure 38) : une composante d'écoulement rapide qui intervient lors des périodes de crues et au début du

tarissement et une composante d'écoulement lent d'un réservoir souterrain qui assure le débit d'étiage de la source. Les résultats de modélisation sont présentés sur la Figure 54. La comparaison des résultats du modèle avec les jaugeages ponctuels réalisés est présentée à titre de comparaison. Le critère de Nash sur les débits et la racine des débits sont de 0.79. Les valeurs des critères sont jugées satisfaisante de même que l'allure du débit simulé, ce qui permet une discussion des résultats. A noter cependant que les débits modélisés en fin d'étiage apparaissent inférieurs aux valeurs estimées au seuil de mesure. Les paramètres du modèle obtenu par calage automatique sont rassemblés en Annexe 7, les données d'entrée de précipitation et d'ETP ont été également optimisées.

Figure 54. Modélisation du débit à la source des Adouxes par le modèle Gardenia (période 2000-2017)

La superficie du bassin alimentation n'est pas connue avec précision et a donc été estimée par modélisation : 8.84 km². La superficie calculée par le modèle apparait très comparable à celle proposée par Salic (1985) : 8.6 km². La valeur du coefficient Rui_Per est faible (18.8 mm) ce qui indique que l'essentiel de l'écoulement en période de crue est produit par la composante rapide du modèle.

Le temps de demi-Tarissement-Rapide est assez lent (1.34 mois) ce qui dénote que le système karstique évacue assez mal cette composante de l'écoulement. Le temps de demi percolation (T1/2_Perco =T1/2 demi-montée) est important (4.25 mois) ce qui dénote que la recharge de la zone noyée du système est assez lente. Ce résultat pourrait indiquer l'existence d'une zone non saturée peu ou mal karstifiée et/ou d'une zone non saturée d'épaisseur importante. L'importance du temps demi-montée (4.25 mois) permet également de souligner l'existence d'une vidange lente du réservoir de la zone noyée en absence de recharge. La réponse impulsionnelle globale du système est présentée sur la Figure 56, par analogie avec l'analyse des courbes de récession, on constate que le débit de la source cesse d'être influencée par la composante rapide pour des décalages importants (autour de 100 jours environ). Les résultats de la modélisation sont en accord avec ceux obtenus par l'analyse des courbes de recessions.

Les évolutions temporelles des composantes de l'écoulement sont présentées sur la Figure 55, les évolutions des bilans mensuels de la période 2010-2017 sont reportées en Annexe 7, les bilans annuels sur le Tableau 12. Au moyen de l'approche de modélisation Gardénia, la contribution de la composante lente à l'écoulement global est estimée 20 ± 3 % sur la période 2010-2017, soit 1.2 \pm 0.2 million de m³ par an. L'année 2017, avec un volume estimé à 0.78 million de m³ (89 mm), présente les valeurs les plus faibles de la période.

Figure 55. Décomposition de l'hydrogramme de la source des Adouxes (flux exprimés en mm)

Figure 56. Réponse impulsionnelle du système karstique à 100 mm/jour de pluie efficace (2 types de représentations).

Bilan hydrogéologique (mm):Modèle	e Garde	nia Sce	des Ado	ouxes			
Mois\année	2010	2011	2012	2013	2014	2015	2016	2017
Précipitation (Pluie+Neige)	1387	1391	1411	2096	1719	1501	1231	1314
ETR	750	796	786	775	808	822	768	781
Pluie Efficace	644	577	610	1108	1114	708	524	396
dont Fonte Neige	410	146	369	594	611	358	199	308
Total de Q_simul	664	512	623	1144	1113	699	584	363
Total de Q_rapid_H	532	398	497	974	942	566	460	274
Total de Q_sout_G1	132	113	126	169	171	132	124	89

Tableau 12. Bilans annuels calculés par le modèle Gardenia de la source des Adouxes

3.3.2. Source des Adoucis

Située en rive droite du Rébenty (Figure 57), la source des Adoucis (10882X0212/ADOUCI), émerge au sein de la formation du Viséen supérieur-Namurien (h2b-3, culm, grès, siltites gréseuses, conglomérat) à proximité du contact (au Sud) avec le calcaire dolomitique (d2-30) de la série allochtone du Pic d'Ourtiset et du contact (au Nord) des calcaires du Emsien-Frasnien situés sous la zone d'éboulis.

Figure 57. Vues de l'émergence de la la source des Adoucis (10882X0212/ADOUCI) située en rive droite du Rébenty.

La source est actuellement captée pour l'alimentation en eau potable de la commune de Mérial. Le débit de prélèvement n'est pas connu mais supposé négligeable en comparaison à celui du trop-plein de la chambre de captage. En 2011, la source a été équipée d'un seuil à lame mince pour suivre le débit de trop-plein de la chambre de captage (Hydrogéosphère) et d'un capteur de niveau d'eau jusqu'en octobre 2014. Les données de hauteur d'eau collectées par Hydrogéosphère ont été intégrées à cette étude. Depuis le 26/11/2014, un suivi en continu⁶ de conductivité, température et hauteur d'eau a été réalisé. En 2013, la connexion hydraulique entre le ruisseau de Laval⁷ et la source des Adoucis a été démontrée par traçage (Hydrogéosphère) au niveau de la zone des pertes identifiées (cf. § 3.4).

⁶ Sonde Van Essen Instrument CTD 1bar (capteur absolue). La compensation barométrique est réalisée à l'aide du capteur barométrique 0.1bar (Sonde Van Essen Instrument)

⁷ Nom carte IGN2248ET, édition 2009.

Au cours du projet, la source a fait l'objet de 6 jaugeages (jaugeages différentiels sur le Rébenty), la courbe de tarage étant présentée sur la Figure 58. La synthèse des jaugeages réalisés par Hydrogéosphère est présentée en annexe 5. A noter que les débits estimés sont entachés d'une importante incertitude (>10% au minimum) car les erreurs liées aux jaugeages différentiels se cumulent. La courbe de tarage théorique du seuil est également présentée. La courbe de tarage établie dans le projet diffère de la courbe de tarage théorique notamment en période de crue. Pour les hauteurs >0.1 m, c'est la courbe puissance qui a été considérée, en période de très basses eaux (H<0.1 m), c'est la courbe théorique du seuil qui a été considérée. L'évolution des débits est présentée sur la Figure 59.

Figure 58. Courbe de tarage de la source des Adoucis

Figure 59. Evolution du débit de trop-plein du captage de la source des Adoucis

Informations sur le fonctionnement hydrogéologique

Les évolutions des paramètres physico-chimiques de la source des Adoucis sont présentées sur la Figure 60. La température de la source des Adoucis présente des variations annuelles de l'ordre de 0.8 °C (entre 7.6 °C et 8.4 °C) similaires à celles de la source des Adouxes, les évolutions sont principalement observées au cours des crues hivernales et printanières. La conductivité électrique de l'eau présente également des variations atypiques dans uns gamme de variation comprise entre 250 μ s/cm et 350 μ S/cm, aucune relation claire avec le fonctionnement hydrogéologique n'est mise en évidence. Une partie des évolutions complexes de la conductivité est vraissemblablement liée à la contribution du ruisseau de Laval sur lequel les pertes du cours d'eau ont été démontré par tracage.

Figure 60. Evolutions des paramètres physico-chimiques mesurés à la source des Adoucis (moyenne journalière)

année\mois	1	2	3	4	5	6	7	8	9	10	11	12	moy
2013			0.358	0.619	0.600	0.578	0.094	0.053	0.040	0.033	0.211	0.193	0.215
2014	0.397	0.225	0.288	0.471	0.252	0.189	0.127	0.104	0.064	0.053	0.067	0.230	0.229
2015	0.140	0.226	0.650	0.402	0.186	0.206	0.082	0.070	0.052	0.029	0.067	0.108	0.184
2016	0.125	0.158	0.162	0.255	0.146	0.086	0.042	0.026	0.020	0.018	0.026	0.018	0.090
2017	0.016	0.099	0.257	0.165	0.068	0.053	0.030	0.021	0.019	0.016	0.023	0.027	0.068

Tableau 13. Sources des Adoucis : évolution des débits moyens mensuels et annuels sur la période2013-2017.

Le caractère karstique de la source des Adoucis se manifeste par d'importantes variations du débit en période de crue. Compte tenu de la configuration de la zone d'émergence, les débits de crue de la chambre de captage sont difficiles à estimer car une mise en charge de la chambre de captage peut se produire en raison de la configuration de l'orifice de sortie des eaux de la chambre de captage (Figure 57).

L'évolution des débits estimés de la source des Adoucis ainsi que l'évolution des débits moyens mensuels et annuels sur la période 2013-2017 sont présentés Figure 59 et Tableau 13. Sur la période de suivi (2013-2017), le débit moyen est estimé à 0.15 m³/s (2σ =0.21 m³/s), le débit médian est estimé à 0.093 m³/s. Les débits minimums mesurés en fin d'étiages sont estimés à

0.016 m³/s. Le volume de régulation du système karstique n'a pas été calculé car la durée de la période suivie (2013-2017) n'est pas assez longue.

L'analyse des débits classés de la source des Adoucis est présentée sur la Figure 61. Premier constat, une sous-estimation des débits de crue pour les débits > 1.5 m³/s est mise en évidence sur la courbe des débits classés pour une probabilité cumulée de 99%. Si l'on s'affranchit de ce point d'inflexion, l'allure générale de la courbe des débits classés ressemble au cas E décrit par Marsaud : « Piégeage d'une réserve lors de la décrue (pour Q compris entre 0.1 et 0.6 m³/s) et restitution au cours du tarissement (Q<0.1 m³/s).

Figure 61. Analyse des débits classés de la source des Adoucis (classes de 0.04 m³/s)

Pour la source des Adoucis, 5 périodes de décrues ont été traitées à l'aide de l'approche de Mangin modifiée. Les paramètres des ajustements ainsi que la fiabilité des résultats (critère de Nash et écart-quadratique moyen) sont rassemblés dans le Tableau 14. Le temps de fin d'infiltration de la composante rapide de l'écoulement est moyennement court (16 jours \pm 7) et les vitesses moyennes d'infiltration rapide indiquent qu'une partie de la zone d'infiltration est bien connectée d'un point de vue hydraulique à la zone noyée du système. L'écoulement de crue apparait majoritairement assuré par la composante rapide de l'écoulement (106 jours \pm 20 jours), les récessions apparaissent donc longtemps influencées par cette composante.

Année	Début	Fin	Q0	Qf	К	i(q1)	i (q2)	alpha	QR0	q1	t1	q2	t2	Vi_rapide	Vi_lente	Vdyn
			m3/s	m3/s					m3/s	m3/s	(j)	m3/s	(j)	Mm3	Mm3	Mm3
2017	01/04/17	21/10/17	0.354	0.016	0.174	0.898	0.747	0.0090	0.085	0.136	20	0.132	120	0.1230	0.1614	0.8197
2016	20/05/16	05/11/16	0.293	0.017	0.127	0.254	0.816	0.0090	0.062	0.100	4	0.131	88	0.0161	0.1807	0.5986
2015	18/06/15	06/11/15	0.722	0.017	0.214	0.280	0.402	0.0090	0.105	0.517	16	0.100	120	0.1120	0.0470	1.0072
2014	02/06/14	28/11/14	0.549	0.047	0.390	0.409	0.747	0.0040	0.085	0.332	20	0.132	120	0.1009	0.1614	1.8360
2013	02/06/13	04/11/13	2.162	0.031	0.238	0.260	0.813	0.0058	0.075	1.587	20	0.500	80	0.3465	0.6579	1.1195

Tableau 14. Source des Adoucis : synthèses des paramètres des 5 recessions étudiées entre 2015 et2017.

Les coefficients de tarissement (0.007 ± 0.002) déduits des récessions non influencées par l'infiltration (temps > 106 jours ± 20 jours) sont relativement faibles ce qui indique que la zone noyée du système karstique se vidange lentement (ou difficilement). Le volume dynamique du réservoir est estimé à 1.1 ± 0.5 millions de m³, le volume moyen écoulé sur la période 2013-2017 étant de 4.7 millions de m³, le pouvoir régulateur de système karstique (K) est estimé à 0.23 ± 0.05 . Le paramètre d'infiltration moyen (i) est estimé à 0.42 ± 0.14 . Le report des valeurs moyennes (K, i) dans le diagramme de classification de Mangin (Figure 62) permet de comparer les résultats avec d'autres systèmes étudiés dans la littérature. La valeur moyenne des paramètres se positionne dans le domaine 2. Ces valeurs sont caractéristiques d'un système karstique complexe plus karstifié à l'amont qu'à l'aval qui présente de forts retards à l'alimentation. Le pouvoir régulateur peu élevé du système karstique ne permet pas une accumulation importante de réserves.

Figure 62. Source des Adoucis : report des paramètres I et K déduit de l'analyse des courbes de récession dans la classification de Mangin

Informations apportées par la modélisation Gardenia

Les résultats de modélisation sont présentés sur la Figure 63. La comparaison des résultats du modèle avec les jaugeages ponctuels réalisés est présentée à titre de comparaison. Le critère de Nash sur les débits est de 0.80. La valeur du critère est jugée satisfaisante de même que l'allure du débit simulé, ce qui permet une discussion des résultats. Les paramètres du modèle obtenu par calage automatique sont rassemblés en Annexe 7, les données d'entrée de précipitation et d'ETP ont été également optimisées.

La superficie du bassin alimentation n'est pas connue et a donc été estimée par modélisation : 6.89 km². La valeur du coefficient Rui_Per est faible (40.8 mm) ce qui indique que l'essentiel de l'écoulement en période de crue est produit par la composante rapide du modèle. Le temps de demi-Tarissement-Rapide est court (0.24 mois) ce qui dénote que le système karstique évacue rapidement cette composante de l'écoulement. Le temps de demi percolation (T1/2_Perco =T1/2 demi-montée) est assez lent (1.03 mois) ce qui dénote que la recharge de la zone noyée du système est assez lente. Ce résultat pourrait indiquer l'existence d'une zone non saturée peu ou mal karstifiée et/ou d'épaisseur importante.

Les évolutions des bilans mensuels de la période 2010-2017 sont reportées en Annexe 7, les bilans annuels sur le Tableau 15. Avec l'approche de modélisation Gardénia, la contribution de la composante lente à l'écoulement global est estimée 27 ± 4 % sur la période 2010-2017, soit 1.06 \pm 0.25 million de m³ par an. L'année 2017, avec un volume estimé à 0.67 million de m³ (98 mm), présente les valeurs les plus faibles de la période.

Figure 63. Modélisation du débit à la source des Adoucis par le modèle Gardenia (période 2000-2017)

Bilan hydrogéologique : Mo	dèle Gar	denia So	ce des A	doucis				
Mois\année	2010	2011	2012	2013	2014	2015	2016	2017
Précipitation (pluie+Neige)	1263	1267	1285	1909	1565	1367	1121	1197
ETR	742	778	767	768	800	805	748	757
Pluie_efficace	526	469	479	1035	923	560	458	328
dont Fonte Neige	284	97	253	433	334	225	127	241
Q_simul	545	412	507	1034	917	581	492	293
Q_rapid_H	389	285	364	824	715	427	351	195
Q_sout_G1	156	127	143	210	202	154	141	98

Tableau 15. Bilans annuels en mm calculé par le modèle Gardenia de la source des Adoucis (S = 6.89 km2)

3.3.3. Source SRE du Syndicat Roquefeuil-Espezel

Située en rive droite du Rébenty sur la commune de la Fajolle, la source dite « SRE » est constitué d'une source dite basse (10882X0214/BASSE) et d'une source dite haute (10882X0211/REBENT) située à quelques mètres de la précédente. Les deux sources émergent au sein du Givetien-Frasnien (Dévonien moyen) de la série de la Fajolle constitué de pélites multicolores et de calcaire micritique à tentaculites, de brèches.

Les sources sont captées par le syndicat Roquefeuilles-Espezel, les chambres de captages étant bétonnées et maçonnées à même la roche (Figure 64), autour des cavités d'où jaillit l'eau (Figure 65). La DUP (02/04/10) fixe le volume maximal prélevé à 327 m³ par jour et le volume annuel à 56575 m³. Le débit moyen prélevé est de l'ordre de 1.8 l/s (6,5 m³/h).

Figure 64. Vue des captages du syndicat Roquefeuilles-Espezel

Figure 65. Vues des seuils mis en place dans les captages (10882X0214/BASSE et 10882X0211/REBENT).

Pour les périodes de moyennes et basses eaux, les niveaux d'eau mesurés au seuil de la source Haute sont parfaitement corrélés au niveau d'eau de la source basse. Compte tenu de la configuration des zones d'émergences, la mesure des débits de crue des sources à l'aide des seuils est problématique en raison d'une importante et brutale mise en charge des hauteurs d'eau (>1.5 m pour la source haute) des chambres de captage en période de crue. L'estimation des débits de débordement en contexte de hautes eaux a été réalisée par jaugeages différentiels sur le Rébenty. Le débit différentiel estimé permet d'accéder au débit de débordement des chambres de captage des 2 sources. A noter que les débits estimés sont entachés d'une importante incertitude (>10% au minimum) car les erreurs liées aux jaugeages différentiels se cumulent. La courbe de tarage des débits de débordement de la source «SRE» est présenté (Figure 67). Pour l'Estimation des débits naturalisés de la source, nous avons considéré un débit de prélèvement constant de 1.8 l/s. La comparaison des débits moyens naturalisés et de débordement est présentée dans le Tableau 16. Sur la période de suivi (2010-2017), le débit moyen est estimé à 0.066 m3/s (2 σ =0.346 m³/s), le débit médian est estimé à 0.007 m³/s. Les débits minimums mesurés en fin d'étiages sont estimés à 0.002 m³/s.

Figure 66. Courbe de tarage (établie à partir du débit cumulé de débordement des sources basse et haute)

Figure 67. Evolution du débit de la source « SRE » la période 2015-2017.

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

		Mois											
	Débit (l/s)	1	2	3	4	5	6	7	8	9	10	11	12
2015	Q_SRE (Débordement)	8.5	464.3	952.0	207.1	33.7	68.6	14.6	4.9	1.5	0.1	15.9	7.9
	Q_SRE_Naturalisé	10.3	466.1	953.8	208.9	35.5	70.4	16.4	6.7	3.3	1.9	17.7	9.7
2016	Q_SRE (Débordement)	10.4	53.2	76.5	101.8	24.3	17.9	10.5	4.9	4.8	1.6	0.8	0.1
	Q_SRE_Naturalisé	12.2	55.0	78.3	103.6	26.1	19.7	12.3	6.7	6.6	3.4	2.6	1.9
2017	Q_SRE (Débordement)	0.1	47.7	122.0	46.6	3.9	3.3	2.0	1.2	0.2	0.1	0.1	0.2
	Q_SRE_Naturalisé	1.9	49.5	123.8	48.4	5.7	5.1	3.8	3.0	2.0	1.9	1.9	2.0

Tableau 16. Evolution du débit journalier des trop-pleins des captages et des débits moyens mensuels sur la période 2015-2017.

Informations sur le fonctionnement hydrogéologique

Les évolutions des paramètres physico-chimiques de la source « SRE » sont présentées sur la Figure 68. La température de la source SRE présente des variations annuelles de l'ordre de 0.9 °C (entre 7.3°C et 8.2°C), celles de la conductivité électrique de l'eau sont faibles (de l'ordre de 60 μ s/cm) sans relation évidente avec le débit ou la température. Une légère tendance à l'augmentation semble toutefois s'observer lors des crues. Les crues printanières se caractérisent globalement par une diminution significative de la température des eaux de la source (ce qui témoigne de la contribution des eaux de la composante rapide de la recharge issue de la fonte des neiges notamment).

Figure 68. Evolutions des paramètres physico-chimiques mesurés à la source SRE (moyenne journalière)

Le caractère karstique de la source des SRE se traduit par des réponses rapides du débit de la source en période de crue. L'analyse des débits classés de la source SRE est présentée sur la Figure 69. Premier constat, 2 points d'inflexions sont mis en évidence autour de 0.06 m³/s pour une probabilité cumulée de 80% et 0.25 m³/s pour une probabilité cumulée de 98%. L'allure générale de la courbe des débits classés ressemble au cas E décrit par Marsaud : « Piégeage d'une réserve lors de la décrue (pour Q compris entre 0.06 et 0.25 m³/s) et restitution au cours

du tarissement (Q<0.06 m³/s). Rappelons que la médiane des débits (probabilité cumulé = 50%) est faible (0,007 m³/s environ). Le suivi de plusieurs cycles hydrologiques (> 5) sont nécessaires pour l'estimation du volume de régulation, le calcul n'a pas été effectué compte tenu de la durée du suivi (<3 ans).

Figure 69. Analyse des débits classés de la source « SRE » (classes de 0.01 m3/s)

Pour la source SRE, trois périodes de décrues ont été traitées à l'aide de l'approche de Mangin modifiée. Les paramètres des ajustements sont rassemblés dans le Tableau 17. Le temps de fin d'infiltration de la composante rapide de l'écoulement est relativement court (13 jours ± 6) et les vitesses moyennes d'infiltration rapide indiquent qu'une partie de la zone d'infiltration est bien connectée d'un point de vue hydraulique à la zone noyée du système. Le temps de fin d'infiltration de la composante lente de l'écoulement est important (83 jours ± 36 jours), les récessions apparaissent donc longtemps influencées par cette composante. La contribution relative de l'infiltration lente apparait variable d'un cycle hydrologique à l'autre. L'écoulement de la récession 2016 apparait majoritairement composé par la composante lente de l'infiltration contrairement à 2015 et 2017. Ce résultat traduit vraisemblablement l'importance joué par le processus de fonte de neige dans le fonctionnement global du système karstique. L'importance de la composante lente au cours de la récession de 2016 (jusqu'à 60% du volume écoulé pendant la récession) est probablement corrélée à l'importance du flux d'eau de fonte de neige.

année	Début	Fin	Q0	Qf	К	i(q1)	i (q2)	alpha	QR0	q1	t1	q2	t2	Vi_rapide	Vi_lente	Vdyn
			m3/s	m3/s					m3/s	m3/s	(j)	m3/s	(j)	Mm3	Mm3	Mm3
2017	01/04/17	28/10/17	0.1833	0.0019	0.047	0.751	0.947	0.0059	0.007	0.170	20	0.007	48	0.1029	0.0129	0.0968
2016	01/04/16	28/12/16	0.22	0.0019	0.088	0.667	0.964	0.0052	0.011	0.119	10	0.090	120	0.0450	0.3503	0.1821
2015	17/06/15	14/11/15	0.2739	0.0019	0.048	0.784	0.813	0.0052	0.006	0.198	10	0.070	80	0.0914	0.0921	0.0994
Tab	leau 17.	Source	e « S	RE »	: svnt	hèse d	des pai	ramèt	res de	s 3 re	cessi	ons ét	udié	es entre	2015 e	t 2017.

Les coefficients de tarissement (0.0054 ± 0.0004) déduit des récessions non influencées par l'infiltration (temps > 83 jours ± 36 jours) sont faibles ce qui indique que la zone noyée du système karstique se vidange lentement (ou difficilement). Le volume dynamique du réservoir est estimé

à 0.13 ± 0.05 millions de m³, le volume moyen écoulé sur la période 2010-2017 étant de 2.08 millions de m³, le pouvoir régulateur de système karstique (K) est faible estimé à 0.06 ± 0.01 . Le paramètre d'infiltration moyen (i) est estimé à 0.73 ± 0.03 . Le report des valeurs moyennes (K, i) dans le diagramme de classification de Mangin (Figure 70) permet de comparer les résultats avec d'autres systèmes étudiés dans la littérature. La valeur moyenne des paramètres se positionne dans le domaine 1. Ces valeurs sont caractéristiques d'un système complexe caractérisé par des forts retards à l'alimentation. Le pouvoir régulateur faible du système karstique n'est pas propice à l'accumulation de réserves.

Figure 70. Report des paramètres I et K déduit de l'analyse des courbes de récession de la source SRE dans la classification de Mangin.

Informations apportées par la modélisation Gardenia

La description des données d'entrées du modèle et les modalités de mise en œuvre de l'approche de modélisation ont été précédemment détaillées (cf. § 3.2.4). Dans cette modélisation (le module de fonte de neige de Gardénia est activé), le débit de la source karstique est supposé assuré par 2 composantes d'écoulements (cf. Figure 38) : une composante d'écoulement rapide qui intervient lors des périodes de crues et au début du tarissement et une composante de vidange d'un réservoir lent qui assure le débit d'étiage de la source. Les résultats de modélisation sont présentés sur la Figure 71. La comparaison des résultats du modèle avec les jaugeages ponctuels réalisés est présentée à titre de comparaison. Le critère de Nash sur les débits est de 0.59, valeur faible jugée acceptable de même que l'allure du débit simulé, ce qui permet une discussion des résultats. A noter que le modèle ne permet pas de reproduire de manière complètement satisfaisante les débits de pointe de crue estimés par la courbe de tarage, ces derniers étant eux même entachés d'une forte incertitude (cf. Figure 66). Les paramètres du modèle obtenu par calage automatique sont rassemblés en Annexe 7, les données d'entrée de précipitation et d'ETP ont été également optimisées.

La superficie du bassin alimentation n'est pas connue et a donc été estimée par modélisation : 2.5 km². La valeur du coefficient Rui_Per est faible (10 mm) ce qui indique que l'essentiel de l'écoulement en période de crue est produit par la composante rapide du modèle. Le temps de demi-Tarissement-Rapide est très court (0.023 mois) ce qui dénote que le système karstique évacue rapidement cette composante de l'écoulement. Le temps de demi percolation
(T1/2_Perco =T1/2 demi-montée) est assez lent (1.49 mois) ce qui dénote que la recharge de la zone noyée du système est assez lente.

Les évolutions des bilans mensuels de la période 2010-2017 sont reportées en Annexe 7, les bilans annuels sur le Tableau 18. Avec l'approche de modélisation Gardénia, la contribution de la composante souterraine à l'écoulement globale est estimée 27 ± 5 % sur la période 2010-2017, soit 0.28 \pm 0.07 million de m³ par an. L'année 2017, avec un volume estimé à 0.16 million de m³ (65 mm) présente les valeurs les plus faibles de la période. La contribution de la fonte de neige apparait prépondérante dans la pluie efficace.

Figure 71. Modélisation du débit des sources « SRE » par le modèle Gardenia (période 2000-2017)

Bilan hydrogéologique (mm) : Modèle Gardenia Sources "SRE"												
Mois\année	2010	2011	2012	2013	2014	2015	2016	2017				
Précipitation (Pluie+Neige)	1134	1137	1153	1713	1405	1227	1006	1074				
ETR	756	784	781	789	829	812	757	749				
Pluie Efficace	396	276	378	773	742	429	372	194				
dont Fonte Neige	317	97	290	49 0	484	240	181	196				
Total de Q_simul	412	265	377	786	740	427	382	186				
Total de Q_rapid_H	298	176	275	635	590	314	280	121				
Total de Q_sout_G1	114	88	102	151	149	113	102	65				

Tableau 18. Bilans annuels (en mm) calculé par le modèle Gardenia des sources « SRE » (S = 2.5 km2)

3.3.4. Source du Moulin (ou de la Fajolle)

Située en rive gauche du Rébenty, la source du Moulin (10882X0203/MOULIN) est captée pour alimenter la commune de la Fajolle.

La source émerge au sein du Givetien-Frasnien (Dévonien moyen) de la série de la Fajolle constitué de pélites multicolores et de calcaire micritique à tentaculites, de brèches. L'émergence est située dans les pélites du Givetien. D'après les constatations de terrain (Hydrogeosphère 2004), à proximité de la source, au Sud, l'ensemble des formations du Dévonien est fortement déformé en un ensemble de plissements syn-schisteux, dont la schistosité a effacé en grande partie la stratification originelle. Au niveau de la source, celle-ci est très redressée, voire même subverticale. Deux directions principales de fracturation sont mesurées (N50-N80 et N110-N150), il est supposé que les écoulements s'organisent suivant ces directions de fracturation.

Figure 72. Vues de la chambre de captage de la source Moulin (10882X0203/MOULIN) et du seuil mis en place.

Figure 73. Vue du trop-plein de la source du Moulin à l'extérieur de la chambre de captage

Figure 74. Courbes de tarage de la source du Moulin

Au cours du projet, la source à fait l'objet de 6 jaugeages par Hydrogéosphère (jaugeages différentiels sur le Rébenty), la courbe de tarage est présentée sur la Figure 74. A noter que les débits estimés sont entachés d'une importante incertitude (> 10% au minimum) car les erreurs liées aux jaugeages différentiels se cumulent. La courbe de tarage théorique du seuil est également présentée. La courbe de tarage établie dans le projet diffère de la courbe de tarage théorique, les débits théoriques apparaissant plus faibles que les jaugeages. C'est la courbe puissance établie à partir des jaugeages qui a été considérée dans cette étude. Pour l'Estimation des débits naturalisés de la source, nous avons considéré un débit de prélèvement constant de 1 l/s. L'évolution des débits est présentée sur la Figure 75. Sur la période de suivi (2015-2017), le débit moyen est estimé à 0.034 m³/s ($2\sigma = 0.040 \text{ m}^3/\text{s}$), le débit médian est estimé à 0.021 m³/s.

Figure 75. Evolution du débit journalier et des debits moyens mensuels mesurés à la source du Moulin (Fajolle)

Informations sur le fonctionnement hydrogéologique

Les évolutions des paramètres physico-chimiques de la source du Moulin (Fajolle) sont présentées sur la Figure 76. La température de la source présente des variations annuelles de l'ordre de 2 °C (entre 6.5°C et 8.5°C), celles de la conductivité électrique de l'eau sont importantes (> 100 μ s/cm) notamment en période de crue sans relation évidente avec la température. Une légère tendance à l'augmentation semble toutefois s'observer lors des crues. Les variations importantes de conductivité se produisent lors des crues printanières (crue de fonte des neiges),

ce qui témoigne de la contribution des eaux de la composante rapide de la recharge issue de la fonte des neiges. Les crues de reprise du cycle hydrologique qui font suite aux étiages estivaux ne sont pas caractérisées par d'importantes baisses de minéralisation. Pour ces crues, aucune relation évidente n'est observée, la conductivité peut présenter de légères augmentations ou au contraire de faibles diminutions indiquant soit une mobilisation d'eau plus minéralisée de la zone noyée ou une contribution d'eau de recharge lors des crues.

Figure 76. Evolutions des paramètres physico-chimiques mesurés à la source du Moulin (Fajolle)

Figure 77. Analyse des débits classés de la source du Moulin (classes de 0.01 m³/s)

L'analyse des débits classés de la source du Moulin est présentée sur la Figure 77. Premier constat, un point d'inflexion est observé en période de crue (> 0.2 m³/s) pour une probabilité cumulée de 98%, la pente de la droite α 3 est supérieure à celle de la droite α 2 ce qui dénote qu'une partie du flux mesurée échappe à la station de jaugeage ou que les débits de crue sont sous estimés. Un second point d'inflexion est observé (autour de 0.09 m³/s) pour une probabilité cumulée de 90%, la pente de la droite α 2 est supérieure à celle de la droite α 1. Ce comportement traduirait l'existence d'un piégeage d'une réserve lors des crues (pour Q compris supérieur à 0.09) et restitution au cours du tarissement (Q < 0.09 m³/s). Pour la même raison que la source SRE, le volume de régulation n'a pas été calculé car jugé non significatif compte tenu de la durée du suivi (3 ans).

Année	Début	Fin	Q0	Qf	К	i(q1)	i (q2)	alpha	QR0	q1	t1	q2	t2	Vi_rapide	Vi_lente	Vdyn
			m3/s	m3/s					m3/s	m3/s	(j)	m3/s	(j)	Mm3	Mm3	Mm3
2017	10/04/17	08/09/17	0.1078	0.00395	0.14	0.86	0.97	0.005	0.009	0.067	20	0.032	128	0.054	0.148	0.151
2016	24/04/16	16/10/16	0.1291	0.00397	0.21	0.66	0.96	0.009	0.022	0.065	9	0.042	113	0.023	0.158	0.225
2015	17/06/15	09/11/15	0.1424	0.00323	0.09	0.60	0.95	0.005	0.006	0.105	20	0.032	128	0.046	0.116	0.100

Tableau 19. Source du Moulin (Fajolle) : synthèse des paramètres des 3 recessions étudiées entre 2015et 2017.

Pour la source du Moulin, 3 périodes de décrues ont été traitées à l'aide de l'approche de Mangin modifiée. Les paramètres des ajustements sont rassemblés dans le Tableau 19. Le temps de fin d'infiltration de la composante rapide de l'écoulement est relativement court (16 jours \pm 6) et les vitesses moyennes d'infiltration rapide indiquent qu'une partie de la zone d'infiltration est bien connectée d'un point de vue hydraulique à la zone noyée du système. Le temps de fin d'infiltration de la composante lente de l'écoulement est important (123 jours \pm 8 jours), les récessions apparaissent donc longtemps influencées par cette composante. La contribution relative moyenne de l'infiltration rapide sur la durée des récessions est de l'ordre de 13%, celle de la composante rapide est évaluée à 40%, la part complémentaire étant assurée par la vidange des réserves de la zone noyée.

Les coefficients de tarissement (0.006 ± 0.002) déduit des récessions non influencées par l'infiltration (temps > 123 jours ± 8 jours) sont relativement faibles ce qui indique que la zone noyée du système karstique se vidange lentement (ou difficilement). Le volume dynamique du réservoir est estimé à 0.16 ± 0.06 millions de m³, le volume moyen écoulé sur la période 2015-2017 étant de 2.1 millions de m³, le pouvoir régulateur de système karstique (K) est faible (estimé à 0.15 ± 0.03). Le paramètre d'infiltration moyen (i) est estimé à 0.71 ± 0.07. Le report des valeurs moyennes (K, i) dans le diagramme de classification de Mangin (Figure 78) permet de comparer les résultats avec d'autres systèmes étudiés dans la littérature. La valeur moyenne des paramètres se positionne dans le domaine 1. Ces valeurs sont caractéristiques d'un système complexe caractérisé par des forts retards à l'alimentation lié à la fonte de neige notamment. Le pouvoir régulateur faible du système karstique n'est pas propice à l'accumulation d'importantes réserves.

Informations apportées par la modélisation Gardenia

La description des données d'entrées du modèle et les modalités de mise en œuvre de l'approche de modélisation ont été précédemment détaillées (cf. § 3.2.4). Dans cette modélisation, le débit de la source karstique est supposé assuré par 2 composantes d'écoulements (cf. Figure 38) : une composante d'écoulement rapide qui intervient lors des périodes de crues et au début du tarissement et une composante de vidange d'un réservoir souterrain qui assure le débit d'étiage de la source. Les résultats de modélisation sont présentés sur la Figure 79. Le critère de Nash sur les débits est de 0.76, valeur jugée satisfaisante de même que l'allure du débit simulé, ce qui permet une discussion des résultats. Les paramètres du modèle obtenu par calage automatique sont rassemblés en Annexe 7, les données d'entrée de précipitation et d'ETP ont été également optimisées.

Figure 79. Source du Moulin (Fajolle) : évolution du débit simulé par le modèle Gardénia sur la période 2010-2017.

Bilan hydrogéologique (mm) : Modèle Gardenia Source du Moulin (Fajolle)												
Mois\année	2010	2011	2012	2013	2014	2015	2016	2017				
Précipitation (Pluie+Neige)	1237	1240	1259	1869	1533	1339	1097	1172				
ETR	726	767	758	753	787	795	741	747				
Pluie Efficace	532	390	502	950	928	559	487	279				
dont Fonte Neige	373	116	334	564	556	269	223	223				
Total de Q_simul	551	380	499	971	922	555	508	268				
Total de Q_rapid_H	186	106	179	454	420	195	177	75				
Total de Q_sout_G1	228	157	193	348	337	225	204	95				

Tableau 20. Bilans annuels en mm calculés par le modèle Gardenia de la source du Moulin (S = 2.3 km2)

La superficie du bassin alimentation n'est pas connue et a donc été estimée par modélisation : 2.3 km². La valeur du coefficient Rui_Per est faible (54.6 mm) ce qui indique que l'essentiel de l'écoulement en période de crue est produit par la composante rapide du modèle. Le temps de demi percolation (T1/2_Perco) est assez rapide (0.41 mois) ce qui dénote que le système karstique évacue rapidement assez rapidement cette composante de l'écoulement. Ce résultat suggère également que la zone d'infiltration est bien connectée à l'exutoire du système. Le temps de demi-montée de l'écoulement souterrain (Q_G1) qui alimente la source en étiage est de 0.58 mois ce qui témoigne d'une recharge assez rapide de la zone noyée du système.

Par l'approche de modélisation Gardénia, la contribution moyenne de la composante lente à l'écoulement globale de la source est estimée 39 ± 3 % sur la période 2010-2017, soit 0.52 ± 0.30 million de m³ par an. L'année 2017, avec un volume estimé à 0.22 million de m³, présente les valeurs les plus faibles de la période. La contribution de la fonte de neige apparait prépondérante dans la pluie efficace.

3.3.5. Apports des données géochimiques

La Figure 80 permet de visualiser les contextes hydrogéologiques qui prévalaient lors des échantillonnages d'eau pour analyses.

Figure 80. Report des dates de prélèvement des sources dans le contexte d'évolution hydrogéologique.

Les évolutions temporelles des paramètres du système calco-carbonique (HCO3, Ca, Mg et Sr) sont présentées en Annexe 6.

Les résultats des suivis chimiques réalisés pendant cette étude confortent et renforcent ceux réalisés en 2003 par Hydrogéosphère et par l'ARS (voir rapport synthèse BRGM/RP64209-FR). Les eaux du Dévonien ont un faciès bicarbonaté calcique et sont peu chargées en sulfate (SO4 < 8 mg/l), nitrate (NO3 < 3.2 mg/l), chlorure (CI = 2.4 mg/l), magnésium (Mg < 4.6 mg/l) et sodium (Na < 0.9 mg/l). Les concentrations des éléments traces métalliques sont faibles et proches des limites de quantification (cf. résultats en Annexe 6). La minéralisation des eaux des sources présente une tendance à la diminution lors des crues printanières.

Les teneurs en Ca, Mg et principalement Sr permettent de distinguer les sources du Dévonien comme le témoignent les évolutions dans le diagramme ternaire Ca-Mg-Sr (Figure 81). Les eaux des sources du Moulin (Fajolle) et « SRE » drainant les formations autochtones du Dévonien apparaissent plus chargées en strontium que les eaux issues de la formation allochtone du pic d'Ourtiset (sources des Adoucis et des Adouxes). Les rapports isotopiques du strontium permettent de renforcer ce constat et apportent des éléments d'informations complémentaires (Figure 82 et Figure 83).

		Sce Ad	oucis		Sce Ad	ouxes		Sce "SF	RE"		Sce Faj	olle/M	oulin
Paramètres	Unité	Min	Max	moy	Min	Max	moy	Min	Max	moy	Min	Max	moy
Al (Aluminium)	µg/l	0.73	4.6	1.4	0.77	3.54	1.4	0.78	2.5	1.2	0.69	3.51	1.4
As (Arsenic)	µg/l	0.14	0.34	0.2	0.12	0.33	0.2	0.10	0.33	0.2	0.10	0.34	0.2
B (Bore)	µg/l	1.45	2.55	2.0	0.85	1.85	1.4	0.85	2.69	2.1	0.50	2.33	1.0
Ba (Baryum)	µg/l	2.39	4.09	3.5	0.93	2.55	1.5	0.77	1.49	1.2	0.57	1.29	0.9
Ca (Calcium)	mg/l	48.7	60.4	53.8	47.3	56.1	50.8	47.4	61.4	56.4	43.9	58.4	47.4
Cl (Chlorures)	mg/l	1.0	2.4	1.5	1.3	1.7	1.6	0.7	1.8	1.4	0.5	1.6	0.8
HCO3 (Bicarbonates)	mg/l	160	189	174	153	184	163	147	185	175	136	176	146
Li (Lithium)	mg/l	1.1	1.8	1.5	0.8	1.4	1.2	1.2	2.8	2.3	0.7	2.5	1.4
Mg (Magnésium)	mg/l	2.5	3.9	3.3	2.4	4.6	3.1	1.3	3.1	2.5	0.8	2.7	1.7
Nitrates (NO3)	mg/l	1.9	2.9	2.2	1.9	3.2	2.4	2.0	2.9	2.4	1.7	2.6	2.1
Na (Sodium)	mg/l	0.7	0.9	0.8	0.5	0.7	0.6	0.7	0.9	0.8	0.5	0.7	0.6
SO4 (Sulfates)	mg/l	3.0	4.9	4.1	1.8	3.3	2.7	2.7	8.0	6.2	1.4	6.4	3.2
SiO2 (Silice)	mg/l	3.4	4.6	4.1	2.9	4.0	3.6	3.0	4.4	3.9	2.5	4.0	3.2
Sr (Strontium)	mg/l	45.1	71.8	62.5	32.4	53.8	45.9	65.2	128.0	108.1	41.4	110.0	82.7

Tableau 21. Synthèse des paramètres mesurés aux sources karstiques du Dévonien situées dans le Haut-Rébenty

Figure 81. Evolution des sources du Dévonien dans le diagramme ternaire Ca-Mg-Sr

Figure 82. Evolution des rapports ⁸⁷Sr/⁸⁶Sr des eaux du secteur d'étude en fonction des signatures isotopiques en oxygène 18.

Sur la Figure 82 qui présente l'évolution du rapport ⁸⁷Sr/⁸⁶Sr en fonction de la signature en oxygène 18 de l'eau, on montre que les eaux de la Fajolle/Moulin présentent d'une part, un rapport ⁸⁷Sr/⁸⁶Sr plus faibles que les eaux de la source SRE et d'autre part, une signature appauvrie en oxygène 18 ce qui témoigne d'une altitude moyenne de recharge plus élevée. estimée à 1700 m (±100m) contre 1600 m (±100m) pour la source « SRE » d'après la droite locale (cf. §3.2.5). Les rapports ⁸⁷Sr/⁸⁶Sr de la source Adoucis sont très significativement supérieurs à ceux de la source des Adouxes et également supérieurs à ceux des sources drainant la formation autochtone de la Fajolle (Sources « SRE » et Moulin/Fajolle). Pour la source des Adoucis, un essai de traçage récemment réalisé par hydrogéosphère en 2013 a permis de montrer l'existence de pertes sur le ruisseau de Laval[®]. Ce cours d'eau draine dans sa partie Sud les eaux en provenance du socle. Dans le contexte géochimique local, les eaux des formations de socle sont caractérisées par des rapports ⁸⁷Sr/⁸⁶Sr plus élevés (elles sont dites plus radiogéniques) que les eaux du Dévonien. Les eaux de la source Adoucis sont plus radiogéniques que les eaux de la source des Adouxes ce qui traduit l'existence d'une contribution d'eau en provenance du socle. Les proportions de mélange ne peuvent pas être évaluées en l'absence de suivi sur le ruisseau de Laval. La source des Adouxes présente globalement une signature appauvrie en oxygène 18 par rapport à la source des Adoucis ce qui témoigne d'une altitude moyenne de recharge plus élevée, estimée à 1700 m (±100m) contre 1500 m (±100m) pour la source des Adoucis.

Figure 83. Evolution des rapports ⁸⁷Sr/⁸⁶Sr des eaux du secteur d'étude en fonction du rapport 1/Sr

Les eaux de la source SRE sont plus radiogéniques que les eaux de la source du Moulin/Fajolle. De manière similaire à la source des Adoucis, ce résultat pourrait traduire l'existence d'une contribution d'eau en provenance du socle pour la source SRE. Cette contribution d'eau pourrait

⁸ Nom carte IGN 2248ET(2009)

se faire par l'intermédiaire de pertes sur le cours d'eau de Font d'Argens[®] qui draine également, au Sud, les formations de socles. Un travail de reconnaissance de terrain et de test de traçage le cas échéant devra dans le futur être mené pour vérifier cette hypothèse.

Pour la source des Adouxes, un prélèvement a pu être réalisé au cours d'une crue de reprise de cycle hydrogéologique qui se caractérise par d'un point de vue physico-chimique par une élévation de la température et de conductivité (cf. Figure 47). Lors du phénomène, on observe une diminution du rapport ⁸⁷Sr/⁸⁶Sr associé à un enrichissement en oxygène 18. L'évolution suggère la participation d'une eau du type de celle échantillonnée à la source Ancienne Forge également située en rive gauche du Rébenty à quelques centaines de mètres en aval (1600 m) de la source des Adouxes. La zone noyée de la source des Adouxes pourrait donc se développer en profondeur sous le niveau d'émergence (profondeur évaluée à 50 m environ) compte tenu de l'altitude d'émergence des 2 sources.

Notons que le rapport ⁸⁷Sr/⁸⁶Sr de la source Ancienne Forge présente une importante variation entre les basses eaux (octobre 2014) et les hautes eaux (Mai 2015), les signatures en période de hautes eaux sont très radiogéniques et caractéristiques d'eau de socle. Dans ce contexte, il faut imaginer que la source soit alimentée en crue par des eaux d'infiltrations en provenance du socle, probablement des micaschistes et gneiss mylonitisés de Camurac. Le cheminement pris par l'eau n'est pas connu cependant les modalités de transfert sont rapides, car la signature mesurée en période de crue suggère une très importante contribution du pole socle.

⁹ Nom carte IGN 2248ET(2009). La signature géochimique du cours d'eau n'est pas connue.

3.3.6. Synthèse des caractéristiques hydrodynamiques des sources

Les tableaux ci-après (Tableau 21 et Tableau 22) rassemblent les résultats de l'étude hydrogéologique et permettent l'inter comparaison des systèmes karstiques étudiés. A l'exception de la source du Moulin qui présente un débit spécifique plus faible (0.01 m³s⁻¹km⁻²), les débits spécifiques des sources karstiques sont comparables, de l'ordre de 0.02 m³s⁻¹km⁻². La part de la fonte de neige dans le fonctionnement global des systèmes karstiques est importante.

Le système karstique de la source des Adouxes (non exploité) présente des ressources et des réserves intéressantes avec un volume dynamique proche de 3 millions de m³ et un pouvoir régulateur significatif.

Nom de la source	Q moy (m³/s)	Q moy spécifique (m ³ s ⁻¹ km ⁻²)	Q(50) (m³/s)	Vdyn (10 ⁶ m³)	alpha	К	I
Adouxes	0.213 (±0.230)	0.024	0.135	2.7 (± 0.7)	0.004	0.40 (±0.05)	0.58 (± 0.11)
Adoucis	0.152 (±0.21)	0.022	0.093	1.1 (± 0.5)	0.007	0.23	0.58 (± 0.14)
« SRE »	0.066 (±0.346)	0.026	0.007	0.126 (± 0.048)	0.0054	0.06 (±0.03)	0.73 (± 0.03)
Moulin	0.03 (±0.04)	0.013	0.022	0.159 (± 0.063)	0.006 (± 0.002)	0.15 (±0.03)	0.70 (± 0.07)

Tableau 22. Synthèse des paramètres déduits de l'analyse des courbes de récession par l'approche de Mangin

Nom de la source	Superficie (km²)	Précipitation (mm)	ETR (mm)	Précipitation efficace (mm)	Dont Fonte Neige (mm)	Q_rap (mm)	Q_Sout (mm)
Adouxes	8.8	1506 (±278)	786 (±23)	710 (±263)	375 (±166)	580 (±250)	132 (±27)
Adoucis	6.9	1372 (±253)	770 (±23)	597 (±247)	249 (±107)	444 (±215)	154 (±37)
« SRE »	2.5	1231 (±228)	782 (±28)	445 (±207)	287 (±141)	336 (±183)	111 (±29)
Fajoles	2.3	1343 (±248)	759 (±23)	578 (±240)	332 (±160)	224 (±138)	223 (±85)

Tableau 23. Synthèse des bilans hydrogéologiques annuels des sources étudiées (période de calcul :2010 à 2017) estimés à l'aide du modèle réservoir Gardenia

Des propositions de délimitation des impluviums karstiques des sources définis à partir des informations hydrogéologiques obtenues dans le cadre de cette étude sont présentées dans le §4.2.6, Figure 169. Les surfaces estimées par modélisation sont cohérentes avec les délimitations présentées dans le §4.2.6. Pour la source Adoucis, l'impluvium estimé par modélisation (6.9 km²) est inférieur à celui délimité (11.2 km²) car seulement une fraction du débit du bassin versant du ruisseau de Laval contribue au débit de la source.

3.4. INFORMATIONS APPORTEES PAR LES TRAÇAGES ARTIFICIELS

3.4.1. Présentations de la méthode

Le traçage artificiel est une technique couramment utilisée en hydrogéologie karstique pour mettre en relation un point d'infiltration en surface ou dans un réseau spéléologique avec une source ou un forage. Ces opérations sont réalisées selon deux objectifs :

- un objectif « qualitatif » (traçages de reconnaissance) pour mettre en évidence une relation hydraulique entre le lieu d'injection et l'exutoire,
- un objectif « quantitatif » pour décrire par une courbe de restitution du traceur (concentration en fonction du temps) les modalités de transit du traceur pour les conditions hydrogéologiques de l'essai.

Toute substance permettant de suivre le déplacement de l'eau peut théoriquement être utilisée comme traceur. En pratique, les traceurs fluorescents permettent de colorer l'eau pour de très faibles concentrations (~1ppb), et permettent des suivis fluorimétriques sur le terrain ou spectrofluorimètriques au laboratoire pour une quantification précise à des concentrations pouvant être inférieures à 0.01 ppb en l'absence de bruit de fond naturel élevé, limitant ainsi l'impact visuel de l'essai.

Il existe plusieurs traceurs fluorescents dont l'innocuité est reconnue pour une utilisation en hydrogéologie (OFEG, 2002). Chaque traceur est défini par un couple de longueur d'onde d'excitation/émission spécifique. L'utilisation simultanée de plusieurs traceurs ayant des caractéristiques spectrales distinctes est donc possible si la technique de détection permet de séparer les signaux émis par chaque traceur. La réalisation de multi-traçage permet alors de minimiser les déplacements lors du suivi tout en apportant des résultats relatifs à d'éventuelles restitutions obtenues pour des conditions hydrogéologiques identiques, ce qui permet de comparer plus facilement les résultats obtenus.

Les fluorimètres multi-spectraux de type GGUN commercialisés par la société Albillia permettent de séparer la réponse de l'uranine (ou l'éosine) de celle de la sulforhodamine (ou tout autre traceur de la famille des rhodamines), tandis que les optiques dédiées à la turbidité et aux azurants optiques permettent de voir si le bruit de fond naturel a évolué lors de l'essai (Meus et al., 2006). En effet, une augmentation de la fluorescence enregistrée par un fluorimètre peut traduire le passage d'une eau plus turbide ou plus riche en matière organique. En cas de doute, il convient de réaliser une analyse spectrale sur échantillon à l'aide d'un spectrofluorimètre pour rechercher un pic de réponse pour le couple de longueur d'onde d'excitation/émission qui caractérise le traceur recherché.

En cas de réponse « structurée », cette méthode couplant l'analyse par fluorimètre de terrain à des prélèvements manuels d'eau pour analyse spectrofluorimétrique au laboratoire obtient le degré de fiabilité des résultats le plus élevé (10) sur la grille d'évaluation de la fiabilité des résultats

de traçages proposés par Jozja et al. (2009) reprise dans le cadre de la BD traçages (https://bdtracages.brgm.fr/).

3.4.2. Bilan des données existantes

Un bilan des essais de traçages antérieurs à cette étude a été dressé dans le rapport BRGM/RP-64209-FR. Ces opérations ont été réalisées dans le but de mieux connaître l'extension des bassins d'alimentation des deux principaux systèmes karstiques de Fontestorbes et Fontmaure. Il s'agit d'opérations de traçages qualitatifs qui mettent en évidence la relation hydraulique entre le point d'injection et le ou les exutoires où une restitution a été mise en évidence.

La méthode de détection, ainsi que la nature et la quantité de traceurs utilisées n'ont souvent pas pu être précisées (Tableau 24), notamment pour les traçages réalisés par EDF de 1957 à 1959 cités par Grévélec (1974) et Mangin (1975), ainsi que ceux réalisés par la société spéléologique du Planturel (1962) et le CERGH (1974). Compte tenu des époques de réalisation, il s'agit vraisemblablement de suivis réalisés aux exutoires par fluocapteurs par examen visuel de l'éluat. Ainsi, certains résultats apparaissant positif du fait d'une coloration pouvant être liée à une coloration naturelle de l'eau. De ce fait, la grille d'évaluation de la fiabilité des résultats de traçages proposée par Jozja et al. (2009) dans le cadre de la BD traçages attribue une note entre 0 et 1 sur 10 pour l'ensemble de ces essais, à l'exception du traçage de l'aven Gras pour lequel une note de 8 peut être attribuée en l'absence d'information sur la réalisation d'analyse spectrale. Le tableau suivant synthétise l'ensemble des informations relatives aux essais de traçages réalisés sur la zone d'étude.

				Inje	ection				Re	stitution]					
Point d'injection	Origine	Date	X_L93	Y_L93	z	Débit (l/s)	Traceur	M (kg)	Point de restitution	X_L93	Y_L93	Z	Fiabilité	Distance (km)	Temps (j)	Vmoy (m/h)	Débit (m3/s)	Système karstique
Ruisseau de l'Ourza	Mangin (1974)	07/04/1958	606694	6190731	1290	10	fluo.	10	Fontestorbes	612289	6199835	510	1	10.7	3	148	>3, restitution suivie d'une pluie	Fontestorbes
Gouffre du Roc des Agréous	Soc. Spéléologique du Planturel cité par Mangin (1974)	14/04/1962	614921	6197597	838		fluo.	2	Fontestorbes	612289	6199835	510	1	3.5	3.25	44	>3	Fontestorbes
Pertes du Pavillon de la Jasse	Grévélec (1974)	11/05/1974	616713	6197580	890	faible	fluo.	3	Fontestorbes	612289	6199835	510	1	5.0	5	41	4 m3/s	Fontestorbes
Aven Gras	Spele Aude n°1	17/04/1990	616713	6197580	890	0.5	fluo.	4	Fontestorbes	612289	6199835	510	8	5.0	3	69	décrue 6 à 4 m3/s 66% de restitution	Fontestorbes
Ruisseau du Basqui	Mangin (2002)	25/06/2001	605896	6191031	1100		fluo.	1	Non détecté	612289	6199835	510		10.9			1	Fontestorbes
Ruisseau du Basqui	Mangin (2002)	03/06/2002	605288	6191631	1160		fluo.	5	Fontestorbes	612289	6199835	510	1	10.8	7.3	62	décrue 4m3/s 7% de restitution	Fontestorbes
Pertes du Pavillon de la Jasse	CDS11, SSP(2004)	15/03/2003	616623	6197544	890		fluo.	3	Fontestorbes (et P5?)	612289	6199835	510	1	4.9	21	10	2.9 m3/s - 67% de restitution	Fontestorbes
Perte de Camurac sur doc. graphique de l'avis HA	Mangin (2005) avis ARS 09		610038	6189600	1180				Fontestorbes	612289	6199835	510	1	10.5				Fontestorbes
Perte de Camurac	EDF cité par Mangin (1974)	23/06/1957	611239	6189589	1230			10	Fontmaure	634776	6194053	317	1	24.0				Fontmaure
Ruisseau de Belvis ou de taillades (Rébounédou)	EDF cité par Grévélec (1974)	11/01/1958	621899	6195537	859	50		5	Fontmaure	634776	6194053	317	1	13.0	14	39		Fontmaure
Ruisseau de Belvis ou de taillades (Rébounédou)	EDF cité par Grévélec (1974)	11/01/1958	621899	6195537	859	50		5	Cailla	634010	6191700	455	0	12.7	17	31	0.15	Fontmaure
Ruisseau des Mouillères (lieu dit Les Coumeilles)	EDF cité par Grévélec (1974)	14/02/1958	617802	6196140	869	50		5	Fontmaure	634776	6194053	317	1	17.1	17	42		Fontmaure
Perte de Bouychette (des Quirines)	EDF cité par Grévélec (1974)	20/04/1959	618573	6192680	895			5	Fontmaure	634776	6194053	317	1	16.3	9	75	2.29	Fontmaure
Perte du ruisseau de Coudons perte du ruisseau de Montmija	Grévélec (1974)	30/09/1959	627210	6196245	854	10			Ginoles	631802	6197022	324	1	4.7	17	11		Fontmaure
Perte de Camurac	Grévélec (1974)	24/03/1974	611239	6189589	1230				Fontmaure	634776	6194053	317	1	24.0	15	67		Fontmaure
Perte de la Vernouze (Perte au nord de la Sarrat d'Aulis - Mouilleres de Montplaisir)	Grévélec (1974)	15/05/1974	620594	6194815	881			3	Fontmaure	634776	6194053	317	1	14.2	<28			Fontmaure
Perte au nord du Sarrat de L'Etreuil	Grévélec (1974)	28/06/1974	620023	6198323	870			3	Fontmaure	634776	6194053	317	1	15.4	25	26		Fontmaure
Perte du ruisseau de la Coume (de Laval sur fond IGN)	Hydrogéosphère		616996	6186985	1063				Adoucis	616079	6187756	950	1	1.2				Adoucis

Tableau 24 : Tableau de synthèse des résultats des traçages historiques

3.4.3. Objectifs et réalisation des nouveaux essais

Objectifs généraux

Trois essais de multi-traçage (injection simultanée de deux traceurs en deux points de la zone d'étude) ont été réalisés, dénommés MT1 à MT5, ainsi qu'un traçage simple dénommé T6.

Ces nouveaux essais de multi-traçage réalisés dans le cadre de cette étude ont pour objectif de :

- valider la délimitation du bassin hydrogéologique du système de Fontmaure dans le secteur de Camurac (MT1) et d'Espezel (MT2 et MT3)
- mieux comprendre l'origine de l'eau drainée par l'exutoire du Blau en hautes eaux (MT1, MT4 et MT5),
- mieux comprendre l'origine de l'eau drainée par l'exutoire de Belfort sur Rébenty (MT2 et MT3),
- décrire par une courbe de restitution la vulnérabilité des sources drainant le plateau de Sault suite à une pollution accidentelle dans le ruisseau des Taillades (perte du Rébounédou, MT1), dans le ruisseau de la Coume Longue en amont de Camurac (perte de Camurac, MT1), dans la dépression de Coudons et le ruisseau de Coumereille sur le plateau de Sault (perte de Coudons, MT3, et perte des Quirines, MT4), ainsi que dans les ruisseaux alimentant les pertes de la Vernouze et des Coumeilles (MT5),
- valider l'interprétation du modèle hydrogéologique selon la méthode KARSYS qui propose d'intégrer la partie Sud-Ouest de la dépression de Coudons au bassin d'alimentation de Fontmaure (MT3, MT4). Ce traçage a pour objectif de mieux définir le rôle hydrogéologique des marnes bédouliennes dans la dépression de Coudons, en mettant éventuellement en évidence le drainage de la perte tracée dans les calcaires du Barrémien vers la source de Fontmaure,
- réaliser un jaugeage hautes eaux à la source de Fontestorbes par dilution de traceur depuis le puits P1 des Mijanes (gouffre des Caoussous).

Détails du MT1 le 07/05/2015

Ce multi-traçage a été réalisé par le BRGM avec la collaboration pour la surveillance des exutoires des CDS de l'Aude, de l'Ariège et le bureau d'étude Hydrogéosphère. Le Tableau 25 récapitule les informations relatives aux conditions d'injection et la mise en place du réseau de suivi aux exutoires. Les coordonnées des points d'injection et de suivi sont reportées dans le Tableau 26.

La dilution des traceurs a été réalisée sur place avec l'eau alimentant chaque perte. L'infiltration a été rapide dans les deux cas, en un point pour la perte de Camurac et en deux points principaux distants de quelques mètres pour la perte du Rébounédou.

Le MT1 devait être un multi-traçage réalisé en hautes eaux pour tenter de comprendre comment les eaux souterraines du plateau de Sault se répartissent lorsque l'exutoire du Blau est actif. En effet, cet exutoire est permanent mais présente un double fonctionnement avec de très faibles débits drainant un impluvium local en basses eaux (cf. partie 3), et des débits pouvant dépasser plusieurs m³/s lors des crues qui supposent une capture d'un bassin d'alimentation au détriment d'un ou de plusieurs autres exutoires drainant le plateau de Sault en hautes eaux. Ainsi, il a été prévu de réaliser un premier essai en hautes eaux, puis de le compléter en basses eaux pour mettre éventuellement en évidence une répartition différente des eaux souterraines alimentant

les principaux exutoires (Fontestorbes, Fontmaure et le Blau) selon les conditions hydrogéologiques.

Figure 84: Injection de fluoréscéine à la perte de Camurac (a) et de sulforhodamine B à la perte du ruisseau des Taillades au lieu-dit du Rébounédou (b) lors du multi-traçage MT1 le 07/05/2015

Le multi-traçage MT1 a fait l'objet d'un reportage vidéo mis en ligne sur le SIGES Midi-Pyrénées (<u>http://sigesmpy.brgm.fr/IMG/mp4/setb_media_operation_de_trac_age-v4.mp4</u>).

Détails du MT2 le 18/08/2016

Ce multi-tracage a été réalisé par le BRGM avec la collaboration pour le prélèvement d'échantillons de la mairie de Belfort sur Rébenty. Le Tableau 25 récapitule les informations relatives à l'injection des traceurs. Ce multi-tracage avait pour but de mieux comprendre le devenir des eaux issues des rejets des stations d'épuration des communes de Roquefeuille et d'Espezel, tout en apportant des éléments complémentaires pour définir l'extension du bassin d'alimentation de la source de Belfort sur Rébenty. Les faibles quantités injectées avaient été déterminées pour obtenir une éventuelle restitution mesurable à la source de Belfort sur Rébenty. En effet, un traçage ancien de la perte des Quirines aurait donné lieu à une restitution à cette source. Cette information transmise oralement n'est pas mentionnée dans les rapports consultés et n'a pas été reprise dans l'inventaire des traçages historiques qui relate un traçage de 1959 à proximité (perte des Bouvchettes) avant abouti à la source de Fontmaure. Ceci nous a contraint à limiter les quantités de traceur pour prévoir une opération en deux étapes pour ce multi-traçage : en cas d'échec, une quantité plus importante pouvait être mise en œuvre pour prouver une éventuelle relation avec la source de Fontmaure sans risque de coloration à la source de Belfort sur Rébenty dont l'eau est utilisée pour l'AEP de la commune. Il n'était donc pas utile de surveiller une éventuelle restitution non détectable à la source de Fontmaure compte tenu des quantités de traceurs.

La surveillance à la source de Belfort sur Rébenty par un fluorimètre dans le réservoir a été complétée par des prélèvements réguliers d'échantillons réalisés par la mairie de Belfort sur Rébenty (24 échantillons du 18/08/2016 au 07/10/216). Le Tableau 25 récapitule les informations relatives aux conditions d'injection et la mise en place du réseau de suivi aux exutoires.

Lors de cet essai, le débit à la source de Belfort sur Rébenty (cumul du trop-plein et du lavoir) était de 1.3 l/s. D'autres exutoires présentant également de faibles débits existent à proximité. Le débit total de ces exutoires reste probablement assez faible, et à peine supérieur au débit cumulé des pertes drainant les rejets des stations d'épuration de Roquefeuille et d'Espezel, tandis que les caractéristiques physico-chimiques mesurées à la source (T=10.2°C, Cond. à 25°C = 245 μ S/cm) se distinguent nettement de celles des écoulements de perte (Tableau 25).

L'infiltration à la perte des Quirines a été immédiate à travers une ouverture dans des blocs de calcaires dans le fossé. L'infiltration du traceur dans le fossé récoltant les eaux de la station d'épuration d'Espezel a également été très rapide, mais le point de perte n'a pas pu être localisé, l'eau s'infiltrait rapidement mais de manière diffuse dans le fond du fossé.

Détails du MT3 du 15/06/2017

Ce multi-traçage a été réalisé par le BRGM avec la collaboration pour le prélèvement d'échantillons des services municipaux de Belfort sur Rébenty et de Ginoles et du bureau d'étude Hydrogéosphère. La perte de Coudons n'était pas active, mais un orifice était bien visible dégagé au point le plus bas de la dépression. L'injection a été réalisée avec l'aide des pompiers du Service Départemental d'Incendie et de Secours (SDIS11) en apportant 7m³ d'eau. L'eau et la solution de traceur diluée sur place ont été emportées instantanément dans cet orifice (Figure 85).

Figure 85: Injection de fluorescéine à la perte des Quirines (a) et de sulforhodamine B à la perte de la

dépression de Coudons (b) complétée par un apport d'eau avant et après l'injection (c) lors du multitraçage MT3 le 15/06/2017

Détails du MT4 du 25/03/2018

Ce multi-traçage a été réalisé par le bureau d'étude Hydrogéosphère à la demande du BRGM suite à de forts cumuls de précipitation sur le plateau, associés à la fonte de la neige encore présente. La perte tracée dans la dépression de Coudons est située plus en amont, au contact entre le Gargasien calcaire à facies urgonien et les marnes de Montmija. Il s'agissait d'une perte totale, la perte tracée lors du MT3 dans les calcaires barrémiens n'était toujours pas active. 10 kg de sulforhodamine B ont été injecté à 11h00, avec un débit de perte estimé à 15 l/s, une température de 4.9 °C et une conductivité spécifique de 328 µS/cm.

L'injection de 10 kg de fluorescéine au Rébounédou a été réalisée dans le même secteur que pour le MT1. Le débit de perte a été estimé à 300 l/s pour une température de 6.4 °C et une conductivité spécifique de 227 μ S/cm.

Détails du MT5 du 09/04/2018

Ce multi-traçage a été réalisé par le bureau d'étude Hydrogéosphère à la demande du BRGM suite à de forts cumuls de précipitation sur le plateau. L'injection à la perte de la Vernouze de 5 kg de sulforhodamine B a été réalisée à 15h00. La perte totale a été estimée à 20 l/s et présentait une température de 11.5 °C et une conductivité spécifique de 207 µS/cm. A 16h15, une injection de 6 kg d'éosine a été réalisée à la perte des Coumeilles. La perte totale a été

estimée à 300 l/s et présentait une température de 11.8 °C et une conductivité spécifique de 228 $\mu\text{S/cm}.$

Détails du T6 du 18/05/2018

L'injection de 500 g de fluorescéine a été réalisée le 18/05/2018 à 12h00 au niveau du plan d'eau des Mijanes dans le réseau karstique noyé menant à la salle amont (Cau, 1980, Figure 86 et Figure 87). Les conditions d'injection étaient bonnes et ont permis de réaliser une injection brève. Le suivi de la restitution a été réalisé par un fluorimètre installé dans le captage d'eau de Fontestorbes, au pas de 5 min. L'opération a été réalisée par Hydrogéosphère selon le protocole défini par le BRGM.

Figure 86: Injection de 500g d'uranine dans le puits P1 des Mijanes, photo L. Ruiz

Figure 87: Position du point d'injection dans le P1 des Mijanes (topo d'après Cau, 1980)

Le Tableau 25 récapitule les informations relatives aux conditions d'injection et la mise en place du réseau de suivi aux exutoires.

ld	Localisation	Date	Q (I/s)	T°C	Cond. (25°C)	Traceur	Masse (kg)	Exutoires équipés de fluorimètres	Exutoires suivis par prise d'échantillons
	Camurac	07/05/2015 11:30	5	12.8	321	Fluorescéine	10		Fontestorbes, Esqueille,
MT1	Rébounédou	07/05/2015 15:00	26	12.8	344	Sulfo. B	10	Fontestorbes, Fontmaure, Blau	Fontriaute, Blau, Ginolles, Fago, Belfort sur Rébenty, Anc. Forge, Cailla
MTO	Perte des Quirines	18/08/2016 11 :00	0.6	17	469	Sulfo. B	0.21	Belfort sur Rébenty	Belfort sur Rébenty
IVI I Z	STEP d'Espezel	18/08/2016 11 :50	0.3	17.6	452	Fluorescéine	0.15	Belfort sur Rébenty	Belfort sur Rébenty
	Perte des Quirines	15/06/2017 11 :30				Fluorescéine	6	Belfort sur Rébenty, Fontmaure, Ginoles	Belfort sur Rébenty, Fontmaure, Ginoles
MT3	Dépression de Coudons	15/06/2017 14 :30	0 (7m³)			Sulfo. B	5	Belfort sur Rébenty, Fontmaure, Ginoles	Belfort sur Rébenty, Fontmaure, Ginoles
MT4	Dépression de Coudons (amont)	25/03/2018 11 :15	15	4.9	328	Sulfo B.	10	Fontmaure,	Fontmaure, Blau, Ginoles,
	Rébounédou	25/03/2018 15 :10	300	6.4	227	Fluorescéine	10	Blau, Ginoles	Fontestorbes
MTC	Vernouze	09/04/2018 13 :00	20	11.5	207	Sulfo B	5	Fontmaure,	Fontmaure,
0110	Coumeilles	09/04/2018 14 :15	300	11.8	228	Eosine	6	Blau	Fontestorbes
Т6	P1 Mijanes	18/05/2018 10 :00				Fluorescéine	0.5	Fontestorbes	

Tableau 25: Données sur les conditions d'injection et de surveillance des traçages

Les	coordonnées	des	différents	points	d'injection	et	de	suivis	sont	reportés	dans	le	tableau
suiv	ant (Tableau 2	26)											

	Nom	X L93	Y L93	Z	BSS
	Rébounédou	621899	6195537	859	
	STEP Espezel	619886	6192417	890	
	Quirines	618465	6192368	918	
Points	Dépression de Coudons	626878	6195561	831	
d'injection	Dépression de Coudons (amont)	627425	6196174	846	
	Vernouze	620594	6194815	881	
	Coumeilles	617802	6196140	869	
	P1 Mijanes	611780	6198783	620	
	Fontestorbes	612289	6199835	510	10766X0089/HY
	Fontmaure	634776	6194053	317	10775X0004/S
	Ginoles	631802	6197022	324	10775X0077/S
Deinte de	Cailla	634010	6191700	455	10891X0043/S
Points de	Ancienne Forge	616512	6188242	921	10883X0223/S
301013	Belfort sur Rébenty	621885	6192431	750	10883X0212/BELFOR
-	Blau	621764	6198278	630	10767X0229/C
	Fago	635432	6192530	400	10891X0044/S
	Esqueille	607949	6194708	627	10765X0204/S

3.4.4. Résultats des nouveaux essais de traçage et interprétation qualitative

Courbes de restitution

La figure suivante présente l'ensemble des courbes de restitution obtenues. Les données de débit à la source de Fontmaure correspondent à la moyenne obtenue par les courbes de tarage A et B (cf. 3.5.1). Les données correspondantes sont disponibles sur la BD traçage (<u>https://bdtracages.brgm.fr/</u>). Des spectres d'émission/excitation spécifiques à chaque traceur ont permis de valider les signaux obtenus par les fluorimètres pour chaque courbe, sauf pour le T6. La relation prouvée par le T6 est cependant évidente et a donné lieu à une forte coloration à la source. L'allure « structurée » des courbes de restitution et l'identification spectrale du traceur sur échantillons permet d'attribuer une fiabilité des résultats obtenus de 10 dans chaque cas (Jozja et al., 2009).

Le traitement des données brutes des fluorimètres utilise la méthode de séparation des signaux proposée par le logiciel FLUO (Schnegg et Thueler, 2012) après avoir corrigé les signaux du bruit de fond naturel par la méthode multi-optique (Bailly-Comte et al., 2018).

Figure 88: Résultats des essais de traçages artificiels

Analyse qualitative des résultats du MT1

Le MT1 a donné lieu à une restitution à la source de Fontmaure. La restitution des deux traceurs a été observée visuellement à quelques heures d'intervalle, traduisant une vitesse de circulation plus élevée depuis la perte de Camurac. Les analyses effectuées sur les prélèvements d'eau aux autres exutoires suivis, ainsi que les autres suivis fluorimétriques, permettent d'affirmer que seule la source de Fontmaure a été atteinte par les deux traceurs. En particulier, aucune restitution de sulforhodamine à la source de Cailla n'a été observée, contrairement aux informations relatives à l'essai de 1958 depuis la perte du Rébounédou. Les taux de restitution calculés sont élevés (69% et 103% pour Camurac et Rébounédou respectivement), ce qui est cohérent avec l'absence de restitution à un autre exutoire (Tableau 27). Les résultats du MT1 confirment l'extension du bassin d'alimentation de Fontmaure au-delà du col des Sept Frères en direction de Camurac, ainsi que l'appartenance du bassin-versant des Taillades (perte du Rébounédou, ruisseau de Belvis) à ce bassin d'alimentation.

Analyse qualitative des résultats du MT2

Le MT2 n'a pas donné de restitution à la source de Belfort sur Rébenty. Les suivis fluorimétriques témoignent d'une très grande stabilité du bruit de fond naturel pendant plus d'un mois de suivi, avec de faible valeurs sur les longueurs d'ondes centrées sur la fluorescence naturelle de la matière organique (azurant optique type AminoGAcid, L3 sur la Figure 89). Une restitution du traceur doit donc être recherchée à la source de Fontmaure en augmentant les quantités de traceur.

Figure 89: Signaux obtenus sur le fluorimètre placé à la source de Belfort sur Rébenty pendant le MT2 et répartition des prélèvements manuels (carrés rouges) pour la recherche de fluorescéine et de sulforhodamine

Analyse qualitative des résultats du MT3

Le MT3 a donné lieu à une restitution de la fluorescéine injectée à la perte des Quirines à partir du 07/08/2017 (Figure 90), soit près de deux mois après l'injection, pour des débits très faibles (seuil dénoyé) et une eau qui apparaît de plus en plus influencée par une composante relativement chaude (cf. 3.5.1).

Le taux de restitution est relativement faible (22%), sachant que le débit est probablement surestimé, car considéré stable dès lors que le seuil est dénoyé. Aucune restitution de fluorescéine n'a été observée sur les fluorimètres ou les échantillons manuels aux sources de Belfort sur Rébenty et Ginoles. Les suivis à Fontmaure présentent une forte dérive pour les optiques dédiées à la sulforhodamine et à la turbidité (Figure 90a), sans observer de fluorescence naturelle (L3, b). Cette dérive serait liée à l'apparition de bulles (dégazage) dans la cellule de mesure. Cette perturbation disparaît lors de chaque relève du fluorimètre ou lorsque la vitesse de l'eau augmente, comme par exemple lors de la crue du 02/10/2017. Il est difficile d'interpréter cette donnée directement, mais la corrélation parfaite avec le signal de turbidité permet d'exclure une restitution de sulforhodamine qui se surimposerait. De plus, tous les échantillons manuels (représentés par des carrés noirs sur la Figure 90a) indiquent une absence de sulforhodamine jusqu'au 05/09/2017.

A la source de Belfort sur Rébenty, comme pour le MT2, les suivis de fluorescence réalisés jusqu'au 03/07/2017 dans le captage présentent une parfaite stabilité des trois signaux relatifs aux longueurs d'ondes de la fluorescéine, de la sulforhodamine et des azurants optiques. La température est également restée stable à 9.3°C +/- 0.05°C.

Les suivis à la source de Ginoles ont essentiellement été menés par prélèvements manuels, car le débit était trop faible pour assurer un suivi par le fluorimètre qui s'est retrouvé dénoyé peu de temps après son installation. Aucune trace de traceur n'a été mise en évidence, et aucune coloration de l'eau n'a été signalée.

Le suivi du MT3 a été arrêté le 25/10/2017, soit plus de 130 jours après l'injection. La sulforhodamine injectée au point bas de la dépression de Coudons n'a donc pas été retrouvée. Plusieurs hypothèses peuvent être émises pour expliquer l'absence de résultat ; la plus probable est que le traceur n'a pas été capable d'atteindre la zone noyée faute d'un écoulement suffisant sur toute la période de suivi, et qu'il a peut-être atteint la source de Fontmaure de manière trop diluée suite à la première crue survenue le 02/10/2017, soit plus de 100 jours après l'injection du traceur.

Analyse qualitative des résultats du MT4

Le traçage depuis la perte de Coudons amont a donné lieu à une restitution très rapide et concentrée à la source de Ginoles. Ce résultat confirme l'opération réalisée en 1959 depuis la perte du ruisseau de Montmija (Tableau 24), sans apporter de réponse sur une possible connexion hydraulique entre le Barrémien affleurant au point bas de la dépression et la source de Fontmaure. Une nouvelle opération de traçage hors étiage sévère est nécessaire pour mettre en évidence cette relation hydraulique suggérée par l'interprétation du modèle KARSYS (cf. rapport BRGM RP-65888-FR), en renouvelant l'opération au niveau du point d'injection utilisé lors du MT2.

L'injection réalisée à la perte du Rébounédou a donné une restitution à la source de Fontmaure, et ce plus rapidement que lors du MT1. Aucune restitution n'a été constatée au Blau. Le taux de restitution élevé (74%) montre que le drainage de la perte du Rébounédou s'organise vers la source de Fontmaure également en hautes eaux.

Analyse qualitative des résultats du MT5

Le MT5 a tout d'abord donné lieu à une faible restitution (9%) à la source du Blau de l'éosine injectée à la perte des Coumeilles. Il s'agit de la première mise en évidence d'une relation hydraulique vers le Blau. Ce taux de restitution est très faible, ce qui peut s'expliquer :

- par le piégeage d'une partie du traceur dans les réseaux temporairement noyés du Blau, le traceur se trouvant remobilisé lors de la petite crue du 29/04/2018,
- par le drainage synchrone vers la source de Fontmaure, où le traceur est détecté à partir du 16/04/2018, totalisant près de 60% de la restitution.

Ainsi, le MT5 permet de mettre en évidence une diffluence des eaux de la perte des Coumeilles qui alimentent à la fois le Blau et Fontmaure en hautes eaux.

L'injection réalisée depuis la perte de la Vernouze montre une restitution uniquement à la source de Fontmaure (R=89%). Le traceur arrive après celui injecté à la perte des Coumeilles, sachant que la distance apparente est plus courte.

Analyse qualitative des résultats du T6

L'objectif du T6 était de réaliser un jaugeage par dilution de la source de Fontestorbes depuis un point d'injection situé à 1200 m de la source. Cette opération permet également d'obtenir une courbe de restitution pour décrire le transit de l'eau dans la partie aval du système de Fontestorbes, au niveau du conduit principal qui draine les eaux de la partie Sud du bassin d'alimentation. L'étude hydrodynamique présentée dans le paragraphe 3.7 permet de comprendre que le point d'injection est situé en amont du mécanisme d'intermittence, et que le système traçage traverse le réservoir d'intermittence et les marnes du Bédoulien.

Le traceur est apparu à la source après 165 min, et la restitution a duré environ 9h. La hauteur d'eau mesurée à la station est passée graduellement de 62.2 cm à 61.7 cm, permettant de supposer un régime permanent pour une hauteur de 62 cm.

Synthèse et paramètres de la DTS

Le tableau suivant récapitule les résultats obtenus et donne les principales caractéristiques de la Distribution des Temps de Séjour associée (DTS, calculée à partir de la courbe de flux massique de traceur divisée par la masse de traceur restituée), à savoir le temps moyen de séjour (t_m), la vitesse moyenne de transit (V_m), la valeur maximale de la distribution des temps de séjour (h_{pic}) et le temps relatif correspondant (t_{pic}). La valeur de débit (Q) correspond à la moyenne du débit mesuré à l'exutoire entre le moment de l'injection et la fin de la restitution.

La DTS représente la réponse impulsionnelle du système traçage, soit la fonction de transfert entre le point d'injection et la source, valable pour les conditions hydrologiques de l'expérience. Cette courbe peut s'interpréter comme une densité de probabilité d'observer à la source le traceur injecté à la perte. Elle s'exprime comme l'inverse d'un temps et traduit la réponse du système traçage à une pollution ponctuelle accidentelle survenant au point de perte dans des conditions hydrologiques identiques, en supposant que le déplacement du traceur est identique à celui du contaminant.

ld	Date	Lieu injection	Lieu restitution	R	Dist.	t _m	Vm	h _{pic}	t _{pic}	Q
		-		%	(km)	(j)	(m/h)	(10 ⁻⁶ .s ⁻¹)	(j)	(l/s)
	07/05/2015	Camurac	Fontmaure	69	23.6	21.5	46	2.52	19.5	1.8
MT1	07/05/2015	Rébounédou	Fontmaure	103	13.0	23.3	23	1.36	20.8	1.8
МТЗ	15/06/2017	Perte des Quirines	Fontmaure	22	16.4	71.6	9.5	0.862	68.9	0.8
MT4	25/03/2018	Coudons amont	Ginoles	49	4.5	2.9	64	13.4	1.7	0.6
MT4	25/03/2018	Rébounédou	Fontmaure	74	13	6.9	78	5.69	6.2	4.9
MT5	09/04/2018	Vernouze	Fontmaure	89	14.2	11	54	4.47	10.3	3.9
MT5	09/04/2018	Coumeilles	Blau	9	4.5	1.6	115	22.2	1.3	0.4
MT5	09/04/2018	Coumeilles	Fontmaure	59	17.1	8.2	87	6.78	7.7	3.9
Т6	18/05/2018	P1 Mijanes	Fontestorb es	93	1.2	0.2	235	113	0.2	4.9

Tableau 27: Eléments caractéristiques des courbes de distribution des temps de séjour

Les principaux résultats qualitatifs apportés par ces traçages sont :

- l'absence de relation hydraulique entre la perte des Quirines drainant la STEP de Roquefeuil ou la perte de la STEP d'Espezel et la source de Belfort sur Rébenty. Par ailleurs, le très faible signal naturel de fluorescence enregistré à cette source et l'absence de variation de ce signal caractérise un comportement hydrodynamique non karstique,
- un drainage du plateau de Sault jusqu'à Camurac et de toute la plaine d'Espezel vers la source de Fontmaure, et temporairement vers le Blau depuis la perte des Coumeilles,
- aucune diffluence mise en évidence en hautes eaux depuis les pertes du Rébounédou et de la Vernouze au profit du Blau,
- des circulations karstiques très rapides depuis Camurac (MT1) et les Coumeilles (MT5) vers Fontmaure par rapport au Rébounédou (MT1) et la Vernouze (MT5) respectivement, ce qui suggère l'existence d'au moins deux systèmes de drainage individualisés sur le

plateau. Les autres données de vitesse obtenues dans des contextes hydrologiques différents ne peuvent être comparées.

La figure suivante positionne les nouveaux résultats en compléments des données issues de la bibliographie, en tenant compte à chaque fois de la fiabilité de la relation mise en évidence par traçage. Le résultat positif du traçage de 1958 entre la perte du Rébounédou et la source de Cailla n'a pas été reporté compte tenu de sa faible fiabilité et du résultat négatif obtenu lors du MT1. A proximité du Blau, le résultat du traçage de 1974 de la perte au Nord du Sarrat de l'Etreuil semble douteux et pourrait faire l'objet d'une nouvelle opération afin de confirmer ou non la relation avec Fontmaure. La Figure 91 représente les résultats des traçages par des trajets rectilignes qui sont discutés dans le paragraphe suivant.

Figure 91: Relations mises en évidence par traçage sur le plateau de Sault distinguées selon la fiabilité du résultat. Les points d'injection nommés correspondent aux points utilisés pour les nouveaux traçages MT1 à MT5 et T6.

3.4.5. Interprétation quantitative et modélisation 1D

Le suivi quantitatif de la restitution des traceurs permet de discuter des propriétés hydrodispersives de chaque système traçage afin de comparer les caractéristiques de transfert. L'objectif est de déterminer quels systèmes traçages empruntent un système de drainage identique afin de mieux comprendre le trajet réel de l'eau et l'organisation spatiale du drainage karstique en cohérence avec le modèle KARSYS.

Les conditions d'injection et de suivi aux exutoires permettent de considérer les courbes de restitution comme des réponses impulsionnelles (réponse à un Dirac de concentration) en exprimant la concentration du traceur en concentration de flux (Kreft et Zuber, 1978 ; Maloszewski

et Zuber, 1982). La solution analytique C_{FF} (g/l) correspondante est donnée par Kreft et Zuber (1978), avec M (g) la masse de traceur restituée, Q (m³/s) le débit supposé constant à l'exutoire, x (m) la distance parcourue, V (m/s) la vitesse moyenne de transit et D (m/s) la dispersion cinématique:

$$C_{FF} = \frac{M}{Q} \times \frac{x}{t\sqrt{4\pi Dt}} e^{\left[\frac{-(x-Vt)^2}{4Dt}\right]}$$

Equation 9

La DTS associée est donnée par l'équation suivante :

$$h_{FF} = \frac{x}{t\sqrt{4\pi Dt}} e^{\left[\frac{-(x-Vt)^2}{4Dt}\right]}$$

Equation 10

Elle peut s'exprimer en fonction du nombre de Péclet macroscopique $Pe = Vx/_D$, qui correspond à l'inverse du paramètre de dispersion:

$$h_{FF} = \frac{x}{t\sqrt{4\pi xVt/Pe}} e^{\left[\frac{-Pe(x-Vt)^2}{4xVt}\right]}$$

Equation 11

Cette solution nécessite le calage de 2 paramètres pour reproduire les DTS observées : *Pe* et *V*, la distance *x* étant fixée et égale à la distance la plus courte (ligne droite) entre le point d'injection et le point de restitution. Cette solution a été appliquée aux différentes courbes obtenues exprimées en DTS en optimisant le critère de Nash-Sutcliffe sur toute la courbe de restitution. Ce coefficient d'ajustement permet ainsi de décrire la qualité de la simulation. Les résultats obtenus sont reportés sur la Figure 91.

Figure 92 : Calage de la solution analytique (rouge) sur les DTS mesurées (noir), l'évolution du débit est également reportée (gris).

Les résultats obtenus sont globalement très bons (Nash compris entre 93% et 99%). On observe à chaque fois une légère surestimation par le modèle de la réponse en début de restitution, puis à l'inverse une sous-estimation en fin de restitution. Ce résultat classique lors de l'application de modèle analytique simple 1D est principalement lié :

- à l'évolution temporelle (évolution du débit) et spatiale (liée aux apports latéraux, aux échanges matrice/conduit et aux changements de section) de la vitesse d'écoulement dans le système traçage,
- à la non prise en compte du transfert dans la zone d'infiltration (milieu non saturé), qui doit cependant être relativement court compte tenu du drainage naturel des pertes,
- aux propriétés de mobilité du traceur, sa dégradation éventuelle et ses interactions avec le milieu, et notamment les volumes d'eau moins mobiles,
- à la géométrie d'écoulement qui est bien plus complexe qu'un simple conduit rectiligne uniforme.

A l'exception du MT4 Coudons-Ginoles et du MT5 Coumeilles-Blau, l'évolution du débit à l'exutoire pendant la restitution valide l'hypothèse de régime permanent.

En première approche, ce modèle analytique simple permet de mettre en évidence par le nombre de Peclet (ou le paramètre de dispersion) 3 groupes de système traçage. L'interprétation se base sur le nombre de Peclet et non la dispersivité afin de s'affranchir de l'effet d'échelle qui caractérise la dispersivité macroscopique.

- Un premier groupe présente une gamme de Peclet élevée (Pe de 200 à 400) et caractérise une circulation dominée par l'advection quelles que soient les conditions hydrologiques. Il s'agit des systèmes traçages Quirines-Fontmaure, Camurac-Fontmaure et Coumeilles-Fontmaure. La vitesse très faible observée lors du MT3 depuis la perte des Quirines n'est liée qu'aux conditions hydrologiques et ne doit pas s'interpréter comme le résultat d'un drainage karstique mal organisé. La relation Vernouze-Fontmaure présente un Pe légèrement inférieur (Pe=172) mais peut également être rattaché à ce groupe.
- Un second groupe caractérise des nombres de Péclet significativement plus faible (Pe de 50 à 100). Il s'agit du système traçage Rébounédou-Fontmaure, qui présente une valeur relativement identique en hautes eaux (MT4, Pe=102) et en basses eaux (MT1, Pe=77), ainsi que les systèmes Coumeilles-Blau, Coudons-Ginoles et P1-Fontestorbes. Ces valeurs caractérisent des systèmes traçages plus dispersifs, et donc moins bien organisés en raison d'importantes ramifications (liées au développement de la karstification qui suit le retrait de la couverture marneuse) et de conduits plus ou moins colmatés par les apports allochtones pour le système Rébounédou-Fontmaure. Il peut également s'agir d'un surdimensionnement des conduits induisant des boucles de convection dans de grands vides karstiques (cf. Hauns et al., 2001, hypothèse probable pour les petits systèmes traçages qui empruntent en hautes eaux des paléo-réseaux de grandes dimensions).

Cette interprétation suggère l'existence d'au moins deux grands systèmes de drainage karstique sur le plateau. Le système le plus développé circule dans les calcaires urgonien du Gargasien et Clansayésien sur le flanc Sud de l'anticlinal de Pierre-Lys Picaussel et drainerait la plupart du plateau de Sault (Camurac, Coumeilles, Vernouze et la plaine d'Espezel au niveau des Quirines), et est temporairement partiellement capturé par le Blau en hautes eaux. Un second système de drainage est développé dans les calcaires jurassique sur la même structure, isolé du précédent par les marnes bédouliennes. Celui-ci draine les eaux perdues au Rébounédou et ne participe pas à l'alimentation du Blau en crue. Cette interprétation rejoint l'interprétation du modèle hydrogéologique selon la méthode KARSYS (cf. rapport BRGM/RP-65888-FR et paragraphe 4.2) qui propose deux unités de drainage distinctes développées sur le flanc Sud de l'anticlinal de *Pierre-Lys – Picaussel*. Ces 2 unités de drainage karstiques distinctes seraient développées de

part et d'autre des marnes bédouliennes. Le développement de la karstification y serait suffisament différent, en lien avec la lithologie du réservoir et les modalités de recharge, pour expliquer les différences observées sur les dynamiques de restitution de traceur. Le report probable du trajet parcouru par les traceurs est proposé sur la carte suivante Figure 93), où figurent également les limites définies par le modèle géologique permettant de délimiter la zone noyée selon la méthode KARSYS (cf. paragraphe 4.2).

Figure 93: Report probable des drains karstiques majeurs empruntés par les traceurs lors des opérations de traçages MT1 à MT5 et T6 sur le fond IGN (1/100000) et géologique (1/50000).

En hautes eaux (Figure 93), la ligne de crête de l'aquiclude (Figure 93) mis en évidence en basses eaux par la remontée des formations anté-jurassique dans l'axe de l'anticlinal de *Pierre-Lys Picaussel* est franchie. Le tracé de cette ligne de crête a été réalisé en se positionnant à l'altitude d'émergence du Blau dans le modèle géologique au lieu de celle d'émergence de Fontmaure, ce qui permet de visualiser dans ce secteur les formations noyées en hautes eaux lorsque le Blau fonctionne.

En hautes eaux, l'eau peut ainsi circuler dans des paléo-réseaux karstiques perchés développés dans les formations calcaires du Jurassique/Néocommien jusqu'à l'exutoire temporaire. Ce fonctionnement karstique réemprunte des structures de drainage préexistantes au creusement de la vallée de l'Aude et la mise en place de Fontmaure. Cette capture par le Blau ne semble pas s'étendre plus en amont vers la plaine d'Espezel compte tenu du résultat obtenu depuis la perte de la Vernouze, même si cela ne peut être exclu pour de plus fortes mises en charge.

Cette interprétation permet d'expliquer la diffluence observée depuis la perte des Coumeilles, et suggère également des échanges possibles (cf. double-flèches avec ? sur la Figure 93) avec le système de Fontmaure vers Coudons, et avec le système de Fontestorbes vers la forêt de Sainte

Colombe. L'interprétation géochimique de la crue de 2018 (cf. 3.5.3) permet d'imaginer que la capture par Fontestorbes du système du Blau en hautes eaux pourrait se réaliser à ce niveau.

3.5. SYSTEMES KARSTIQUES DU SECONDAIRE

Ce chapitre est consacré à l'étude du fonctionnement hydrogéologique des principaux systèmes karstiques qui se sont développés dans les formations du Secondaire et dont les principaux exutoires sont les sources de Fontestorbes (510 m NGF) et Fontmaure (318 m NGF). La localisation des sources étudiées est reportée sur la carte suivante (Figure 94) extraite du rapport de l'état des connaissances de juin 2015 (BRGM/RP-64209-FR).

Ces systèmes karstiques ont fait l'objet d'un équipement ou d'un complément d'équipement pour un suivi hydrodynamique et physico-chimiques dans le cadre de cette étude (entre 2015 et 2017). Le forage de la gare à Quillan et le piézomètre de la Frau près de la source temporaire de l'Esqueille complètent le réseau d'observation. Après une présentation des sites d'étude et des investigations réalisées dans le projet, des éléments d'informations en termes de fonctionnement et d'évaluation des réserves en eau souterraine et de caractérisations géochimiques seront présentés.

Figure 94. Carte de localisation des systèmes karstiques du Secondaire
3.5.1. Résultats des suivis réalisés sur les systèmes karstiques étudiés

Source de Fontmaure

Située en rive gauche de l'Aude à la sortie des gorges de Pierre Lys, la source karstique de Font Maure (318 m NGF 10775X0004/S) est l'un des principaux exutoires de la partie orientale du Plateau de Sault (la surface de l'impluvium est estimée à 135 km²). Du point de vue géologique, la source émerge au sein des calcaires urgoniens du Clansayésien au niveau de l'Aude à la faveur d'une diaclase. Cette source (non captée) présente d'importante teneurs en sulfates en période de basses-eaux (>250 mg/l, cf. BRGM/RP-64209-FR). La configuration très accidentée de la zone d'émergence occasionne d'importantes difficultés pour le suivi hydrodynamique de cette source ce qui explique que son fonctionnement demeure mal connu. En 2010, un seuil a été installé sous le pont de la D117 sous maitrise d'œuvre du CD11 pour un suivi des hauteurs, de la température et de la conductivité des eaux de la source. Cet ouvrage a fait l'objet de nombreux actes de vandalisme depuis son installation en 2010, les données collectées sur la période 2010-2013 ont été valorisées dans cette étude.

Dans ce projet, une nouvelle instrumentation a été mise en place par Hydrogéospère en décembre 2014 sur le seuil dans le but de reprendre le suivi de la hauteur d'eau, de la conductivité et de température¹⁰ de l'eau de la source initié par le CD11. En parallèle, 10 campagnes de jaugeages ont été réalisées pour établir la courbe de tarage de la source (Tableau 28). De nombreuses difficultés ont été rencontrées en hautes eaux car la mesure des débits devient impossible (trop dangereux) dès que les hauteurs d'eau au seuil dépasse 50 cm (cf. photos de la Figure 95). **En période de très basses eaux, un autre problème majeur est mis en évidence : le seuil se dénoie** (cf. photos de la Figure 96) et l'essentiel de l'écoulement se produit dans l'Aude de manière non visible. Suite à ce diagnostic fait au cours de la première année de suivi, les débits de la source de Fontmaure ont été ultérieurement mesurés par jaugeage différentiel sur l'Aude à l'aide de la méthode de dilution à la fluorescéine. Les jaugeages réalisés entre le février 2015 et octobre 2015 permettent de définir la courbe de tarage du seuil hydraulique (Figure 97-1). Les débits sont sous-estimés puisqu'une partie de l'écoulement échappe à la station de mesure. Les jaugeages réalisés à partir de novembre 2015 (Figure 97-2) permettent d'établir une courbe de tarage globale pour la source.

¹⁰ Sonde Van Essen Instrument CTD 1bar (capteur absolue). La compensation barométrique est réalisée à l'aide du capteur barométrique 0.1bar (Sonde Van Essen Instrument)

Date Heure	Hauteur d'eau seuil (échelle)	Jaugeage du seuil	Méthode		Jaugeage global (par différence Amont-Aval sur l'Aude)	Méthode	Débit de l'Aude à Belvianes et Cavirac (Y1112010)
	m	(I/s)			(l/s)		(m3/s)
20/02/2015 10:25	0.425	4320	Dilution chimique (fluorescéine)	*			19.5
08/04/2015 10:15	0.375	2509	Dilution chimique (fluorescéine)	*			23.3
16/12/2014 10:40	0.310	1569	Dilution chimique (fluorescéine)	*	10 jau	geages	10.2
01/06/2015 10:40	0.210	452	Courantomètre	*		0 0	18.4 =>14.8
30/07/2015 09:00	0.090	240	Dilution chimique (fluorescéine)	**			10.9=>12.1
04/09/2015 17:30	0.080	143	Courantomètre	*			4.5
08/10/2015 15:30	0.075	57	Courantomètre	*			5.3=>4.6
20/10/2015 11:00	0.030	16	Courantomètre	*			11.7
20/11/2015 15:30	0.000			*	689	Dilution chimique (fluorescéine)	4.4=>5
15/07/2016 07:30	0.105			*	1220	Dilution chimique (fluorescéine)	5.0
06/03/2017 15:30	0.430			*	3740	Dilution chimique (fluorescéine)	14.5
* Jaugeage Hydrog	éosphère, **	Jaugeage Bl	RGM				

Tableau 28. Jaugeages de la source de Fontmaure

Figure 95. Vues du contexte d'émergence de la source de Fontmaure au niveau du seuil pour différents contextes hydrologiques

Figure 96. Vues de l'écoulement au seuil la source de Fontmaure en période de très basses eaux

Figure 97. Courbe de tarage du seuil de Fontmaure établie à partir des mesures au seuil (1) et courbe de tarage global de la source établie à partir des jaugeages différentiels sur l'Aude (2)¹¹.

¹¹ Le tableau est en annexe

Figure 98. Estimation du débit de fuite non jaugé par le seuil de fontmaure en fonction de la hauteur d'eau mesurée au seuil.

Le sous-écoulement dans l'Aude est très important, il a été évalué à 689 l/s le 20/11/2015. Ce résultat amène le questionnement suivant : est-ce que le sous écoulement dans l'Aude (non mesurée par le seuil) est constant ou variable au cours du temps ?

Pour apporter des éléments de réponse, il faut réaliser des jaugeages différentiels sur l'Aude pour estimer le débit global de la source de Fontmaure et le comparer au début mesuré au seuil. Dans cette étude, 3 jaugeages différentiels ont été réalisées pour différents contextes hydrogéologiques. Sur la base des informations des différents jaugeages et des mesures de hauteurs au seuil, nous avons cherché à évaluer si le débit de fuite non jaugé par le seuil évoluait au cours du temps en fonction du contexte hydrogéologique (Figure 98). Sur la base des résultats de calcul, il semblerait que le débit de fuite évolue en fonction du contexte hydrologique :

- les débits de fuite semblent « plafonner » autour de 1100 l/s en période de moyennes eaux (H compris en 0.1 m et 0.3 m).
- Pour les hautes eaux (H>0.3 m), les incertitudes deviennent très importantes, toutefois les calculs suggèrent une diminution du débit de fuite. Ce résultat apparait logique car l'Aude à ces périodes est généralement également en crue, la charge hydraulique du niveau de base de l'Aude augmente et peut limiter (empêcher) les écoulements occultes de la source dans le lit de l'Aude.
- Pour les basses eaux (H<0.1 m), on observe une diminution du débit de fuite non jaugé corrélée à la diminution du niveau d'eau mesuré au seuil. Le dispositif de mesure ne permet pas de suivre l'évolution du niveau d'eau de la source en période de très basses eaux. La hauteur d'eau du plan d'eau de la source n'était donc pas connue le 20/11/2015 lorsque le débit de fuite a été estimé à 689 l/s. Il conviendra à l'avenir d'instrumenter le plan d'eau en amont du seuil au niveau de la diaclase dans laquelle a été installé un tube de protection du fluorimètre lors des suivis de traçage. Dans le but d'établir la corrélation avec les mesures au seuil, il conviendra de réaliser un suivi synchrone du seuil et du futur point de mesure du plan d'eau de la source (dans la diaclase) pendant une durée d'un cycle hydrologique au moins.</p>

Les jaugeages différentiels réalisés dans cette étude ne sont pas assez nombreux pour permettre de conclure sur les débits de fuite. Pour l'Estimation des débits de la source de Fontmaure, les 2 hypothèses ont été conservées et 2 courbes de tarage (A et B) ont été établies :

- Courbe A : Débit global de Fontmaure en considérant un débit de fuite constant
- Courbe B : Débit global de Fontmaure en considérant un débit de fuite variable (estimé à partir de la fonction polynomiale de la Figure 98

Figure 99. Courbes de tarage de la source de Fontmaure

L'évolution des débits de la source de Fontmaure calculés par les 2 courbes de tarage est présentée sur la Figure 100. Les données de hauteur d'eau du CD11 ont été préalablement normalisées à celles acquises dans cette étude pour le calcul des débits. Sur la période de suivi (2010-2017), les débits moyens sont estimés à 2.03 m³/s (courbe A) contre 2.18 m³/s (courbe B), les débits médians sont estimés à 1.24 m³/s (courbe A) contre 1.44 m³/s (courbe B).

Figure 100. Evolution des débits de la source de Fontmaure calculés à l'aide des deux courbes de tarage.

Figure 101. Evolution des paramètres physico-chimiques et du débit de la source de Fontmaure calculé à l'aide de la courbe de tarage A.

Les évolutions des paramètres physico-chimiques de la source de Fontmaure sont présentées sur la Figure 101. La température de l'eau de la source de Fontmaure présente des variations annuelles de l'ordre de 3°C entre les périodes de basses et hautes eaux, celles de la conductivité électrique de l'eau sont également très importantes de l'ordre de 600 µs/cm (entre 300 µS/cm et 900 µS/cm). Les valeurs maximales sont observées aux cours des étiages, les valeurs minimales aux cours des crues, aucune relation évidente avec le débit n'est mise en évidence. A noter cependant que les montées de crues semblent se caractériser par une légère élévation de la température et de la conductivité électrique des eaux suivis en décrue par une importante diminution de la conductivité des eaux. Les évolutions observées évoquent dans un premier temps, un phénomène d'effet piston sur la composante plus profonde du réservoir aquifère suivi dans un second temps d'un phénomène de mélange avec les eaux de la composante rapide de

la recharge. La température de l'eau en période d'étiage tend vers 11.9 °C, soit une valeur significativement supérieure à la température moyenne de la zone de recharge calculée pour Fontmaure (9.6°C, cf. Tableau 7). Ce résultat et la conductivité élevée associée à des teneurs en SO4 importantes (> 250 mg/l) témoignent de l'existence de circulations profondes au sein des formations carbonatées situées sous les marnes albiennes, l'origine des sulfates étant attribuée aux évaporites du Trias sous-jacent.

Source de Ginoles

Située sur la terminaison orientale du bassin de Quillan, la source de Ginoles constitue l'une des émergences d'une série de sources temporaires réparties le long du ruisseau du Coulent et dans le ruisseau des Canalettes entre 340 m NGF (lieu-dit l'Hiech) et 315 m d'altitude au sein des calcaires urgo-aptiens. Comme indiqué dans le rapport de synthèse des connaissances (cf. rapport BRGM/RP-64209-FR), le secteur de Ginoles apparait être un lieu de convergence entre des fluides d'origines profondes (sources thermales Rosita et Prosper) et des eaux karstiques froides. La source karstique dite de « Ginoles » (10775X0077/S) constitue la source temporaire la plus basse et émerge au bord de la départementale D76 en rive gauche du ruisseau le Coulent, en amont de la source AEP de Fontfroide (10775X0114/FROIDE). L'altitude de la source de Ginoles (324 m) est comparable à celle de Fontmaure (318 m), il est supposé que la source de Ginoles constitue un trop plein du vaste système karstique de Fontmaure, cf. la cartographie des zones noyées du système karstique de système Fontmaure-Ginoles établie à l'aide de l'approche KARSYS (Illustration 86 du rapport BRGM/RP-65888-FR).

D'après Ballue (2008), la zone de recharge de l'aquifère karstique pourrait correspondre à l'ensemble des affleurements des calcaires urgoniens de l'extrémité orientale du Pays de Sault comme le suggèrent les résultats de la coloration des pertes du ruisseau de Montmija dans le poljé de Coudons en octobre 1959 et celle réalisée dans cette étude (mats 2018) qui est ressortie au niveau du ruisseau des Canalettes en amont du village de Ginoles (vitesse apparente de 10,8 m/h en 1959 et 64 m/h en 2018 pour des conditions de crue). La surface du bassin hydrogéologique de la source de Ginoles est estimée à 13 km² (Tableau 39, Figure 161).

Pour suivre les débits de la source de Ginoles, un seuil hydraulique à lame mince de section trapézoïdale a été installé par Hydrogéosphère en juillet 2015¹², la station de mesure de hauteur d'eau et de conductivité et température de l'eau¹³ a été installée à l'aval immédiat de la source (cf. Figure 102). En parallèle, 8 campagnes de jaugeages différentiels ont été réalisées pour établir la courbe de tarage de la source (Tableau 29). De nombreuses difficultés métrologiques ont été rencontrées notamment en période de basses eaux en raison d'un phénomène de « renardage » sur l'une des extrémités du seuil (cf. Figure 102). La dynamique de crue est très rapide, les crues de type « *crue éclair* » (monté et décroissance très rapide des débits) n'ont pas pu être jaugées en raison de la fugacité des phénomènes qui pose des problèmes organisationnels. Les hauteurs maximales jaugées de la courbe de tarage (0.37 m) sont très inférieures aux hauteurs horaires maximales mesurées (1.7 m). Les débits de crue sont entachés d'une importante incertitude.

¹² Dossier de déclaration au titre de la loi sur l'eau, Hydrogéosphère, Nov. 2014

¹³ Sonde Van Essen Instrument CTD 1bar (capteur absolue). La compensation barométrique est réalisée à l'aide du capteur barométrique 0.1bar (Sonde Van Essen Instrument)

Figure 102. Vues de la source de Ginoles en périodes de hautes et basses eaux et vue du seuil installé à l'aval immédiat de la source

Date Heure	Hauteur d'eau validée (cm)	Hauteur seuil (cm) (d=40cm)	Débit jaugé (I/s) Dillution	incertitude (Vs)	Débit jaugé (I/s) Courantomètre	incertitude (Vs)	Méthode	Commentaires
08/12/2014 16:00	44.9	4.9	194	10			Dilution chimique (fluorescéine)	(pas de seuil), hauteur reconstituée
20/02/2015 11:25	59.4	19.4	574	57			Dilution chimique (fluorescéine), par différence (Amont-Aval)	(pas de seuil), hauteur reconstituée
04/03/2015 14:15	77.3	37.3	772	77			Dilution chimique (fluorescéine), par différence (Amont-Aval)	(pas de seuil), hauteur reconstituée
08/04/2015 11:30	46.3	6.3	233	23	240	24	Dilution chimique (fluorescéine), par différence (Amont-Aval)	(pas de seuil), hauteur reconstituée
11/06/2015 10:40	41.1	1.1	124	6	79	4	Dilution chimique (fluorescéine) et courantomètre	(pas de seuil), hauteur reconstituée
					-			
04/09/2015 16:00	41.1	1.1	7	0		0	Dilution chimique (fluorescéine)	Hauteur d'eau/seuil
24/03/2016 11:30	46.5	6.5	145	7	123	6	Dilution chimique (fluorescéine) et courantomètre	Hauteur d'eau/seuil
08/03/2017 15:40	72.4	32.4		0	564	56	Courantomètre, par différence (Amont-Aval)?	Hauteur d'eau/seuil

Tableau 29. Jaugeages de la source de Ginoles

Figure 103. Courbe de tarage de la source de Ginoles

La courbe de tarage théorique du seuil apparait très différente des mesures de débits réalisées et n'a donc pas été utilisée (Figure 103). L'évolution des hauteurs mesurées et des débits calculés est reportée sur la Figure 104. Le débit moyen sur la période du 05/12/2014 au 12/12/2017 est estimé à 0.15 m³/s, le débit médian étant de 0.11 m³/s.

Figure 104. Evolution de la hauteur d'eau du seuil de Ginoles et des débits estimés.

Figure 105. Evolution des paramètres physico-chimiques et des débits de la source de Ginoles (moyenne journalière).

Les évolutions des paramètres physico-chimiques de la source de Ginoles sont présentées sur la Figure 105. Les températures et les conductivités électriques de l'eau mesurées en période de basses eaux ne sont pas représentatives de l'eau de la source, elles correspondent à celles du plan d'eau quasi-stagnant située en amont du seuil (cf. photos, Figure 102). En période de crue, la température et la conductivité électrique de l'eau présentent de très faibles variations, autour

des valeurs moyennes (10.3°C et 450 µS/cm). Aucune relation évidente avec le débit n'est mise en évidence.

Forage profond de reconnaissance de Quillan

Situé à proximité de la gare de Quillan, le forage de reconnaissance de 1004 m (10775X0078/GARE) réalisé par le Conseil Général de l'Aude (CG11) en 1998 a traversé (Yvroux 1998) :

- une épaisse série (de 10 à 311 m de profondeur) de pélites gréseuses noirâtres (avec passages de marnes argileuses présentant des traces d'hydrocarbure),
- puis environ 200 m (311-512 m) d'alternance de calcaire argileux gris avec veines de calcites, pélites noires, passage de marnes argileuses,
- puis environ 130 m de pélites noires (512-643 m),
- puis une alternance de 100 m environ (643-750m) de calcaire argileux gris et de pélites noires,
- puis 200 m (750-950 m) de pélites noires avec passages calcaires,
- puis 54 m (950-1004 m) de calcaires gris, avec veines de calcite.

Il est supposé que les calcaires urgoniens de l'Aptien sont atteints vers 1000 m de profondeur. Le débit air lift à 1000 m de profondeur est de 11 m³/h (durée 8 heures). La conductivité électrique des eaux est de 1956 μ S/cm, la température de 22°C. Au repos le forage est artésien, le débit mesuré est de 1,7 m³/h. Le forage partiellement éboulé à 132,8 m de profondeur n'a pas permis la réalisation d'une diagraphie sur l'ensemble de l'ouvrage. Sur la base des résultats de la diagraphie de température réalisée jusqu'à 132 m de profondeur (température de l'eau : 23,6°C), la température à 1000 m de profondeur a été estimée à 40°C.

Les eaux de l'ouvrage sont bicarbonatées sulfatées calciques (HCO3 de l'ordre de 230 mg/l, Ca de l'ordre de 200 mg/l, SO4 de l'ordre de 700 mg/l) avec des teneurs élevées en Mg (de l'ordre de 100 mg/l). L'origine de la minéralisation élevée est attribuée au Trias sous-jacent.

Cet ouvrage a fait l'objet d'un suivi dans le cadre du projet. La tête d'ouvrage a été aménagée pour permettre d'accueillir un enregistreur de pression absolu¹⁴ (Figure 106). L'ouvrage est dorénavant détruit suite aux aménagements des places de parking réalisés en 2017 (

Figure 107). La sonde a été également détruite.

¹⁴ Sonde Van Essen Instrument 2 bars (capteur absolue). La compensation barométrique est réalisée à l'aide du capteur barométrique 0.1bar (Sonde Van Essen Instrument) installé à la source de Ginoles

Figure 106. Vue du forage de Quillan et de la tête de forage.

Figure 107. Vue du site à l'emplacement du forage en juillet 2017.

Figure 108. Evolution de la piézométrie mesurée au forage de Quillan (les débits de Fontmaure sont également représentés).

De nombreuses difficultés de métrologie ont été rencontrées au cours du suivi en raison d'une détérioration rapide des 2 capteurs successifs qui ont été installés sur la tête d'ouvrage artésienne (Figure 108). Les suivis de 2016 permettent toutefois de montrer que l'aquifère réagit à la recharge, les élévations de la charge hydraulique apparaissent synchrones aux augmentations de débit de Fontmaure ce qui s'explique simplement par le transfert de pression au sein de l'aquifère captif du bassin de Quillan.

Source de trop plein du Blau

La source temporaire de trop-plein du Blau (630 m NGF) est située à 500 mètres au Sud du hameau de l'Escale dans la reculée du même nom (Figure 109). La configuration très accidentée de la zone d'émergence occasionne d'importantes difficultés pour le suivi hydrodynamique de cette source temporaire ce qui explique que son fonctionnement demeure mal connu. Les suivis réalisés par Hydrogéophère en 2003 indiquent que le comportement du trop-plein est caractérisé par des mises en charges brutales (> 20 m) et que les débits de crues peuvent atteindre 4 à 5 m³/s.

Figure 109. Carte de localisation de la station du Blau.

Compte tenu des contraintes du terrain accidenté, le suivi du débit de trop plein du Blau a été réalisé quelques centaines de mètres en aval à l'aide d'un seuil¹⁵ spécialement mis en place dans le cadre du projet (cf. Figure 109 et Figure 110). En période de crue, la mesure au seuil récupère à la fois les débits du Blau mais également ceux du ruisseau des Graviers¹⁶ qui rejoint le ruisseau du Blau en rive droite, à quelques centaines de mètres en aval du porche du Blau et également les débits de trop plein de la source Labeau (cf. Figure 109)

¹⁵ Dossier de déclaration au titre de la loi sur l'eau, Hydrogéosphère, Nov. 2014

¹⁶ Issue de la « résurgence des Graviers », situé plus au Sud-Est, au pied du « Saut de la Bourrique », en relation directe avec le réseau noyé de la source de trop plein du Blau (Hydrogéosphère 2004; Mangin et Yvroux 2009)

Figure 110. Vue du site avant aménagement et vues du seuil du Blau et de la chambre de mesure de la sonde de pression, conductivité et température.

La courbe de tarage du seuil a été établie à l'aide de 8 jaugeages (Tableau 30 et Figure 111)¹⁷. La hauteur maximale jaugée de la courbe de tarage (0.58 m) est très inférieure aux hauteurs maximales mesurées (1.4 m). Les débits de crue sont entachés d'une importante incertitude. Les débits de crue calculés à la station du Blau par la courbe de tarage sont vraisemblablement sousestimés. Lorsque les hauteur d'eau au seuil sont supérieures à 0.8 m, le Blau sort de son lit.

¹⁷ Pour établir la courbe de tarage, une correction de hauteur d'eau de 34 cm a été appliquée aux hauteurs d'eau mesurées avant l'installation du seuil

Date Heure	Hauteur d'eau validée (cm)	Delta pour normalisation Seuil	Hauteur seuil (cm) (d=34cm)	Débit jaugé (l/s)	incertitude (l/s)	Commentaires				
19/01/2015 16:15	43.0		9.0	35	2	par dilution* (pas de seuil)				
20/02/2015 13:35	57.5		23.5	233	12	par dilution* (pas de seuil)				
06/03/2015 12:00	92.3		58.3	1155	152	par dilution** (pas de seuil)				
06/03/2015 13:00	92.9		58.9	1510	907	par dilution** (pas de seuil)				
08/04/2015 14:15	49.5		15.5	123	6	par dilution* (pas de seuil)				
11/06/2015 13:35	40.2		6.2	15	1	par dilution* (pas de seuil)				
04/09/2015 13:00	36.2	34.2	2.2	5	0	par dilution*, seuil				
08/03/2017 14:45	65.3	32.3	31.3	756	38	courantomètre*, seuil				
*Hydrogéosphère										

Tableau 30. Jaugeages du trop plein du Blau au niveau de la station de mesure.

Figure 111. Courbe de tarage de la station de mesure du trop-plein du Blau

L'évolution des débits est reportée sur la Figure 112. Le comportement karstique du trop-plein du Blau (et de la résurgence des Graviers) se traduit par des crues rapides et brèves, le débit (horaire) maximum évalué est de 7 m³/s. Les débits moyen et médian calculés à titre indicatif car peu représentatif sont respectivement de 0.092 et 0.005 m³/s (16/01/2015 au 14/12/2017). La valeur du débit au 90^{ème} centile est de 0.103 m³/s.

La conductivité électrique des eaux apparait relativement stable autour de 480 µS/cm, les périodes de crue se caractérisent globalement par une légère diminution de la minéralisation. La température de l'eau à la station de mesure n'est pas représentative de celle du karst, les variations mesurées suivent les évolutions saisonnières et journalières de la température de l'air, la température de l'eau du karst s'équilibrant avec les températures de l'air entre les zones d'émergences et la station de mesure des débits.

Figure 112. Evolution des débits horaires et journaliers de la station du Blau

Figure 113. Evolutions de la conductivité et de la température de l'eau mesurées à la station de mesure du débit

Forage du Blau

Le forage du Blau (BSS003YFXQ) est présenté dans le paragraphe 2.3.3. Il a été positionné pour mettre en évidence l'existence d'une zone noyée vers 600 mNGF contrôlée par les faibles émergences pérennes du Blau, ce qui permet de saturer une épaisseur aquifère importante au sein de la structure synclinale du Col du Chandelier.

Lors de la foration, la venue d'eau principale a été recoupée à 230 m de profondeur, soit 455 m NGF. Le niveau statistique s'est stabilisé à 87.23 m/sol le 06/11/2017, et était à 85.95 m/sol (86.15m/repère) lors de la diagraphie le 13/11/2017, ce qui positionne bien l'altitude de la zone noyée vers 600 mNGF en conditions de basses eaux, le porche du Blau étant inactif.

Une sonde de mesure de pression (plage 0-100m) et température a été installée le 16/01/2018 pour suivre le comportement hydrodynamique du forage en lien avec l'activation du porche du Blau.Les données actuellement disponibles sont présentées dans la Figure 114.

Une évolution cyclique journalière est bien perceptible lors des crues et pourrait traduire l'influence d'effets de marées terrestres montrant la captivité de l'aquifère sous les marnes bédouliennes lors des crues.

Source de Fontestorbes et puits P1 des Mijanes (gouffre des Caoussous)

• Suivi hydrodynamique au niveau de l'exutoire

Le système karstique de Fontestorbes a fait l'objet d'un suivi de hauteur d'eau en amont du seuil depuis le 21 septembre 1965 (limnigraphe papier OTT), puis au pas de 3 minutes à partir du 18 août 2005 (thalimède OTT). Ce pas de temps fin est justifié pour suivre précisément les périodes d'intermittence de la source. Cette source a été étudié en détails pour déterminer les principales caractéristiques de ce système karstique (Mangin, 1975), en reprenant certains résultats spécifiques au mécanisme d'intermittence de la source (Mangin, 1969; Mangin, 1973).

Les chroniques de hauteur d'eau sont exprimées par rapport à un repère de nivellement à 510.32 m NGF (Mangin, 1975), et les mesures manuelles de contrôle sont réalisées à partir du repère de mesure sous l'équerre du tube limnimétrique. Ce repère de mesure est à la cote +79 cm par rapport au repère de nivellement. Le suivi assuré par le BRGM de 1965 à 1968 a ensuite été pris en charge par le laboratoire de Moulis (CNRS), puis à nouveau par le BRGM depuis 2014.

Les données de hauteur sont converties en débit à l'aide d'une relation hauteur/débit définie par Mangin en 1975 à partir de 6 jaugeages répartis entre 80 l/s et 3.4 m³/s (courbe de tarage dénommée relation A dans ce rapport). Les données de hauteur et leur conversion en débit sont bancarisées sur le site de la banque hydro selon cette relation.

En parallèle, Alain Mangin a continué de collecter les données limnimétriques pour constituer une propre base de données qui a été transmise au BRGM en début de projet. Cet annuaire des débits journaliers a été comparé aux chroniques de la banque hydro dans le rapport BRGM/RP-64209-FR, ce qui avait permis d'identifier un décalage des séries pour les bas débits (Figure 116) à partir de 2005.

Figure 115. Vues de Fontestorbes dans différents contextes hydrogéologiques

Figure 116: Comparaison des débits journaliers mesurés pour la source de Fontestorbes depuis 1965 (extrait du rapport BRGM/RP-64209-FR)

Cette différence provient d'une relation hauteur/débit différente (dénommée relation B) pour les débits inférieurs à 1 m³/s, soit les débits influencés par le phénomène d'intermittence. Cette relation B a été utilisée par A. Mangin pour constituer son annuaire et pour alimenter la Banque Hydro directement en débit journalier de 1965 à 2005.

Une nouvelle série de jaugeages a donc été programmée pour mieux comprendre l'origine de cette modification proposée par Alain Mangin et tenter de valider l'une ou l'autre relation. Les jaugeages antérieurs au projet issus de la thèse de Mangin (1975) sont également reportés dans le tableau suivant (Tableau 31). Les données en gras ont été lues graphiquement sur la figure 58, p.564 de la thèse de Mangin.

Date	Hauteur (cm) par rapport au repère de nivellement	Hauteur (cm) par rapport au repère de mesure	Jaugeages (m³/s)	incertitude									
	Jaugeages historiques												
18/05/1968	56.00	-23.00	3.40										
26/08/1968	12.00	-67.00	0.08										
26/08/1968	48.00	-31.00	1.80										
03/10/1968	41.50	-37.50	0.94										
02/06/1970	59.50	-19.50	3.74										
01/07/1970	49.00	-30.00	1.93										
	Points théoriques	déduis par le calcul											
	24.50	-54.50	0.34										
	44.50	-34.50	1.16										
	47.50	-31.50	1.72										
	Nouveau	(jaugeages											
	47.49	-31.51	1.91	10%									
03/07/2017	47.49	-31.51	1.75	15%									
	45.39	-33.61	1.30	10%									

	35.59	-43.41	0.71	15%
	27.72	-51.28	0.49	20%
	20.19	-58.81	0.29	50%
	15.99	-63.01	0.21	75%
25/10/2017 12:51	32.60	-46.40	0.64	10%
18/05/2018 12:00	62.00	-17.00	5.29	10%

Tableau 31 : Inventaire des jaugeages historiques (Mangin, 1975), des relations hauteur/débit définies par le calcul (Mangin, 1975) et des nouveaux jaugeages réalisés dans le cadre du projet.

Pour les débits inférieurs à 1 m³/s, la réalisation de jaugeages se complique du fait du fonctionnement intermittent de la source et du caractère non-permanent du régime qui s'établit. Ceci rend impossible la réalisation de jaugeages par exploration du champ de vitesse, sauf en réalisant un jaugeage en plusieurs étapes pour compléter l'exploration du champ de vitesse à chaque cycle d'intermittence dans la même journée (méthode utilisée dans les années 70).

Une opération de jaugeage par dilution de sel a été réalisée le 03 juillet 2017 pour tenter de mesurer l'évolution de la relation hauteur/débit au cours d'un cycle d'intermittence. La méthode de jaugeage par dilution de sel a été choisie pour sa rapidité d'exécution, sa simplicité de mise en œuvre et l'absence d'impact visuel sur le site. Une série de 7 injections de saumure a été réalisée en 3 points selon une section en amont du seuil à l'aide d'une pompe, la restitution a été observée au pas d'une seconde à l'aide de trois sondes CTD Diver® réparties le long d'une section sous le pont. Ce dispositif permet d'obtenir une bonne homogénéité du panache de traceur et un suivi haute fréquence suffisant. L'incertitude de la mesure est estimée en tenant compte de la variation de hauteur d'eau pendant le passage du panache et la variabilité des résultats obtenus par les trois sondes. Les résultats obtenus sont présentés dans le Tableau 31, et ont été complétés par un jaugeage réalisé le 25/10/2017 en dehors d'une période d'intermittence selon la même méthode mais avec un dispositif plus simple (un point d'injection en amont et deux points de suivis en aval). Ce jaugeage du 25/10/2017 a été réalisé lorsque le débit du système était trop faible pour générer une intermittence, la dernière intermittence ayant eu lieu le 19/10/2017.

Un jaugeage par dilution de traceur depuis le puits P1 des Mijanes a également été réalisé pour tenter de mieux contraindre la relation hauteur/débit en hautes eaux. Un essai de traçage a été réalisé (cf.3.4.3, traçage T6). Une calibration 2 points à 1 et 10 ppb a été réalisée pour convertir le signal du fluorimètre en concentration de fluoréscéine, après avoir retiré l'évolution du signal naturel par la méthode multi-optique (Bailly-Comte et al., 2018). La courbe obtenue et le suivi limnimétrique à la station de Fontestorbes sont reportés sur la Figure 117.

Figure 117: Courbe de restitution du T6 et vue de la source de Fontestorbes lors de la restitution

L'opération a été réalisée le 18/05/2018 en conditions de hautes eaux pour un régime hydrogéologique proche du régime permanent. Un débit constant correspondant à une hauteur de 62 cm peut donc être considéré. L'hypothèse d'une restitution totale permet de calculer un débit du système tracé de 5290 l/s±10%. L'incertitude associée est principalement liée à l'incertitude analytique (<5%) et à l'hypothèse de restitution totale, la condition de bon mélange étant satisfaite ici compte tenu de la distance parcourue et des remous présent au niveau du point d'injection.

Le report de ces jaugeages sur les courbes de tarage A et B est présenté sur la figure suivante (Figure 118).

Figure 118 : Report des jaugeages historiques, des points déduits par calculs théoriques et des nouveaux jaugeages sur les relations hauteur/débit disponibles pour la source de Fontestorbes

Cette nouvelle série de jaugeage montre que la courbe de tarage de 1975 (relation A sur la Figure 118) utilisée dans la banque hydro depuis 2005 permet de suivre avec précision les débits s'écoulant au-dessus du seuil limnimétrique. C'est donc cette relation qu'il convient d'utiliser pour gérer au mieux la ressource au niveau du captage et éviter de dénoyer le seuil.

Les extrapolations des relations A et B pour les débits supérieurs à 3.74 m³/s sont identiques et semblent légèrement sous-estimer le débit du système karstique compte tenu du résultat obtenu lors du jaugeage hautes eaux par dilution. En dehors de ce jaugeage, tous les jaugeages réalisés permettent de valider la relation A et de connaitre le débit qui s'écoule au-dessus du seuil limnimétrique au droit de la station. Ce débit pourrait être différent du débit réel du système karstique s'il existe des sous-écoulements importants qui rejoignent directement l'Hers, ce qui pourrait expliquer la forte correction apportée par la relation B proposée par Mangin, notamment pour les faibles débits. L'influence de sorties d'eau en aval du seuil avait d'ailleurs déjà été soulevée par Mangin (1975) pour réfuter l'utilisation d'une loi puissance reliant la hauteur d'eau au débit. Ceci sera étudié plus en détails à partir de l'analyse des intermittences dans le paragraphe 3.7.7.

• Suivi hydrodynamique dans le gouffre P1 des Mijanes (Caoussous n°1)

Un suivi à pas de temps fin (2 min) de la température, de la conductivité électrique et de la hauteur d'eau à l'aide d'une sonde CTD Diver ® a été mis en place dans le gouffre des Mijanes (P1 des Mijanes ou gouffre des Caoussous/Caoujous n°1) au niveau du puit amont. Ce système d'observation a été mis en place par une équipe de spéléologues du CDS 09 qui souhaitait profiter du projet d'étude en cours et du matériel d'acquisition disponible pour mieux comprendre le fonctionnement des intermittences de Fontestorbes. L'installation a eu lieu en période d'intermittence le 27/08/2016, un remplacement de sonde a été effectué le 28/10/2016 et le matériel a été retiré le 08/12/2016. L'horloge interne de la sonde a été synchronisée avec celle de la sonde mise en place à Fontestorbes au niveau du seuil dans le cadre du projet, dont le pas d'acquisition a également été réglé à 2 min. La pression atmosphérique mesurée au niveau du seuil limnimétrique a également été mesurée au pas de 4 min afin d'assurer la compensation barométrique des données de pression. Cette donnée apparaît malheureusement influencée par la température extérieure, ce qui conduit à utiliser la hauteur d'eau mesurée au pas de temps de 3 min à la station limnimétrique de Fontestorbes. Cette donnée de pression atmosphérique a néanmoins été utilisée pour calculer la hauteur du plan d'eau des Mijanes.

En l'absence de nivellement précis, la hauteur du plan d'eau des Mijanes est exprimée par rapport à la hauteur d'eau mesurée le 01/11/2016 lorsque l'intermittence s'arrête pour des conditions de basses eaux.

• Comparaison des suivis du 27/08/2016 au 08/12/2016

La figure suivante (Figure 119) présente l'évolution des paramètres suivis. Les repères a, b, c et d indiquent différentes formes d'intermittence observées, respectivement lors de l'interruption de l'intermittence pour un débit faible, la reprise du phénomène pour un débit faible, l'arrêt pour un débit élevé lors d'une petite crue et la reprise pour un débit élevé. Ainsi, ces chroniques permettent d'observer de façon synchrone toutes les formes d'intermittence possibles à la source et au niveau de la salle amont du P1 des Mijanes.

Figure 119: Comparaison des chroniques de hauteur, température et conductivité électrique de l'eau mesurées à Fontestorbes et aux Mijanes (P1)

Piézomètre des gorges de la Frau

Le piézomètre de la Frau (10765X0203/PZFRAU) réalisé par le Conseil Général de l'Aude en 2006 (Figure 120) a fait l'objet d'un suivi de niveau d'eau¹⁸ (Figure 121). L'ouvrage est situé à environ 250 m au Sud de la source temporaire de l'Esqueille (altitude = 626 m NGF, cf. Figure 122), trop plein supposé de la source de Fontestorbes (510 m NGF). L'ouvrage de la Frau (641 m NGF) est profond de 195 m, les crépines sont situées entre 96 et 108 m et entre 150 et 190 m de profondeur au sein des calcaires du Barrémien.

Figure 120. Vues du piézomètre de la Frau (BSS002MFSD ;10765X0203/PZFRAU)

L'évolution de la piézométrie est présentée sur la Figure 121, une comparaison avec les niveaux d'eau mesurés à la source permet la comparaison des évolutions. Les variations piézométriques sont supérieures à 40 m entre les basses et hautes eaux, les niveaux d'eau dans l'ouvrage sont sub-affleurant en période de très hautes eaux. En période de basses eaux, les niveaux d'eau mesurés dans l'ouvrage ne sont pas affectés par le phénomène d'intermittence observés à Fontestorbes et au Caoussous (P1 des Mijanes).

¹⁸ Sonde Van Essen Instrument CTD 10bar (capteur absolu). La compensation barométrique est réalisée à l'aide du capteur barométrique 0.1bar (Sonde Van Essen Instrument) installé à la source de Fontestorbes.

Figure 121. Evolution du niveau d'eau mesurée au piézomètre de la Frau et comparaison aux mesures réalisées à Fontestorbes

Figure 122. Vues de la source de trop-plein de l'Esqueille (BSS002MFSE ;10765X0204/S)

3.5.2. Fonctionnement et évaluation des ressources des systèmes karstiques

L'examen des hydrogrammes (Figure 102) permet de montrer que les sources de Fontmaure et Fontestorbes ont des comportements hydrodynamiques très comparables en période de crue et lors des tarissements.

Figure 123. Comparaison des débits des sources de Fontmaure (tarage A et B) et Fontestorbes (Débit journaliers de l'annuaire de A. Mangin).

Sur la période de suivi de Fontestorbes (1965-2017), le débit moyen est estimé à 2.04 m3/s, le débit moyen écoulé depuis 2015 est plus faible (1.8 m³/s) ce qui témoigne du déficit de recharge observé ces dernières années. Le volume de régulation du système karstique de Fontestorbes est estimé à 174 millions de m³ (Figure 124).

Figure 124. Estimation du volume de régulation du système karstique de Fontestorbes

Analyse des débits classés des sources de Fontmaure et Fontestorbes

Fontmaure (Tarage A). La courbe des débits classés de Fontmaure est complexe et présente 3 points d'inflexions (Figure 125). Le **premier point** d'inflexion est observé (autour de 0.9 m³/s) pour une probabilité cumulée de 30% environ, la pente de la droite α 2 est supérieure à celle de la droite α 1. L'évolution en période de basse eau correspond vraisemblablement au passage d'un écoulement influencé par l'infiltration (Q>0.9 m3/s) à un écoulement non influencé assurée uniquement par la vidange des réserves du système. Le **second point** d'inflexion est observé (autour de 3.5 m³/s) pour une probabilité cumulée de 80%, la pente de la droite α 2 est supérieure à celle de la droite α 1. Un **troisième point** d'inflexion est observé (autour de 6.5 m³/s) pour une probabilité cumulée de la droite α 3 est supérieure à celle de la droite α 2. L'évolution observée traduit l'existence de phénomène de débordement et/ou de « fuite » vers d'autre système karstique. La comparaison des hydrogrammes de Fontmaure, Ginoles et du Blau permet d'appuyer cette interprétation (Figure 126), la première inflexion (3.5 m³/s à Fontmaure) correspond à la mise en fonctionnement de la source de débordement de Ginoles, la seconde inflexion (> 6 m³/s à Fontmaure) semble coïncider à la mise en fonctionnement du trop-plein du Blau mais pourrait également traduire l'existence d'une capture vers le système de Fontestorbes.

Fontestorbes (chronique annuaire Mangin, courbe de tarage B). Premier constat, une sousestimation des débits de crue pour les débits > 12 m³/s est mis en évidence sur la courbe des débits classés pour une probabilité cumulée de 99.9%. Si l'on s'affranchit de l'évolution observée pour les probabilités cumulées supérieures à 99.9%, la courbe des débits classés de Fontestorbes est également complexe et présente 3 points d'inflexions. Le premier point d'inflexion est observé (autour de 1 m³/s) pour une probabilité cumulée de l'ordre de 40% environ, la pente de la droite α^2 est supérieure à celle de la droite α^1 . L'évolution en période de basses eaux correspond au passage d'un écoulement influencé par l'infiltration ($Q > 1.2 \text{ m}^3/\text{s}$) à un écoulement non influencé assurée uniquement par la vidange des réserves du système. Notons que le déclenchement des intermittences de Fontestorbes se produit lorsque le débit est voisin de 1 m³/s. Le second point d'inflexion est observé (autour de 3.5 m³/s) pour une probabilité cumulée de l'ordre de 80%, la pente de la droite α 3 est supérieure à celle de la droite α 2. Cette évolution correspond vraisemblablement à la mise en fonctionnement de la source de débordement de l'Esqueille lorsque le débit à Fontestorbes devient supérieur à 3 m³/s. La comparaison de l'hydrogramme de Fontestorbes à la piézométrie mesurée dans l'ouvrage de la Frau situé à proximité de la source de l'Esqueille permet d'appuyer cette interprétation (Figure 127). Pour le troisième point d'inflexion observé en période de très hautes eaux (> 6 m³/s pour une probabilité cumulée de 98%), on constate que la pente de la droite α 2 est supérieure à celle de la droite α 3 ce qui pourrait traduire l'existence d'un apport d'eau en provenance d'un autre système, celui de Fontmaure et/ou du Blau dans le cas présent (capture d'une partie de l'écoulement de Fontmaure et/ou du Blau en période de très hautes eaux).

Figure 125. Comparaison des débits classés des sources de Fontmaure et Fontestorbes (Q Annuaire Mangin)

Figure 126. Comparaison des débits mesurés à Fontmaure (exutoire majeur) aux débits mesurés à Ginoles (exutoire secondaire) et au Blau (source de trop plein)

Figure 127. Comparaison des débits mesurés à Fontestorbes (exutoire majeur) à la piézométrie mesurée au piézomètre de la Frau située près de la source de trop plein de l'Esqueille.

Pour tester l'hypothèse de la capture d'une partie de l'écoulement de crue du système de Fontmaure au profit de Fontestorbes en période de très hautes eaux, une analyse des débits classés des débits cumulés de la somme des débits de Fontmaure et de Fontestorbes a été réalisée (Figure 128). La courbe des débits classés présente 2 points d'inflexions. Le premier point d'inflexion est observé (autour de 2.2 m³/s) pour une probabilité cumulée de 40%, la pente de la droite α 1 est supérieure à celle de la droite α 2. L'évolution en période de basse eau correspond au passage d'un écoulement influencé par l'infiltration (Qglobal > 2.2 m3/s) à un écoulement non influencé assuré uniquement par la vidange des réserves du système karstique pris dans sa globalité. Le second point d'inflexion est observé (autour de 7.5 m³/s) pour une probabilité cumulée de l'ordre de 80%, la pente de la droite α 3 est supérieure à celle de la droite α 2. Cette évolution correspond vraisemblablement à la mise en fonctionnement des débordements des sources de l'Esqueille et de Ginoles lorsque le débit global du système (Fontestorbes + Fontmaure) devient supérieur à 7.5 m³/s. Pour les débits globaux supérieurs à 7.5 m³/s, la courbe des débits classés de la somme des débits de Fontmaure et Fontestorbes ne présente pas d'autre point d'inflexion significatif nottamment autour de 12 m³/s. Ce constat et l'allure de la courbe des débits classés cumulés (Figure 128) permet donc d renforcer l'interprétation de la Figure 125 qui montre qu'une partie de l'écoulement de crue du système de Fontmaure (en période de très hautes eaux) est capturé au profit de Fontestorbes Nottons par ailleurs que la courbe des débits classés de la somme des débits de Fontmaure et Fontestorbes ne présente pas d'autre point d'inflexion significatif pour les débits élévés (>12 m³/s) permettant de mettre en évidence le fonctionnement du trop-plein du Blau. Ce constat est vraisemblablement lié au nombre limité de valeurs utilisées pour l'analyse du débit cumulé (1775 valeurs journalières sur la période 2010-2017). L'analyse demandera à être

reconduite dans le futur sur des chroniques plus longues pour vérifier/étudier le rôle du trop-plein du Blau. Sur la période 2015-2017, les débits moyens journaliers de crue du Blau sont restés faibles (< 5.8 m³/s) en comparaison du débit moyen journalier cumulé des sources de Fontestorbes et Fontmaure (Figure 129).

Figure 128. Débit classé de la chronique de débit cumulé (QFontestorbes¹⁹+ QFontmaure).

Figure 129. Comparaison du débit du Blau au débit cumulé (Fontestorbes+Fontmaure).

¹⁹ Chronique de débit de l'annuaire d'Alain Mangin

Analyse des courbes de récession des sources de Fontmaure et Fontestorbes

Pour la source de Fontestorbes suivi depuis 1965, 51 récessions ont été traitées tandis que pour la source de Fontmaure suivi depuis 2010 (avec lacunes), seulement 5 récessions ont été analysées à l'aide de l'approche de Mangin modifiée. Les paramètres des ajustements des différentes périodes analysées sont rassemblés dans les tableaux en annexe. Les paramètres moyens (cf. Tableau 32) des 2 systèmes karstiques sont très comparables compte tenu des incertitudes ce qui n'est pas surprenant compte de la forte similitude des hydrogrammes des 2 sources (Figure 125). Les commentaires ci-dessous s'appuieront sur les résultats de Fontestorbes, des interprétations comparables sont proposées pour Fontmaure.

Fontestorbes	Q0	Qf	К	i(q1)	i (q2)	alpha	QR0	q1	t1	q2	t2	Vi_rapide	Vi_lente	Vdyn
(n=51)	m3/s	m3/s					m3/s	m3/s	(j)	m3/s (j)		Mm3	Mm3 Mm3	
Min	3.36	0.65	0.22	0.02	0.68	0.0013	0.91	0.02	0.02 3		24	0.01	0.91	16.15
Max	13.38	2.41	0.83	0.75	0.98	0.0082	1.64	10.87	20	5.96	90	3.33	13.37	61.20
Moy	6.92	0.80	0.42	0.41	0.93	0.0037	1.23	3.20	10.5 2.4		51.3	0.80	5.11	31.04
Ecart-type	2.48	0.24	0.11	0.16	0.05	0.0013	0.17	2.07	5.5	1.05	15.7	0.60	3.07	8.12
Fontmaure_A	Q0	Qf	к	i(q1)	i (q2)	i (q2) alpha		q1	t1	q2	t2	Vi_rapide	Vi_lente	Vdyn
(n=5)	m3/s	m3/s						m3/s	(j)	m3/s	(j)	Mm3	Mm3	Mm3
Min	4.96	0.59	0.21	0.17	0.88	0.0044	1.45	2.07	3	1.45	35	0.36	2.83	14.18
Max	12.81	0.95	0.56	0.62	0.98	0.0112	2.11	8.60	18	3.06	107	3.53	9.51	37.16
Moy	9.93	0.77	0.39	0.43	0.95	0.0065	1.77	6.10	7.9	2.06	64.8	1.75	5.11	26.03
Ecart-type	3.00	0.16	0.12	0.20	0.04	0.0027	0.25	2.60	5.9	0.61	27.6	1.29	2.57	8.29
Fontmaure_B	Q0	Qf	К	i(q1)	i (q2)	alpha	QR0	q1	t1	q2	t2	Vi_rapide	Vi_lente	Vdyn
(n=5)	m3/s	m3/s					m3/s	m3/s	(j)	m3/s	(j)	Mm3	Mm3	Mm3
Min	5.02	0.73	0.34	0.18	0.88	0.0022	1.23	1.94	3	1.54	28	0.36	2.54	23.68
Max	11.81	1.13	0.81	0.65	0.98	0.0075	2.17	7.96	6	5.14	120	2.31	9.04	57.99
Moy	9.22	0.88	0.57	0.48	0.93	0.0041	1.70	4.91	4.6	2.61	72.9	1.20	5.77	40.23
Ecart-type	2.61	0.18	0.17	0.20	0.04	0.0021	0.40	2.21	1.4	1.48	33.7	0.76	2.76	12.50

Tableau 32. Statistiques descripitive des paramètres de l'analyse des courbes de récession par l'approche de Mangin modifée.

Le temps de fin d'infiltration de la composante rapide de l'écoulement est moyennement court (10 jours \pm 5) et les vitesses moyennes d'infiltration rapide indiquent qu'une partie de la zone d'infiltration est hydrauliquement bien connectée à la zone noyée du système. L'écoulement de crue apparait majoritairement assuré par la composante rapide de l'écoulement. Le temps de fin d'infiltration de la composante lente de l'écoulement est important (>51 jours \pm 16 jours), les récessions apparaissent donc longtemps influencées par cette composante lente de l'infiltration.

Les coefficients de tarissement (0.0037 ± 0.0013) déduits des récessions non influencées par l'infiltration sont faibles ce qui indique que la zone noyée du karst se vidange lentement (ou difficilement). Les volumes dynamiques des réservoirs de Fontestorbes et Fontmaure sont importants, estimés respectivement à 31 ± 8 millions de m³ (Fontestorbes) et 26 ± 8 millions de m³ ou 40 ± 12 millions de m³ selon que l'on considère la courbe A ou B de Fontmaure. Les paramètres d'infiltration moyens (i) sont comparables (0.41 ± 0.16 pour Fontestorbes et 0.43 ± 0.20 pour Fontmaure). Le report des valeurs moyennes (K, i) dans le diagramme de classification de Mangin (Figure 130) permet de comparer les résultats avec d'autres systèmes étudiés dans la littérature. Les valeurs moyennes des paramètres se positionnent dans le domaine 2 caractéristiques d'un système karstique complexe plus karstifié à l'amont qu'à l'aval qui présente de forts retards à l'alimentation. Le pouvoir régulateur élevé (K de l'ordre de 0.4) des systèmes karstiques témoigne d'une accumulation importante de réserves d'eau souterraine. Le débit spécifique de Fontestorbes (20 l.s⁻¹.km⁻²) apparait significativement plus élevé que celui de Fontmaure (15 l.s⁻¹.km⁻²).

Nom de la source	Q moy (m3/s)	Q moy spécifique (m ³ s ⁻¹ km ⁻²)	Q(50) ²⁰ (m3/s)	Vdyn (10^6 m3)	QR0 (m3/s)	alpha	К	I
Fontestorbes	2.05	0.020	1 45	31.0	1.23	0.0037	0.42	0.41
(n=51)	(2σ=1.50)	0.020	1.40	(2σ=8.1)	(2σ=0.17)	(2σ=0.0013)	(2σ=0.11)	(2σ= 0.16)
Fontmaure A	2.03	0.015	1.24	26	1.77	0.0065	0.39	043
(n=5)	(2σ= 1.78)	0.015	1.24	(2σ = 8)	(2σ=0.25)	(±0.0027)	(2σ= 0.12)	(2σ= 0.20)
Fontmaure B	2,18	0.016	1 1 1	40	1.70	0.0041	0.57	0.48
(n=5)	(2σ=1.70)	0.010	1.44	(2 σ = 12)	(2 0 =0.40)	(2σ=0.0021)	(2 0 =0.17)	(2σ= 0.20)

 Tableau 33. Synthèse des paramètres déduits de l'analyse des courbes de récession par l'approche de Mangin (S=103 et 135 km2 pour Fontestorbes et Fontmaure respectivement, cf. Tableau 39)

Figure 130. Report des paramètres I et K déduit de l'analyse des courbes de récession des sources de Fontmaure et Fontestorbes dans la classification de Mangin modifiée

Informations apportées par la modélisation Gardenia

Les résultats de modélisation des sources de Fontmaure et Fontestorbes sont présentés sur les figures suivantes. La description des données d'entrées du modèle et les modalités de mise en œuvre de l'approche de modélisation ont été précédemment détaillées (cf.3.2.4). Dans l'approche de modélisation, le débit des sources karstiques est supposé assuré par 2 composantes d'écoulements (cf. Figure 38) : une composante d'écoulement rapide qui intervient lors des périodes de crues et au début du tarissement et une composante de vidange d'un réservoir souterrain qui assure le débit d'étiage de la source.

Les comparaisons des résultats des modèles avec les débits sont présentées à titre de comparaison. Le critère de Nash pour les modèles de Fontmaure et Fontestorbes sont respectivement de 0.70 et 0.68. Les valeurs du critère sont jugées satisfaisantes de même que l'allure du débit simulé, ce qui permet une discussion des résultats. Les paramètres des modèles obtenus par calage automatique sont rassemblés en Annexe 7, les données d'entrée de

²⁰ Q(50) : débit médian

précipitation et d'ETP ont été optimisées pour la source de Fontestorbes. Les superficies des bassins d'alimentation ont été fixées respectivement à 135 km² et 103 km² pour Fontmaure et Fontestorbes (Tableau 39).

La valeur du coefficient Rui_Per de Fontmaure est plus faible (57 mm) que celle de Fontestorbes (82 mm) ce qui indique que la part de la composante d'écoulement rapide du modèle de Fontmaure est plus importante que pour Fontestorbes. Les temps de demi-Tarissement-Rapide des deux modèles sont comparables, de l'ordre de 1.5 mois, valeurs globalement élevées ce qui dénote que les systèmes karstiques évacuent assez lentement cette composante de l'écoulement. Le temps de demi percolation (T1/2_Perco = T1/2 demi-montée) du modèle Fontmaure (1.66 mois) est supérieur à celui du modèle de Fontestorbes (0.35 mois) ce qui suggère que la recharge de la zone noyée du système de Fontmaure se produit plus longtemps que pour Fontestorbes. Ce résultat pourrait indiquer l'existence d'une zone non saturée peu ou mal karstifiée et/ou d'une zone non saturée d'épaisseur plus importante pour Fontestorbes et de 320 m pour Fontmaure)

Les bilans annuels sur la période 2000-2017 sont présentés (Figure 131 et Figure 132). Pour Fontmaure, la pluie efficace est estimée à 473 mm (±145 mm), la part de la fonte de neige est faible (26 mm ± 26mm). Pour Fontestorbes, la pluie efficace est estimée à 515 mm (±156 mm), la part de la fonte de neige est plus importante que pour Fontmaure (124 mm ± 78 mm) ce qui est logique compte tenu de l'altitude de l'impluvium (Tableau 39, Figure 170). Avec l'approche de modélisation Gardénia, la contribution de la composante souterraine à l'écoulement globale est estimée 49.4 ± 5.6 % sur la période 2000-2017, soit 31 ± 7 millions de m³ par an. L'année 2017, avec un volume estimé à 21 millions de m³ (154 mm), présente les valeurs les plus faibles de la période. Pour Fontestorbes, la contribution de la composante souterraine à l'écoulement globale est supérieure (75.3 ± 4.6 % sur la période 2000-2017, soit 39.5± 9.5 millions de m³ par an). L'année 2017, avec un volume estimé à 25 millions de m³ (245 mm), présente les valeurs les plus faibles de la période. Les volumes de la composante souterraine de Gardénia sont à rapprocher aux volumes dynamiques déduits de l'analyse des courbes de récession, les valeurs sont du même ordre de grandeur.

Figure 131. Modélisation du débit de la source de Fontmaure par le modèle Gardenia (période 2000-2017)

Figure 132. Modélisation du débit de la source de Fontestorbes par le modèle Gardenia (période 2000-2017)

3.5.3. Apports des informations géochimiques

Principales caractéristiques des points d'eau suivis

Les concentrations moyennes et les écart-types des principaux éléments majeurs et trace (Sr) des points d'eau échantillonnés entre octobre 2014 et juin 2016 sont reportées dans le Tableau 34, les tableaux des résultats sont reportés en annexe 6. Les valeurs mesurées dans cette étude pour Fontmaure et Fontestorbes sont dans les mêmes gammes de variation que celles précédemment connues (cf. synthèse du rapport BRGM/RP-64209).

Valeurs m	Valeurs moyennes (cf. Tableaux de résultats en annexe)																					
			HCO3	(2 σ)	Са	(2 σ)	SO4	(2 σ)	Sr	(2 σ)	Mg	(2 σ)	SiO2	(2 σ)	Cl	(2 σ)	NO3	(2 σ)	Na	(2 σ)	к	(2 σ)
Indice BSS	Point	nb analyses	mg/l		mg/l		mg/l		μg/l		mg/l		mg/l		mg/l		mg/l		mg/l		mg/l	
10747X0247	Blau	17	280	33	98,8	13,9	40,2	22,6	306	56	6,2	2,0	4,0	0,9	3,1	0,9	1,6	1,3	1,8	0,4	0,7	0,5
10747X0249	Cailla	10	333	18	114,4	6,7	15,6	4,5	502	76	4,6	1,0	7,3	0,6	4,2	0,2	3,4	0,8	2,6	0,3	1,0	0,3
10765X0116/HY	Contes	7	80	23	24,6	7,1	5,5	1,6	45	18	2,0	0,6	4,9	0,7	1,3	0,4	1,2	0,4	1,2	0,3	0,5	0,1
10765X0204/S	Esqueille	8	171	7	50,7	2,3	2,9	0,4	67	10	4,7	0,3	2,4	0,2	1,1	0,2	2,0	0,2	0,6	0,0	0,5	0,0
10765X0207	Fontestorbes	18	196	11	60,2	4,1	9,4	2,1	88	14	5,4	0,4	3,9	0,4	1,6	0,3	2,4	0,3	1,0	0,1	0,5	0,1
10765X0208	Fontmaure	17	230	8	127,7	26,0	180,2	84,8	892	346	15,1	6,5	5,5	1,0	3,2	0,3	5,3	1,3	1,8	0,2	0,7	0,2
10766X0089/HY	Ginoles	11	259	23	88,4	3,5	12,0	2,8	299	36	2,9	0,5	4,5	0,5	4,9	0,5	3,2	0,9	2,8	0,4	0,5	0,1
10775X0004/S	Lasset (amont)	3	24	8	6,9	2,7	3,1	0,5	10	3	0,6	0,2	4,5	0,5	0,6	0,1	0,5	0,0	0,8	0,1	0,5	0,0
10775X0077/S	Pertes Bouychettes/Quérines	8	202	26	67,5	10,8	8,1	1,3	150	21	2,9	0,2	4,3	0,3	2,9	2,3	6,7	8,2	2,3	2,4	0,9	0,6
10881X0048	Pertes Hers (Amont Prades)	8	170	15	55,7	5,1	4,2	1,7	88	14	2,4	0,6	3,2	0,3	2,6	0,9	0,8	0,2	1,6	0,4	1,0	1,5
10882X0216	Pertes Lasset	3	37	15	11,2	4,4	4,2	0,7	21	8	1,3	0,5	4,4	0,5	1,3	0,5	1,2	0,3	1,2	0,3	0,5	0,1
10883X0226	Pertes Rébounidou	11	241	14	80,1	4,8	6,0	0,6	315	25	2,2	0,3	7,3	1,4	4,9	0,5	4,9	0,7	2,6	0,3	0,7	0,3
10891X0043/S	Pertes_Camurac	8	147	16	48,8	4,5	4,1	0,5	76	8	2,1	0,2	6,2	1,5	21,2	1,9	1,2	1,0	11,6	1,1	0,8	0,3

Tableau 34. Concentrations moyennes et écart-type des principaux éléments majeurs et trace (Sr) des points d'eau échantillonnés entre octobre 2014 et juin 2016.

Le faciès des eaux est bicarbonaté calcique à l'exception de Fontmaure qui est globalement sulfatée calcique. La source de Fontmaure présente d'importantes variations de minéralisation au cours des cycles hydrologiques, les conductivités électriques sont comprises entre 300 μ S/cm et 900 μ S/cm (Figure 101), des teneurs en calcium et sulfate importantes (respectivement comprises entre 75 et 168 mg/l et comprises entre 14 mg/l et 292 mg/l) et de fortes teneurs en strontium (entre 202 μ g/l et 1355 μ g/l).

Les teneurs moyennes en chlorures et sodium apparaissent globalement faibles (respectivement, <5 mg/l et 2.8 mg/l) à l'exception des eaux des pertes de Camurac (respectivement 22 mg/l et 11.6 mg/l) qui apparaissent nettement influencées par le salage des routes. Les teneurs moyennes en nitrates des sources apparaissent globalement faibles à l'échelle de la zone d'étude (entre 1.2 mg/l à l'Esqueille et 5.3 mg/l à Fontmaure), les eaux des pertes des cours d'eau sur le plateau d'Espezel ont tendances à présenter des valeurs plus élevées (entre 4.9 mg/l aux pertes du Rébounédou et 6.7 mg/l aux pertes des Quirines). A la perte des Quirines, l'influence de la station d'épuration de Roquefeuille est bien visible en période de basses eaux (NO3= 23 mg/l).

Les résultats des analyses chimiques sur les eaux prélevées (par soufflage) sur le forage du Blau sont présentés dans le Tableau 35, une comparaison avec les concentrations moyennes mesurées au Blau peut être établie. Les teneurs en Mg, Cl, Na, K et SiO2 du forage du Blau sont très comparables aux concentrations mesurées au Blau contrairement aux teneurs en HCO3 et Ca qui apparaissent plus faibles. Ce dernier résultat est probablement lié à la technique du soufflage utilisée pour prélever l'eau du forage profond. L'air envoyé sous pression (technique du soufflage) a vraisemblablement provoqué un réajustement des équilibres du système calco-carbonique au sein de l'ouvrage qui s'est traduit par une précipitation de CaCO3 au moment du
prélèvement, l'eau échantillonnée apparait alors moins chargée en HCO3 et Ca. Les teneurs en sulfate et en strontium des eaux du forage du Blau apparaissent plus faibles que celles mesurées sur le cours d'eau du Blau. L'augmentation constatée des teneurs en Sr et SO4 du Blau en période d'étiage (cf. Figure 133) témoigne vraisemblablement des interactions eau-roche que l'eau subit avec les marnes rouges parfois gypseuses du Thanétien supérieur (paléocène) entre son émergence dans la zone d'éboulie du karst et la localisation du point de prélèvements sur le cours d'eau (Figure 109).

		HCO3	Ca	SO4	Sr	Mg	SiO2	Cl	NO3	Na	К
Indice BSS	Point	mg/l	mg/l	mg/l	μg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
BSS003YFXQ	Forage du Blau (après 2h de soufflage)	226	70,7	16,9	217	6,0	4,8	2,5	1,2	1,8	0,5
BSS003YFXQ	Forage du Blau (après 30 mn de soufflage)	236	70,9	7,5	269	7,5	5,0	3,1	1,0	2,0	0,7
10747X0247	Blau (moyenne)	280	98,8	40,2	306	6,2	4,0	3,1	1,6	1,8	0,7

Tableau 35. Comparaison des concentrations mesurées au forage du Blau (Décembre 2017) auxconcentrations moyennes du Blau (calculées sur la période d'octobre 2014 à juin 2016)

Concentrations et origine des sulfates

La source de Fontmaure présente d'importantes variations de concentration en sulfate au cours du cycle hydrologique, les valeurs maximales sont observées lors des périodes de basses eaux (Figure 133). La source de trop-plein de Ginoles qui est rattachée au système de Fontmaure présente de faibles concentrations en SO4 (de l'ordre de 12 mg/l en moyenne), les concentrations de Fontmaure étant comprise en 10 et 280 mg/l. Les concentrations en SO4 du Blau sont nettement supérieures à celles de la source de Ginoles(de l'ordre de 40 mg/l en moyenne), les valeurs maximales sont globalement observées en étiage.

La gamme de variation des teneurs en SO4 de la source de Fontestorbes est beaucoup plus faible qu'a Fontmaure, les concentrations tendent vers 10 mg/l en étiage contre plus de 280 mg/l pour Fontmaure. Les concentrations les plus élevées de Fontestorbes (de l'ordre de 13 mg/l) sont

observées lors des décrues printanières. Les eaux de Fontestorbes présentent des concentrations significativement supérieures à celles de la source de trop-plein de l'Esqueille (de l'ordre de 3 mg/l en période de hautes eaux).

A l'échelle de la zone d'étude, d'autres points d'eau présentent des concentrations en SO4 élevées (SO4 >40 mg/l) : pertes du Basqui en étiage (10881X0050) ; Sce Argelier (10883X0208/ARGELI) ; Sce Gesse (10884X0214/GESSE), pertes de la Jasse (10747X0248).

Les gammes de valeurs $\delta^{34}S_{sulfate}$ et $\delta^{18}O_{sulfate}$, documentées dans la littérature pour les sources potentielles de sulfates dissous, sont représentées sur les illustrations suivantes (Figure 134 et Figure 135). Dans ces illustrations, le report des signatures isotopiques des échantillons d'eau prélevés en contexte de basses eaux en octobre 2015 permet de montrer que l'origine des sulfates des sources de Fontmaure, Gesse et Argelier est due aux interactions eau-roche avec les évaporites du Trias. Une circulation des eaux semble donc s'opérer au contact des évaporites triasiques, présentes à la base de la série calcaire et au contact des principaux accidents chevauchants dont le chevauchement frontal Nord-pyrénéen.

Pour la source de Fontestorbes, l'origine des sulfates est mixte, la signature isotopique des sulfates apparait expliquée principalement par l'eau de pluie et également par l'oxydation des sulfures sédimentaires.

Figure 134. Evolution de la signature isotopique du soufre des sulfates (δ^{34} S_SO4) en fonction de rapport 1/SO₄ et de la signature isotopique de l'oxygène des sulfates.

Figure 135. Evolution de la signature isotopique du soufre des sulfates (δ^{34} S_SO4) en fonction de la signature isotopique de l'oxygène des sulfates (δ^{18} O_SO4).

Pour les pertes de la Jasse et du Basqui, les caractérisations isotopiques n'ont pas été réalisées. Le Basqui en période de basses eaux présente un faible débit et, dans sa partie aval, est alimenté par des petites sources en rive gauche issues des dolomies du Jurassique riche en matière organique minéralisé (composés organo sulfuré et phosphoré). L'origine des sulfates des pertes du Basqui en période de basses eaux est attribuée à cet apport d'eau issu des dolomies du Jurassique (dolomie fétide²¹), les sulfates provenant de l'oxydation de sulfures. En période de hautes eaux, les teneurs en sulfates sont faibles, la contribution des eaux des dolomies du Jurassique au débit du Basqui étant faible au regard des autres apports non concentrés en sulfates. Pour les pertes de la Jasse (SO₄ = 111 mg/l), l'origine des teneurs élevées en sulfates demeure inconnue. L'hypothèse la plus vraisemblable est que les eaux de surface des pertes de la Jasse ont interagi avec les marnes noires de l'Aptien et se sont chargées en sulfate en basses eaux. A titre d'illustration, les eaux de la source du Courent (10765X0201/HY) située dans le bassin de Fougax présentaient des teneurs en sulfates élevées (22.5 mg/l) en période de hautes eaux (les concentrations de cette source en périodes de basses eaux ne sont malheureusement pas connues).

²¹ Souvent, au choc au marteau, les dolomies dégagent une odeur fétide provoquée par le dégagement des composés organo sulfuré.

Figure 136. Evolution de la signature isotopique du strontium (⁸⁷Sr/⁸⁶Sr) en fonction de rapport chimique (S0₄/Sr)

L'examen des rapports isotopiques du strontium (⁸⁷Sr/⁸⁶Sr) en fonction du rapport SO₄/Sr (Figure 136) à la lumière des informations apportées par les isotopes des sulfates permet d' expliquer la position des points de la source Gesse qui est influencée par le Trias en basses eaux.

Pour la source d'Argelier, les rapports ⁸⁷Sr/⁸⁶Sr apportent une information sur les évolutions géochimiques au sein du réservoir. En effet, les rapports ⁸⁷Sr/⁸⁶Sr des eaux sont identiques en période de hautes et basses eaux et les valeurs mesurées sont très significativement supérieures aux rapports ⁸⁷Sr/⁸⁶Sr du pole triasique, ce qui suggère une évolution importante de la signature isotopique de l'eau au sein du réservoir carbonaté par interaction eau-roche après que l'eau ait été en contact avec les évaporites du Trias. Pour la source de Fontmaure, un phénomène comparable est mis en évidence, les rapports isotopiques du strontium (⁸⁷Sr/⁸⁶Sr) de l'eau sont très comparables aux signatures isotopique du rapport ⁸⁷Sr/⁸⁶Sr par interaction eau-roche au sein du crétacé ce qui suggère également une évolution isotopique du rapport ⁸⁷Sr/⁸⁶Sr par interaction eau-roche au sein du sein du Crétacé après que l'eau ait été en contact avec les évaporites du Trias.

La source de Belfort sur Rébenty présente des rapports ⁸⁷Sr/⁸⁶Sr très significativement différents des autres points d'eau échantillonnés dans les formations du secondaire (Blau, Gravier, Cailla, Rébounidou, Ginoles,...), les rapports ⁸⁷Sr/⁸⁶Sr sont plus élevés et les valeurs mesurées témoignent d'une influence du pole anté-triasique. Ces résultats posent donc la question de l'origine des eaux échantillonnées à la source de Belfort sur Rébenty. L'origine des valeurs radiogéniques mesurées n'apparait pas liée à l'existence de phénomène de mélange d'eau avec

les zones de pertes localisées sur le plateau d'Espezel²² puisque les résultats des essais de traçage réalisés dans cette étude (cf. §3.4.4) ont démontré l'absence de connexion hydraulique avec la source. L'origine des valeurs radiogéniques mesurées à la source de Belfort sur Rébenty est liée à la nature géologique des blocs rocheux de l'épandage alluvial déposé par le paléo-Rébenty, ce dernier constituant le siège du réservoir drainé par la source (cf. 2.6.4) : matériaux détritiques en provenance des formations du primaire et du socle de la haute vallée du Rébenty.

Altitude moyenne de recharge des principales sources

La signature des pluies évolue en fonction de l'altitude, les précipitations en altitude étant appauvries en isotopes lourds par rapport aux pluies des altitudes plus basses (plaines). Le gradient isotopique altitudinal pour l'oxygène 18 est généralement compris entre -0.1‰ à - 0.3‰/100 m. Cette propriété singulière des isotopes de l'eau est fréquemment utilisée dans les études environnementales pour évaluer les altitudes de recharge des eaux souterraines. Pour la zone d'étude, la droite d'évolution de la signature isotopique en fonction de l'altitude est connue (cf. §3.2.5). La correspondance entre signature isotopique et altitude est reportée en bleu sur l'abscisse de la figure suivante qui permet de représenter l'évolution du rapport isotopique du strontium en fonction de la signature de l'oxygène 18 de l'eau (Figure 137). Cette figure est focalisée sur les systèmes karstiques du secondaire, la vue générale du contexte géochimique de la zone d'étude est présentée en annexe 6.

La signature isotopique qui doit être considérée pour l'estimation de l'altitude moyenne de recharge est la signature mesurée en basses eaux afin de caractériser celle du réservoir non influencé par l'infiltration (rapide et/ou lente). Les altitudes moyennes de recharge des sources de Fontmaure et Fontestorbes sont évaluées respectivement autour de 1200 m (moyenne en BE, $\delta^{18}O = -9.5\% \pm 0.2\%$) et 1400 m (moyenne en BE, $\delta^{18}O = -10\% \pm 0.2\%$). A titre de comparaison, la signature isotopique théorique des 2 systèmes karstiques a été calculée en considérant d'une part, la distribution des altitudes calculées à l'aide du SIG (voir Figure 170) et la droite d'évolution de la signature isotopique en fonction de l'altitude établie par Krimissa (1995). Les signatures isotopiques pondérées (δ^{18} O) de Fontmaure et Fontestorbes sont évaluées respectivement à -9 $\% \pm 0.2\%$ et -9.5% $\pm 0.2\%^{23}$, ces signatures théoriques bien que comparables apparaissent plus enrichies en isotopes lourds par rapport aux signatures mesurées en basses eaux. Si l'on accepte l'idée que la droite établie par Krimissa (1995) permet de définir le gradient isotopique altitudinal des précipitations de la zone d'étude, la différence observée entre les valeurs mesurées et calculées suggère une participation accrue des zones situées en altitude au sein des impluviums. Cette participation accrue des zones d'altitudes est liée aux bassins versants alimentant les pertes karstiques dont les signatures isotopiques ont été évaluées : pertes du Basqui ($\delta^{18}O = -$ 10.4 ‰ ± 0.2‰), pertes de l'Ourza (δ^{18} O = -10.6 ‰ ± 0.2‰) et pertes de l'Hers à Prades (δ^{18} O = -10.5 $\% \pm 0.2\%$) pour le système de Fontestorbes et pertes de Camurac ($\delta^{18}O = -9.8 \% \pm 0.1\%$), pertes du Rébenty dans la ZIM ($\delta^{18}O = -10.4 \ \% \pm 0.1\%$) pour Fontmaure. Les signatures isotopiques des pertes du Rébounédou ($\delta^{18}O = -8.9 \ \text{\%} \pm 0.1 \ \text{\%}$) apparaissent conformes aux signatures attendues pour des altitudes de recharge autour de 900 m d'altitude contrairement aux eaux des pertes des Quirines ($\delta^{18}O = -9.7 \% \pm 0.2\%$). Pour les pertes Quirines, la contribution des eaux de la STEP de Roquefeuil provoque un appauvrissement des eaux drainées car l'eau

²² [Notamment les eaux de la perte de Quirines/Bouychette et de la perte de la STEP d'Espezel, ces dernières étant influencées du point de vue du rapport ⁸⁷Sr/⁸⁶Sr par la signature radiogénique de l'eau de la source karstique SRE utilisée par le syndicat de Roquefeuil –Espezel pour l'AEP, située dans le primaire (cf. 3.3.3)].

²³ Le calcul d'incertitude ne prend pas en compte l'incertitude de la distribution des altitudes calculées par le SIG, seule l'incertitude du gradient isotopique de Krimissa (cf. § 3.2.5) a été considérée.

utilisée pour l'AEP provient de la source SRE qui est appauvries en isotopes lourds ($\delta^{18}O = -10.5$ ‰ ± 0.1‰).

Figure 137. Zoom de l'évolution des rapports ⁸⁷Sr/⁸⁶Sr des eaux en fonction des signatures isotopiques en oxygène 18 et altitude (en bleu), focalisé sur les systèmes karstiques du secondaire.

La source de trop-plein de l'Esqueille présente des signatures isotopiques enrichies en isotopes lourds par rapport à l'eau de la zone noyée de Fontestorbes qualifiée en basses eaux. Ce résultat constitue une surprise car on imaginait que ce trop-plein permettait d'évacuer les eaux du compartiment Sud situé à des altitudes élevées. L'altitude moyenne de l'Esqueille est ici évaluée à 1200 m à l'aide des isotopes stables de l'eau. Compte tenu de ces résultats, l'impluvium présumé de l'Esqueille serait situé à l'Ouest (Roc du Tals, Montagne de la Frau, Sarrat de la sentinelle), l'altitude moyenne calculée par SIG étant de l'ordre de 1400 m, soit une valeur moyenne assez proche.

Pour la source de Ginoles et le trop plein du Blau, les altitudes moyennes de recharge déduit des signatures isotopiques sont plus faibles, autour de 800-900 m. Les eaux prélevées au forage du Blau, réalisé fin 2017, présentent également une signature isotopique enrichie en isotopes lourds ($\delta^{18}O = -8.3\% \pm 0.1\%$) très comparable à celle mesurée au Blau ($\delta^{18}O = -8.6\% \pm 0.3\%$), ce qui témoigne d'une altitude moyenne de recharge autour de 800-900 m également. Pour le Blau, les résultats des isotopes stables de l'eau et des isotopes du strontium (Figure 137) permettent de montrer l'absence de contribution des eaux rechargées en hautes altitudes, ce qui permet d'exclure la participation des eaux provenant du secteur de Camurac comme imaginé au début

du projet. Ces résultats isotopiques sont cohérents avec l'organisation des écoulements souterrains déduit au moyen de l'approche KARSYS.

La source de Fontmaure et la source de débordement de Ginoles présentent des signatures isotopiques très contrastées en période de basses eaux : $\delta^{18}O = -9.6\%$ (±0.2‰) et $\delta^{18}O = -8.6\%$ ± (0.2‰), respectivement. L'application de l'approche KARSYS a précédemment permis de proposer une zone noyée unique pour les sources de Fontmaure et de Ginoles, l'analyse des débits classés de Fontmaure permettant de corroborer ces résultats. Les informations géochimiques indiquent ici qu'il existe une compartimentation géochimique au sein du réservoir, l'existence de la connexion hydraulique des sous-système n'est pas remise en question.

Evolutions géochimiques des principales sources en période de hautes eaux et de crue (épisode du 21/02/2018)

Les figures précédentes (Figure 136 et Figure 137) et suivantes (Figure 138 à Figure 140) permettent d'illustrer le fonctionnement des systèmes en période de crue.

La source de Fontestorbes présente des évolutions complexes et différentes selon le type d'évènement hydrogéologique considéré. Les périodes crues de fontes de neige des périodes printanières sont caractérisées par un appauvrissement des signatures isotopiques de l'eau et une augmentation du rapport ⁸⁷Sr/⁸⁶Sr ce qui traduit la participation majoritaire du compartiment Sud du système situé à des altitudes supérieures et présentant des pertes de cours d'eau drainant les formations anté-triasiques (Pertes de l'Hers, pertes du Basqui et de l'Ourza). Les autres périodes de crue sont caractérisées par un enrichissement des signatures isotopiques de l'eau et une diminution du rapport ⁸⁷Sr/⁸⁶Sr ce qui traduit la participation majoritaire du compartiment Nord du système situé à des altitudes moyennes de l'ordre de 880 m (cf. Figure 170) drainant la partie Nord-Ouest du plateau crétacé d'Espezel (Figure 158)

Figure 138. Evolution des teneurs en sulfate des eaux en fonction des signatures isotopiques en oxygène 18

Pour la source de Fontmaure, les périodes de crue sont caractérisées par un enrichissement des signatures isotopiques de l'eau et une très légère augmentation du rapport ⁸⁷Sr/⁸⁶Sr ce qui traduit la participation majoritaire du compartiment Nord du système situé à des altitudes moyennes de l'ordre de 800 à 1000 m du plateau crétacé d'Espezel (Tableau 39 Figure 170). Les périodes de crue sont caractérisées par une importante baisse de la minéralisation (Ca, SO4 et Sr notamment) et par une baisse des teneurs en nitrate de la source.

Figure 139. Evolution des teneurs en nitrate des eaux en fonction des signatures isotopiques en oxygène 18

En période de crue, les rapports ⁸⁷Sr/⁸⁶Sr de la source de débordement de Ginoles et du tropplein du Blau évoluent globalement peu, ce qui indique que l'on ne mobilise pas d'eau en provenance d'autre réservoir géologique. Des fluctuations des teneurs en oxygène 18 et deutérium sont observées, les signatures isotopiques fluctuent vers des appauvrissements ou des enrichissements en isotopes lourds selon les caractéristiques isotopiques des épisodes de précipitation qui génèrent les crues (précipitations appauvries ou enrichies en isotopes lourds par rapport à l'eau préexistante dans le réservoir). Les teneurs en nitrate de la source de débordement de Ginoles présentent une tendance à la baisse en période de crue.

Les résultats de la campagne de prélèvement du 21/02/2018 sur les points d'eau des trop-pleins du Blau et des Graviers, des sources de Fontestorbes, Fontmaure et Ginoles et des pertes du Rébounédou et des Coumeilles apportent des éléments d'informations très intéressants sur l'organisation des écoulements en forte crue. Cette épisode de crue survient à la suite d'un épisode de précipitation de 73 mm (cumul du 19 au 20 février à Belcaire) dans un contexte de plateau humide, rechargé par des épisodes de précipitation (pluie/neige) dont le cumul a été évalué à 80 mm entre le 01/02/2018 et le 18/02/2018. L'épisode des 19 et 20 février a fait fondre les restes du manteau neigeux présent sur le plateau d'Espezel.

Le débit de pointe de crue mesuré au Blau n'est pas connu avec précision, le pic de hauteur d'eau au seuil (+1.17 m/seuil) est observé dans la nuit du 21/02/18 à 01h00. Le 21/02/18 vers

10h00 les débits ont été estimés²⁴ à 15 m³/s, les hauteur mesurées à la station étant de 1.13 m à 10h00. Le tableau ci-dessous donne des informations sur les débits des sources au moment des prélèvements d'eau. Pour les sources et le Blau, les prélèvements ont été effectuées dans un contexte de début de décrue.

L'examen des résultats des analyses chimiques et isotopiques permet de montrer les points suivants :

- les eaux des pertes des Coumeilles et du Rébounédou sont appauvries en isotopes lourds ce qui témoigne de l'influence des eaux de fonte de neige dans l'écoulement des eaux de surface qui se perdent dans les calcaires,
- les eaux des pertes sont significativement enrichies en bore (Figure 140),
- les eaux des trop-pleins du Blau et des Graviers sont significativement différentes l'une de l'autre lors de cet épisode de crue, elles présentent également de fortes teneurs en bore,
- les eaux des sources de Fontmaure et Ginoles sont faiblement enrichies en bore par rapport aux valeurs précédemment mesurées contrairement à Fontestorbes qui présente des eaux très enrichies par rapport à la normale. Pour Fontmaure, on montre que les eaux des pertes du Rébounédou prélevées le 21/02/18 ne sont pas encore arrivées à l'exutoire le jour même.

²⁴ Informations communiqué par Laurent Hermand (CDS 11)

Nom_echantillon	Date	heure	Preleveur	Hauteur station mesure (m)	Débit (m3/s)	Remarque
Blau	21/02/2018	10h00	L.Hermand (CDS11)	1.13	15	estimation L. Hermand
Graviers	21/02/2018	11h00	L.Hermand (CDS11)			
Rebounidou (Pertes)	21/02/2018	11h30?	L.Hermand (CDS11)			
Coumeilles (Pertes)	21/02/2018	12h30?	L.Hermand (CDS11)			
Fontestorbes	21/02/2018	13h00	L.Hermand (CDS11)	0.88	12	déduit de la courbe tarage
Ginoles	21/02/2018	13h30	L.Hermand (CDS11)	0.79	1.2	déduit de la courbe tarage
Fontmaure	21/02/2018	14h00	L.Hermand (CDS11)	0.67	12	déduit de la courbe tarage

Dans le diagramme ⁸⁷Sr/⁸⁶Sr versus SO₄/Sr (Figure 136), les points s'alignent suivant des droites ce qui permet d'illustrer l'existence de phénomènes de mélange. Les eaux du Blau apparaissent nettement influencées par les eaux d'infiltration des pertes des Coumeilles, les eaux de Fontestorbes apparaissent également influencées par des eaux du type de celles qui s'écoulent au Blau.

Dans le diagramme B versus δ^{18} O (Figure 140), l'eau de Fontestorbes se positionne sur une droite de mélange définie par les points du Blau et de Fontmaure en crue. En faisant le lien avec les résultats des débits classés de Fontestorbes qui montrent l'existence d'une capture d'un écoulement en provenance d'un autre système lorsque les débits à Fontestorbes sont supérieurs à 7 m³/s, les résultats de cette campagne de prélèvement suggèrent que les eaux capturées par Fontestorbes concernent à la fois la source de Fontmaure mais également le trop-plein du Blau.

Figure 140. Evolution des teneurs en bore des eaux en fonction des signatures isotopiques en oxygène 18

Examen des influences anthropiques

Les teneurs en bore en fonction de la concentration en chlorure et des teneurs en nitrate sont reportées sur les figures suivantes (Figure 141 et Figure 142). Ces 3 paramètres permettent d'appréhender les différentes sources de pollution (agriculture, eaux usées, salage des routes). Les différentes représentations permettent de montrer l'influence multiple des sources de pollution sur l'évolution de la qualité des eaux. Les déjections animales (fumier, lisier, fiente aviaire) sont des sources possibles de contamination en bore (Ladouche et al, 2004; BRGM-RP53114), tout comme les eaux domestiques (bore en provenance des lessives). L'origine des

teneurs en bore élevées mesurées dans les eaux de la crue de février 2018 ne peut pas être déterminée avec certitude en l'absence de mesure isotopique ($\delta^{11}B$).

L'influence du salage des routes est nettement perceptible sur les eaux des pertes de Camurac. Concernant les nitrates, les concentrations des sources demeurent globalement faibles à l'échelle de la zone d'étude. Les évolutions dans les diagrammes permettent d'apprécier l'importance relative des différents pôles de pollution. Les sources de Ginoles et Fontmaure apparaissent les plus impactées par les influences anthropiques.

Figure 141. Evolution des teneurs en bore des eaux en fonction des concentrations en chlorures

Figure 142. Evolution des teneurs en bore des eaux en fonction des concentrations en nitrate

3.6. JAUGEAGES DIFFERENTIELS

La réalisation de jaugeages différentiels a pour but de rechercher d'éventuelles relations hydrauliques entre les hydrosystèmes de surface et souterrains qui ont été identifiées suite à l'interprétation du modèle géologique selon l'approche KARSYS (rapport BRGM/RP-65888-FR).

En première interprétation, le modèle géologique permettait d'envisager un lien hydraulique entre le système karstique de Contes et de Fontestorbes ainsi qu'une alimentation du système karstique de Fontmaure par des pertes du Rébenty, soit dans la ZIM au niveau du défilé de Niort, soit au niveau du défilé de Joucou au contact des calcaires du Néocommien. Ces trois hypothèses ont été testées en réalisant des jaugeages différentiels détaillés ci-dessous.

Tous les jaugeages ont été réalisés par dilution de traceur fluorescent (uranine) et à l'aide d'un fluorimètre calibré sur place avec l'eau du cours d'eau. La précision relative des jaugeages dépend des conditions expérimentales (distance de bon mélange), et peut être inférieure à 5% dans les cas favorables. Certains jaugeages ont été répétés plusieurs fois pour tester différentes configurations d'injection ou de détection.

3.6.1. Relation hydraulique entre les systèmes karstiques de Contes et de Fontestorbes

L'interprétation selon l'approche KARSYS proposée dans le rapport BRGM/RP-65888-FR faisait l'hypothèse d'une résolution spatiale du modèle insuffisante pour bien décrire le contexte structural local. Une modification avait été apportée pour permettre aux marnes albiennes du bassin de Fougax de chevaucher les marnes bédouliennes et ainsi expliquer la position de la source de Contes en tant que source de débordement au contact entre l'aquifère (calcaire urgonien du Gargasien/Clansayésien) et l'aquiclude (marnes bédouliennes chevauchées par les marnes albiennes).

Des jaugeages différentiels réalisés en basses eaux entre le ruisseau du Lasset en amont de la perte totale du Moulin et l'ensemble des résurgences de Contes ont été réalisés dans le but de vérifier qu'il n'y avait pas de perte d'écoulement au profit du système de Fontestorbes.

Une première opération a été menée par la Société Spéléo du Plantaurel (SSP 11), le Spéléo Club de l'Arize (SCArize 09) et le Spéléo Corbières Minervois (SCM 11) en avril 2017. Le débit entrant à la perte totale du Moulin avait été estimé à 300 l/s pour un débit à l'aval de toutes les résurgences estimées à 365 l/s après avoir retranché le débit du ruisseau de St Nicolas en amont de la résurgence, estimé à 25 l/s. Le débit de perte n'était donc pas supérieur au débit de l'émergence, mais il est cependant possible que des pertes se produisent plus en amont dans le cours du Lasset, conduisant alors à un débit de perte cumulé supérieur au débit de l'émergence.

Une seconde opération a été conduite le 14/06/2017, toujours en conditions de perte totale au niveau du Moulin. Le Tableau 36 présente les résultats obtenus sur 4 sites de jaugeages permettant d'encadrer toute les zones de pertes et d'émergences possibles. Au point le plus amont (J1, Tableau 36), la conductivité électrique spécifique de l'eau était de 58 μ S/cm. Le débit perdu au niveau de la perte du Moulin était de 200 l/s et représente bien l'essentiel du débit de perte du Lasset (différence de 10 à 20 l/s avec le jaugeage le plus amont en l'absence d'affluents).

La conductivité mesurée au niveau de la source de Contes était de 157.8 μ S/cm pour une température de 9.7°C, ce qui montre par comparaison avec Fontestorbes (317 μ S/cm, 9.6°C) l'influence de la recharge par le Lasset sur les caractéristiques physico-chimiques de la source. Une résurgence en amont de la source de Contes a également été identifiée (Tableau 36) ; le débit d'émergence de 22 l/s des griffons a pu être calculé par bilan à partir de la conductivité.

Site	Longitude	Latitude	Conductivité (à 25°C)	T (°C)	Q (I/s)
J1 – Aire de pique- nique	42.85711	1.82602	58.8	15.7	216/221
J2 – Perte du Moulin	42.86604	1.86595	62.6	16.6	200
J3 – Aval source de Contes	42.88219	1.87506	175	10.6	319
J4 – Amont source de Contes	42.88348	1.87206	350	17.6	12
Source en amont de Contes	42.88356	1.87175	185.7	9.0	22
Fontestorbes			317	9.6	intermittence

Cette source amont pourrait être en partie influencée par des pertes du ruisseau une centaine de mètres en amont.

Tableau 36: Résultats des jaugeages différentiels réalisés sur le Lasset par dilution de traceur

Cette nouvelle série de jaugeages sur le système de perte-résurgence Lasset-Contes démontre que le débit perdu est inférieur au débit de la résurgence. Il n'y a donc pas lieu d'envisager de relation hydraulique entre les systèmes de Contes (pertes du Lasset) et de Fontestorbes, ce qui confirme l'interprétation proposée dans le rapport BRGM/RP-65888-FR.

3.6.2. Relation hydraulique entre le Rébenty et le système karstique de Fontmaure

Une première opération a été réalisée le 30/07/2015 pour identifier d'éventuelles pertes du Rébenty au niveau du défilé de Joucou. Les résultats obtenus sont présentés dans le Tableau 37 et mettent en évidence une diminution du débit vers l'aval. Deux autres opérations ont été menées les 20-21/10/2015 et le 17/08/2016, à la fois sur le secteur de la Joucou mais aussi dans la ZIM pour encadrer le défilé de Niort. Les résultats sont reportés dans le Tableau 37 et comparés à l'évolution du débit journalier à la station de St Martin Lys (station Y1105010, données banque hydro).

Site	Long.	Lat.	Q (I/s)	Q (I/s)	Q (I/s)
			07/2015	10/2015	08/2016
Amont ZIM (Niort)	2.004717	42.802772		240/258/220	260/210
ZIM intermédiaire	2.02019	42.80750		170/173	245
Aval ZIM	2.032333	42.808855		177/175	244/248
Amont Joucou	2.06000	42.83503	379	189/192	258/255
Joucou intermédiaire	2.08250	42.82775	270	166/172	259/245
Aval Joucou	2.13488	42.82799	351/266	183/220/186	270
Q _{J-1} Y1105010			342	216	362
Q _J Y1105010	2.22807	42.81531	442	214	288
Q _{J+1} Y1105010			502	214	332

Tableau 37: Résultats des jaugeages différentiels réalisés sur le Rébenty par dilution de traceur complétés par les débits journaliers à la station de St Martin Lys (station Y1105010)

Seule l'opération de jaugeage différentiel réalisée en octobre 2015 a été menée dans des conditions de régime permanent dans le Rébenty (débit journalier stabilisé entre 214 et 216 l/s à la station de St Martin-Lys). Les données obtenues lors de cette campagne sont donc plus facilement interprétables et permettent de conclure qu'il n'existe pas de pertes quantifiables du Rébenty au niveau du défilé de Joucou. En revanche, les résultats obtenus sur la ZIM suggèrent une perte d'écoulement du Rébenty de l'ordre de 70 l/s.

Il n'y a donc pas de continuité hydraulique entre les affleurements carbonatés de la lame de la Joucou au contact du Rébenty et le système karstique de Fontmaure.

Le système karstique de Fontmaure ne s'étend donc pas au bassin versant du Rébenty en amont du défilé de Joucou, mais il pourrait néanmoins drainer de faibles débits de pertes au niveau de la ZIM en aval de Niort de Sault. Cet apport, s'il existe, est faible au regard des autres contributions et se produit à plus de 20 km de l'exutoire. Le haut bassin versant du Rébenty ne sera donc pas intégré dans l'étude de vulnérabilité de la ressource en eau du système karstique de Fontmaure.

3.7. ANALYSE DES INTERMITTENCES DU SYSTEME DE FONTESTORBES

3.7.1. Analyse de la dernière intermittence

Les nouvelles données sur le fonctionnement des intermittences présentées sur la Figure 119 mettent en évidence au niveau du point *a* l'arrêt du phénomène pour des conditions de très basses eaux. La forme de la dernière intermittence observée est présentée en détail dans les figures suivantes (Figure 143 et Figure 144). Le plan d'eau des Mijanes se vide en 22 min pour générer une dernière onde de crue qui va atteindre Fontestorbes. Le niveau d'eau à Fontestorbes commence à monter instantanément, le temps séparant la baisse du plan d'eau des Mijanes de la montée de la hauteur d'eau à Fontestorbes est inférieur à 2 minutes. Le pic de crue associé est enregistré à Fontestorbes 4 minutes avant que le réservoir ne soit au plus bas, puis la hauteur d'eau à Fontestorbes au remplissage du réservoir d'intermittence. La réponse hydrodynamique s'étale sur près de 150 minutes à Fontestorbes pour une perturbation de l'ordre de 84 minutes enregistrée aux Mijanes.

On en déduit que <u>le transfert de l'onde de crue entre le P1 et la source est un transfert de pression</u> <u>dans un conduit en charge.</u> Ce transfert est décrit par une réponse impulsionnelle de durée relativement courte (proche de l'heure, 150-84=66 min) valable pour ces conditions hydrologiques.

Du point de vue hydraulique, le fait que le phénomène puisse s'arrêter permet également de proposer un débit de fuite du système : un débit d'alimentation du réservoir inférieur à ce débit ne provoquera pas d'intermittence (cas a, Figure 119), et il existe une valeur seuil à dépasser pour observer des intermittences (cas b, Figure 119).

Figure 143: Comparaison de l'évolution de la hauteur d'eau mesurée au P1 des Mijanes et à Fontestorbes lors de la dernière intermittence du 01/11/2016 pour un débit faible d'alimentation du réservoir d'intermittence

Les niveaux d'eau redeviennent ensuite parfaitement identiques à l'état initial, que ce soit au niveau du plan d'eau des Mijanes et à la source (Figure 143). Ainsi, la conservation du volume d'eau implique que le volume d'eau excédentaire apporté au début du cycle soit égal au volume d'eau déficitaire utilisé pour recharger le réservoir en fin de cycle. Ces volumes excédentaires et

déficitaires sont calculés en analysant l'écart du débit observé au débit d'équilibre atteint lorsque le phénomène s'arrête. Ce débit n'est pas bien connu puisqu'il dépend de la relation hauteur/débit utilisée, mais il correspond le 01/11/2016 à une hauteur d'eau de 32 cm mesurée à la station de Fontestorbes. La conversion en débit selon les relations A et B (Figure 118) donne les résultats suivants :

Relation	débit d'équilibre (l/s)	Vol. (m ³) excédentaire	Vol. (m ³) déficitaire	Bilan (m ³)
А	550	796	1542	-746
В	664	647	622	25

Tableau 38 : Bilan hydrologique réalisé sur la dernière intemittence du 1^{er} Novembre 2016 selon la relation hauteur/débit utilisée

Le bilan hydrologique calculé pour la dernière intermittence est très mauvais avec la relation A. La relation B a pour effet de diminuer légèrement le débit d'équilibre tout en augmentant de manière significative les bas débits (Figure 144). Elle permet ainsi d'obtenir un bilan relativement équilibré (excédent de 25 m³ sur cet exemple). Ainsi, l'utilisation de la relation A se justifie par rapport aux jaugeages, mais <u>seule la relation B permet d'équilibrer le bilan hydrologique lors de la dernière intermittence</u>. L'utilisation de cette relation suppose néanmoins qu'un débit de plusieurs centaines de l/s échappe à la mesure au niveau du seuil, soit à travers le remplissage existant sous ce seuil, soit plus en aval dans les éboulis jusqu'à l'Hers.

Figure 144 : Comparaison des hydrogrammes à Fontestorbes lors de la dernière intermittence selon les relations A et B, en réponse à la vidange du réservoir d'intermittence observé aux Mijanes

3.7.2. Analyse de la reprise de l'intermittence pour les bas débits

Figure 145: Comparaison de l'évolution de la hauteur d'eau mesurée au P1 des Mijanes et à Fontestorbes lors de la reprise des intermittences le 06/11/2016 pour un débit faible d'alimentation du réservoir

La Figure 145 illustre le phénomène inversé, où une variation à peine perceptible du niveau d'eau dans le réservoir d'intermittence va provoquer le déclenchement du phénomène (on observe pas de remontée significative du niveau d'eau avant la chute vers 5:00 sur la figure). La vidange et le remplissage du réservoir présentent une dynamique identique, soit 22 min et 62 min respectivement, ces durées étant contrôlées par une valeur identique au cas précédent du débit alimentant le réservoir. Le débit à la source va donc commencer à augmenter en réponse à la vidange du réservoir.

La période de 104 min imposée par le mécanisme d'intermittence est inférieure à la durée de la réponse hydrologique de 150 min déterminée par le cas précédent avec la même fonction d'entrée. Le phénomène va donc se reproduire à la source de Fontestorbes avant que la réponse à la première intermittence ne soit complètement terminée. Ainsi, la forme de la seconde intermittence enregistre une faible part de la réponse à la première perturbation (principe de superposition). Autrement dit, seule la forme de la première intermittence est rigoureusement indépendante des intermittences précédentes.

3.7.3. Analyse de la fin de l'intermittence pour les hauts débits

La dernière intermittence observée lors d'une augmentation des débits du système laisse le niveau dans le réservoir à une position basse (Figure 146). Cette configuration provoque à la source une dernière augmentation du débit. Le phénomène présente ici une période de 68 min pour une durée de remplissage du réservoir de 24 min.

Figure 146: Comparaison de l'évolution de la hauteur d'eau mesurée au P1 des Mijanes et à Fontestorbes lors de l'interruption des intermittences le 13/11/2016 suite à un épisode de faible recharge

3.7.4. Analyse de la reprise de l'intermittence pour les hauts débits

Le déclenchement du phénomène lors de la baisse des débits intervient alors que le réservoir d'intermittence est à nouveau en position basse. Le remplissage du réservoir provoque donc dans un premier temps une chute des débits à la source. Le phénomène présente une périodicité de 70 min pour une durée de remplissage du réservoir de 22 min.

Figure 147: Comparaison de l'évolution de la hauteur d'eau mesurée au P1 des Mijanes et à Fontestorbes lors du déclenchement des intermittences le 16/11/2016 pour un débit élevé d'alimentation du réservoir

3.7.5. Influence de la recharge sur la forme des intermittences et sur les transferts de solutés

La Figure 119 met clairement en évidence sur les limnigrammes de Fontestorbes et des Mijanes une réponse hydrologique qui s'ajoute aux variations à court terme liées aux intermittences. La Figure 148 présente les hydrogrammes obtenus à la source de Fontestorbes selon les deux relations hauteur/débit disponibles, comparés à l'évolution de la hauteur d'eau aux Mijanes et à la piézométrie mesurée au forage de la Frau.

Figure 148 : Comparaison des hydrogrammes de Fontestorbes avec les suivis hydrodynamiques aux P1 des Mijanes et au forage de la Frau

La Figure 148 montre que les fluctuations cycliques du niveau d'eau des Mijanes suivent à plus long terme l'évolution hydrologique de l'aquifère telle qu'elle est mesurée au piézomètre de la Frau. Ceci est particulièrement visible sur les bas niveaux mesurés aux Mijanes. Le plan d'eau des Mijanes est donc contrôlé à la fois par la mécanisme d'intermittence et par l'évolution piézométrique de l'aquifère karstique.

A Fontestorbes, la chronique montre également qu'un signal hydrologique se surimpose aux cycles d'intermittences en réponses aux épisodes de faible recharge. Mangin (1975) considérait pourtant que « *la valeur des maximums ne varie pratiquement pas. En revanche, celle des minimums suit la variation du débit réel de la source »*. Les suivis sur le long terme (1965-2018) confirment l'évolution symétrique du débit des minimums et des maximums lors des intermittences. La dynamique hydrologique de cette composante est rapide, et assez mal expliquée par la piézométrie observée au forage de la Frau, notamment pour l'épisode de recharge du 19/11/2016 (Figure 148).

Ces observations permettent de supposer, comme l'avait fait auparavant Brunet (1967, cité par Cau (1979)), qu'il existe un écoulement depuis un sous-système karstique indépendant du mécanisme d'intermittence qui s'ajouterai au débit affecté par les intermittences. Cette hypothèse aurait été validée par l'observation d'un mélange de deux types d'eau à l'exutoire se traduisant par une variation de la conductivité électrique de l'eau lors des intermittences (Cau, 1979). La Figure 149 montre que la conductivité électrique de l'eau mesurée aux Mijanes diffère de celle mesurée à la source (+20 à + 60 μ S/cm). Les deux sondes de conductivité ont été inter-calibrées le 08/12/2016 et mesurent la conductivité spécifique de l'eau à 25°C. La minéralisation de l'eau à la source est donc supérieure, et montre une double réponse, l'une rapide dès le 19/11/2016 non mesurée aux Mijanes, puis une lente entre le 20 et le 21/11/2016, liée cette fois à la propagation du signal observé aux Mijanes dans la salle amont le 20/11/2016. A court terme, on observe également une augmentation périodique de quelques μ S/cm de la conductivité le 19/11/2016 vers 18h en réponse à chaque intermittence basse observée à la source.

Figure 149: Evolution comparée des hauteurs d'eau et de la conductivité électrique au P1 des Mijanes et à la source de Fontestorbes.

Ces observations prouvent que deux types d'eau rejoignent l'exutoire. L'écoulement non intermittent présente une minéralisation plus importante lors de cet épisode, et présente également une réponse plus rapide aux épisodes de recharge. Cet écoulement non intermittent provient probablement d'un impluvium plus proche de la source qui pourrait correspondre au drainage d'au moins une partie du bassin d'alimentation Nord du système de Fontestorbes. Cette interprétation rejoint les conclusions de Verdeil, d'après Cau (1979), et est cohérente avec l'organisation du drainage karstique proposée sur la Figure 157.

La variation de conductivité de l'eau à la source reste très faible et le plus souvent non perceptible au cours d'une intermittence, même lors de la recharge du 19/11/2016 lorsque les valeurs de conductivités sont les plus contrastées. Soit le flux associé aux intermittences est relativement négligeable devant le débit du système, soit le transfert de l'eau entre le point de convergence des drains Nord/Sud et la source a pour effet de filtrer par effet de dilution les cycles de conductivité liés aux intermittences. Cette seconde hypothèse est plus probable compte tenu de l'importance majeure des intermittences sur le fonctionnement hydraulique du système en basses eaux. Il faut donc considérer un volume d'eau suffisamment important et peu mobile entre le lieu de convergence des drains et la source pour que l'évolution cyclique de la conductivité ne soit pas perceptible à la source.

Le décalage des pics de conductivité relevés aux Mijanes avec le second pic observé à Fontestorbes (Figure 119) permet d'estimer une vitesse apparente de déplacement de l'eau, variable selon le débit, entre 50 et 170 m/h. Cette gamme de valeur est parfaitement cohérente avec les résultats issus de l'interprétation des traçages (Tableau 24) et caractérise le transfert d'eau entre les Mijanes et la source.

3.7.6. Conclusion et discussion

Le plan d'eau des Mijanes enregistre les variations du plan d'eau du réservoir d'intermittence en amont du mécanisme d'intermittence. Lorsque le réservoir d'intermittence se vide, une onde de crue est générée vers l'aval pour atteindre la source de Fontestorbes, tandis qu'une perturbation du plan d'eau du réservoir va se propager vers l'amont, d'abord dans le puits aval (NNW), puis dans la salle amont (SSE) du P1 des Mijanes. Cette interprétation rejoint les observations réalisées lors de la plongée dans le siphon amont du 09/10/1983 : une cavité exondée parcourue par un écoulement non intermittent avait été observée (Cau, 1979, information complémentaire donnée sur une version rééditée à une date inconnue).

Une partie ou la totalité du drainage karstique de la partie Nord du bassin d'alimentation de Fontestorbes rejoint le réseau de drainage de la partie Sud en aval du réservoir intermittent. Les eaux drainées par les systèmes Nord et Sud se distinguent par leur conductivité électrique. La faible influence des intermittences sur les fluctuations de conductivité à la source s'explique par la forte dispersion/dilution que subit le signal de conductivité entre le point de convergence des drains et la source.

Cet apport d'eau indépendant du système intermittent explique que les intermittences n'apparaissent pas de façon systématique pour un débit donné, contrairement à ce qui a pu être décrit par Mangin (1975). Une étude détaillée sur la période 2006-2008 et 2016-2018 a été menée pour identifier la hauteur d'eau et le débit associé au déclenchement (cas d) des intermittences lors d'une baisse de débit. La variabilité des valeurs observées (+/- 5.7 cm pour la hauteur et +/-890 l/s pour le débit) permet de vérifier que la relation entre le débit à la source et le déclenchement des intermittences n'est pas univoque.

Les fluctuations du plan d'eau du P1 des Mijanes permettent d'expliquer la forme de chaque type d'intermittence à la source. La fonction de transfert associée caractérise un transfert de pression amorti, influencé par des échanges qui s'établissent entre le drain et, latéralement, les volumes peu perméables (matrice fissurée) ou mal connectés hydrauliquement les uns aux autres mais en relation avec le drain (Systèmes Annexes au Drainage (SAD), appelés systèmes du 2^{ème} ordre dans la première publication de Mangin en 1969). Le réseau karstique est en charge entre l'aval du réservoir intermittent et la source, et les transferts de soluté s'effectuent avec une vitesse variable entre 50 et 170 m/h sur la période observée.

L'évolution du plan d'eau des Mijanes est fortement influencée par les cycles de vidange/remplissage du réservoir d'intermittence, mais montre également une évolution en lien avec la charge hydraulique dans l'aquifère karstique (Figure 148). De plus, lorsque le phénomène d'intermittence s'arrête en très basses eaux, la conductivité électrique de l'eau mesurée au P1 des Mijanes devient parfaitement stable (334 µS/cm durant 8 jours mesurés au pas de 2 min du 29/10/2016 au 07/11/2016), alors que le signal est toujours un peu bruité sur les autres périodes. Ainsi, l'eau qui circule au niveau du P1 des Mijanes lors des intermittences ne circule plus lorsque les intermittences cessent en très basses eaux. Ceci s'explique en considérant que le P1 des Mijanes constitue un SAD par rapport au drain principal alimentant le réservoir d'intermittence. Les fluctuations de charge hydraulique dans le drain vont recharger et drainer le SAD lors des intermittences, tandis que l'eau ne circulera quasiment plus en l'absence de variation de charge importante dans le drain principal.

3.7.7. Amélioration de la relation hauteur/débit à Fontestorbes

La relation hauteur/débit donnée par une courbe de tarage est par définition valable pour un régime permanent. Il existe en réalité un décalage temporel entre le maximum de vitesse moyenne, de débit et de hauteur d'eau lorsque la mesure concerne une succession de crues et décrues rapides. Ce problème est documenté dans le cas de suivi hydrologique des éclusées d'usines hydroélectriques (Réméniéras, 1956), et peut donc être comparé à ce qui se produit lors du phénomène d'intermittence à la source de Fontestorbes.

La méthode la plus simple permettant de prendre en compte le caractère non-univoque d'une relation hauteur/débit est la méthode du gradient limnimétrique. Elle suppose que le débit $Q_0(t)$ « univoque » calculé par la courbe de tarage peut être corrigé pour obtenir le débit Q(t) selon la relation suivante (Dubreuil et al., 1970) :

$$\frac{Q - Q_0}{Q_0} = k \cdot \frac{\Delta h}{\Delta t}$$
Equation 12

Avec *k* une constante, et Δh la variation de hauteur sur un intervalle de temps Δt qui précède la mesure. Cette méthode permet ainsi de prendre en compte l'évolution antérieure du niveau d'eau sur l'estimation du débit pour proposer une correction en cas d'évolution importante de la hauteur sur la période Δt . Il est cependant nécessaire de choisir les valeurs de *k* et de Δt pour appliquer cette méthode.

Une nouvelle relation hauteur/débit a ainsi été recherchée en tenant compte d'une correction par la méthode du gradient limnimétrique. Les critères pris en compte sont :

- L'utilisation des jaugeages connus hors période d'intermittence, en incluant celui du 25/10/2015 réalisé en l'absence d'intermittence (régime permanent) et celui réalisé en hautes eaux le 18/05/2018,
- le respect de l'extrapolation proposée par Mangin pour les gammes de hauteur non jaugées,
- l'équilibre du bilan hydrologique lors des dernières intermittences (cas a)
- la continuité des débits journaliers avant et après intermittence (cas d).

Ces contraintes ne peuvent être satisfaites en utilisant une loi puissance. Un ajustement d'une loi tabulée a donc été réalisée, et une relation légèrement non-univoque a également été nécessaire pour mieux répondre à l'ensemble des critères.

Les paramètres obtenus pour la correction par la méthode du gradient limnimétrique sont k=0.015 min.cm⁻¹ et Δt =15 min. Ainsi, la correction de débit n'a lieu que si la hauteur a évolué durant les 15 min qui précédent la mesure, ce qui limite son effet essentiellement aux périodes d'intermittences. La relation univoque (avant correction) obtenue est donnée dans la Figure 150 et se rapproche de la relation B proposée par Mangin.

Figure 150: Proposition d'une nouvelle courbe de tarage pour la source de Fontestorbes

La figure suivante présente les différentes formes d'hydrogrammes obtenues pour la dernière intermittence. La nouvelle relation (courbe bleue sur la Figure 151) apporte une importante correction, notamment pour les bas débits lors des intermittences. Pour les débits plus élevées, et en analysant les débits au pas journalier, la correction apportée reste faible par rapport à la

Figure 151: Comparaison des hydrogrammes obtenues lors de la première et la dernière intermittence à Fontestorbes pour les différentes relations hauteur/débit

4. Mise à jour du modèle hydrogéologique conceptuel et de la géométrie des aquifères karstiques

4.1. INTRODUCTION

La géométrie des aquifères du Secondaire a fait l'objet d'une étude détaillée selon l'approche KARSYS présentée en détail dans le rapport BRGM/RP-65888-FR. La mise à jour du modèle géologique 3D dans le secteur d'Espezel, et l'interprétation des investigations complémentaires (jaugeages, traçages, données hydrochimiques et hydrodynamiques) permettent de proposer des modifications quant à l'extension des zones noyées des systèmes de Fontestorbes, Fontmaure/Ginoles et Belfort sur Rébenty détaillées ci-après. Ce modèle conceptuel 3D et son interprétation servent de base à la délimitation des bassins d'alimentation des sources et à la cartographie des zones noyées en profondeur.

4.2. CARTOGRAPHIE DES ZONES NOYEES, ORGANISATION DU DRAINAGE ET DETERMINATION DES BASSINS D'ALIMENTATION DES SOURCES

4.2.1. Méthode

La méthode KARSYS permet d'exploiter l'information géologique 3D pour en déduire, dans un premier temps, l'extension minimale de la zone noyée dans les formations identifiées comme karstifiables. Ce tracé permet selon la position du mur d'une formation imperméable sus-jacente de distinguer les niveaux libres des niveaux captifs. Le schéma de la Figure 152 présente une application simplifiée de la méthode selon une coupe passant par deux exutoires karstiques A et B. Cet exemple permet d'illustrer avec la source A l'identification d'une zone noyée captive, et avec la source B le rôle joué par une remontée du substratum : Celui-ci définit un seuil hydraulique qui contrôle l'extension vers l'amont d'une autre zone noyée. Le croisement des informations de surface (topographie et lithologie à l'affleurement) avec le tracé des extensions des zones noyées permet alors de délimiter les bassins d'alimentation de chaque système karstique, en identifiant éventuellement des zones partagées qui alimentent directement un système (par infiltration) et indirectement un autre (par ruissellement puis infiltration plus en aval).

Les extensions minimales des zones noyées sont également interprétées pour en déduire l'organisation des grands axes de drainage du système.

Les résultats obtenus permettent de cibler les investigations complémentaires (jaugeages différentiels dans les cours d'eau, traçages artificiels et naturels) pour valider ou non le modèle KARSYS, et modifier si besoin l'interprétation 3D géologique ou hydrogéologique (cf. corrections apportées au système karstique de Contes pour l'isoler du système de Fontestorbes).

Figure 152: Représentation simplifiée de l'extension des zones noyées de 2 systèmes karstiques selon l'approche KARSYS

Plus de détails sur les principes et les hypothèses de la méthode KARSYS peuvent être trouvés dans la publication de Jeannin et al. (2013) et le rapport BRGM/RP-65888-FR.

La description de l'extension des zones noyées s'appuie sur le schéma structural du Pays de Sault présenté dans le rapport BRGM/RP-65888-FR et reporté dans la Figure 153.

Figure 153: Schéma structural du Pays de Sault

La délimitation des bassins d'alimentation des systèmes karstiques du Primaire est également proposée suite à l'interprétation de la carte géologique et des informations issues de l'étude menée par Hydrogéosphère en 2003.

4.2.2. Système de Fontestorbes

Cartographie de la zone noyée

La figure suivante représente l'extension minimale des zones noyées proposée pour le système karstique de Fontestorbes. Les principaux axes de drainage ont été décrits dans le rapport BRGM/RP-65888-FR.

Rôle hydrogéologique des marnes albiennes et bédouliennes et organisation du drainage karstique à l'échelle du système karstique

Le rôle hydrogéologique du chevauchement des marnes albiennes sur les marnes bédouliennes a pu être validé par jaugeages différentiels, ce qui permet de bien distinguer les systèmes de Contes et Fontestorbes (cf. 3.6). Cependant, à proximité de la source de Fontestorbes, les marnes bédouliennes sont nécessairement traversées par le réseau karstique afin d'atteindre les formations du Barrémien (Figure 154). Les niveaux d'eau observés en condition d'étiage dans le gouffre des Mijanes traduisent un gradient hydraulique relativement fort (> 1%) vers la source et une zone noyée qui s'établit vers 530 mNGF en amont. Ceci peut s'expliquer par l'existence d'une zone noyée perchée contrôlée par un seuil qui pourrait être localisé au niveau de la traversée des marnes bédouliennes.

Le drainage du bassin Sud (bassin-versant de la Frau en amont de l'Esqueille) suggère un écoulement sous les marnes albiennes dans la zone noyée captive. Ces marnes sont très épaisses au centre du bassin, mais leur épaisseur est plus faible en périphérie vers l'Est, ce qui permet de proposer un écoulement libre ou localement captif dans les formations du Barrémien en passant à environ 2 km à l'Est de la vallée de la Frau, avant d'atteindre en direction des Mijanes les formations du Gargasien et du Clansayésien à facies urgonien.

En crue, la limite de captivité de la nappe sous les marnes albiennes remonte vers l'amont jusqu'à activer la source de trop-plein de l'Esqueille. Vers l'aval, le relai hydraulique entre les formations du Jurassique/Barrémien d'une part et les formations urgoniennes du Gargasien/Clansayésien qui affleurent aux Mijanes doit se réaliser à la faveur de la succession d'écailles dont la structure précise en profondeur reste méconnue. Plus en amont, le forage de la Frau présente un niveau statique à l'étiage relativement haut (+/- 570 mNGF), ce qui suppose à nouveau un gradient hydraulique élevé entre ce point et les observations réalisées au gouffre des Mijanes. Au moins un autre seuil hydraulique est nécessaire pour expliquer une nouvelle configuration de zone noyée perchée, probablement au niveau de la traversée d'une écaille.

Ainsi, les eaux en provenance du bassin Sud circulent sous les marnes albiennes à travers les calcaires urgoniens du Jurassique et du Barrémien sans atteindre des profondeurs importantes, ce qui est cohérent avec l'absence d'anomalie thermique à la source de Fontestorbes. La zone noyée atteint ensuite les calcaires gargasiens et clansayésiens dans le secteur des Mijanes, et traverse les marnes bédouliennes en amont immédiat de la source. La traversée de ces marnes pourrait être à l'origine du phénomène d'intermittence, dont la localisation et le fonctionnement seront discutés dans le paragraphe 3.7. Dans ces conditions, il n'est pas nécessaire d'évoquer une karstification profonde sous le bassin de Fougax. Cette interprétation est compatible avec l'absence d'anomalie de température positive à Fontestorbes.

Figure 154: Cartographie de la zone noyée du système karstique de Fontestorbes

Légende	
Ligne de crête de l'aquiclude	Faille observée, visible, de cinématique non précisée
Limite définie par un contact imperméable	 — Faille supposée, masquée, hypothétique, de cinématique non précisée
Niveaux stratigraphiques noyés	Chevauchement, base de nappe ou faille inverse visible
Gargasien et Clansayésien	➡ Axe d'écoulement karstique
Barrémien	Source permanente
Jurassique à Barrémien	^O Source temporaire
ZIM	S Absence probable d'écoulements de type karstique
Zone noyée captive	← Seuil hydraulique

Figure 155: Légende de la Figure 154

• Organisation du drainage en amont de la source

Un modèle de simulation du réseau karstique a été réalisé à proximité de l'exutoire en appliquant la méthode proposée par Malard et al. (2015). Cette méthode s'appuie sur la délimitation des zones noyées (Figure 152) et propose une démarche s'appuyant sur des principes simples :

- La recharge est calculée sur les mailles identifiées comme karstiques à partir du nombre de mailles drainées en surface s'il existe des formations non-karstiques en amont, ou simplement à l'échelle de la maille s'il s'agit d'une maille sans recharge allochtone. L'information relative à la recharge s'exprime quantitativement par la surface drainée cumulée, ce qui permet de caractériser le flux de manière relative. Ce flux s'infiltre en un point de la maille au niveau d'un objet karstique connu (aven, doline etc.) ou est placé aléatoirement s'il n'existe aucune manifestation karstique connue sur la maille considérée.
- Les transferts d'eau dans la zone d'infiltration sont verticaux jusqu'à atteindre la zone noyée ou le toit d'une formation imperméable. Dans ce cas, la géométrie du toit de la formation imperméable va guider l'écoulement (ruissellement souterrain) jusqu'à atteindre la zone noyée, en cumulant vers l'aval les flux d'éventuels affluents pour constituer le réseau de drainage « vadose ». Le toit de cette formation imperméable peut correspondre au mur de l'aquifère, mais également à un niveau marneux surmontant la zone noyée. Dans ce cas, vue de dessus, des drains « vadose » pourront recouper des drains développés dans la zone noyée.
- Les transferts d'eau dans la zone noyée se réalisent à la surface de celle-ci, et donc à l'altitude de l'exutoire ou d'un éventuel seuil hydraulique définissant une zone noyée perchée.
- Le drainage dans la zone noyée s'organise selon 3 critères définis par l'utilisateur qui viennent pondérer un calcul d'itinéraire minimisant une distance de coût. Ces 3 critères sont définis comme des couches raster qui pondèrent le calcul d'itinéraire, afin d'attribuer plus ou moins d'importance aux paramètres pouvant contrôler le développement de la karstification :
 - o La distance à l'exutoire pour représenter le rôle du gradient hydraulique,
 - La recharge, qui correspond à la surface drainée au niveau de la maille,
 - L'importance des horizons d'inception sur la karstogenèse, qui correspondent pour cette étude aux structures tectoniques (failles, chevauchement, écailles issues du modèle géologique à l'altitude de la zone noyée) et aux contacts lithologiques pouvant guider la karstification (contacts marne/calcaire issus du modèle géologique à l'altitude de la zone noyée).

Ainsi, seule l'organisation du drainage dans la zone noyée est paramétrée et nécessite de définir une pondération optimale des 3 critères. Les transferts dans la zone d'infiltration sont déterminés par la géologie et le MNT à 25 m de l'IGN.

La Figure 156 représente schématiquement les différentes étapes de calcul : la flèche horizontale noire représente le drainage en surface depuis une maille non karstique en amont (NK) vers une maille karstique (K). A ce niveau, le transfert vertical dans la zone d'infiltration atteint le toit du substratum (bedrock). L'eau s'écoule ensuite à la surface du substratum pour atteindre la zone noyée, où le transfert jusqu'à l'exutoire va dépendre de la pondération choisie pour les 3 critères. La figure de gauche représente de manière théorique le cas où chaque paramètre influence le développement de la karstification, tandis que la figure de droite montre le résultat obtenu en ne tenant compte que de la distance comme critère de minimisation du coût, ce qui revient à tracer une ligne droite jusqu'à l'exutoire.

Figure 156: Représentation schématique des étapes de calcul du réseau de drainage karstique (NK : Maille non-karstique ; K : Maille karstique)

La méthode a été appliquée sur un domaine limité du système karstique de Fontestorbes (24 km²) selon les limites suivantes (Lambert 93) et un maillage carré de 250 m :

Xmin=611000 ; Xmax=617000 ; Ymin=6197000 ; Ymax=6201000

Des conditions de flux ont été ajoutées sur les mailles matérialisant la limite du modèle en y attribuant la superficie du bassin d'alimentation drainé. La localisation du drain majeur drainant le bassin Sud a été définie en minimisant la profondeur de karstification sous les marnes albiennes dans le modèle géologique (Figure 154).

Plusieurs tests de pondération ont été réalisés afin d'observer visuellement la sensibilité du choix des paramètres sur le résultat. La position des drains majeurs varie légèrement entre chaque simulation, mais l'organisation en 3 branches principales qui convergent dans les calcaires barrémiens est constante. La Figure 157 présente un exemple de résultat obtenu.

Figure 157: Organisation du réseau de drainage karstique simulé en amont de la source de Fontestorbes dans la zone d'infiltration et les zones noyées libres (bleu clair) et captives (bleu foncé)

Il existe très peu d'information sur l'organisation du drainage karstique fonctionnel, l'essentiel des topographies étant réalisées sur des paléo-karsts. Les directions et la morphologie du drain observé en amont du gouffre des Mijanes en plongée permettent de justifier l'existence d'un drain majeur s'écoulant vers le Nord en direction de Fontestorbes. La Figure 157 montre également que la convergence des drains des bassins Nord et Sud pourrait se réaliser en amont immédiat de la source, et que deux principaux drains assureraient le drainage de la partie Nord. Ces résultats seront discutés lors de l'analyse des suivis hydrodynamiques et physico-chimiques réalisés dans le puits P1 des Mijanes (§ 3.7).

Délimitation du bassin d'alimentation

La délimitation de l'impluvium de la source de Fontestorbes n'a pas été modifiée par rapport à la proposition donnée dans le rapport BRGM/RP-65888-FR et est reportée dans la Figure 158.

Figure 158: Bassin d'alimentation de la source de Fontestorbes

4.2.3. Système de Fontmaure/Ginoles et sous-système du Blau

Cartographie de la zone noyée

Rôle hydrogéologique des marnes bédouliennes

Les sources de Fontmaure et de Ginoles émergent à une altitude comparable dans les formations urgoniennes du Clansayésien, de part et d'autre du synclinorium du bassin de Quillan. La Figure 159 présente la mise à jour de la cartographie des zone noyées pour des conditions de basses eaux selon la méthode KARSYS. Cette carte permet d'interpréter le rôle de compartimentation joué par les formations marneuses dans la succession de plis synclinaux et anticlinaux :

- Le sous-système karstique de la source de Ginoles s'individualise en amont au sein du synclinal de Montmija. Cette structure permet aux marnes bédouliennes d'isoler d'une part les calcaires barrémiens drainés vers Fontmaure et d'autre part les calcaires gargasiens drainés vers Ginoles. Le faciès marno-calcaire du Bédoulien permet, localement dans la dépression de Coudons (et également dans le secteur des Coumeilles), d'observer des effondrements et de grands vides en amont des pertes. Cette morphologie est décrite par Lagasquie (1963) et est liée à l'érosion des niveaux marneux. En l'état des connaissances, les vides observés dans le Bédoulien ne seraient qu'une conséquence du développement de la karstification dans le Barrémien affleurant en aval, et non le témoignage d'une karstification développée dans le Bédoulien. Ainsi, le rôle d'écran hydrogéologique joué par le Bédoulien n'est pas remis en cause, bien que dans le détail il puisse exister des intercalations calcaires karstifiées dans cette formation.
- Les marnes bédouliennes permettent également d'individualiser les formations urgoniennes du Gargasien de celles du Barrémien sur le flanc Sud de l'anticlinal de *Pierre-Lys Picaussel*, contrôlant ainsi l'orientation parallèle de deux systèmes de drainage indépendants orientés vers Fontmaure. Des accidents SW-NE, notamment au niveau du Roc de la Fage, permettent selon le modèle KARSYS de faire converger ces systèmes en amont de la source de Fontmaure.
- La limite entre les systèmes karstiques de Fontestorbes et de Fontmaure reste assez mal comprise. Elle correspond à la limite entre la branche orientale de l'anticlinorium de Pierre-Lys et la branche occidentale du Bassin de Fougax. Au contact, et en profondeur, les formations urgoniennes du Gargasien-Clansayésien présentes de part et d'autre seraient isolées par les marnes bédouliennes. Il est en effet impossible d'imaginer un équilibre hydrostatique entre les deux systèmes karstiques de Fontestorbes et de Fontmaure compte tenu de leur différence d'altitude d'émergence, et il est nécessaire d'invoquer une structure imperméable. Il existe également des variations latérales de faciès qui peuvent compliquer cette interprétation en bordure des bassins. Les résultats négatifs des essais de traçages depuis les pertes de la Vernouze et des Coumeilles à la source de Fontestorbes montrent que cette limite reste efficace en hautes eaux et ne donne pas lieu à une diffluence entre les deux systèmes.

• Rôle hydrogéologique des marnes du Gargasien (marnes de Montmija)

Les niveaux marneux du Gargasien isolent les formations urgoniennes du Gargasien inférieur des calcaires urgoniens du Clansayésien. Dans le synclinal de Montmija, les accidents SW-NE décalent les structures et mettent en contact les formations urgoniennes pour permettre d'alimenter la source de Ginoles. Le même phénomène s'observe sur les formations redressées du synclinal du Rébenty-Belvis et explique la continuité hydraulique des formations clansayésiennes avec celles du Gargasien urgonien. Ces décalages permettent également d'isoler sous la forme d'aquifères perchés les calcaires clansayésiens drainés par les sources de la Fago et de Cailla (BRGM/RP-65888-FR).

• Organisation du drainage

Les principales conclusions et interprétations données dans le rapport BRGM/RP-65888-FR restent valables suite à la mise à jour du modèle 3D. Les changements concernent le secteur d'Espezel, où l'épaisseur beaucoup plus faible des marnes albiennes permet de proposer une extension de la zone noyée dans les formations allant du Jurassique au Barrémien sans atteindre une situation de captivité sous les marnes. La remontée de l'ensemble des formations par rapport au précédent modèle induit une zone noyée relativement réduite sous la commune d'Espezel.
La ligne de crête des formations anté-jurassiques (considérées comme imperméables) a également été modifiée dans le secteur de Montplaisir et permet de mieux définir la limite avec l'unité de la branche occidentale du bassin de Fougax drainée par Fontestorbes.

Du Sud vers le Nord, la zone noyée drainée par Fontmaure s'organise selon 3 grands systèmes de drainage orientés globalement d'Ouest en Est :

- le système Camurac/Vernouze-Fontmaure qui circule vers l'aval dans les formations urgoniennes du Gargasien au cœur du synclinal du Rébenty-Belvis; la perte des Coumeilles rejoint probablement ce système en basses eaux,
- le système Rébounédou-Fontmaure qui circule dans les formations jurassiques à barrémiennes redressées le long du flanc Sud de l'anticlinal de Pierre-Lys Picaussel,
- le système du Col du Chandelier-Fontmaure qui circule dans les formations jurassiques à barrémiennes du synclinal du col du Chandelier.

• Individualisation du Blau

L'émergence du Blau présente un faible écoulement permanent en aval du porche vers 600 mNGF à travers des éboulis, associé au faible débit de la source du moulin de Labeau, tandis que le porche situé à 630 mNGF devient actif en hautes eaux. En crue, les débits cumulés du porche et des autres émergences temporaires dépassent probablement les 10 m³/s, et des mises en charge de plus de 30 m sont observées dans le piézomètre du Blau situé à moins de 200 m du porche. Cette dynamique ne peut s'expliquer sans faire intervenir un impluvium nettement plus important en hautes eaux qu'à l'étiage, ainsi qu'un degré de karstification important. Ce mécanisme de diffluence est confirmé par le résultat du traçage de la perte des Coumeilles qui présente une restitution rapide en régime de crue au Blau, associé à une restitution plus lente à la source de Fontmaure.

Le système du Blau ne serait donc pas qu'un simple système de trop-plein de Fontmaure et pourrait être considéré comme un petit système karstique indépendant en basses eaux. Il existe en effet une zone noyée qui a été recoupée par le forage du Blau et qui présente un niveau stabilisé vers 600 mNGF à l'étiage. Cette interprétation est cependant remise en question par le résultat de traçage réalisé le 28/06/1974 depuis la perte Nord du Sarrat de l'Etreuil et qui suggère une relation avec Fontmaure. Ce traçage mériterait d'être réalisé à nouveau en suivant les sources de Fontmaure et du Blau.

En hautes eaux, l'impluvium du système du Blau s'étend aux secteurs drainés par la perte des Coumeilles. Les eaux circulent dans des paléo-karsts de grandes dimensions développés à une altitude supérieure à 630 mNGF, en lien avec la karstification associée aux pertes du paléo-Rébenty sur la surface d'Espezel. Le niveau piézométrique maximal enregistré au piézomètre du Blau atteint 640 mNGF le 21/02/2018. Ce réseau karstique temporaire est perché par rapport au drainage actuel vers Fontmaure et se développe à une altitude suffisante pour franchir les lignes de crête de l'aquiclude représentées entre les Coumeilles et le Blau sur la Figure 159, valables en conditions de basses eaux (cf. interprétation des tracages, et notamment la Figure 93). Ce réseau karstique perché est probablement bien développé également dans la vallée du Pla de l'Artique. Les résultats des tracages de la perte du Rébounédou et de la Vernouze en hautes eaux montrent par contre que l'impluvium du Blau n'a pas atteint ces secteurs en avril 2018. La limite d'extension en hautes eaux de l'impluvium du Blau s'explique par la réutilisation de structures de drainage héritées du fonctionnement karstique qui existait avant le creusement des vallées de l'Aude et du Rébenty. Sa délimitation précise vers la plaine d'Espezel est impossible car elle pourrait dépendre de l'état de saturation du réseau karstique fonctionnel sous-jacent qui alimente Fontmaure, et non d'une limite structurale ou lithologique.

Vers l'extrémité Est du synclinal du Chandelier, il n'apparaît pas de limites structurales ou lithologiques permettant d'expliquer la présence d'une zone noyée à une altitude supérieure (+/-600 mNGF) à celle établie pour le drainage de Fontmaure (+/-320 mNGF). La remontée du substratum peut permettre de proposer d'associer toute l'unité du synclinal du Col du Chandelier au système du Blau en basses-eaux, mais le bassin d'alimentation associé apparaît alors trop important. Il existe nécessairement un seuil hydraulique qui limite l'extension vers l'Ouest de la zone noyée de Fontmaure dans le synclinal du col du Chandelier pour préserver une zone noyée près de 300 m au-dessus et associée aux exutoires du Blau. Ce seuil n'a pas pu être reporté sur la Figure 159 en l'absence d'information complémentaire. Le blau apparaî ainsi comme un exutoire d'un système karstique perché en basses-eaux et un exutoire de trop plein du système de Fontmaure en hautes eaux.

Extension vers la ZIM et relation avec le haut Rébenty

La zone noyée de Fontmaure s'étend vers l'Ouest dans les formations métamorphisées de la ZIM. Des pertes du Rébenty ont été mises en évidence en aval de Niort de Sault (cf. 3.6.2). L'altitude du Rébenty dans le défilé de Niort (700 à 800 mNGF) permet d'envisager une situation perchée du cours d'eau par rapport à la zone noyée du système karstique de Fontmaure, près de 400 m plus bas. Une telle différence explique que, même en situation de crue, il ne peut apparaître d'émergences temporaires dans le Rébenty à ce niveau. Cependant, la mise en évidence de ces pertes partielles et non localisées précisément permet d'associer le bassin versant du Rébenty en amont du défilé de Niort à l'impluvium du système karstique de Fontmaure. Même si cette contribution est partielle, son impact sur la signature isotopique de l'eau peut être considéré (cf. 3.5.3).

Figure 159: Cartographie de la zone noyée du système karstique de Fontmaure

Figure 160: Légende de la Figure 159

Délimitation du bassin d'alimentation

La nouvelle délimitation de l'impluvium du système Fontmaure/Ginoles est proposée dans la Figure 161.

Les modifications concernent la prise en compte des pertes du Rébenty en amont du défilé de Niort de Sault et l'intégration des formations métamorphisées de la ZIM. Il n'est pas possible de proposer une délimitation pour le sous-système karstique du Blau à l'étiage. Les bassins d'alimentation des pertes des Coumeilles et du Pla de l'Artigue constituent les contributeurs principaux du Blau en hautes eaux.

Figure 161: Bassin d'alimentation des sources de Fontmaure, Ginoles et du Blau

4.2.4. Système de Belfort sur Rébenty

Identification du réservoir aquifère

La source de Belfort-sur-Rébenty émerge le long d'une faille décrochante dans des niveaux de marnes albiennes sombres stratifiées. Sa position coïncide avec le tracé du paléo-Rébenty sur le plateau, qui est à l'origine d'un épandage alluvial plio-villafranchien sur plusieurs mètres d'épaisseur dans les marnes albiennes sur-creusées.

Du point de vue de la qualité de l'eau, la source de Belfort sur Rébenty se démarque des eaux drainant les formations du plateau de Sault par une plus faible minéralisation et des teneurs en nitrates élevées, ce qui est connu dès les premières analyses disponibles en 1975 (23 mg/l). Les analyses bactériologiques de 1975 et 1976 témoignent également d'une mauvaise qualité microbiologique. Aucune tendance d'évolution de ces paramètres n'a pu être identifiée depuis

(cf. Figure 139 pour les nitrates). Ces problèmes de qualité existaient donc bien avant la mise en place et les modifications des systèmes d'assainissement sur le plateau. Les traçages de la perte des Quirines et de la STEP d'Espezel ont permis de démontrer l'absence de relations avec la source de Belfort sur Rébenty.

En 2003, le bureau d'étude Hydrogéosphère a mené une étude sur les sources de la vallée du Rébenty. Dans ce cadre, un équipement de la source avait été réalisé pour suivre les débits dans le vallon. Les observations réalisées montraient une réponse hydrologique rapide associée à une forte turbidité liée à la réponse hydrologique du vallon, sans qu'il soit possible de distinguer la part relative à la mise en charge de la source. Le lien entre les eaux de surface et la source est connu et a conduit à imperméabiliser le vallon en amont immédiat de la source, mais les échanges surface-souterrain expliquent encore les pics de turbidité observés à la source lors de fortes crues.

En dehors de ces conditions de crue, les suivis réalisés lors de la surveillance des traçages MT2 et MT3 montrent une stabilité parfaite des signaux de turbidité et de fluorescence naturelle liée à la présence de matière organique (signature d'infiltration rapide), et des valeurs extrêmement faibles pour ces deux paramètres (cf.§ **3.4**). Par ailleurs, les données géochimiques présentées dans le paragraphe 3.3.5 sont compatibles avec une eau rechargée vers 900-1000 mNGF et ayant interagi avec les alluvions issues du démantèlement des formations primaires radiogéniques.

Ces observations permettent d'associer les épisodes courts de contamination bactérienne à une alimentation par les eaux de ruissellement, tandis que le réservoir aquifère serait constitué par les alluvions sur la plaine d'Espezel dans la vallée du paléo-Rébenty creusée dans les marnes albiennes. Le drainage de ce réservoir aquifère perché sur le plateau est assuré par la fracturation des marnes jusqu'à la source, et il ne s'agit donc pas d'un aquifère karstique.

Délimitation du bassin d'alimentation

Le bassin d'alimentation a été déterminé à partir des affleurements des épandages alluviaux non soutirés par le karst sous-jacent : une analyse des dépressions à partir du MNT 5m a été menée pour rechercher les zones de karst sous couverture afin de les exclure. Le vallon a également été intégré en considérant qu'il contribuait à l'alimentation de la source de manière indirecte. Le résultat est présenté sur la Figure 162.

Figure 162: Bassin d'alimentation de la source de Belfort sur Rébenty

4.2.5. Systèmes de Contes, Cailla et Fago

Aucune modification n'a été apportée pour ces systèmes. Les cartes des zones noyées et des bassins d'alimentations de ces systèmes karstiques sont reportées dans les figures suivantes et sont identiques à celles présentées dans le rapport BRGM/RP-65888-FR.

Figure 163 : Cartographie de la zone noyée pour le système de Contes

Figure 164 : Bassin d'alimentation de la source de Contes

Figure 165 : Cartographie de la zone noyée pour le système de la Fago

Figure 166 : Bassin d'alimentation de la source de la Fago

Figure 167 : Cartographie de la zone noyée pour le système de Cailla

Figure 168 : Bassin d'alimentation de la source de Cailla

4.2.6. Systèmes karstiques du Primaire

Les bassins d'alimentation des sources du primaire sont présentés sur la Figure 169. La perte identifiée sur la source Adouci a fait l'objet d'un traçage par Hydrogéosphère qui a démontré la relation avec la source. Ces systèmes font l'objet d'une description plus détaillée dans le paragraphe 3.3.

Figure 169: Bassins d'alimentation des sources étudiées drainant les formations primaires

4.3. SYNTHESE SUR LES BASSINS D'ALIMENTATION DES PRINCIPALES SOURCES

Le tableau suivant présente les caractéristiques des bassins d'alimentation des différentes sources étudiées dans le cadre du projet.

Source	BSS	Recharge	Surface (km ²)	z moyen	zmin	zmax
		directe - Nord	14	880	535	1085
		indirecte - Nord	9	892	544	1119
		total Nord	23	884	535	1119
		directe - Sud	54	1341	631	1921
Fontestorbes	10766X0089/HY	indirecte - Sud	26	1516	1166	2323
		total Sud	80	1397	631	2323
		directe	68	1246	535	1921
		indirecte	35	1358	544	2323
		total	103	1284	535	2323
		directe	82	1036	319	1542
Fontmaura (Cinalas inclus)	1077520004/5	indirecte	65	1074	706	1806
Fontmaure (Ginoles Inclus)	10775X0004/5	total	148	1053	319	1806
		Rebenty amont ZIM	51	1459	753	2052
Fontmaure (sans Ginoles)		total	135	1064	319	1806
	10775X0077/S	directe	7	909	333	1158
Ginoles seule		indirecte	6	962	769	1131
		total	13	935	333	1158
Belfort	10883X0212/BELFOR		0.6	890	761	903
		directe	1	789	597	887
Cailla	10891X0043/S	indirecte	1.2	856	780	938
		total	2.2	826	597	938
		directe	0.4	770	371	926
Fago	ND	indirecte	0.6	752	413	938
		total	1	759	371	938
		directe	2	835	584	1194
Contes	10765X0116/HY	indirecte	25	1423	685	2344
		total	27	1369	584	2344
Fajolle	10882X0203/MOULIN		2.2	1640	1143	1861
Adouci	10882X0212/ADOUCI		11.2	1579	982	2017
Lani	10883X0213/LANI		1.5	1648	1169	1938
Adouxes	10882X0215/ADOUX		9.8	1531	970	1861
Forge	10883X0223/S		2.5	1443	924	1744
CDE	10882X0214/BASSE		F 0	1625	1154	2052
SKE	10882X0211/REBENT		5.9	1025	1154	2052
Argelier	10883X0208/ARGELI		0.7	1111	891	1248

Tableau 39 : Caractéristiques des bassins d'alimentation des sources étudiées (z 🗇 altitude en mNGF)

La Figure 170 présente les caractéristiques détaillées (courbes hypsométriques) pour les systèmes de Fontmaure (sans le sous-système associé à Ginoles et le bassin du Rébenty amont) et de Fontestorbes.

Figure 170: Courbes hypsométriques des bassins d'alimentation de Fontestorbes et de Fontmaure (sousbassin de Ginoles et du Rébenty amont exclus)

5. Potentialités des aquifères et vulnérabilité

5.1. INTRODUCTION

Dans un premier temps, une cartographie de la vulnérabilité intrinsèque de la zone d'étude a été réalisée au moyen de la méthode PaPRIKa (§ 5.2). Dans un deuxième temps (§ 5.3), un inventaire des pressions anthropiques à l'échelle de la zone d'étude a été effectué selon une méthodologie qui est décrite ci-dessous ; les types de pressions sont hiérarchisés et font l'objet d'une cartographie des risques de contaminations ponctuelles et diffuses. Le croisement de la carte de vulnérabilité (ressource et source) avec la carte des risques de contamination ainsi qu'avec le modèle géologique 3D et les résultats concernant le fonctionnement et la structure des différents systèmes karstiques, permet d'identifier et de hiérarchiser les secteurs aquifères potentiels (§ 5.4).

5.2. VULNERABILITE INTRINSEQUE DE LA RESSOURCE EN EAU

5.2.1. Démarche globale

La méthode PaPRIKa est une méthode de cartographie à index à pondération des critères. Le choix des critères est en adéquation avec la spécificité en termes de structure et de fonctionnement des aquifères karstiques. Les critères sont au nombre de 4, à savoir (i) le critère P pour couverture protectrice résultant de la combinaison la plus protectrice entre les sous-critères S concernant le Sol s.l., l'état de surface ES issu de la lithologie, l'épaisseur et la fracturation de la zone non saturée ZNS et le sous-critère E pour fonctionnement épikarstique, (ii) le critère R pour la nature de la roche du réservoir souterrain, (iii) le critère I pour la nature de l'infiltration (diffuse ou ponctuelle au niveau de phénomènes exokarstiques) et (iv) le critère Ka pour le degré de karstification et le fonctionnement du système karstique (Figure 171).

Figure 171: Schéma conceptuel d'un aquifère karstique avec le positionnement des différents critères (d'après COST 620, Zwalhen et al., 2004)

La méthode est décrite en détails dans le guide rédigé par le BRGM dans le cadre de la convention ONEMA-BRGM (Dörfliger et Plagnes, 2009). Cette cartographie de la vulnérabilité, caractérisant la ressource et la source/captage est mise en œuvre selon 6 étapes principales, à l'échelle d'un bassin d'alimentation d'un captage ou d'un ensemble de bassins d'alimentation, dont le contour a été déterminé au préalable :

(1) Séparation du bassin en zones karstiques et non karstiques (dans le cas d'un système karstique binaire). Les deux parties du bassin seront traitées séparément : pour la partie karstique, tous les critères doivent être cartographiés, tandis que pour la partie connexe seuls les critères P et I seront cartographiés.

(2) Cartographie de chaque critère à l'échelle adaptée à la dimension du bassin d'alimentation (1/10 000 à 1/50 000). Chaque critère est subdivisé généralement en 5 classes matérialisées par un indice compris entre la valeur 0 (vulnérabilité minimale) et la valeur 4 (vulnérabilité maximale). Cette étape de cartographie est réalisée à l'aide d'un logiciel de système d'information géographique permettant la transformation du format vectoriel au format raster (ici, ArcGIS avec le module Spatial Analyst), à partir de données disponibles sous forme de cartes, d'observations et d'acquisition de données sur le terrain.

(3) Discrétisation des cartes. La taille du pixel est à définir en fonction de la taille des objets à cartographier, notamment au niveau du critère I.

(4) Calcul de l'indice de vulnérabilité global Vg en chaque maille. L'indice de classe de chaque critère est multiplié par le facteur de pondération du critère considéré. Les valeurs obtenues pour les 4 critères sont additionnées en chaque pixel, afin d'obtenir l'indice de vulnérabilité global Vg. Il s'agit donc d'une superposition des 4 cartes afin d'obtenir une carte de la répartition de l'indice Vg.

(5) Etape de reclassification. La valeur de l'indice Vg est ensuite subdivisée en 5 classes équidistantes de vulnérabilité traduisant la sensibilité du milieu aux influences naturelles et anthropiques à un instant donné. Des modifications de l'occupation du sol ne sont pas prises en considération.

(6) Etape de vérification. Confrontation de la carte de vulnérabilité avec les données de terrain (données ponctuelles brutes avant interpolation) et les cartes de chaque critère indexé afin de vérifier qu'il n'y ait pas d'incohérence flagrante.

Calcul des critères

• Le critère P

Le critère P définit la protection de la ressource en eau vis à vis de l'infiltration. Il dépend de plusieurs sous critères que sont l'état de surface ES (uniquement défini dans les bassins versants où le ruissellement vers des pertes est observé), le sol S, l'aquifère épikarstique E et les caractéristiques de la zone non saturée ZNS. Le sous-critère le plus protecteur vis-à-vis d'un transfert de contaminant vers la ressource est retenu pour obtenir la carte du critère P.

- ES: L'état de surface peut favoriser ou retarder le ruissellement de l'eau et donc le transport de polluants vers une perte. Il est contrôlé par la nature de la roche à l'affleurement (plus ou moins perméable) et l'existence de formations superficielles imperméables. Moins la formation est perméable, plus le risque de ruissellement vers la perte est conséquent, et l'indice attribué à cette formation sera élevé. Les notes de 1 à 4 sont attribuées aux différents terrains en respectant les consignes suivantes :

ETA	T DE SURFACE dans les bassins versants des pertes
P1	terrains caractérisés par de fortes perméabilités : graviers et conglomérats non cimentés
P2	terrains caractérisés par des perméabilités moyennes : arènes granitiques (faciès d'altération - érosion de massif granitique), sables, calcaires
P3	terrains caractérisés par des perméabilités faibles : grès peu fissurés, conglomérats cimentés, roches magmatiques et métamorphiques saines (granites, gneiss, basaltes)
P4	terrains caractérisés par des perméabilités très faibles : argiles, marnes zones de cours d'eau pérenne ou temporaire

Tableau 40. Description de l'état de surface dans les bassins versants des pertes (Dörfliger et Plagnes,2009)

S : Ce sous-critère représente la partie supérieure de la couche du terrain qui contribue à la protection de la ressource vis-à-vis d'une infiltration diffuse ou accidentelle de pollution.
 Il est défini à partir d'informations concernant sa texture, son taux de cailloux et son épaisseur, lorsque ces données sont disponibles, en suivant les consignes suivantes :

			TEXTURE		
		Argile	Limons	Sable	
			A > 12%	A < 12% et S< 60%	S >= 60%*
		0-15%	1	1	2
% CAILLOU	% CAILLOUX	30-60%	1	2	3
		> 60%**	2	3	4

Tableau 41. Tableau de détermination de la nature d'un sol en fonction de sa texture et sa proportion de cailloux (Dörfliger et Plagnes, 2009)

S		NATURE DU SOL					
		inconnue	1	2	3	4	
Zones imper	méabilisées		SO				
EPAISSEUR	> 5 m	S1	S1	S1	S2	S3	
	1-5 m	S1	S1	S2	S3	S3	
	60-100cm	S2	S2	S3	S4	S4	
	30-60cm	S3	S3	S4	S4	S4	
	0-30cm	S4	S4	S4	S4	S4	

Tableau 42. Tableau de détermination des classes du critère S par croisement de la nature du sol et deson épaisseur (Dörfliger et Plagnes, 2009)

E : L'épikarst correspond à la partie superficielle d'une formation carbonatée fortement altérée, située directement sous la surface du sol ou exposée à la surface. Il est important de prendre en compte le fonctionnement hydrogéologique de l'aquifère épikarstique dans la mesure où les contrastes de porosité et de perméabilité au sein de ce niveau sont dans certains cas responsables de la mise en place d'un aquifère perché en relation avec le réservoir principal, pouvant stocker temporairement l'eau et retarder l'infiltration de polluants. Le critère E est évalué en respectant les consignes suivantes :

E1	aquifère perché avec présence de puits et d'un niveau piézométrique, voir d'un lac temporaire ;
E2	aquifère épikarstique continu latéralement avec des sources temporaires d'un débit de l'ordre du litre/seconde et existence de puits collectant les eaux ; effet de stockage vérifié ;
E3	existence d'un aquifère avec présence de sources de débits peu importants et d'une continuité latérale plus ou moins bien représentée ; l'effet retard est limité ;
E4	pas d'aquifère épikarstique

Tableau 43. T	ableau de descriptio	on du critère E	(Dörfliger et	Plagnes, 2009)
---------------	----------------------	-----------------	---------------	----------------

- **ZNS** : La zone non saturée de l'aquifère assure le transfert d'eau infiltrée vers la zone saturée. La lithologie, l'épaisseur et le degré de fracturation/fissuration vont influencer la vitesse de transfert. Ce sous-critère est évalué selon les consignes suivantes :

LITHOLOGIE de la ZNS (L _{zns})				
L _{ZNS} 0	Couches d'argiles de forte épaisseur			
L _{ZNS} 1	Marno-calcaires, craie			
L _{ZNS} 2	Calcaires en petits bancs et/ou avec intercalations d'argiles			
L _{ZNS} 3	Calcaires en gros bancs massifs			

Tableau 44. Tableau décrivant la lithologie de la zone non saturée (Dörfliger et Plagnes, 2009)

ZONE NON	SATUREE (ZNS)	EPAISSEUR			
ZONE NON SATUREE (ZNS)		> 15 m	15-50 m	> 50 m	
	Faible-moyenne	L _{zns} +1	L _{zns}	Lzns	
Fracturation	Importante	L _{zns} +1	L _{zns} +1	Lzns	
Fracturation	Forte au niveau de faille	4	4	4	

Tableau 45. Tableau de l'attribution de la valeur de l'indice ZNS en croisant les paramètres épaisseur,
lithologie et fracturation (Dörfliger et Plagnes, 2009)

• Le critère R

Ce critère caractérise la nature de la Roche Réservoir. La lithologie du réservoir influence l'organisation des écoulements et le transfert de contaminants. Ce critère prend aussi en considération la fracturation (zone tampon de 50m de part et d'autres des failles), dans le sens où celle-ci joue un rôle sur le drainage des écoulements souterrains. Le critère R est évalué suivant ces consignes :

Indice	Description
R ₁	Cette classe regroupe les formations marno-calcaires (25-35% minéraux argileux) ainsi que la craie, affectée d'une fracturation faible qui auront une influence limitée en termes de vulnérabilité, les circulations d'eau restant là encore relativement lentes.
R ₂	Cette classe regroupe les formations de calcaires marneux (la proportion argileuse est plus faible que pour la classe R_1 : 10-25%), craie affectée d'une fracturation forte; Calcaires et dolomies en petits et gros bancs avec fracturation homogène et pendage ou contre pendage inférieur à 45 degrés , dont le sens est favorable à un écoulement en direction du captage comme cela l'est confirmé par ailleurs lors de la délimitation préalable du bassin d'alimentation.
R ₃	Cette classe regroupe les formations calcaires et dolomitiques, soit massives en gros bancs non fracturés, soit en petits bancs avec des intercalations argilo-marneuses avec une fracturation homogène. Ce type de formation permet des circulations relativement faciles et rapides :
	 Calcaires et dolomies massifs en gros bancs fractures et karstifies, Calcaires et dolomies en gros bancs avec un pendage ou contre- pendage supérieur à 45 degrés par rapport à la localisation de la source
R ₄	Cette classe regroupe les zones reconnues cartographiées ou présupposées de réseau de cavités et de zones de failles affectant le réservoir, parallèles au gradient hydraulique.

Tableau 46. Tableau de description des indices du critère R (Dörfliger et Plagnes, 2009)

• Le critère l

Ce critère concerne les conditions d'infiltration. Au sein des aquifères karstiques, l'infiltration est d'une part diffuse et d'autre part concentrée et ponctuelle au niveau de pertes temporaires ou permanentes le long de bassins versants de cours d'eau. Ce critère est donc évalué en considérant la pente ainsi que les objets morphologiques ayant une influence sur les conditions d'infiltration, et en suivant les consignes suivantes :

Indice	Description
10	Cette classe regroupe les zones du bassin où les pentes sont très fortes (>50%), induisant un ruissellement de l'eau très important (vers d'autres aquifères ou la mer etc.) et une infiltration négligeable voire même nulle.
11	Zones où les pentes sont fortes (15-50%) favorisant grandement le ruissellement.
12	Zones du bassin où la pente est moyenne (5-15%) et/ou zones où le ruissellement est limité en terrains carbonatés (ex. vallées sèches, lapiez peu développé verticalement).
13	Zones à pente faible (0-5%) où le ruissellement est limité et l'infiltration beaucoup plus forte. Les zones avec dolines et poljés sont prises en compte dans cette classe. De plus, les lapiaz bien développés verticalement avec des cannelures métriques font partie de cette classe.
14	Manifestations de l'infiltration concentrée au niveau des pertes. Ne sont retenues dans la classification "perte" que les pertes situées sur un cours d'eau pérenne ou temporaire. A la perte elle-même est associée le bassin versant du cours d'eau l'alimentant dont l'état de surface est caractérisé à l'aide de P. Celui-ci peut être calculé à partir du MNT et des outils spécifiques du SIG (fonction bassin versant dans ArcGis). Pour les karsts en région de montagne, les bassins ainsi déterminés seront systématiquement trop grands par rapport aux zones réelles de ruissellement. Les dimensions de ces bassins seront donc ajustées aux observations.

Tableau 47. Tableau de description des indices du critère I (Dörfliger et Plagnes, 2009)

• Le critère Ka

Ce critère défini le degré de karstification d'une formation, à partir de la typologie définie dans le guide Technic'eau (Muet et al., 2006) ainsi qu'à l'aide de la classification de Mangin (1975), en s'appuyant sur les consignes suivantes :

	Critères		Superficie de l'aire d'alimentation (km ²)			
			< 10km ²	> 10 km ²		
		Captage de source,	Type 1	Type 2		
		forages sur axe de	Débit annuel moyen faible	Débit annuel moyen fort		
onenteo ub	uu captaye	drainage (conduits karstiques), pompage en source	Systèmes karstiques peu évolués ou peu fonctionnels	Systèmes karstiques fonctionnels caractérisés par des fortes variations de débit, des vitesses de transit importantes		
5	5	Forage hors des	Type 3			
ition (principaux axes de	Aire d'alimentation souvent réduite			
	-	fissuré	Caractérisation du fonctionnement à partir de l'interprétation des essais de pompage			

Critère		Carac	téristiques	Indice
		Ka1	degré de karstification correspondant aux systèmes karstiques du type 1 (<10km ² , Q moyen annuel faible) et uniquement si le système karstique est caractérisé par un comportement peu fonctionnel (faible variabilité du débit et des paramètres physico-chimiques), et en l'absence de preuves ou d'indices de circulation rapide.	1
	ion	Ka2	degré de karstification correspondant soit aux systèmes karstiques de type 2 (> 10 km ²) ou de type 3, unaires et peu fonctionnels (fonctionnalité est appréciée à partir d'indices caractérisant le degré de karstification tels que des vitesses de traçage artificiel rapides, la variabilité du débit et de la chimie de la source), soit à des systèmes complexes tels que définis dans la classification de Mangin (domaine de référence 1).	2
Ka	Karstificat	Ka ₃	degré de karstification correspondant aux systèmes karstiques du type 2 ou 3, fonctionnels et binaires/unaires ; il s'agit soit de systèmes karstiques binaires peu fonctionnels ou unaires très fonctionnels. Le réseau karstique de ce type de systèmes karstiques est bien développé avec la présence d'un drain collecteur de petite taille connu connecté avec la surface. Les vitesses de transit mises en évidence à l'aide d'essais de traçages sont importantes (entre 50 et 100 m/h). Domaine de référence 2 de la classification de Mangin.	3
		Ka₄	degré de karstification correspondant aux systèmes karstiques binaires du type 2. Le réseau karstique très bien développé avec la présence d'un gros collecteur connecté avec la surface, comme l'atteste la fonctionnalité du système. Les vitesses de transit mises en évidences à l'aide d'essais de traçage sont importantes (> 100 m/h). Domaines de référence 3 voire 4 de la classification de Mangin.	4

Tableau 49. Tableau de description de l'indice Ka (Dörfliger et Plagnes, 2009)

Poids des critères et classes de vulnérabilité

L'indice de vulnérabilité globale Vg est calculé en sommant les 4 critères P, R, I et Ka, auxquels une pondération différente peut être affectée. Plusieurs tests sont réalisés de manière à obtenir différentes cartes à comparer, afin de retenir la plus adaptée au contexte de l'étude. Pour les bassins d'alimentation non-karstiques des pertes alimentant le système, seuls les critères ES (état de surface, sous-critère de P) et I sont considérés, avec une pondération équivalente (0,5ES + 0,5I).

Cinq classes sont calculées à partir du calcul de Vg afin d'obtenir la carte finale. La valeur de vulnérabilité varie entre 0 (minimale) et 4 (maximale). Ces classes sont imposées pour être équidistantes.

Valeurs	Classe	Vulnérabilité		
3,2 - 4	4	Très élevée		
2,4 - 3,19	3	Elevée		
1,6 - 2,39	2	Modérée		
0,8 - 1,59	1	Faible		
0 - 0,79	0	Très faible		

Tableau 50. Tableau des classes de vulnérabilité globale

5.2.1. Résultats

Dans cette partie sera décrite la méthode employée pour définir l'ensemble des critères et souscritères PaPRIKa dans le cas de l'étude des ressources en eau karstiques du Plateau de Sault, afin d'obtenir les cartes de ces critères et les cartes de vulnérabilité finales. L'analyse propose une cartographie de la vulnérabilité de la ressource en eau, non des captages. La résolution des cartes de vulnérabilité sera celle du modèle numérique de terrain utilisé (25mx25m).

L'étude cartographique a été réalisée en vue d'évaluer la vulnérabilité de la ressource en eau karstique des systèmes des sources de Fontmaure et Ginoles, Fontestorbes, Contes, Cailla, Fago, Argelier, Adouxes, Adouci, Fajole, Forge, SRE et Lani. La source de Belfort n'étant pas alimentée par une ressource karstique, la vulnérabilité de ce système n'a pas été évaluée (la méthode PaPRIKa ne s'appliquant que dans le cas d'hydrosystèmes karstiques). Les bassins d'alimentation de ces différentes sources sont représentés en Figure 175, ainsi que les secteurs pouvant alimenter 2 systèmes. Ces bassins d'alimentation ont été définis en période de Basses Eaux. Leur délimitation en Hautes Eaux peut être sensiblement différente.

Le critère P

• L'état de surface ES

Pour réaliser la carte de ce sous-critère, les lithologies issues de la carte géologique harmonisée du secteur ont été utilisées. Les différentes formations ont été regroupées par classe d'âge, de nature et de caractéristiques proches. Les cours d'eau (pérennes ou temporaires) situés en amont des pertes ainsi qu'une zone tampon de 50m de part et d'autre du lit du cours d'eau sont aussi représentés en tant que zones ayant un état de surface d'indice de valeur 4. Le tracé des

cours d'eau concernés, représenté en bleu sur les différentes cartes, est issu de la BD TOPO (IGN).

Le Tableau 51 récapitule les indices attribués à l'ensemble des groupes de lithologies définis.

Ce sous-critère a été défini à l'échelle des bassins versants des principales pertes alimentant les systèmes karstiques du plateau de Sault (Figure 172). La carte du sous-critère ES obtenue est présentée en Figure 176.

Système	Regroupement	Surface groupe (%)	Sous-Critère ES
Quaternaire	1 - Formations superficielles	9,81	2 (car formations alluviales très perméables , mais présence de tourbe, d'argiles et de moraines très peu perméables)
Crétacé supérieur à Paléogène	2 - Cénomanien à Paléogène : Marnes, calcaires et grès	11,89	3 (car calcaires, mais beaucoup de grès et conglomérats, et de marnes)
Crétacé inférieur à supérieur	3 - Aptien sup. à Cénomanien. Marnes noires et flysch noir	17,666	4 (car essentiellement marnes)
Crétacé inférieur	4 - Aptien sup. à Albien inf. Calcaires Urgoniens	3,753	2 (car calcaires)
Crétacé inférieur	5 - Gargasien. Marnes à exogyres et orbitolines	1,67	4 (car surtout marnes)
Crétacé inférieur	6 - Bédoulien. Marnes	1,98	4 (car marnes)
Crétacé inférieur	7 - Barrémien. Calcaires urgoniens	4,13	2 (car calcaires)
Crétacé inférieur	8 - Néocomien à Aptien inf. Calcaires à rares intercalations de marnes.	4,57	3 (car calcaires, avec conglomérats et marnes)
Jurassique à Crétacé inférieur	9 - Jurassique à Albien. Marbres, formations métamorphisées	11,44	3 (car calcaires, marnes, et métamorphisme)
Permien à Jurassique	10 - Trias à Jurassique. Calcaires et dolomies	1,964	2 (car essentiellement calcaires)
Carbonifère	11 - Culm. Pélites et conglomérats	2,49	4 (car pélites)
Silurien à Carbonifère	12 - Silurien à Carbonifère inf. Séries carbonatées	17,97	3 (car calcaires, grès et conglomérats, et pélites)
Néoprotérozoïque à Ordovicien	13 - Socle hercynien. Formations métamorphiques, granite et orthogneiss	10,67	3 (car mélange de grès, pélites, calcaires, formations cristallines)

Tableau 51. Tableau récapitulatif des regroupements de lithologies et des indices ES associés

Figure 172: Carte de localisation des bassins versants des pertes connues et des zones potentielles de pertes pour chaque système karstique

• Le Sol S

Dans le but de définir ce sous-critère, les données BDGSF (Base de Données Géographiques des Sols de France, échelle 1/100000) de l'INRA ont été utilisées. Cette base de données regroupe les informations concernant les types de sols, leur texture, les matériaux constitutifs du sol, la présence ou non de cailloux et leur taille, etc. Ces renseignements permettent une première classification des sols en fonction de leur texture et de la proportion de cailloux. Peu d'informations concernant l'épaisseur de ces sols sont disponibles. Il a donc été choisi de conserver la fourchette de valeur 60-100cm pour les sols recensés sur l'ensemble de la zone d'étude (semblable aux observations qui ont pu être faites localement sur le terrain).

La note alors obtenue a été réduite de 1 pour les secteurs où la carte géologique harmonisée de la zone d'étude mentionne la présence de formations superficielles quelconques (présence d'une formation supplémentaire entre le sol et l'aquifère), ou réduite de 2 lorsque ces formations superficielles sont tourbeuses ou argileuses (formations très peu perméables) (Figure 173).

Figure 173: Carte de localisation des formations superficielles

Afin de définir les zones imperméabilisées, les informations concernant le Bâtiment issues de la BD TOPO (IGN) et les zones urbaines (classes 111, 112, 121, 122, 123, 124 et 142) définies par la CORINE Land Cover 2012 ont été prises en compte et se sont vues attribuer la note de 0 (Figure 174).

Figure 174: Carte de localisation des zones imperméabilisées (BD TOPO, CLC2012)

La carte du sous-critère S obtenue est présentée en Figure 177.

• L'épikarst E

Ce sous-critère est défini sur l'ensemble des lithologies karstiques des bassins d'alimentation des sources étudiées. Dans le cas de l'étude du plateau de Sault, aucun aquifère épikarstique n'a été mis en évidence. Il n'existe pas de sources épikarstiques et le forage d'Espezel na pas décelé de niveaux saturés potentiellement aquifères dans la zone d'infiltration. L'indice 4 est alors attribué aux bassins d'alimentation directe des sources (définis par modélisation KARSYS pour les sources de Fontmaure et Ginoles, Fontestorbes, Contes, Cailla, et Fago ; et en conservant les formations essentiellement calcaires des bassins d'alimentation des sources d'Argelier, Adouxes, Adouci, Fajole, Forge, SRE et Lani).

La carte du sous-critère E obtenue est présentée en Figure 178.

• La zone non-saturée ZNS

Le paramètre Lzns (lithologie de la zone non saturée, Tableau 44) a été déduit du même groupement de lithologies que celui réalisé pour le sous-critère ES (Tableau 52), sans prendre en considération les formations superficielles (les délimitations des lithologies recouvertes par les formations superficielles ont alors été interpolées).

De manière générale, pour l'ensemble des systèmes, la zone non-saturée a une épaisseur supérieure à 15m, et la fracturation est faible à moyenne. Le sous critère ZNSconserve alors la note initiale Lzns. Un indice de 4 a été donné aux zones tampons de 50m de part et d'autre des cours d'eau (tracés BD TOPO) et de l'ensemble des failles (recensées sur la carte géologique harmonisée du secteur).

Comme pour le sous-critère E, le sous-critère ZNS est défini sur l'ensemble des lithologies karstiques des bassins d'alimentation des sources étudiées. La carte du sous-critère ZNS obtenue est présentée en Figure 179.

Système	Regroupement	Surface groupe (%)	Sous-Critère Lzns
Quaternaire	1 - Formations superficielles	9,81	
Crétacé supérieur à Paléogène	2 - Cénomanien à Paléogène : Marnes, calcaires et grès	11,89	1 (car beaucoup de marnes)
Crétacé inférieur à supérieur	3 - Aptien sup. à Cénomanien. Marnes noires et flysch noir	17,666	
Crétacé inférieur	4 - Aptien sup. à Albien inf. Calcaires Urgoniens	3,753	3 (calcaires plutôt massifs)
Crétacé inférieur	5 - Gargasien. Marnes à exogyres et orbitolines	1,67	
Crétacé inférieur	6 - Bédoulien. Marnes	1,98	
Crétacé inférieur	7 - Barrémien. Calcaires urgoniens	4,13	3 (calcaires plutôt massifs)
Crétacé inférieur	8 - Néocomien à Aptien inf. Calcaires à rares intercalations de marnes.	4,57	2 (calcaire avec intercalation de marnes)
Jurassique à Crétacé inférieur	9 - Jurassique à Albien. Marbres, formations métamorphisées	11,44	1 (calcaires, mais beacoup de marnes)
Permien à Jurassique	10 - Trias à Jurassique. Calcaires et dolomies	1,964	2 (calcairesparfois en plaquettes et avec marnes)
Carbonifère	11 - Culm. Pélites et conglomérats	2,49	
Silurien à Carbonifère	12 - Silurien à Carbonifère inf. Séries carbonatées	17,97	2 (calcaires et marnes)
Néoprotérozoïque à Ordovicien	13 - Socle hercynien. Formations métamorphiques, granite et orthogneiss	10,67	

Tableau 52. Tableau récapitulatif des regroupements de lithologies et des indices Lzns associés

• Bilan : calcul du critère P

Le sous-critère le plus protecteur vis-à-vis d'un transfert de contaminant vers la ressource est retenu pour obtenir la carte du critère P. La carte du critère P obtenue est présentée en Figure 180.

Figure 175: Carte de localisation des bassins d'alimentations des différentes sources d'intérêt du plateau de Sault

Figure 176: Carte du sous-critère ES état de surface (uniquement pour les bassins versants des pertes)

Figure 177: Carte du sous-critère S sol

Figure 178: Carte du sous-critère E épikarst (uniquement pour les bassins d'alimentation directe des sources)

Figure 179 : Carte du sous-critère ZNS zone non-saturée (uniquement pour les bassins d'alimentation directe des sources)

Figure 180. Carte du critère P protection

Le critère R

Dans le cas de cette étude, les zones noyées des systèmes des sources du Secondaire ont été définies (contours et lithologies) par la méthode KARSYS. Cette information est alors utilisée pour définir le critère R pour ces systèmes karstiques. La lithologie de la roche réservoir des sources du Primaire a été considérée comme similaire aux lithologies à l'affleurement (Figure 181).

Les informations sur le pendage des failles et des lithologies étant disparates et très variables pour une même formation sur l'ensemble de la zone d'étude, elles n'ont pas été prises en compte pour l'évaluation du critère R.

Figure 181: Carte de localisation des zones noyées obtenues par modélisation KARSYS, et des formations « réservoirs » des sources Sud

Le Tableau 53 liste les notes données à chaque groupe de lithologies (groupes identiques à ceux utilisés pour définir les sous-critères ES et ZNS). La carte du critère R obtenue est présentée en Figure 183.

Système	Regroupement	Surface groupe (%)	Critère R
Quaternaire	1 - Formations superficielles	9,81	
Crétacé supérieur à Paléogène	2 - Cénomanien à Paléogène : Marnes, calcaires et grès	11,89	1 (car beaucoup de marnes)
Crétacé inférieur à supérieur	3 - Aptien sup. à Cénomanien. Marnes noires et flysch noir	17,666	1 (car marnes)
Crétacé inférieur	4 - Aptien sup. à Albien inf. Calcaires Urgoniens	3,753	3 (calcaires plutôt massifs)
Crétacé inférieur	5 - Gargasien. Marnes à exogyres et orbitolines	1,67	1 (car marnes)
Crétacé inférieur	6 - Bédoulien. Marnes	1,98	1 (car marnes)
Crétacé inférieur	7 - Barrémien. Calcaires urgoniens	4,13	3 (calcaires plutôt massifs)
Crétacé inférieur	8 - Néocomien à Aptien inf. Calcaires à rares intercalations de marnes.	4,57	2 (calcaire avec intercalation de marnes)
Jurassique à Crétacé inférieur	9 - Jurassique à Albien. Marbres, formations métamorphisées	11,44	1 (calcaires, mais beacoup de marnes)
Permien à Jurassique	10 - Trias à Jurassique. Calcaires et dolomies	1,964	2 (calcairesparfois en plaquettes et avec marnes)
Carbonifère	11 - Culm. Pélites et conglomérats	2,49	1 (car pélites)
Silurien à Carbonifère	12 - Silurien à Carbonifère inf. Séries carbonatées	17,97	2 (calcaires et marnes)
Néoprotérozoïque à Ordovicien	13 - Socle hercynien. Formations métamorphiques, granite et orthogneiss	10,67	1 (car mélange de grès, pélites, calcaires, formations cristallines)

Tableau 53. Tableau récapitulatif des regroupements de lithologies et des indices R associés

Le critère l

Dans le cas de cette analyse, en plus de la pente, ont été considérés (Figure 182) :

- Les bassins versants des pertes principales et les dépressions associées à des pertes tracées (Mouillères, Pavillon de la Jasse, Rébounédou, Coudon) : indice 4
- Les grandes cavités et dépressions karstiques (dont la taille est supérieure à celle de la maille de la carte, soit 25x25m) : indice 3

La carte du critère I obtenue est présentée en Figure 184.

Figure 182: Carte de localisation des éléments morphologiques liés au karst

Le critère Ka

Pour ce critère, la note de 3 a été attribuée aux zones noyées des systèmes des sources de Fontmaure et Ginoles, Fontestorbes, Contes, Cailla et Fago définies par modélisation KARSYS, ainsi qu'aux formations karstiques affleurantes du bassin d'alimentation de la source d'Argelier. Il s'agit de karsts bien développés, au sein de formations carbonatées du Crétacé et du Jurassique pouvant, dans la partie Sud, avoir subi un métamorphisme (marbres). Une note de 1 a été donnée aux formations karstiques affleurantes des systèmes des sources des Adouxes, Adouci, Fajole, Forge, SRE et Lani (formations carbonatées dévoniennes, où le réseau karstique est moins fonctionnel).

Plusieurs conduits karstiques principaux, à fortes vitesses de transit, et alimentant les sources de Fontestorbes, de Blau et de Fontmaure, ont été mis en évidence par le biais de traçages et d'explorations spéléologiques. Une note de 4 a été attribuée à ces secteurs, la localisation des conduits noyés n'étant pas précisément connue.

Pour les secteurs situés en dehors des zones noyées des systèmes, la note Ka 1 est renseignée lorsque la formation affleurante (d'après la carte géologique harmonisée) est anté-paléozoïque (Protérozoïque à Permien), et Ka 3 lorsqu'il s'agit de formations plus récentes (Trias à Paléogène).

La carte du critère Ka obtenue est présentée en Figure 185.

Figure 183: Carte du critère R roche réservoir

Figure 184. Carte du critère l infiltration

Figure 185: Carte du critère Ka karstification

Poids des critères et classes de vulnérabilité

L'indice de vulnérabilité globale Vg a été calculé pour les 6 tests suivants:

- 0,2P + 0,2R + 0,4I + 0,2Ka
- 0,2P + 0,2R + 0,3I + 0,3Ka
- 0,25P + 0,25R + 0,25I + 0,25Ka
- 0,2P + 0,1R + 0,4I + 0,3Ka
- 0,2P + 0,2R + 0,5I + 0,1Ka
- 0,3P + 0,1R + 0,5I + 0,1Ka

Pour les bassins d'alimentation non-karstiques des pertes alimentant les systèmes étudiés, on considère Vg = 0.5ES + 0.5I. La carte de ces secteurs se superpose aux différentes cartes globales décrites ci-dessus. Les 6 cartes alors obtenues sont présentées en Annexe 8.

Les bassins d'alimentation non-karstiques des pertes alimentant les systèmes étudiés ressortent comme étant majoritairement très vulnérables (secteurs rouges et oranges ; Figure 186). Il peut être considéré que tout contaminant rejeté sur ces zones ruisselle et atteint l'aquifère concerné par le biais des pertes.

Figure 186: Carte de vulnérabilité des bassin versants non-karstiques des pertes

Sur l'ensemble des cartes (Annexe 8), le Sud-Ouest de la zone d'étude apparaît moins vulnérable : il s'agit de l'amont des bassins d'alimentation des sources de Fontestorbes et Fontmaure, ainsi qu'une grande partie des bassins d'alimentations des sources d'Argelier, Adouxes, Lani, Fajole, Forge et SRE. Ces secteurs sont moyennement à peu vulnérables d'après les Figures A-36 à A-39, voire présentant des zones très peu vulnérables d'après les Figures A-40 à A-41 : il s'agit surtout de zones de fortes pentes où l'infiltration I est faible, constituées de formations calcaires et marneuses du Silurien au Carbonifère, et plus ou moins métamorphisées datant du Jurassique au Crétacé inférieur (karst moins développé). La partie Nord - Nord-Est de la zone d'étude (aval des bassins d'alimentation de Contes, Fontmaure et de Fontestorbes, et

bassins d'alimentation de Cailla et Fago) est de manière générale plus vulnérable (de modérée à très élevée) : le degré de karstification y est plus élevé, en témoigne la présence de nombreuses dépressions et cavités, et les pentes y sont plus faibles. Les Figures A-36, A-37 et A-39 insistent sur la vulnérabilité du plateau d'Espezel et des multiples dépressions et cavités karstiques, au sein desquelles l'infiltration de contaminant peut être très rapide. Les Figures A-37 et A-38 mettent en évidence la vulnérabilité des zones de failles (élevée). De manière générale, les Figures A-40 et A-41 affichent des valeurs plus faibles que les quatre premières, dues à une plus forte pondération de l'infiltration, réduisant l'impact des autres critères sur l'évaluation de la vulnérabilité des ressources en eau karstiques du plateau de Sault.

La Figure A-39 (Test 4) est sélectionnée comme étant la plus représentative du contexte morphologique, géologique et hydrogéologique de la zone d'étude. Elle présente des vulnérabilités faibles au niveau des bassins d'alimentation des sources issues de formations majoritairement dévoniennes, où le réseau karstique est moins bien développé et présentant de fortes pentes. Elle permet de mettre en évidence les zones d'infiltration préférentielle (dépressions, cavités), sans trop insister sur les failles et leur rôle dans l'alimentation des différents systèmes, difficile à appréhender.

En revanche, la vulnérabilité des abords des cours d'eau à l'amont de certaines zones de pertes (Ourza, Comus, Quirines, Mouillères et Coudons) ressortent peu (vulnérabilité faible à élevée). Il s'agit pourtant de secteurs particulièrement vulnérables, par le biais desquels tout rejet de polluant impacte directement les systèmes karstiques alimentés par les pertes concernées. Il a donc été décidé d'appliquer une zone tampon de vulnérabilité Très élevée (4), d'une largeur de 100m de part et d'autre des cours d'eau alimentant ces zones de pertes. La même opération a été effectuée au niveau des cours d'eau situés à l'amont direct de la source du Blau, où la vulnérabilité était faible, alors que l'infiltration d'un polluant impacterait directement la qualité de l'eau à la source. La carte prenant en compte ces rectifications est présentée en Figure 187.

Figure 187: Carte de vulnérabilité de la ressource en eau karstique du plateau de Sault

5.3. PRESSIONS ANTHROPIQUES

L'étude des pressions anthropiques a été réalisée sur une zone d'étude restreinte aux secteurs d'intérêt, notamment aux entités aquifères et karstiques étudiées dans le cadre du projet. Cette petite zone d'étude (PZE), identique au découpage utilisé pour la réalisation des cartes de vulnérabilité, compte 38 communes, et regroupe les bassins d'alimentation de l'ensemble des sources d'intérêt (contour jaune, Figure 188).

La recherche d'informations sur les pressions anthropiques a été faite sur une zone d'étude plus large, de manière à prendre en compte les informations non-géolocalisées précisément, ou concernant l'ensemble d'une commune. Elle regroupe 78 communes (en orange, Figure 188). Pour la représentation cartographique, les informations sont redécoupées à l'échelle de la Grande Zone d'Etude (contour noir, Figure 188)

Figure 188: Sectorisation de la recherche d'informations concernant les pressions anthropiques

5.3.1. Méthodologie

Les informations concernant les différentes pressions anthropiques s'exerçant sur le Plateau de Sault ont été récoltées pour l'ensemble des communes inclues dans la grande zone d'étude, via plusieurs banques de données en ligne :

- **BASIAS**: base de données issue de la réalisation d'inventaires historiques régionaux (IHR) des sites industriels et activités de service, en activité ou non: <u>http://www.georisgues.gouv.fr/dossiers/basias/donnees#/</u>
- **BASOL**: base de données sur les sites et sols pollués (ou potentiellement pollués) appelant une action des pouvoirs publics, à titre préventif ou curatif : <u>http://basol.developpement-durable.gouv.fr/</u>
- ICPE : base de données des installations classées pour la protection de l'environnement (en raison des nuisances éventuelles ou des risques importants de pollution des sols ou d'accident qu'elle présente) : <u>http://www.installationsclassees.developpementdurable.gouv.fr/recherchelCForm.php</u>
- IREP : base de données recensant les principaux rejets et transferts de polluants dans l'eau, l'air, les déchets déclarés par certains établissements ; à savoir les principales installations industrielles, les stations d'épuration urbaines de plus de 100 000 équivalents habitants et certains élevages : <u>http://www.georisques.gouv.fr/dossiers/irep-registre-des-</u> <u>emissions-polluantes</u> (données de 2003 à 2016)
- Assainissement : base de données mettant à disposition les dernières données collectées dans le cadre du suivi des mises en conformité des ouvrages d'assainissement : <u>http://assainissement.developpement-durable.gouv.fr/</u>
- **Données de pollution industrielle recensées par les Agences de l'Eau** : pour l'agence Rhône Méditerranée Corse : <u>http://sierm.eaurmc.fr/telechargements/telechargement/</u> <u>telechargement.php#industriels</u>; pour l'agence Adour Garonne : <u>http://adourgaronne.eaufrance.fr/index.php?option=accesData&task=recherche&theme=EIP</u>

Les données récoltées ici sont des données ponctuelles, géoréférencées pour la plupart. Dans le cas où les coordonnées du site ne sont pas renseignées, celui-ci est alors placé au centroïde de la commune concernée. Les données ont été croisées de manière à supprimer tout doublon ou de compléter les informations recensées pour un site à partir de celles récupérées sur les diverses banques de données. Le type d'activité exercé sur chacun de ces sites est défini en utilisant la **codification NAF** (Nomenclature d'Activités Françaises, INSEE) : <u>https://www.insee.fr/fr/information/2406147</u>.

De manière à mieux appréhender les différentes activités agricoles et leur étendue, le **Registre Parcellaire Graphique** (IGN) a été utilisé : <u>http://professionnels.ign.fr/rpg</u>. Il s'agit ici d'informations surfaciques, permettant l'identification des parcelles agricoles regroupées en îlots. Pour chaque îlot a été conservée l'information relative au type d'activité agricole le plus représenté au sein de cet îlot. Ces données permettent de cibler de manière générale les secteurs où des ajouts d'intrants (chimiques, effluents) peuvent être réalisés.

Plusieurs informations (ponctuelles, linéaires et surfaciques) issues de la **BD TOPO** (IGN) ont aussi été récoltées : <u>http://professionnels.ign.fr/bdtopo</u>

- Les zones bâties : bâtiments indifférenciés, remarquables, industriels, sportifs, les cimetières, réservoirs, aérodromes ;
- Les zones d'activités : industriel ou commercial, culture et loisir, sport, gestion des eaux, transport ;
- Les infrastructures de transport : chemins, routes secondaires, routes primaires, voies ferrées, gare, zone de triage, transports câblés et téléphériques ;
- Le transport d'énergie : lignes électriques, pylônes, postes de transformation.

Des recherches complémentaires concernant de possibles pollutions accidentelles ont été effectuées via la base de données **ARIA** (retour d'expérience sur les accidents technologiques) : <u>https://www.aria.developpement-durable.gouv.fr/?s=</u> En parallèle à ce travail, différents acteurs de la gestion de l'eau et différents gestionnaires du Plateau de Sault ont été contactés dans le but de compléter les informations acquises via les bases de données citées ci-dessus (Tableau 54).

Organismes contactés	Informations récoltées
Conseils départementaux 09 – 11	 Données Assainissement Collectif et Non- Collectif 09 :
DDT 09 - 11	
DDCSPP 09 - 11	 Analyses reglementaires des eaux du captage de Fontestorbes (2014 et 2016) ;
Agences Régionales de Santé 09 – 11	- Fiches de recensement de décharges
Agence de l'Eau Rhône-Méditerranée-Corse	(Annexe 9) et localisation de décharges
Agence de l'Eau Adour-Garonne	d'Ariège ;
SMMAR EPTB Aude	- Exploitations agricoles en Installations
SMDEA	classées pour certaines communes de
SMAH	l'Ariège (liste et localisation des sièges), et
Syndicat Mixte Des 4 Rivières	cartes (.pdf) des parcelles sur la commune de Nébias où épandages d'effluents
Mairie de Roquefeuil	d'élevage ;
Chambres d'agriculture 09 - 11	- Listes ou cartes (.pdf) des parcelles dans
Office National de la Forêt	l'Aude où plan d'épandage des effluents de STEP.

 Tableau 54 : Liste des organismes contactés dans le cadre de l'étude des pressions anthropiques sur le plateau de Sault

L'ensemble des données récoltées a été regroupé sous SIG de manière à réaliser les cartes de pressions suivantes :

- Domestiques et urbaines : STEP et rejets de STEP (bases de données en ligne) ; communes où présence de dispositifs ANC (données transmises) ; réservoirs, aires d'activités liées à la gestion de l'eau, bâtiments indifférenciés, remarquables, cimetières (BD TOPO) (Figure 190) ;
- Liées aux transports : ensemble des sites liés aux transports terrestres et par conduite (bases de données en ligne); chemins, routes secondaires, routes primaires, voies ferrées, gare, aires de triage, transports câblés et téléphériques, aérodromes, aires d'activités liées aux transports (BD TOPO) (Annexe 12);
- Industrielles : ensemble des sites industriels et des rejets industriels recensés à partir des différentes bases de données en ligne ; bâtiments industriels et commerciaux, aires d'activités industrielles et commerciales (BD TOPO) (Annexe 13) ;
- **Agricoles :** ensemble des sites liés à l'agriculture (bases de données en ligne) ; bâtiments agricoles, serres et silos (BD TOPO), type d'activité agricole par îlot (RPG) ; communes présentant des plans d'épandage d'effluents agricoles et/ou de STEP (Figure 191) ;
- Liées à la collecte et au stockage des déchets : ensemble des sites de déchetteries et décharges recensés sur les différentes bases de données en ligne, ou transmises (Annexe 14) ;
- Liées aux activités sportives et touristiques : ensemble des sites liés aux activités sportives et touristiques recensés sur les différentes bases de données en ligne ; aménagements sportifs, aires d'activités sportives, culturelles et de loisirs (BD TOPO) (Annexe 15).

Les cartes des pressions domestiques et urbaines et des pressions agricoles représentant les principales pressions anthropiques exercées sur le plateau de Sault, sont présentées dans ce rapport. Les cartes des quatre autres types de pressions, dont l'impact sur la ressource apparait plus difficile à appréhender, ont été classées en annexes.

5.3.2. Résultats à l'échelle des zones d'études principales

Le plateau de Sault est essentiellement rural, ponctué de petits villages, avec, pour plus grande ville de la petite zone d'étude (PZE), Quillan (plus de 3200 habitants) à la limite Nord-Est (Belesta en 2^{ème}, avec plus de 1060 habitants), et un nombre moyen de 257 habitants / commune (Tableau 55).

	Grande zone d'étude	Petite zone d'étude
Nombre de communes	78	38
Nombre d'habitants max	6394	3240
Nombre d'habitants min	4	12
Nombre d'habitants moy	326	257

Tableau 55 : Nombre de communes et d'habitants par commune pour la grande et la petite zone d'étude (chiffres INSEE)

Informations récoltées sur les bases de données en ligne ou transmises par les différents gestionnaires du plateau de Sault :

L'assainissement

Les STEP sont dimensionnées pour répondre aux besoins de ces petites communes (15 STEP au total et 11 rejets recensés sur la PZE), avec des capacités allant de 40 à 1500 EH (Tableau 56, Figure 190).

	Grande zone d'étude	Petite zone d'étude					
Nombre de communes	78	38					
Données BASIAS, BASOL, ICPE, IREP, Assainissement, AE							
Traitement des eaux	k usées						
Nombre TOTAL de STEP	54	15					
Nombre de STEP géoréférencées	50	12					
Nombre de STEP non géoréférencées	4	3					
Capacité max (EH)	7000	1500					
Capacité min (EH)	30	40					
Capacité moy (EH)	516	437					
Nombre de rejets de STEP	47	11					
Débit max (m3/j)	3201	246					
Débit min (m3/j)	5	15					
Débit moy (m3/j)	130	78					

 Tableau 56 : Informations sur les dispositifs de traitements des eaux usées présents sur le plateau de Sault

Epandage des boues de STEP : Plusieurs informations concernant la quantité de boues de STEP et leur gestion ont été récoltées, sur le site de l'Agence de l'Eau RMC (Tableau 57) ou

transmises par la DDT11 (Tableau 58) pour les STEP situées dans l'Aude, et transmises par l'Agence de l'Eau Adour-Garonne (Tableau 59) et la DDT09 pour les STEP situées en Ariège. Les STEP et communes épandues situées dans la PZE sont surlignées en vert dans les Tableau 57, Tableau 58 et Tableau 59. Ces informations couvrent les années 2008 à 2017 pour les STEP côté Aude, et l'année 2016 seulement pour les STEP côté Ariège. Sur les 54 STEP recensées en GZE, seules 19 d'entre elles présentent des informations sur la gestion des boues d'épuration d'après les données transmises par les Agence de l'Eau et DDT. Pour 7 STEP (situées dans l'Aude), des informations concernant les plans d'épandage d'effluents ont été obtenues (communes épandues, années d'épandage, et dans certains cas, parcelles concernées (listes, cartes.pdf)), 7 communes situées entièrement (Coudons, Espezel, Belvis, Roquefeuil) ou partiellement (Nébias, Puivert, Brenac) dans la PZE sont concernées par l'épandage de boues d'épuration. L'absence de contours parcellaires au format vectoriel sur les communes étudiées (vérifié auprès de l'IGN) et l'utilisation de référencements différents des parcelles d'un plan d'épandage à l'autre (nom de l'exploitant + numéro ; ilots de parcelles ne correspondant pas systématiquement au RPG ; référence cadastrale ; etc...) n'ont pas permis de présenter sous format cartographique le détail des parcelles épandues. Côté Ariège, aucun plan d'épandage de boues d'épuration n'a été réalisé : l'ensemble des boues d'épuration sont acheminées à l'usine de compostage de Villeneuve d'Olmes (au Nord-Ouest de la zone d'étude) où elles sont traitées (informations transmises par la DDT 09). L'information relative aux épandages des boues de STEP sera intégrée à la carte des pressions agricoles. Bien que l'origine de ces effluents soit essentiellement domestique, l'épandage de ces boues en champs se fait dans le cadre de l'activité agricole.

Gestion des boues de STEP côté Aude (kg/an)	2009	2010	2011	2012	2013			
ANCIENNE STATION D'EPURATION DE BELCAIRE (60911028001)								
(1) pas de plan d'épandage ou avis négatif ou avis réservé sur le plan					3800			
Destination non conforme		3600	3800	4000				
STATION D'EPURATION DE AU	NAT (6091101	9001)						
(5) plan d'épandage agréé (STEP <= 120 kg/j de DBO5)			32520					
Lagune et assimilé		1		1700	240			
STATION D'EPURATION DE AX	AT (60911021	.002)						
(1) pas de plan d'épandage ou avis négatif ou avis réservé sur le plan					6230			
(5) plan d'épandage et avis positif sur le bilan agro				5510				
(6) plan d'épandage agréé avec avis réservé sur le PP ou sur le bilan agro.	10036	8000	8514					
STATION D'EPURATION DE ESP	EZEL (6091113	80002)						
Lits à macrophytes				1185	1195			
STATION D'EPURATION DE LE BOU	SQUET (6091	1047001)						
Destination non conforme				230				
Lits à macrophytes		1	1		228			
STATION D'EPURATION DE QUILLAN -	CHEF LIEU (6	0911304001)						
(5) plan d'épandage et avis positif sur le bilan agro				66682	67720			
(6) plan d'épandage agréé avec avis réservé sur le PP ou sur le bilan agro.	71162	70444	63274					
STATION D'EPURATION DE ROQUEFOR	RT DE SAULT (60911321002)						
Lits à macrophytes		4100		1470	2099			
Tableau 57: Informations concernant la gestion des boues	d'épuration	on des STI	EP côté A	ude d'aprè	ès les			

données de l'Agence de l'Eau RMC

Gestion des boues de STEP côté Aude						
Commune où épandages	INSEE	Origine des boues	Commentaire DDT11			
AUNAT	11019	STEP Aunat	Epandage de 400 m ³ (lagunes) réalisé en septembre 2011			
BELVIS	11036	STEP Belvis	Epandage en 2014, 2015, 2016 et 2018.			
COUDONS	11101	STEP Coudons	Plan d'épandage relevant du RSD (compétence maire) existant mais non encore uilisé.			
FA	11131					
NEBIAS	11263	*				
COUDONS SAINT-FERRIOL BRENAC	11101	1	Epandage en 2015, 2016 , 2017.			
	11341	STED Courizo				
	11050					
CAMPAGNE-SUR-AUDE	11063		7 ilots, 1 seul exploitant agricole. Epandage réalisé en 2003, 2004, 2005, 2006, 2007, 2011 et 2013 sur une partie du périmètre			
NEBIAS	11263		Dian existent nes d'épendage en 2017			
PUIVERT	11303	STED Ecooraza	Plan existant, pas d epandage en 2017			
BELVIS	11036		Epandage de 2008 à 2015. Pas en 2017 avec			
ESPEZEL	11130		autre plan.			
GRANES	11168	STEP Granes	Enandage de lagunes en 2015			
SAINT-FERRIOL	11341	STEL Granes	Lpandage de laganes en 2013.			
ESPEZEL	11130	STEP Quillan	Epandages jusqu'en 2014. Nouveau plan			
ROQUEFEUIL	11320	Ster Quindir	depuis, non utilisé.			

Tableau 58: Informations concernant l'épandage des boues d'épuration des STEP côté Aude d'après lesdonnées de la DDT11

Gestion des boues de STEP côté Ariège							
Code Sandre de la	Nom de la STEP	Production Boues	MS Usine d'incinération en	MS Step en	MS Compostage Produit		
STEP		2016 (T de MS)	KG de MS	KG de MS	en KG de MS		
0509032V002	AX LES THERMES (COMMUNALE)	3,12		510	3130		
0509047V004	BELESTA (COMMUNALE)	4,1		600	3340		
0509140V001	IGNAUX	0,01		11			
0511263V001	NEBIAS	2,16		598			
0511303V001	PUIVERT	2,323					
060911066001	CAMURAC	4,7		4700			
060911096001	COMUS	3,3					

 Tableau 59: Informations concernant la gestion des boues d'épuration des STEP côté Ariège d'après les données de l'Agence de l'Eau AG. MS : matière sèche

Assainissement Non-Collectif : Des informations ont pu être obtenues sur les communes de Bélesta, Fougax et Barrineuf, et Montségur. Sur les 134 dispositifs recensés, 102 présentaient un avis défavorable (données de 2012 à 2016, Tableau 60). Un avis défavorable peut être donné, suite à un contrôle du dispositif, dans plusieurs cas : installation inexistante, incomplète ou présentant un dysfonctionnement. Il est alors demandé au propriétaire de réhabiliter son installation.

Commune	Nombre de dispositifs ANC	Nombre d'avis défavorables
Bélesta	101	74
Fougax et Barrineuf	31	26
Montségur	2	2

Tableau 60 : Informations concernant les dispositifs ANC côté Ariège (source: CD 09)

• Les activités industrielles, commerciales et agricoles

Sur la PZE, 25 sites (industriels, commerciaux, agricoles et de loisirs) ont été recensés et aucun rejet industriel (135 sites et 6 rejets en GZE). Dix d'entre eux ne sont plus en activité. L'essentiel de ces sites sont liés à la collecte, au traitement et l'élimination des déchets (14 sites, essentiellement des décharges publiques et sauvages), à l'industrie manufacturière (4 sites, dont le travail du bois : 2 sites, et la fabrication de produits métalliques et informatiques: 2 sites), et au commerce et réparation de véhicules (3 sites) (Tableau 61, Annexe 11). On observe une tendance similaire à l'échelle de la GZE, pour 135 sites dont 63 n'étant plus en activité (Tableau 61). Ces données ont été extraites des bases de données en ligne, et, en ce qui concerne les décharges, ont été complétées à l'aide des fiches de sites réalisées par le CD09 (Annexe 9) et des repérages sur carte IGN réalisés par le CD11.

De manière générale, peu d'informations concernant les **exploitations forestières** ont pu être obtenues, l'ONF et les DDT Aude et Ariège ne disposant pas d'une cartographie des parcelles concernées, ni des informations relatives aux pollutions découlant de cette activité.

En ce qui concerne l'épandage d'intrants chimiques et d'effluents d'élevage sur les parcelles agricoles, peu d'informations ont pu être obtenues. Le nom des exploitations en Installations Classées et le type d'élevage concerné (bovin pour la grande majorité) nous ont été transmis par les DDCSPP09 et 11, sur certaines communes de l'Aude et de l'Ariège (Tableau 62). Aucune information sur les parcelles utilisées par ces exploitations n'a été transmise, excepté pour le GAEC BALCAM à Nébias, pour lequel toutes les parcelles définies dans le plan d'épandage se situent en dehors de la PZE, à l'aval des sources. De manière générale, les épandages doivent respecter une distance d'exclusion de 35m des cours d'eau ainsi que des points d'eau destinés à la consommation humaine, et de 100m des habitations.

En termes d'émissions de polluants issues des activités industrielles, l'IREP recense, de 2003 à 2013, les informations décrites en Annexe 10. En revanche, ces sites sont situés en dehors de la PZE, hors des bassins d'alimentation des sources karstiques étudiées. Ces données n'apportent donc pas d'informations sur le secteur d'intérêt.

	Grande zone d'étude	Petite zone d'étude				
Nombre de communes	78	38				
Données BASIAS, BASOL, ICPE, IREP, Assainissement, AE						
Sites industriels, agricoles, cultur	rels et touristiques					
Nombre TOTAL de sites rencensés	135	25				
Nombre de sites recensés géoréférencés	100	14				
Nombre de sites recensés non géoréférencés	35	11				
En activité	53	7				
Activité terminée	63	10				
Nombre de rejets industriels renseignés	6	0				
Par type d'activit	rés					
Agriculture, sylviculture et pêche	2					
Industries extractives	6	1				
Extraction de minerais metalliques	2					
Autres industries extractives	4	1				
Industries manufacturieres	58	4				
Industries dimentaires	1					
	/					
	3					
Travali du bois et fabrication à articles en bois		2				
et en liege, à l'exception des meubles ;	10	2				
	1					
	1					
Imprimerie et reproduction à enregistrements	2					
Fabrication d'autres produits minéraux pop	0					
métalliques	4					
Fabrication de produits métalliques, à l'exception des machines et des équipements	19	1				
Fabrication de produits informatiques, électroniques et optiques	3	1				
Production et distribution d'électricité, de gaz, de vapeur et d'air conditionné	4	1				
Production et distribution d'eau; assainissement, gestion des déchets et dépollution	27	14				
Captage, traitement et distribution d'eau	1					
Collecte, traitement et élimination des déchets ; récupération	26	14				
Construction	1					
Commerce, réparation d'automobiles et de motocycles	17	3				
Commerce de détail, à l'exception des automobiles et des motocycles	8	1				
Transports terrestres et transport par conduites	3	1				
Administration publique	1					
Santé humaine et action sociale	1					
Stockage et dépôt de produits chimiques, inflammables, gaz	8					
Autres activités de services	3					

 Tableau 61 : Informations sur les sites industriels, commerciaux, agricoles et de loisirs recensés sur les différentes bases de données en ligne

Commune	INSEE	Exploitation ICP	Informations supplémentaires
BELCAIRE	11028	POUX BENOIT	Pas de cartographie des parcelles
ESCOULOUBRE	11127	EARL CUCULLIERES	épandues
ESPEZEL	11130	FAUCHE DOMINIQUE	epandues.
NEBIAS	11263	GAEC BALCAM	Plan d'épandage sur Nébias et Brenac, parcelles épandues en dehors de la PZE, à l'aval des sources .
PUIVERT	11303	ROUSSEL MARIE ODILE	
PUIVERT	11303	EURL EN SURGENS	Pas de cartographie des parcelles
QUILLAN	11304	CANAVY JEAN	énandues
RENNES-LE-CHATEAU	11309	GAEC DE LA MAURINE	epandues.
RIVEL	11316	GAEC EN THOMAS	
FOUGAX ET BARRINEUF	09125	MOUNIE JACQUES HECTOR LOUIS	
LAIGUILLON	09003	GAEC DE SOULEILLA (DUCHESNE)	
LAIGUILLON	09003	JOURET JACQUES	
L AIGUILLON	09003	THALAMAS FREDDY	Pas de cartographie des parcelles épandues. Sièges des exploitations
LAVELANET 09160 EARL LA FERME DE		EARL LA FERME DE GREOULOU	localisés hors PZE, à l'aval des sources.
LAVELANET	09160	TOUSTOU JEAN FRANCOIS	
LESPARROU	09165	GAEC D'ENGAULY	
MONTFERRIER	09206	GAEC DE SAINT BARTHELEMY (CHAUBET)	

Tableau 62: Exploitations agricoles ICPE référencées sur la GZE (en vert, communes situées entièrement ou partiellement sur la PZE), d'après les données des DDCSPP09 et 11

L'IREP fait aussi mention de la **carrière de talc de Trimouns**, située à l'Est de la PZE, à l'amont du bassin d'alimentation de la source de Fontestorbes (Figure 189). L'éventualité d'une relation entre la source et les bacs de décantation de la carrière situés sur le versant du ruisseau du Basqui avait été envisagée, en août 2000, après avoir observé une coloration blanchâtre à la source. Un traçage, réalisé en juin 2002 a permis de valider cette hypothèse, en précisant que la relation présente différents aspects en fonction du régime hydraulique. Depuis l'incident, des précautions ont été prises et différents aménagements ont été réalisés au niveau du lagunage dans le haut bassin du Basqui (Mangin, 2002). Mais le risque d'une nouvelle pollution est à prendre en considération, notamment en périodes de basses eaux à la suite de crues d'orage (comme ce fut le cas en 2000).

Figure 189: Localisation de la carrière de Talc de Trimouns et des bacs de décantation (sur le ruisseau de Font Albe, affluent du Basqui)

Par ailleurs, l'IREP recense de 2007 à 2016 les produits utilisés et les déchets produits par la carrière et pouvant présenter des dangers pour l'environnement et la santé publique (Tableau 63). Dans le cas présent, il s'agit essentiellement de solvants et liquides aqueux avec substances dangereuses. Ces différents produits peuvent présenter une source de pollution supplémentaire à considérer.

Quantités de déchets admises (t/an) -TALC de LUZENAC	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	Total général
Absorbants, matériaux filtrants (y compris les filtres à huile non											
spécifiés ailleurs), chiffons d'essuyage et vêtements de	1,85	4,12	0,88	4,04		6,32					3,44
protection contaminés par des substances dangereuses											
Autres huiles moteur, de boîte de vitesses et de lubrification.	3,87	4,49	3,19	1,54	1,62	1,63					2,72
Autres solvants et mélanges de solvants					0,25	0,18					0,22
Autres solvants, liquides de lavage et liqueurs mères organiques	14,00	14,90	9,98	11,75							12,66
Déchets contenant des hydrocarbures					2,35	3,14	0,20	4,50	2,23	2,25	2,44
Déchets liquides aqueux contenant des substances dangereuses								16,80	9,15	3,00	9,65
Emballages contenant des résidus de substances dangereuses ou	0,86	0,78	1,86	2,94	1,16	1,96	1,16				1,53
Contamines par de tels residus											
dangereuses					3,86	0,18					2,02
Piles et accumulateurs visés aux rubriques 16 06 01, 16 06 02 ou					0,12	0,13					0,12
Tubes fluorescents et autres déchets contenant du mercure	0,14	0,14	0,10	0,12							0,13

Tableau 63. Tableau des déchets produits par l'entreprise Talc de Luzenac, rencensés par l'IREP

Informations extraites de la BD Topo :

D'après la BD Topo (Tableau 64), l'essentiel du bâti concerne les bâtiments indifférenciés (résidentiels surtout ; 12750 bâtiments en GZE, 1720 en PZE) et remarquables (églises, mairies, etc... ; 146 bâtiments en GZE, 31 en PZE) (Figure 190), industriels (459 bâtiments en GZE, 77 en PZE) (Annexe 13) et agricoles (en PZE, 46 bâtiments, plus 4 serres et 1 silo) (Figure 191). Concernant les aires d'activités (pas nécessairement matérialisées par la présence d'un bâtiment), les zones de gestion de l'eau (36 aires en GZE) et d'activités culturelles et de loisirs (11 aires en GZE) sont les plus représentées (seules zones d'activités recensées dans la PZE : 10 au total, 9 en gestion de l'eau, 1 en culture et loisirs, cf. Figure 190 et Annexe 15).

Concernant les aires de gestion de l'eau, il s'agit dans la plupart des cas des STEP, déjà recensées par les différentes bases de données en ligne. En termes de voies de transport, peu de routes primaires traversent le plateau de Sault (51 km linéaires sur la GZE, 4 sur la PZE), on en trouve essentiellement sur son pourtour au Nord-Est, et au Sud-Ouest. Ce constat est le même pour les voies ferrées (seulement 20 km linéaires et aucune gare dans la GZE, aucune voie ferrée en PZE). Les routes secondaires y sont plus nombreuses (1489 km linéaires en GZE, 507 en PZE), et on dénombre environ 974 km linéaires de chemins et sentiers sur la PZE. Plusieurs téléphériques sont recensés au Sud-Ouest du plateau, au niveau des stations de ski d'Ascou et de Camurac, ainsi qu'un câble transporteur reliant Luzenac à la carrière de talc de Trimouns (Annexe 12).

Informations extraites d'ARIA :

La base de données ARIA référence 9 incidents technologiques sur la GZE, 3 sur les communes de la PZE :

- 17/09/1983 à Quillan (11) : déversement de phénol dans l'Aude en provenance d'une usine de gravure et polissage de surfaces métalliques : faune aquatique mortellement atteinte ;
- 02/02/1994 à Quillan (11) : déversement de 0,5 t de phénol depuis une usine de fabrication de plaques et tubes en plastique, dans l'Aude via le réseau des eaux pluviales : arrêt des prélèvements de 7 communes pendant 24h, pas de mortalité chez les truites, concentrations de 4,3 mg/l en aval de l'usine, de 1mg/l quelques kilomètres plus loin ;
- 25/10/1995 à Esperaza (11) : Incendie dans une fabrique de literie : pas d'informations sur l'impact environnemental de cet évènement ;
- 09/07/1997 à Montferrier (09) : déversement de 1500 l de soude à 20% dans la Touyre après rupture d'une canalisation sur un stockage enterré : faune aquatique mortellement atteinte ;
- 03/07/2001 à Couiza (11) : Incendie dans une chocolaterie : pas d'informations sur l'impact environnemental de cet évènement ;
- 17/02/2004 à Lavelanet (09) : rejet de fioul par évacuation pluviale dans la Touyre (susceptible de provenir d'une cuve appartenant à une société de commerce de matériaux de construction) : pas d'informations sur l'impact environnemental de cet évènement ;
- 26/07/2004 à Nebias (11) : incendie dans un atelier de carbonisation du bois : infiltration dans le sol des eaux d'extinction, pas d'informations supplémentaires sur l'impact environnemental;
- 19/08/2011 à Merens les Vals (09) : défaut d'étanchéité du masque d'un barrage, l'ouvrage ne peut plus répondre à sa fonction : pas d'informations sur l'impact environnemental de cet évènement ;
- 31/05/2017 à Luzenac (09) : perte d'alimentation électrique alimentant une entreprise Seveso seuil bas : pas d'informations sur l'impact environnemental de cet évènement.

Ces incidents ont eu lieu à l'aval des sources, ou en dehors des bassins d'alimentation de ces dernières. Ils ne semblent donc pas avoir impacté la qualité des eaux souterraines karstiques du plateau de Sault.

	Grande zone d'étude	Petite zone d'étude					
Nombre de communes	78	38					
Données BD Topo (IGN)							
	Bâtiments						
Nombre TOTAL de bâtiments	13783	2053					
Indifférenciés	12750	1720					
Industriels	655	129					
Commercial	10	1					
Industriels	459	77					
Agricole	139	46					
Serre	38	4					
Silo	9	1					
Remarquables	146	31					
Cimetières	66	15					
Aérodrome	1	0					
Réservoirs	92	21					
Aménagements sportifs	73	8					
Aires d'activités							
Nombre TOTAL d'aires	53	10					
Culture et loisirs	11	1					
Gestion des eaux	36	9					
Industriels ou commercial	4	0					
Sport	2	0					
Rou	tes et voies ferrées						
Chemins (m linéaires)	2458271	974285					
Routes secondaires (m linéaires)	1489225	507348					
Routes primaires (m linéaires)	51163	4040					
Voies ferrées (m linéaires)	19824	0					
Transports câblés / téléphériques	8	6					
	Electricité						
Lignes électriques (nombre tronçons)	29	9					
Postes de transformation	6	0					
Pylones	464	78					

Tableau 64 : Informations sur les zones bâties indifférenciées, industrielles, commerciales, agricoles et
de loisirs, les aires d'activités et les voies de transports recensées dans la BD TOPO

Informations extraites du Registre Parcellaire Graphique (RPG) :

D'après le RPG (Tableau 65), le plateau de Sault est essentiellement concerné par une agriculture d'élevage (en GZE, 2606 îlots en prairies permanentes, 652 en prairies temporaires, 1425 en estives et landes), et dans une moindre mesure, céréalière (94 îlots en blé tendre, 18 en maïs, grain et ensilage, 29 en orge, 136 en autres céréales). On observe les mêmes tendances pour la PZE, avec 927 îlots en prairies permanentes, 297 temporaires, 477 en estives et landes, contre 147 îlots en cultures plus gourmandes en intrants chimiques, et aucun îlot en verger, vigne ou arboriculture (Figure 191). Aucune information sur le type d'élevage (bovins, ovins, etc...) et le nombre de bêtes pâturant précisément sur ces îlots n'a pu être obtenue. En effet, aucun lien ne peut être réalisé entre le RPG et les différentes exploitations existant sur le plateau de Sault, le RPG étant anonyme, et donnant un « Code Exploitant » par îlot non significatif de l'exploitation concernée.

	Grande zone d'étude	Petite zone d'étude						
Nombre de communes	78	38						
Données RPG								
Nombre TOTAL de parcelles	5183	1852						
1. Blé tendre	94	58						
2. Maïs, grain et ensilage	18							
3. Orge	29	10						
4. Autres céréales	136	57						
5. Colza	8							
6. Tournesol	23							
8. Protéagineux	3	1						
10. Semences	2							
13. Autres gels	6							
15. Légumineuses à grains	2							
16. Fourrage	43	4						
17. Estives, landes	1425	477						
18. Prairies permanentes	2606	927						
19. Prairies temporaires	652	297						
20. Vergers	9							
21. Vignes	37							
24. Autres cultures industrielles	2	1						
25. Légumes - Fleurs	25	16						
27. Arboriculture	1							
28. Divers	62	4						

Intrants chimiques essentiellement
Intrants chimiques et épandages de déjections possibles
Epandages de déjections possibles
Peu ou pas d'intrants
Pas d'informations

Tableau 65 : Informations relatives au type d'activité agricole par îlot (RPG)

Bilan à l'échelle du Plateau de Sault

De manière générale, le Plateau de Sault est une zone très rurale, parcellée de petites communes, dont les eaux usées sont traitées par des STEP à faible capacité, ou par le biais de dispositifs ANC (Figure 190). Les boues extraites des STEP sont dans beaucoup de cas renvoyées vers des STEP à plus grande capacité pour y être retraitées. Elles font parfois l'objet d'un épandage, essentiellement sur les communes situées côté Aude, dont Coudons, Belvis, Espezel et Roquefeuil.

Le Plateau de Sault est parcouru de routes secondaires, de chemins et sentiers majoritairement (pas de grands axes routiers ni de voie ferrée traversant le plateau) (Annexe 12). Ces chemins peuvent être empruntés pour l'accès aux exploitations forestières, souvent citées dans les rapports des hydrogéologues agréés et les Déclarations d'Utilité Publique rédigés dans le cadre d'installation de stations de prélèvements d'eau souterraine pour l'alimentation en eau potable, sur le Plateau de Sault. En revanche, aucune cartographie de ces exploitations et informations sur les pollutions en découlant n'a pu être obtenue.

En termes d'activité agricole, l'élevage extensif est majoritairement présent, en témoigne la grande quantité d'estives et de prairies. Les estives, qui représentent la plus grande superficie des îlots agricoles, se trouvent essentiellement au Sud-Ouest de la zone d'étude, et correspondent à des secteurs à apports d'intrants faibles voire nuls. Les prairies sont quant à elles réparties sur un axe Prades – Belvis, et sont très présentes sur toute la plaine d'Espezel, jusqu'à la zone de pertes des Coumeilles. Ces îlots sont susceptibles de recevoir des épandages d'effluents (d'origine agricole essentiellement). Les activités plus gourmandes en intrants chimiques sont nettement moins représentées (céréales, vergers, légumes et fleurs), et se retrouvent essentiellement au niveau de la plaine d'Espezel (Figure 191). La taille des îlots exploités est plus petite (inférieure à 1km², pouvant descendre à moins de 100 m²) au niveau du secteur central et Nord-Est (cultures et petites prairies), et est importante (de 1 à 12 km²) à l'Ouest et au Sud du secteur d'étude (grands pâturages).

En ce qui concerne les quelques activités industrielles présentes sur le Plateau, l'essentiel des sites recensés sont liés à l'industrie manufacturière (travail du bois, fabrication de produits métalliques) et au commerce et réparation de véhicules (Annexe 13). Les sites ICPE et/ou présentant des informations sur les teneurs en éléments polluants de leurs rejets, ou à l'origine d'un incident technologique, sont situés pour la plupart en dehors de la PZE, à l'aval des sources, et hors des bassins d'alimentation de ces mêmes sources. La présence de la carrière de talc de Trimouns notamment les activités ayant lieu sur le haut bassin du Basqui est à prendre en considération dans l'analyse des risques de pollution du système karstique de la source de Fontestorbes.

Une quinzaine de décharges sont recensées sur les communes de la PZE, dont plus de la moitié sont sauvages et non-géoréférencées, mais aujourd'hui plus en activité. Elles se situent sur les communes de Prades, Montségur, Bélesta, Roquefeuil, Belvis et Coudons (Annexe 14).

Bien qu'il soit possible à partir des informations de la BD Topo, de connaître la localisation des aménagements sportifs, touristiques et culturels (9 sites au total sur la PZE) (Annexe 15), aucune information sur l'impact de ces aménagements et de la population s'y rendant n'est disponible. Plusieurs stations de ski sont présentes au Sud du plateau, notamment la station d'Ax-les-Thermes (accueillant entre 300 000 et 400 000 skieurs / an), de Mijanes, d'Ascou et de Camurac (moins importantes que la première), à noter que seule la station de Camurac se situe sur l'impluvium des ressources en eau karstiques du Plateau de Sault.

Activités pouvant engendrer des pollutions diffuses

La pollution diffuse est une pollution des eaux due non pas à des rejets ponctuels et identifiables, mais à des rejets épandus sur de grandes surfaces d'un territoire qui contribue à l'alimentation de l'aquifère. Les pratiques agricoles sur la surface cultivée peuvent être à l'origine de pollutions diffuses par entraînement de produits polluants dans les eaux qui percolent ou ruissellent avant de s'infiltrer plus en aval pour atteindre la ressource en eau souterraine. Dans le cas présent, il est fait l'hypothèse que ce type de pollution est limité aux îlots exploités pour des cultures nécessitant l'usage d'intrants, tels que les céréales, les vergers, les légumes et fleurs, etc... L'épandage de boues d'épuration, et de boues d'origine agricole (fumiers, lisiers) présente ici aussi des risques de pollution diffuses. Mais les parcelles concernées par ces pratiques n'ont pas toujours pu être identifiées.

• Activités pouvant engendrer des pollutions ponctuelles

Une pollution ponctuelle est une pollution de l'eau provenant d'un site unique, par exemple, un point de rejet d'un effluent, une zone contaminée localisée, ... Dans le cas présent, la totalité des activités présentées dans ce chapitre peuvent engendrer des risques de pollution ponctuelle : les diverses activités industrielles et commerciales (par le biais des rejets, ou d'incidents ayant lieu sur site, notamment le déversement accidentel de matériaux issus des bacs de décantation de la carrière de Talc de Trimouns), les activités de gestion et d'entretien de la forêt, les rejets de STEP si ceux-ci ne respectent pas les normes en vigueur, les décharges, le trafic routier, les activités ludiques ou touristiques, etc...

Figure 190: Carte des pressions liées aux activités domestiques et urbaines, sur le plateau de Sault

Figure 191: Carte des pressions liées aux activités agricoles, sur le plateau de Sault

5.3.3. Résultats à l'échelle des bassins d'alimentation des sources

Une étude des pressions anthropiques a été réalisée à l'échelle des bassins d'alimentation des différentes sources d'intérêt. Chaque type de pressions illustré ci-dessus a été étudié pour chacune des sources. Seules les pressions les plus représentées sur chaque bassin seront décrites. Deux cartes permettant de visualiser les principales pressions sur le bassin d'alimentation des sources de Fontmaure, Ginoles, Blau et Fontestorbes ont été réalisées (Figure 192, Figure 193). Les pressions anthropiques étant moins importantes à l'échelle des bassins d'alimentation des autres sources étudiées, il convient alors de se référer à la Figure 190 et la Figure 191, ainsi qu'aux Annexes 12, 13, 14 et 15.

Sources de Fontmaure, de Ginoles et du Blau

Le bassin d'alimentation des sources de Fontmaure, Ginoles et du Blau s'étend sur environ 148 km², et couvre la partie centrale et Nord-Est de la PZE (soit 26 communes traversées). Les pressions pouvant être listées sur le bassin d'alimentation de ces sources sont décrites en Annexe 11. L'essentiel de ces pressions sont représentées en Figure 192.

Sur le bassin de Fontmaure, les pressions à prendre en considération sont :

- Liées aux activités domestiques et urbaines: présence de 10 STEP de faible capacité (1500 EH pour la plus importante : Camurac) et 8 rejets recensés (peu d'information concernant l'ANC sur ce bassin d'alimentation) ; environ 1300 bâtiment indifférenciés et 9 cimetières.
- Liées aux activités agricoles : 1443 îlots exploités dont 147 pour des cultures pouvant nécessiter l'utilisation d'intrants chimiques, au niveau du plateau d'Espezel essentiellement, et 1014 prairies, de Camurac à Belvis, et au niveau des zones de perte des Coumeilles et de Coudons. Des plans d'épandage d'effluents d'élevage existent sur les communes de Belcaire et d'Espezel, ainsi que sur les communes de Rivel, Puivert, Nébias, Brenac et Quillan (très partiellement sur le bassin d'alimentation du système des sources Fontmaure, Ginoles et Blau). L'épandage des boues des STEP de Belvis, Coudons, Couiza, Esperaza et Quillan sur les communes de Belvis, Coudons, Espezel et Roquefeuil (ainsi que les communes de Nébias et Puivert) peut également représenter une source de pollution des eaux souterraines à ne pas négliger. Peuvent aussi être considérés les 498 km linéaires de sentiers, en partie empruntés pour l'exploitation forestière.
- Industrielles et commerciales (8 sites recensés par les bases de données en ligne, 68 par la BD Topo) : essentiellement localisées sur les communes de Belcaire, Roquefeuil et Espezel.
- Liées au stockage de déchets : trois décharges ont été recensées par le CD11 sur le bassin d'alimentation de la source de Fontmaure (communes de Roquefeuil, Belvis et Coudons). L'état actuel de ces décharges n'est pas renseigné.

En terme de pressions liées aux activités sportives, culturelles et touristiques, peut être citée la présence de la station de ski de Camurac, à l'extrême Sud du bassin d'alimentation des sources. Au vu de sa petite taille, l'impact des activités au sein de cette station sur les eaux souterraines karstiques est considéré comme de faible importance.

En s'intéressant plus particulièrement au sous-système de Ginoles, représenté sur la Figure 161, son bassin d'alimentation ne présente pas ou peu d'activité anthropiques importantes en dehors des sentiers, des routes et des parcelles agricoles (prairies) recensées dans la dépression de

Coudons. À noter tout de même que ces parcelles peuvent faire l'objet d'épandage des boues des STEP de Coudons et Couiza.

Le bassin d'alimentation de la source du Blau n'est pas encore précisément défini. Les résultats des traçages montrent qu'il n'est alimenté ni par les pertes du Rébounédou, ni par les différentes pertes alimentant le système de la source de Fontestorbes. Le dernier traçage a permis de révéler une alimentation de ce système par la zone de pertes de Coumeilles, en hautes eaux. L'extension du bassin à cette zone de perte et au bassin versant qui l'alimente permet de recenser plusieurs sentiers et routes secondaires (notamment traversant la zone de pertes des Artigues le long de la D120), des bâtiments et des îlots agricoles de type estives, mais aussi un grand nombre de prairies. Les pressions anthropiques dans ce secteur sont donc essentiellement liées aux épandages d'effluents pouvant être réalisés dans la zone de pertes des Coumeilles (épandage des boues des STEP d'Esperaza et Quillan sur les communes de Roquefeuil et Espezel, et épandages d'effluents d'élevage à Espezel).

Source de Fontestorbes

Le bassin d'alimentation de la source de Fontestorbes s'étend sur environ 103 km² à l'Ouest de la PZE. Il est divisé en deux secteurs distincts, l'un au Sud-Ouest, l'autre au Nord (soit 18 communes traversées). Les pressions pouvant être listées sur le bassin d'alimentation de ces sources sont décrites en Annexe 11. L'essentiel de ces pressions sont représentées en Figure 193. Sur ce bassin, les pressions à prendre en considération sont liées essentiellement :

- Aux activités domestiques et urbaines, et principalement à l'assainissement non-collectif. Le secteur Nord couvre une grande partie de la commune de Bélesta, et une partie de la commune de Fougax et Barrineuf. De manière globale, ces 2 communes comptent 100 dispositifs à avis défavorable et devant être réhabilités.
- Au stockage de déchets : 8 décharges sont recensées sur l'aire du bassin d'alimentation de la source de Fontestorbes, 6 en partie Nord (2 décharges brutes, 5 sauvages, dont 2 plus en activité) et 2 en parties Sud (1 décharge communale, 1 sauvage, les 2 n'étant plus en activité). Parmi les 6 décharges en partie Nord, 2 ont été recensées à Bélesta par le Conseil Départemental de l'Ariège et considérées comme Sites à Problèmes (décharges 90471 et 90472, Annexe 9).
- Aux activités agricoles : certaines parcelles agricoles localisées sur les communes de Belcaire et Fougax et Barrineuf font l'objet d'épandage d'effluents d'élevage. Par ailleurs, l'épandage de boues de STEP de Quillan sur la commune de Roquefeuil, en limite Est du bassin d'alimentation de la source de Fontestorbes, peut également avoir un impact sur la qualité des eaux souterraines de ce système.
- Aux activités industrielles : peu de sites sont recensés par les bases de données en ligne (3 sites) et la BD TOPO (11 sites). Cependant, il est important de prendre en considération la présence de la carrière de talc de Trimouns, à l'amont du bassin d'alimentation de la source (Figure 189), essentiellement des bacs de décantation, dont le contenu avait, en août 2000 lors d'une crue d'orage, contaminé l'eau de la source de Fontestorbes.

Légende

Figure 192: Carte des principales pressions anthropiques recensées sur le bassin d'alimentation des sources de Fontmaure, Ginoles et Blau (légende commune avec la Figure 193)

Figure 193: Carte des principales pressions anthropiques recensées sur le bassin d'alimentation de la source de Fontestorbes (pour la légende, se référer à la Légende de la Figure 192)

Source de Contes

Le bassin d'alimentation de la source de Contes s'étend sur environ 27 km². Il est situé au Nord-Ouest de la PZE (soit 6 communes traversées). Les pressions pouvant être listées sur le bassin d'alimentation de cette source sont décrites en Annexe 11. Peu de pressions anthropiques s'exercent sur le bassin d'alimentation de la source de Contes. Le principal risque de pollution pourrait être lié aux dispositifs ANC à avis défavorable (2 à Montségur, 26 à Fougax et Barrineuf, mais le bassin d'alimentation de la source de Contes ne s'étend que sur une petite partie de cette commune), et à la présence de 3 décharges, dont 2 actuellement ne sont plus en activité, parmi lesquelles 1 décharge recensée par le CD de l'Ariège et considérée comme sans risque pour l'environnement. Plusieurs prairies sont aussi recensées à proximité du village de Montségur, et certaines parcelles de la commune de Montferrier, en limite Ouest du bassin d'alimentation de la source, font l'objet d'un épandage d'effluents d'élevage.

Source de Belfort-sur-Rebenty

Le bassin d'alimentation de la source de Belfort-sur-Rebenty s'étend sur environ 0,6 km². Il est situé au centre de la PZE (2 communes traversées). Les pressions pouvant être listées sur le bassin d'alimentation de cette source sont décrites en Annexe 11. Le principal risque de pollution recensé sur ce bassin est lié aux pressions agricoles. D'après le RPG, 22 îlots sont exploités, 17 en prairies, et 5 pour des cultures pouvant également nécessiter l'apport d'intrants chimiques. Le

risque de pollution agricole est important au vu de la superficie des îlots concernés par rapport à celle du bassin d'alimentation de la source (près de la moitié de la surface du BA). Ce résultat est cohérent avec les valeurs élevées en nitrates (de l'ordre de 20 mg/l) enregistrées régulièrement depuis les années 70.

Source de Fago

Le bassin d'alimentation de la source de Fago s'étend sur environ 1 km². Il est situé à l'Est de la PZE (2 communes traversées). Les pressions pouvant être listées sur le bassin d'alimentation de cette source sont décrites en Annexe 11. Au vu de la petite superficie de ce bassin et du peu de pressions anthropiques recensées (1 bâtiment industriel, 3,7km linéaires de sentiers), le risque de pollution liées aux activités humaines est faible pour la source de Fago.

Source de Cailla

Le bassin d'alimentation de la source de Cailla s'étend sur environ 2 km². Il est situé à l'Est de la PZE, à proximité de celui de la source de Fago (une commune traversée). Les pressions pouvant être listées sur le bassin d'alimentation de cette source sont décrites en Annexe 11. De la même manière que pour la source de Fago, au vu de la petite superficie du bassin de la source de Cailla et du peu de pressions anthropiques recensées, le risque de pollution liées aux activités humaines est faible. Les pollutions liées aux activités domestique et urbaine peuvent éventuellement être prises en compte en considérant le village de Quirbajou (56 bâtiments indifférenciés, un cimetière, et une STEP de 40 EH).

Source d'Argelier

Le bassin d'alimentation de la source d'Argelier s'étend sur environ 0,7 km². Il est situé au Sud de la PZE (3 communes traversées). Les pressions pouvant être listées sur le bassin d'alimentation de cette source sont décrites en Annexe 11. Comme pour la source de Fago, le bassin d'alimentation de cette source est de petite taille, et peu de pressions anthropiques ont été recensées dans son périmètre (5 îlots agricoles en estives, 5,7 km de sentiers). Le risque de pollution liées aux activités humaines est donc faible pour la source d'Argelier.

Sources issues de formations dévoniennes

Les sources de la Forge, Adouxes, la Fajole, SRE, Adouci et Lani, situées au Sud de la PZE, sont alimentées par des systèmes karstiques développés au sein de formations dévoniennes essentiellement. La superficie de leurs bassins d'alimentation, de petite taille, varie de 1,5 km² (Lani) à 11 km² (Adouci). De manière générale, pour ces six sources, le risque de pollution dû aux activités humaines est faible (Annexe 11) : seul le bassin d'alimentation de la source des Adouxes comprend un village (une quarantaine de bâtiments), équipé d'une STEP de 135 EH, et quelques prairies au Sud-Ouest. Aucun site industriel et commercial, ni aucune décharge, n'est recensé par les diverses bases de données en ligne, sur l'ensemble de ces bassins. Le RPG liste une soixantaine d'îlots en estives exclusivement (sauf pour les Adouxes). Le secteur, montagneux, est parcouru par 47 km de routes secondaires et 165 km de sentiers. En termes d'activités sportives et touristiques, la pratique d'activités diverses (randonnées, vélo, chasse, *etc...*) sur les sentiers parcourant ces bassins serait la seule pression relevéesur ce secteur, et dont l'impact sur la qualité de la ressource en eau karstique reste difficile à évaluer.

Récapitulatif

Le tableau ci-dessous (Tableau 66) regroupe, pour chaque bassin d'alimentation de sources, les principales pressions recensées, et les zones où le risque de pollution pourrait être le plus important. Les bassins d'alimentation où les pressions anthropiques sont considérables (au vu de la superficie du BA) apparaissent en rouge. En orange sont signalés les bassin d'alimentation où plusieurs pressions ont été identifiées mais la probabilité d'une pollution de la ressource en eau est faible, ou moindre en considérant la superficie du BA. Les bassins renseignés en vert correspondent à des secteurs ou très peu de pressions d'origine anthropique ont été recensées.

Sources	Principales pressions	Zones de plus fortes pressions
Fontmaure et Ginoles	Domestiques et urbaines (STEP, activités diverses) ; Stockage de déchets ; Agricoles (épandage de boues de STEP et d'effluents d'élevage)	Secteur Belcaire/Roquefeuil/Espezel, zone de perte des Coudons
Blau	Agricoles (épandage de boues de STEP et d'effluents d'élevage)	Bassin d'alimentation de la perte des Coumeilles
Fontestorbes	Domestiques et urbaines (ANC) ; Stockage de déchets ; Industrielles ; Agricoles (épandage de boues de STEP et d'effluents d'élevage)	Secteur Nord (Bélesta- Fougax) ; Carrière de Talc de Luzenac (amont pertes du Basqui) ; Axe Prades-Comus.
Contes	Domestiques et urbaines (ANC) ; Stockage de déchets	Pas de secteur précis
Belfort-sur-Rebenty*	Agricoles (cultures où possible utilisation d'intrants chimiques et d'effluents)	Parcelles agricoles concernées
Fago	Peu de pressions	Pas de secteur précis
Cailla	Peu de pressions (Domestiques et urbaines)	Village de Quirbajou
Argelier	Peu de pressions	Pas de secteur précis
La Forge	Peu de pressions	Pas de secteur précis
Adouxes	Peu de pressions	Village de La Fajolle
La Fajole	Peu de pressions	Pas de secteur précis
SRE	Peu de pressions	Pas de secteur précis
Adouci	Peu de pressions	Pas de secteur précis
Lani	Peu de pressions	Pas de secteur précis

Tableau 66: Récapitulatif des pressions anthropiques principales recensées sur chaque bassin d'alimentation de source (* la source de Belfort-sur-Rébenty n'est pas alimentée par un système karstique)

5.4. DEFINITION DE SECTEURS AQUIFERES POTENTIELS

5.4.1. Méthodologie

Les secteurs aquifères potentiels sont déterminés en tenant compte de la quantité des réserves disponibles, la qualité physico-chimique de la ressource en eau et le risque de contamination, l'accessibilité de la ressource en eau pour une exploitation par forage.

Les réserves disponibles sont déduites de l'estimation des volumes dynamiques et des volumes de régulation, ainsi que des volumes d'eau attribué au réservoir souterrain dans la modélisation Gardenia. Cette information est globale à l'échelle de chaque système karstique. La qualité de l'eau est déduite du croisement spatial de la vulnérabilité à la contamination de la ressource en eau et des pressions anthropiques qui s'y exercent. Ce résultat théorique est complété par les données physico-chimiques afin de caractériser spatialement pour chaque système le risque de contamination de la ressource. Enfin, l'accessibilité de la ressource est un critère pouvant être spatialisé en définissant l'épaisseur de la zone d'infiltration. Pour les sources du Primaire, faute d'information complémentaire sur la géométrie du réservoir aquifère, les zones noyées sont supposées s'étendre horizontalement sur le domaine défini par les bassin d'alimentation à l'altitude de l'exutoire. Pour les sources du Secondaire, cette donnée est interprétée à partir de l'altitude de la première zone noyée libre rencontrée depuis la surface du sol. La situation de nappe captive est exclue de l'analyse, sachant que les zones noyées captives se rencontrent à des profondeurs importantes.

5.4.2. Résultats

Caractérisation quantitative de la ressource en eau karstique

Le tableau suivant synthétise les informations obtenues sur les systèmes étudiés dans la partie 3. Ce tableau met en avant l'importance des réserves que l'on peut estimer à partir du volume dynamique pour les sources de Fontestorbes, Fontmaure, et dans une moindre mesure les sources des Adouxes et des Adoucis pour les systèmes du Primaire. L'analyse du bilan et la modélisation GARDENIA montrent que les systèmes du Primaire sont nettement plus influencés par la fonte de la neige et présentent une composante lente plus faible que celle observée sur les systèmes du Secondaire. Néanmoins, le système des Adouxes présente un débit moyen supérieur à 100 l/s.

En complément, certaines structures comme le bassin de Fougax pour Fontestorbes, le synclinal du Col du Chandelier pour le Blau ou les structures chevauchantes des séries du Primaire permettent de développer la karstification en profondeur. Elles permettent donc d'obtenir des épaisseurs noyées karstifiées importantes, qui se traduisent par une effet piston sur l'évolution physico-chimique lors des crues (cf. source des Adouxes).

Nom de la source	Q moy (m3/s)	Q moy spécifique (m³s ⁻¹ km ⁻²)	Q(50) (m3/s)	Vdyn (10^6 m3)	alpha	К	I
Adouxes	0.213 (±0.230)	0.024	0.135	2.7(± 0.7)	0.004	0.40 (±0.05)	0.58 (± 0.11)
Adoucis	0.152 (±0.21)	0.022	0.093	1.1(± 0.5)	0.007	0.23	0.58 (± 0.14)
« SRE »	0.066 (±0.346)	0.026	0.007	0.126(± 0.048)	0.0054	0.06 (±0.03)	0.73 (± 0.03)
Moulin	0.03 (±0.04)	0.013	0.022	0.159(± 0.063)	0.006(± 0.002)	0.15 (±0.03)	0.70 (± 0.07)
Fontmaure (A)	1.88	0.015	1.24	26 ± 8	0.0055 (± 0.0027)	0.41 (± 0.16)	0.43 (± 0.10)
Fontestorbes (A)	2.04	0.02	1.45	31 (± 8)	0.0037 (± 0.0013)	0.42 (± 0.05)	0.41 (± 0.08)

Tableau 67: Synthèse des paramètres déduits de l'analyse des courbes de récession par l'approche de

Mangin

			<u> </u>				-
Nom de la source	Superficie (km²)	Précipitation (mm)	ETR (mm)	Précipitation efficace (mm)	Dont Fonte Neige (mm)	Q_rap (mm)	Q_Sout (mm)
Adouxes	8.8	1506 (±278)	786 (±23)	710 (±263)	375 (±166)	580 (±250)	132 (±27)
Adoucis	6.9	1372 (±253)	770 (±23)	597 (±247)	249 (±107)	444 (±215)	154 (±37)
« SRE »	2.5	1231 (±228)	782 (±28)	445 (±207)	287 (±141)	336 (±183)	111 (±29)
Fajoles	2.3	1343 (±248)	759 (±23)	578 (±240)	332 (±160)	224 (±138)	223 (±85)
Fontmaure (A)	135	1015 (±157)	542 (±248)	473 (±145)	26 (±26)	247 (±100)	228 (±45)
Fontestorbes (A)	103	1050 (±161)	533 (±20)	515(±156)	124 (±78)	134 (±63)	384 (±92)

Tableau 68: Synthèse des bilans hydrogéologiques des sources étudiées (période du calcul : 2010 à 2017 et 2000 à 2017 pour Fontmaure et Fontesorbes) estimé à l'aide du modèle réservoir Gardenia

Analyse du risque

Un croisement entre la carte de vulnérabilité obtenue et les différentes cartes de pressions anthropiques a été réalisé de manière à évaluer, par bassin d'alimentation de source, le risque de pollution de la ressource en eau karstique. Différents secteurs, où le risque de pollution lié aux différentes activités humaines est relativement important, peuvent alors être définis. Les bassins d'alimentation des sources de Fago et d'Argelier ne figurent pas dans les tableaux ci-dessous. En effet, aucune pression (hormis le passage de quelques routes secondaires et sentiers) n'a été relevée sur ces deux secteurs.

Une note entre 1 (faible) et 3 (élevé) peut être donnée, à dire d'expert, pour l'ensemble de ces secteurs, pour les pressions domestiques et urbaines, et les pressions agricoles. Concernant les autres pressions : le trafic routier sur l'ensemble du plateau est faible et présente un impact réduit sur la ressource en eau ; de même, les commerces (quasi-absents) et industries (près de la moitié des sites recensés ne sont aujourd'hui plus en activité), les activités sportives et touristiques (impact difficile à quantifier mais considéré négligeable ici) et les décharges (souvent non géoréférencées et inactives) sont inclus dans l'analyse mais ne sont pas prépondérants.

Dans le détail, la carrière de Talc de Trimouns peut être retenue pour qualifier les pressions industrielles impactant le système de Fontestorbes (secteur amont de la perte du Basqui) comme étant Moyennes (de par la faible probabilité d'occurrence d'une surverse ou rupture des bacs de décantation). La même remarque peut être faite pour les secteurs concernés par la présence de la station de ski de Camurac (amont des pertes de Camurac essentiellement, pour les systèmes de Fontmaure et Fontestorbes). Pour les zones à l'amont des pertes des Mijanes, du Roc des Agréous et du Pavillon de la Jasse, où 2 décharges ont été recensés et décrites comme Sites à problèmes par le CD09, les pressions liées au stockage de déchets peuvent être considérées comme Elevées.

L'évaluation du risque de pollution pour chaque type de pression est faite en suivant le tableau ci-dessous afin de croiser l'information relative à la pression et celle relative à la vulnérabilité à l'échelle d'un système karstique :

Vulnérabilité Pression	Très faible	Faible	Modérée	Elevée	Très élevée
Faible	Faible	Faible	Faible	Moyen	Moyen
Moyenne	Faible	Faible	Moyen	Elevé	Elevé
Elevée	Moyen	Moyen	Elevé	Elevé	Très élevé
Tableau CO. Dáf	initian du Dianun	à mantin da llérra	heathan da la cudu	Ánghilith at dag i	

Tableau 69: Définition du Risque à partir de l'évaluation de la vulnérabilité et des pressions

La zone d'étude présente principalement des zones de faibles pressions anthropiques, quel que soit le type d'activité anthropique considéré. Il existe cependant des secteurs où se concentrent les activités, et qui peuvent parfois correspondre à des zones identifiées comme vulnérables. C'est donc sur ces secteurs que doivent se concentrer les efforts afin de préserver le bon état qualitatif de la ressource en eau. Leur liste est donnée pour chaque système karstique dans les tableaux suivants (Tableau 70 à Tableau 76), en détaillant par type d'activité le risque de contamination de la ressource associé. La Figure 194 localise de manière approximative ces différents secteurs (les numéros indiqués sur la carte correspondant aux numéros entre parenthèses devant le nom de chacun des 13 secteurs décrits ci-dessous), en reprenant la carte de vulnérabilité. Les pressions anthropiques étant, dans la majorité des cas, recensées de manière ponctuelle ou linéaire, il n'a pas été possible de spatialiser ces informations dans le but de réaliser une carte unique, présentant l'importance des pressions, comme cela a pu être fait pour la vulnérabilité.

BA de la Source de Fontmaure								
Type de pression	Activités domestiques et urbaines	Transports	Activités industrielles et commerciales	Stockage de déchets	Agriculture	Activités touristiques, sportives et culturelles		
	(1) Am	ont des pertes c	le Camurac 1 et:	2 : vulnérabilité	très élevée			
Pressions recensées	Villages de Montaillou (29 hab) et de Camurac (116 hab), STEP de Camurac (1500 EH, rejet de 225 m3/j)	Routes secondaires passant près des pertes			Prairies et estives	Station de ski de Camurac. Présence de quelques établissements sportifs. Sentiers : randonnées		
Note Pression	2 - Moyen	1 - Faible	1 - Faible	1 - Faible	2 - Moyen	2 - Moyen		
Risque	<u>Elevé</u>	Moyen	Moyen	Moyen	<u>Elevé</u>	<u>Elevé</u>		

(2) Village de Camurac : vulnérabilité modérée à élevée									
Pressions recensées	Village de Camurac (116 hab)		Plusieurs bâtiments industriels, et une entreprise de travail du bois en activité		Prairies et estives	Présence de quelques établissements sportifs. Sentiers : randonnées			
Note Pression	1 - Faible	1 - Faible	1 - Faible	1 - Faible	2 - Moyen	1 - Faible			
Risque	Faible à moyen	Faible à moyen	Faible à moyen	Faible à moyen	Moyen à <u>élevé</u>	Faible à moyen			

(3) Partie centrale : amont de la perte des Quirines et plaine d'Espezel : vulnérabilité modérée à très élevée								
Pressions recensées	Village de Belcaire (461 hab), STEP (1300 EH, rejet de 246 m3/j) ; village de Roquefeuil (282 hab), STEP (400 EH, rejet de 60 m3/j) ; village d'Espezel (209 hab), STEP (350EH, rejet de 52 m3/j)	Nombreuses routes secondaire desservant les villages de Belcaire, de Roquefeuil et d'Espezel, passant à proximité des pertes des Quirines, des Mouillères et d'Artigues	Belcaire : plusieurs industries en commerces dont 2 garages et 1 entreprise de travail du bois en activité ; Roquefeuil : plusieurs bâtiments industriels, dont un garage en activité ; même remarque à Espezel	1 décharge à Roquefeuil (état inconnu)	Quantité plus importante de cultures à fort besoin d'intrants (chimiques et effluents). Plans d'épandage de boues de STEP et d'effluents d'élevage (Espezel, Roquefeuil, Belcaire)	Présence de quelques établissements sportifs. Sentiers : randonnées		

Note Pression	3 - Elevé	1 - Faible	1 - Faible	1 - Faible	3 - Elevé	1 - Faible
Risque	<u>Elevé à très</u> <u>élevé</u>	Faible à moyen	Faible à moyen	Faible à moyen	<u>Elevé à très</u> élevé	Faible à moyen

(4) Bassin versant de la perte du Rébounédou : vulnérabilité très élevée								
Pressions recensées	Village de Belvis (167 hab), STEP de Belvis (300 EH, rejet de 45 m3/j) et STEP Lapeyre (120 EH, rejet de 18 m3/j)		Plusieurs bâtiments industriels	1 décharge à Belvis (état inconnu)	Quantité plus importante de cultures à fort besoin d'intrants (chimiques et effluents). Plan d'épandage de boues de STEP (Belvis)	Sentiers : randonnées		
Note Pression	2 - Moyen	1 - Faible	1 - Faible	1 - Faible	3 - Elevé	1 - Faible		
Risque	<u>Elevé</u>	Moyen	Moyen	Moyen	<u>Très élevé</u>	Moyen		

Tableau 70: Liste des secteurs de plus forte pression anthropique pour le système de Fontmaure

BA de la source de Ginoles (Sous-système de Fontmaure)						
Type de pression	Activités domestiques et urbaines	Transports	Activités industrielles et commerciales	Stockage de déchets	Agriculture	Activités touristiques, sportives et culturelles

	(5) Les Coudons (village et dépression) : vulnérabilité modérée à très élevée							
Pressions recensées		Route secondaire traversant la dépression		1 décharge (état inconnu)	Prairies et estives. Plan d'épandage de boues de STEP (Coudons)	Sentiers : randonnées		
Note pression	1 - Faible	1 - Faible	1 - Faible	2 - Moyen	3 - Elevé	1 - Faible		
Risque	Faible à moyen	Faible à moyen	Faible à moyen	Moyen à <u>élevé</u>	<u>Elevé à très</u> <u>élevé</u>	Faible à moyen		

Tableau 71: Liste des secteurs de plus forte pression anthropique pour le système de Ginoles

BA de la source de Blau (non défini précisément)

Type de pression	Activités domestiques et urbaines	Transports	Activités industrielles et commerciales	Stockage de déchets	Agriculture	Activités touristiques, sportives et culturelles
				م بالم م الم النظر الم		lavita
(6) L Pressions recensées	Jepression du Pla	Quelques tronçons de routes secondaires en zones vulnérable à très vulnérables	des Coumeilles :	Vulnerabilite m	Bâtiments agricoles, prairies et estives. Plan d'épandage de boues de STEP (Roquefeuil, Espezel)	Sentiers : randonnées
Note pression	1 - Faible	1 - Faible	1 - Faible	1 - Faible	3 - Elevé	1 - Faible
Risque	Faible à moyen	Faible à moyen	Faible à moyen	Faible à moyen	<u>Elevé à très</u> <u>élevé</u>	Faible à moyen

Tableau 72: Liste des secteurs de plus forte pression anthropique pour le système du Blau

BA de la Source de Fontestorbes							
Type de pression	Activités domestiques et urbaines	Transports	Activités industrielles et commerciales	Stockage de déchets	Agriculture	Activités touristiques, sportives et culturelles	

(7) Amont de la perte de Camurac 2 : vulnérabilité très élevée								
Pressions recensées	Villages de Montaillou (29 hab)	Routes secondaires passant près de la perte			Prairies et estives	Station de ski de Camurac. Présence de quelques établissements sportifs. Sentiers : randonnées		
Note pression	1 - Faible	1 - Faible	1 - Faible	1 - Faible	2 - Moyen	2 - Moyen		
Risque	Moyen	Moyen	Moyen	Moyen	Moyen à <u>élevé</u>	Elevé		

(8) Amont de la perte du Basqui : vulnérabilité très élevée

Pressions recensées		Routes secondaires le long du Basqui et passant près de la perte	Bacs de décantation de la carrière de Talc de Trimouns		Estives surtout	Sentiers : randonnées
Note pression	1 - Faible	1 - Faible	2 - Moyen	1 - Faible	1 - Faible	1 - Faible
Risque	Moyen	Moyen	<u>Elevé</u>	Moyen	Moyen	Moyen

(9) Amont de la perte de Comus, secteur longeant l'Hers : vulnérabilité modérée à très élevée							
Pressions recensées	Village de Prades (43 hab), STEP (200 EH, rejet de 60 m3/j) ; village de Comus (29 hab), STEP (500 EH, rejet de 75 m3/j)	Routes secondaires le long de l'Hers et de la Coume du Moulin passant près des pertes de Comus, de l'Hers		2 décharges plus en activité, non géoréférencées, à Prades	Prairies et estives	Sentiers : randonnées	
Note pression	2 - Moyen	1 - Faible	1 - Faible	1 - Faible	2 - Moyen	1 - Faible	
Risque	Moyen à <u>élevé</u>	Faible à moyen	Faible à moyen	Faible à moyen	Moyen à <u>élevé</u>	Faible à moyen	

(10) Secteur Nord, amont des pertes des Mijanes, du Roc des Agréous et du Pavillon de la Jasse : vulnérabilité								
Pressions recensées	ANC recensé sur les communes de Montségur, Fougax et Barrineuf, Bélesta : 102 dispositifs à avis défavorable.	Plusieurs routes secondaires à proximité des pertes	Difficile à savoir pour Bélesta, car activités pas toutes géoréférencée, mais généralement centralisées sur le village, hors de la zone d'étude	6 décharges sur la commune de Bélesta (4 non géoréférencées, et activité terminée ou non connue). 2 géoréférencées : Sites à risque pour l'environnement (CD09).	Plan d'épandage de boues de STEP et d'effluents d'élevage (Fougax et Barrineuf)	Sentiers : randonnées		
Note pression	2 - Moyen	1 - Faible	1 - Faible	3 - Elevé	2 - Moyen	1 - Faible		
Risque	Moyen à <u>élevé</u>	Faible à moyen	Faible à moyen	<u>Elevé à très</u> <u>élevé</u>	Moyen à <u>élevé</u>	Faible à moyen		

Tableau 73: Liste des secteurs de plus forte pression anthropique pour le système de Fontestorbes

BA de la Source de Contes									
Type de pression	Activités domestiques et urbaines	Transports	Activités industrielles et commerciales	Stockage de déchets	Agriculture	Activités touristiques, sportives et culturelles			
	(11) A	mont de la pert	e de Montsegur :	vuinerabilite tres	elevee				
Pressions recensées	Village de Montségur (132 hab), STEP (300 EH, rejet de 45 m3/j), ANC recensé (Montségur, Fougax et Barrineuf : 28 dispositifs à avis défavorable)	Plusieurs routes secondaires et sentiers en partie Nord	Quelques bâtiments industriels à l'amont de la perte	1 décharge non géoréférencée	Prairies et estives. Plan d'épandage d'effluents d'élevage (Montferrier)	Présence d'une aire d'activité loisirs et culture à proximité de la perte. Sentiers : randonnées			
Note pression	2 - Moyen	1 - Faible	1 - Faible	1 - Faible	2 - Moyen	1 - Faible			
Risque	<u>Elevé</u>	Moyen	Moyen	Moyen	<u>Elevé</u>	Moyen			

Tableau 74: Liste des secteurs de plus forte pression anthropique pour le système de Fontestorbes

BA de la Source de Cailla							
Type de pression	Activités domestiques et urbaines	Transports	Activités industrielles et commerciales	Stockage de déchets	Agriculture	Activités touristiques, sportives et culturelles	

(12) Pas de zone précisément définie : vulnérabilité globalement modérée à élevée								
Pressions recensées	Commune de Quirbajou (44 hab), STEP (40 EH, rejet de 6 m3/j)	Routes secondaires qui traversent le bassin d'alimentation et les zones de vulnérabilité élevée				Sentiers : randonnées		
Note pression	1 - Faible	1 - Faible	1 - Faible	1 - Faible	1 - Faible	1 - Faible		
Risque	Faible à moyen	Faible à moyen	Faible à moyen	Faible à moyen	Faible à moyen	Faible à moyen		

Tableau 75: Liste des secteurs de plus forte pression anthropique pour le système de Cailla
BA des sources du Primaire (Dévonien)							
Type de pression	Activités domestiques et urbaines	Transports	Activités industrielles et commerciales	Stockage de déchets	Agriculture	Activités touristiques, sportives et culturelles	
(13) Pas de zone précisément définie : vulnérabilité de faible à très élovée							
Pressions recensées		Quelques tronçons de routes secondaires en zones très vulnérables (Adouci, Adouxe, Forge), de nombreux sentiers sur la partie très vulnérable du bassin d'alimentation de la source d'Adouci			Estives surtout. Prairies pour bassin Adouxes. Bassins d'alimentation de la Fajole et Lani entièrement exploités, quasi entièrement pour bassin d'alimentation des Adouxes, partie amont et pourtours pour bassin d'alimentation d'Adouci et SRE, et quasi- inexploité pour bassin d'alimentation d'Adouci et SRE, et quasi- inexploité pour bassin d'alimentation d'alimentation	Sentiers : randonnées	
Note pression	1 - Faible	1 - Faible	1 - Faible	1 - Faible	1 – Faible (2 – Moyen pour Adouxes)	1 - Faible	
Risque	Faible à moyen	Faible à moyen	Faible à moyen	Faible à moyen	Faible à moyen (à <u>Elevé</u> pour Adouxes)	Faible à moyen	

Tableau 76: Liste des secteurs de plus forte pression anthropique pour les systèmes du Primaire

10 6 11 Légende 12 8 Pertes principales • Sources 2 BA des sources Unique Partagé 1 et 7 9 Carte de Vulnérabilité Très faible 13 Faible Modérée Elevée 10 Kilomètres 5 7,5 0 1,25 2,5 Très élevée

Il ressort de cet inventaire que la signature anthropique identifiée à partir des suivis en NO3, B et Cl- (cf. 3.5.3) est compatible avec les usages et la vulnérabilité des secteurs à forte pression pour Fontmaure, Ginoles et Cailla (Figure 141 et Figure 142). Par ailleurs, en ce qui concerne le bassin d'alimentation de la source non karstique de Belfort sur Rébenty, la méthode de définition de la vulnérabilité de la ressource en eau souterraine appliquée ici concernant exclusivement les systèmes karstiques, il peut en revanche être précisé que cette source est fortement influencée par les activités agricoles demandeuses d'intrants sur la plaine d'Espezel. Ceci est cohérent avec les fortes teneurs en nitrates observées à cette source.

L'influence du salage des routes qui apparaît clairement sur les caractéristiques des eaux des pertes de Camurac, et dans une moindre mesure celles de l'Hers amont (Figure 141) ne s'observe pas à Fontmaure ou à Fontestorbes du fait de la dilution de cette signature dans le réservoir aquifère. Cette pression localisée aux zones d'altitude reste faible à l'échelle des systèmes étudiés.

Pour le Blau, une influence des activités agricoles est mise en avant dans l'étude hydrochimique. Cette caractéristique est liée à la recharge par les pertes des Coumeilles (Figure 141 et Figure 142) et du Pla de l'Artigues.

La source de Fontestorbes présente du point de vue chimique un impact anthropique agricole ou domestique relativement faible. L'absence de signature agricole est cohérente avec le diagnostic du risque de contamination à l'échelle du système, mais on aurait pu s'attendre à une signature anthropique liée aux activités domestiques dans la vallée de la Frau. Il peut être noté qu'une partie de ces écoulements n'atteint pas le réservoir aquifère dès lors qu'il existe un ruissellement dans la vallée de la Frau – cette contribution reste donc partielle. De plus les volumes en jeu restent faibles au regard de la superficie du bassin d'alimentation de la partie Sud.

La source de Contes, qui apparaît fortement vulnérable sur le bassin versant du Lasset (5.2.1) ne présente pas de signature anthropique marquée du point de vue de la qualité de l'eau, malgré un diagnostic de risque de contamination par les rejets domestiques élevé. Ceci s'explique également par un effet de dilution important compte tenu de la taille de l'impluvium du Lasset et le débit d'étiage qui reste élevé (>100 l/s, cf.3.6.1).

Les sources du Primaire ne présentent pas du point de vue chimique de signature anthropique identifiable (Tableau 21). Ceci est cohérent avec le diagnostic de risque (Tableau 76).

Accessibilité de la ressource en eau

Le résultat de l'analyse de l'accessibilité de la ressource en eau est reporté sous forme cartographique sur la Figure 195. Quatre classes ont été distinguées pour décrire une ressource en eau très facilement accessible (<50m), facilement accessible (50 à 100 m), peu accessible (100 à 200 m) et difficilement accessible (200 à 350 m). Les limites de ces classes et la limite à 350 m ont été fixées arbitrairement en cohérence avec un usage AEP de la ressource.

Figure 195: Analyse spatiale de l'accessibiliité de la ressource en eau karstique reportée sur le fond géologique au 1/50000 et le fond IGN au 1/100000

Cette analyse met en avant les secteurs proches des exutoires permanents, mais aussi temporaires (Esqueille, Blau), et quelques secteurs isolés difficilement accessibles dans le secteur de la Benague et dans les gorges du Rébenty au niveau du défilé de Joucou. En dehors, il peut exister une zone noyée dans des formations karstifiées mais sa position nécessiterait de réaliser un ouvrage atteignant une profondeur supérieure à 350 m.

Les secteurs facilement accessibles des systèmes secondaires se retrouvent :

- à l'aval du système de Contes dans la vallée du Lasset en amont de la résurgence,
- dans les écailles de Fontestorbes sous les affleurements de marnes bédouliennes (écaille de Fontestorbes) et dans le secteur des Mijanes,
- à proximité du Blau, et notamment au niveau du site d'implantation du nouveau forage,
- en amont de Ginoles dans la vallée du ruisseau du Coulent,
- en amont de Fontmaure dans la vallée de l'Aude.

Pour le Primaire, la délimitation est moins précise mais permet de localiser des secteurs favorables qui restent relativement proches des exutoires pour les systèmes des Adouxes, de la Fajolle et des Argeliers.

D'une manière générale, l'accessibilité de la ressource n'a d'intérêt que si elle permet d'identifier un secteur accessible éloigné d'un exutoire permanent en vue d'une exploitation par forage d'une ressource. C'est donc le cas des secteurs identifiés pour Contes, Fontestorbes, le Blau (exutoire temporaire), et l'amont de Fontmaure dans la vallée de l'Aude.

Synthèse et définition des secteurs aquifères potentiels

L'analyse croisée des critères quantitatifs, qualitatifs et d'accessibilité a pour but d'identifier les secteurs les plus favorables à une utilisation AEP de la ressource, que ce soit au niveau d'une source ou d'un forage.

Les sites les plus favorables pour une exploitation par forage se localisent :

- A proximité du Blau (secteur du nouveau forage) pour bénéficier d'une ressource en eau accessible, de bonne qualité, relativement peu vulnérable, et associée à une structure géologique contrôlant une karstification profonde sous l'exutoire (synclinal du col du Chandelier),
- En amont de la source de Ginoles dans les formations de calcaire urgonien du Clansayésien, ce qui limiterait le risque de contamination de la ressource exploitée actuellement au niveau de la source sous la route,
- Dans les écailles de Fontestorbes, et notamment dans le secteur des Mijanes et dans le prolongement Ouest de l'écaille de Fougax. Une telle exploitation par forage en amont du mécanisme d'intermittence pourrait avoir un impact sur le flux d'alimentation du réservoir d'intermittence, et donc modifier le fonctionnement de la source intermittente de Fontestorbes en basses eaux (amplification de la fréquence d'apparition du phénomène).

Un forage dans la vallée du Lasset en amont de la source de Contes pourrait également être proposé, mais la vulnérabilité de ce système reste très importante, même si les faibles pressions anthropiques qui s'exercent actuellement sont parfaitement compatibles avec un usage AEP.

Les sites les plus favorables pour une exploitation par captage de la source sont la source de Fontestorbes et la source des Adouxes. Cette dernière présente des réserves importantes, mais son exploitation devra tenir compte de l'impact sur le débit d'étiage dans le Rébenty.

6. Conclusion et perspectives

Cette étude a permis d'améliorer significativement la compréhension du fonctionnement hydrogéologique et définir l'organisation des écoulements des systèmes karstiques du Primaire (Dévonien) et du Secondaire (Jurassique et Crétacé) constituant le Plateau de Sault.

La cartographie géologique, l'analyse structurale, la sismique réflexion, la prospection microgravimétrique et la réalisation de forages de reconnaissance ont permis d'élaborer un modèle géologique tridimensionnel des formations constituant le Plateau de Sault. Au sein du Secondaire, ce modèle a été confronté aux résultats hydrogéologiques (essais de traçages artificiels et jaugeages différentiels des pertes sur les cours d'eau de surface) au moyen de l'approche KARSYS afin de valider l'organisation des écoulements souterrains. Cette méthode a permis d'identifier l'extension minimale de la zone noyée des systèmes karstiques, les secteurs libres et captifs, les zones de recharge directe et indirecte et la localisation la plus probable des axes de drainage karstique. Ces résultats ont alimenté l'analyse de cartographie de la vulnérabilité des ressources en eau souterraine du Plateau de Sault. Faute de données géologiques suffisantes, la modélisation géologique 3D et l'approche KARSYS n'ont pu être menées sur les calcaires du Dévonien.

Les deux systèmes karstiques majeurs de Fontmaure et de Fontestorbes développés au sein du Secondaire sont assez similaires en termes de débits et d'extension de leur bassin d'alimentation. Une zone de partage des eaux entre les deux systèmes, fluctuante au cours du temps, a été mise en évidence, accompagnée d'un mécanisme de diffluence au profit du Blau en crue, mais également de Fontestorbes. La diffluence vers le Blau a été confirmée par le résultat du traçage de la perte des Coumeilles qui présente une restitution rapide en régime de crue au Blau, associée à une restitution plus lente à la source de Fontmaure. L'analyse des débits classés montre qu'en hautes eaux, une partie des écoulements drainés habituellement vers Fontmaure se dirigent vers le Blau et Fontestorbes. Les analyses géochimiques réalisées lors d'une crue importante permettent également de corroborer les résultats de l'approche hydrogéologique. L'interprétation du modèle géologique 3D selon la méthode KARSYS permet d'expliquer ces résultats : les mises en charge et la saturation des réseaux drainant les pertes d'eau de surface permet de réactiver des paléo-karsts développés à une altitude supérieure, et permettent ainsi à l'eau de circuler « au-dessus » des limites imperméables liées à la remontée du substratum au cœur des structures anticlinales. Des échanges sont alors possibles entre les systèmes de Fontmaure et du Blau, et très probablement entre les systèmes de Fontestorbes et du Blau (Figure 196).

L'application de l'approche KARSYS a permis de proposer une zone noyée unique pour les sources de Fontmaure et de Ginoles, l'analyse des débits classés de Fontmaure a permis de corroborer l'existence de la connexion hydraulique entre les deux systèmes karstiques alors que les informations isotopiques ont montré l'existence d'une compartimentation géochimique au sein du réservoir. A Fontmaure, l'analyse des isotopes du sulfate confirme l'origine triasique profonde des sulfates dont les teneurs augmentent de façon corrélée avec la température de la source. Les rapports isotopiques du strontium indiquent par ailleurs une évolution importante de la signature isotopique de l'eau au sein du réservoir carbonaté par interaction eau-roche. La source de débordement de Ginoles qui s'active lorsque les débits de Fontmaure sont supérieurs à 3.5 m³/s n'apparait pas influencée par les évaporites du Trias. Les teneurs en nitrates et autres traceurs d'activités anthropiques sont détectés de façon plus récurrente sur les sources de Fontmaure, Cailla et Belfort-sur-Rébenty, les concentrations en nitrate demeurent pour l'heure très inférieures à la limite de 50 mg/l fixée pour l'AEP.

La source de Belfort-sur-Rébenty, faisant l'objet d'un captage AEP, n'est pas alimentée par les pertes des Quirines ni par le fossé situé à l'aval de la station d'épuration d'Espezel. Le siège du réservoir aquifère de cette source serait situé sur le plateau d'Espezel dans les alluvions de la vallée du paléo-Rébenty creusée dans les marnes albiennes et n'aurait pas un caractère karstique.

Les traçages artificiels ont permis de valider les extensions des impluviums de Fontestorbes, du Blau et de Fontmaure-Ginoles et permettent de proposer une organisation du drainage du plateau le long de la structure anticlinale de Pierre-Lys Picaussel jusqu'à Fontmaure. Deux systèmes individualisés sont proposés. Le système le plus développé circule dans les calcaires urgoniens du Gargasien et Clansayésien sur le flanc Sud de l'anticlinal de Pierre-Lys Picaussel et drainerait la plupart du plateau de Sault (Camurac, Coumeilles, Vernouze et la plaine d'Espezel au niveau des Quirines), et est temporairement partiellement capturé par le Blau en hautes eaux. Un second système de drainage est développé dans les calcaires jurassique sur la même structure, isolé du précédent par les marnes bédouliennes. Celui-ci draine les eaux perdues au Rébounédou et ne participe pas à l'alimentation du Blau en crue.

Les résultats des analyses chimiques sur les eaux prélevées (par soufflage) sur le forage du Blau ont été comparés aux mesures effectuées sur le Blau. Les caractéristiques chimiques des eaux sont très comparables et les informations isotopiques témoignent d'une altitude moyenne de recharge autour de 800-900 m et montrent l'absence d'échange avec les évaporites du Trias. Les résultats démontrent l'absence de contribution des eaux rechargées en hautes altitudes, ce qui permet d'exclure la participation des eaux provenant du secteur de Camurac comme imaginé au début du projet. Les résultats isotopiques sont cohérents avec l'organisation des écoulements souterrains déduit au moyen de l'approche KARSYS.

Les jaugeages différentiels effectués sur le Rébenty montrent que les pertes y sont faibles, présentes uniquement lors de la traversée de la ZIM. Elles alimentent probablement le système karstique de Fontmaure. Les mesures effectuées sur le système karstique binaire de la source de Contes montrent qu'il n'y a pas de lien entre les pertes du Moulin (sur le Lasset) et la source de Fontestorbes. Le substratum imperméable des marnes bédouliennes assure la déconnexion hydraulique des systèmes karstiques de Contes et de Fontestorbes développés au sein des formations urgoniennes.

Une étude détaillée du mécanisme d'intermittence de la source de Fontestorbes à partir de suivis hydrodynamique et physico-chimique réalisé dans le puits P1 des Mijanes a permis de préciser l'organisation du drainage karstique en amont de Fontestorbes et le modèle conceptuel de l'intermittence. Cette étude a également permis de préciser la relation hauteur/débit à la source, en mettant en évidence une difficulté métrologique liée à des sous-écoulements du système karstique dans l'Hers.

L'analyse des nouvelles chroniques de données acquises à haute fréquence sur les caractéristiques physico-chimiques de l'eau à Fontestorbes et dans le gouffre des Mijanes indique que la cavité karstique à l'origine de l'intermittence est située entre les Mijanes et la source, probablement au niveau de la traversée des marnes bédouliennes. Ces résultats indiquent aussi qu'un apport d'eau d'une origine géochimique différente, probablement au travers d'un drain karstique provenant de l'Est, alimente la source à l'aval des Mijanes. Les suivis géochimiques réalisés sur la période 2014-2016 permettent également de montrer une mobilisation d'eau d'origine différentes selon le contexte hydrologique. Les hautes eaux des périodes printanières sont caractérisées par la participation majoritaire du compartiment Sud du système situé à des altitudes élevées (>1200 m) et présentant des pertes de cours d'eau drainant les formations anté-triasiques (Pertes de l'Hers, pertes du Basqui et de l'Ourza). Les crues observées en dehors des périodes printanières sont caractérisées par la participation majoritaire du compartiment fuer des formations anté-triasiques (Pertes de l'Hers, pertes du Basqui et de l'Ourza).

du compartiment Nord du système situé à des altitudes moyennes de l'ordre de 800-900 m drainant la partie Nord-Ouest du plateau crétacé d'Espezel. La source de trop-plein de l'Esqueille qui déborde lorsque les débits de Fonstestorbes sont supérieurs à 3.5 m³/s semble évacuer majoritairement les eaux de recharge de l'impluvium située à l'Ouest (Roc du Tals, Montagne de la Frau, Sarrat de la sentinelle) dont l'altitude moyenne serait comprise entre 1200 et 1400 m d'altitude.

En terme de vulnérabilité, le Sud-Ouest de la zone d'étude apparaît le moins vulnérable : il s'agit de l'amont des bassins d'alimentation des sources de Fontestorbes et Fontmaure, ainsi qu'une grande partie des bassins d'alimentation des sources d'Argelier, Adouxes, Lani, Fajole, Forge et SRE. Ces secteurs sont moyennement à peu vulnérables : il s'agit surtout de zones de fortes pentes où l'infiltration I est faible, constituées de formations calcaires et marneuses du Silurien au Carbonifère, et plus ou moins métamorphisées datant du Jurassique au Crétacé inférieur (karst moins développé). La partie Nord - Nord-Est de la zone d'étude (aval des bassins d'alimentation de Contes, Fontmaure et de Fontestorbes, et bassins d'alimentation de Cailla et Fago) est de manière générale plus vulnérable (de modérée à très élevée) : le degré de karstification y est plus élevé, en témoigne la présence de nombreuses dépressions et cavités, et les pentes y sont plus faibles. De manière générale, la plupart des bassins versants alimentant les pertes karstiques constituent des secteurs fortement vulnérables. Les principales zones de dépressions et cavités ainsi que le secteur de la plaine d'Espezel ont également une vulnérabilité élevée, principalement due à une faible protection P des formations aquifères et une infiltration I importante.

Bien que les pressions sur les ressources karstigues restent pour l'instant modestes du fait du caractère rural de la zone, il est important de les prendre en considération afin de déterminer les secteurs où les efforts de protection devront se concentrer pour prévenir ou réduire le risque (vulnérabilité * pression). Les principales pressions relevées sont d'origine domestique et urbaine (STEP et assainissement non collectif essentiellement) et agricole (cultures et prairies, où l'épandage d'intrants chimiques, d'effluents d'élevage ou de boues de STEP ; notamment sur les communes situées dans l'Aude). Peu d'industries sont recensées sur le plateau à l'exception de la carrière de Talc de Trimouns, à l'amont du bassin du Basqui, qui alimente le système karstique de la source de Fontestorbes. De manière générale, peu de pressions sont relevées sur les bassins d'alimentation des sources du Dévonien, ni sur ceux des sources de Fago et Cailla. Les pressions se concentrent principalement sur les bassins d'alimentation des sources de Fontmaure et Fontestorbes, pour lesquels plusieurs secteurs à risque ont été définis en croisant la carte de vulnérabilité aux cartes de pressions anthropiques. Ces principaux secteurs à risque sont : la zone amont des pertes de Camurac et le village de Camurac (risque de pollution moyen à élevé : STEP, station de ski, prairies et estives, quelques industries), l'amont de la perte des Quirines et la plaine d'Espezel (risque de pollution d'origine domestique et agricole élevé à très élevé), le bassin versant de la perte du Rébounédou (risque de pollution d'origine domestique et agricole élevé à très élevé), la dépression des Coudons ainsi que la dépression du Pla de l'Artiques et des Coumeilles (pollution d'origine agricole essentiellement). l'amont de la perte du Basqui (carrière de talc de Trimouns), et le secteur Nord du bassin d'alimentation de la source de Fontestorbes : le bassin versant du Maury à l'amont des pertes des Mijanes, les bassins versants en amont des pertes du Roc des Agréous et du Pavillon de la Jasse (ANC, décharges, épandages).

En ce qui concerne le bassin d'alimentation de la source non karstique de Belfort sur Rébenty, la méthode de définition de la vulnérabilité de la ressource en eau souterraine ne peut être appliquée ici, cependant il a été montré que cette source est fortement influencée par les activités agricoles présentes sur son impluvium dont les limites ont été précisées.

A l'issue de cette étude, plusieurs secteurs apparaissent comme favorables pour mener des prospections d'eau plus ciblées :

- A proximité du Blau (secteur du nouveau forage) pour bénéficier d'une ressource en eau accessible, de bonne qualité (très peu de nitrate et de sulfate), relativement peu vulnérable, et associée à une structure géologique contrôlant une karstification profonde sous l'exutoire (synclinal du col du Chandelier). Le sous-système du Blau ne serait pas qu'un simple système de trop-plein de Fontmaure et pourrait être considéré comme un petit système karstique indépendant en basses eaux qui pourrait contenir une ressource intéressante à caractériser. Le forage du Blau réalisé au cours de l'étude y montre en effet l'existence d'une zone noyée épaisse accessible à une profondeur moindre que sur le Plateau. Un questionnement persiste sur l'importance de la ressource stockée.

- En amont de la source de Ginoles dans les formations de calcaire urgonien du Clansayésien, ce qui limiterait le risque de contamination de la ressource exploitée actuellement au niveau de la source sous la route,

- Dans les écailles de Fontestorbes, et notamment dans le secteur des Mijanes et dans le prolongement Ouest de l'écaille de Fougax. Une telle exploitation par forage en amont du mécanisme d'intermittence pourrait avoir un impact sur le flux d'alimentation du réservoir d'intermittence, et donc modifier le fonctionnement de la source intermittente de Fontestorbes en basses eaux (amplification de la fréquence d'apparition du phénomène).

Outre la source de Fontestorbes, le site le plus favorable en terme de ressource en eau souterraine est le système de la source des Adouxes. Le suivi hydrologique et géochimique des sources du Dévonien a permis d'identifier la source des Adouxes comme constituant la ressource d'eau souterraine la plus prometteuse du Haut-Rébenty. Son pouvoir régulateur relativement élevé lui confère des capacités de stockage d'eau importantes. Son volume dynamique proche de 3 millions de m³ est élevé et la qualité de l'eau est excellente. Il n'y a par ailleurs aucune pression anthropique sur son bassin d'alimentation. Avant d'envisager une exploitation de cette ressource, il conviendra d'en évaluer l'impact sur les débits du Rébenty dont elle constitue un contributeur majeur.

En terme d'instrumentation future, nous suggérons de poursuivre les suivis de la source des Adouxes qui constitue une ressource significative au sein des calcaires du Dévonien. Le suivi du forage du Blau permettra de mieux comprendre le fonctionnement de la zone de diffluence entre les systèmes de Fontmaure et de Fontestorbes. Il conviendrait également d'établir une courbe de tarage entre les débits du Blau et les niveaux du forage du Blau, ce qui pose la question du maintien du seuil aval qui avait été installé au début du projet (2015). Le suivi de la source de Fontmaure apparait indispensable et nécessite une amélioration de l'instrumentation de façon à mieux mesurer les basses eaux. Il est préconisé d'installer un capteur de pression, température et conductivité au niveau du plan d'eau accessible près de la diaclase et de maintenir temporairement le système de mesure du seuil afin d'établir la relation de correspondance avec les données collectées au cours de ce projet. Pour la source de Fontmaure, les jaugeages différentiels sur l'Aude par la méthode de dilution seront à poursuivre pour améliorer la courbe de tarage, et notamment préciser l'importance des sous-écoulements dans l'Aude.

Parmi les éventuels traçages qu'il serait opportun de réaliser, plusieurs propositions sont listées :

- celui de la perte Nord du Sarrat de l'étreuil (avec suivi de Fontmaure, Blau, Moulin de Labeau et source des Graviers) dont un ancien traçage montre une connexion avec Fontmaure peu compatible avec notre compréhension de l'organisation des écoulements souterrains ;
- reconduire l'opération de tracage MT3 depuis le point le plus bas de la dépression de Coudons en contexte de très hautes eaux, afin de vérifier que la perte identifiée dans les formations barrémiennes drainent les eaux vers Fontmaure et non Ginoles;
- tracer les pertes de l'Hers en amont de Prades pour préciser la connexion hydraulique avec la source de Fontestorbes.

Par ailleurs, la question des sous-écoulements à la source de Fontestorbes reste un élément de progrès pour mieux cerner les volumes écoulés. Cette problématique peut être abordée par la méthode de dilution pour différents contextes hydrogéologiques en reconduisant l'expérimentation de tracage des Mijanes (T6).

Plus généralement, d'un point de vue méthodologique, ce projet a montré l'intérêt et l'importance d'une approche multidisciplinaire et la nécessiter d'une bonne connaissance géologique du secteur d'étude pour renforcer l'analyse hydrogéologique au moyen de l'approche KARSYS et des approches hydrogéologiques et géochimiques plus conventionnelles.

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

Figure 196. Carte de synthèse des principales informations hydrogéologiques du Plateau de Sault

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

7. Bibliographie

Bailly-Comte, V., Disrepair, X., Batiot-Guilhe, C., Schnegg, P.-A (2018). In situ monitoring of tracer tests: how to distinguish tracer recovery from natural background. Hydrogeol J, <u>https://doi.org/10.1007/s10040-018-1748-8</u>

Ballue Y (2008) Avis hydrogéologique concernant : la protection du captage de la source Fontfroide. 21 p.

Bardeau M., Monod B., Lamotte C., Ladouche B., Le Goff E., Maréchal JC., 2015. Etat des connaissances géologiques et hydrogéologiques sur le Plateau de Sault (Aude - Ariège). Rapport BRGM/RP-64209-FR.

Batiot-Guilhe C., J.L. Seidel, J.C. Maréchal, B. Ladouche, V. Prié, F. Cernesson, N. Dorfliger, M. Blanc, V. Léonardi, P.Y. Vion. Avec la collaboration de C. Bancon, H. Fenet, C. Gonzalez, S. Spinelli, S. Van-Exter. (2012). Projet de gestion multi-usages de l'hydrosystème karstique du Lez – Caractérisation hydrochimique; qualité chimique, vulnérabilité de l'hydrosystème et de l'écosystème associé. Rapport RP-61013-FR, 292 pages, 17 annexes.

Berger G., Bosch B., Desprez N., et al. (1976). Recherches sur l'origine des nitrates dans les eaux souterraines de la Beauce. Rapport sur la campagne de prélèvement et analyses du 1er septembre 1976. Rapport BRGM-76-SGN-444-BDP.

Bousquet JP., 1975. Etude géologique de la zone Nord-pyrénéenne à l'articulation entre Pays de Sault et Bassin de Quillan (Pyrénées Orientales : Ariège-Aude). Thèse 3^{ème} cycle, Université Paul Sabatier, Toulouse, 142 p.

Brenot A., Carignan J., France-Lanord C., Benoît M. (2007). Geological and land use control on δ 34S and δ 18O of river dissolved sulfate: The Moselle river basin, France. Chemical Geology 244 (2007) 25–41.doi:10.1016/j.chemgeo.2007.06.003.

Burke W. H., Denison R. E., Hetherington E. A., Koepnick R. B., Nelson H. F., Otto J. B. (1982); Variation of seawater ⁸⁷Sr/⁸⁶Sr throughout Phanerozoic time. *Geology* ; 10 (10): 516–519. doi: <u>https://doi.org/10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2</u>

Cau, A. (1979) La Fontaine Intermittence de Fontestorbes, Société Spéléologique du Plantaurel, 44p.

Clark I.D. et Fritz P. (1997). Environmental isotopes in hydrogeology, Lewis Publishers, 328p.

Cosson J., Souquet P., Peybernès B., Bilotte M., Bousquet JP., Ciszak R., Marty M., Tambarreau Y., Villatte J., Crochet B., Taillefer F. 1984. Carte géol. France (1/50 000), feuille Lavelanet (1076). Orléans : BRGM

Craig H. (1961). Isotopic variations in meteoric waters. Sciences, 133, 1702

Dörfliger N., Ladouche B. (2004), avec la collaboration de JL Izac, J Cubizolles et C. du Couëdic : Synthèse de la caractérisation des systèmes karstiques des Corbières Orientales - Rapport final de la phase I du projet "Evaluation des ressources en eau des Corbières", Volume 4 - Synthèse hydrogéologique des systèmes karstiques des Corbières Orientales - La Mouillère - La Tirounère - Le Verdouble, BRGM/RP-52921-FR, 107pp., 63 fig., 9 tabl., 3 annexes.

Dorfliger N. et Plagnes V. (2009). Cartographie de la vulnérabilité intrinsèque des aquifères karstiques - Guide méthodologique de la méthode PaPRIKa. BRGM/RP-57527-FR, 105 p., 55 ill. , 4 annexes.

Dörfliger N. (2010). Guide méthodologique, Les outils de l'hydrogéologie karstique. Avec la collaboration de Ph. Crochet, R. Guerin, N. Jozja, B. Marsaud, P-H. Mondain, Ph. Muet, V. Plagnes; BRGM RP- 58237-FR, 230 pp., 82 ill., 5 ann.

Dubreuil, P., Lamagat, J. P. & Vuillaume, G. (1970). Tarage et calcul des débits des stations hydrométriques non univoques. Cahiers ORSTOM, sér. Hydrologie VII(3), 3–72.

EI-Hakim, M., and M. Bakalowicz. 2007. Significance and origin of very large regulating power of some karst aquifers in the Middle East. Implication on karst aquifer classification. J. Hydrol. doi: 10.1016/j.jhydrol.2006.09.003.

Faure G. (1986). Principles of Isotope Geology, 2nd ed. xv + 589 pp., John Wiley & Sons.

Grévellec J. (1974). Etude du bassin versant de la source de Font Maure Commune de Belvianes et Cavirac (Aude) - DEA d'hydrogéologie. 28 p.

Hauns, M., Jeannin, P.Y., Atteia, O., (2001). Dispersion, retardation and scale effect in tracer breakthrough curves in karst conduits. J. Hydrol. 241, 177–193. <u>http://dx.doi.org/10.1016/S0022-1694(00)00366-8</u>

Hydrogéosphère (2004) Etude hydrogéologique du Plateau de Sault. 89 p.

Kreft, A., Zuber, A., (1978). On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chemical Engineering Science, 33(11): 1471-1480.

Jeannin PY., Eichenberg U., Sinreich M., Vouillamoz J., Malard a. & Weber E., (2013). KARSYS: a pragmatic approach to karst hydrogeological system conceptualisation. Assessment of groundwater reserves and resources in Switzerland. Environmental Eart Sciences 69(3): 999-1013.

Jozja N., Lepiller M, Mondain P-H, Muet P. (2009). Fiabilité de l'interprétation des traçages utilisant des traceurs fluorescents : importance de la composante analytique et proposition d'une grille d'évaluation. Géologues 163, « Eaux souterraines. Gestion et protection des captages », p. 67-75.

Jeannin, P.Y., U. Eichenberger, M. Sinreich, J. Vouillamoz, A. Malard, and E. Weber. (2013). KARSYS: A pragmatic approach to karst hydrogeological system conceptualisation. Assessment of groundwater reserves and resources in Switzerland. Environ. Earth Sci. doi: 10.1007/s12665-012-1983-6.

Krimissa, M. (1995) Application des méthodes isotopiques à l'étude des eaux thermales en milieu granitique (Pyrénées, France). Thèse Univ. Paris XI.

Ladouche B., Ghyselinck M., L. Chery (2004). Détermination de l'origine des nitrates dans quelques sources karstiques du Causse du Quercy (LOT).. Rapport BRGM/RP-53114-FR, 97p., 52 Fig., 15 tab., 2 annexes.

Ladouche B., Aquilina.L., Doerfliger N. (2009) Chemical and isotopic investigation of rainwater in southem France (1996-2002): potential use as input signal for karst functioning investigation, Journal of Hydrology, Vol. 367, Issues 1-2, p.150-164.

Lagasquié JJ., (1963). Le relief calcaire du plateau de Sault. Revue Géographique des Pyrénées et du Sud-Ouest 34: 11-32

Malard, A., Jeannin, P. Y., Vouillamoz, J., & Weber, E. (2015). An integrated approach for catchment delineation and conduit-network modeling in karst aquifers: application to a site in the Swiss tabular Jura. *Hydrogeology Journal*, *23*(7), 1341–1357.

Maloszewski, P., Zuber, A., (1982). Determining the turnover time of groundwater systems with the aid of environmental tracers : 1. Models and their applicability. Journal of Hydrology, 57(3-4): 207-231.

Mangin A., (1969). Nouvelle interprétation du mécanisme des sources intermittentes. Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Série D: Sciences Naturelles 269(22): 2184-2186

Mangin A., (1970). Contribution à l'étude d'aquifères karstiques à partir de l'analyse des courbes de décrue et de tarissement. Anales de Spéléologie, 25 (3) : 581-609.

Mangin, 1973. Sur les transferts d'eau au niveau du karst noyé à partir de travaux sur la source de Fontestorbes, annales de spéléologie, tome 28, fascicule 1, 21-40.

Mangin A., 1975. Contribution à l'étude hydrodynamique des aquifères karstiques. Thèse de doctorat d'Etat, Université de Dijon. 124 p.

Mangin A. (Laboratoire Souterrain de Moulis) (2002). Traçage entre le ruisseau du Basqui et la source de Fontestorbes. 16p.

Mangin A, Yvroux M (2009) Document de sortie technique du 4 novembre, « Pays de Sault Cathare ! » - document inédit

Maréchal JC, Ladouche B, Desprats JF, Izac JL (2006) - Fonctionnement hydrogéologique du système karstique de la Fontaine de Nîmes en crue. Rapport final. Rapport BRGM/RP-54723-FR.

Marsaud B (1997) Structure et fonctionnement de la zone noyee des karsts a partir des resultats experimentaux. Structure and behaviour of the saturated zone of aquifers from experimental results. Thèse de doctorat 306 p.

Meus Ph, Käss W, Schnegg P-A, 2006. Background and detection of fluorescent tracers in karst groundwater, In: Duran JJ, Andreo B, Carrasco F (eds) Karst, climate change and groundwater, vol 18 Hidrogeologia y Aguas subterraneas, p 65–75

Monod B., Allanic C., Bailly-Comte V., Jacob T., Maréchal JC. avec la collaboration de Martel L., Courrioux G., (2016) – Evaluation des ressource en eaux souterraines du Plateau de Sault – étude structurale, modèle géologique 3D, acquisition gravimétrique et analyse de la fracturation, Rapport final BRGM/RP-65888-FR, 201 p., 98 ill., 1 tabl., 3 ann..

OFEG, 2002. Utilisation des traceurs artificiels en hydrogéologie, Guide pratique, Groupe de travail Traçage de la Société suisse d'hydrogéologie SSH, Rapports de l'OFEG, Série Géologie - No 3 - Berne 2002

Otero N., Soler A., Canals A. (2008). Controls of d34S and d18O in dissolved sulphate: learning from a detailed survey in the Llobregat River (Spain). Applied Geochemistry 23, 1166-1185.

Peybernès B., 1976. Le Jurassique et le Crétacé inférieur des Pyrénées franco-espagnoles entre la Garonne et la Méditerranée. Thèse de doctorat, Université Paul Sabatier, Toulouse, 458 p.

Réméniéras G. (1986) L'hydrologie de l'ingénieur, 2ème édition, Eyrolles, Paris, 456 p.

Réméniéras G. (1960). L'hydrologie de l'ingénieur, Eyrolles, Paris,413 p

Rosenbrock H. H. (1960). An Automatic Method for Finding the Greatest or Least Value of a Function, The Computer Journal, Volume 3, Issue 3, 1 January 1960, Pages 175–184, https://doi.org/10.1093/comjnl/3.3.175

Salic C (1985) Evaluation du potentiel en eau du karst pyrénéen entre les vallées de la Neste et l'Aude. Rapport, Université Pierre et Marie Curie Paris, 213 p.

Schnegg P-A, Thueler L (2012) Application of a multi-LED field fluorometer for simultaneous detection of hard to separate dye tracers and fluocapteurs. XI Congreso Latino-Americano de Hidrogeologia, Cartagena de Indias, Colombia, 19–24 August 2012

Thode, H. G, (1991). Sulphur isotopes in nature and the environment: an overview. In: H.R. Krouse and V.A. Grinenko (Eds), Stables Isotopes: Natural and Anthopogenic Sulphur un the Environment, SCOPE 43, Jonh Wiley and Sons, Chichester, pp. 1-26.

Vigouroux P. (2017a) – Projet SAULT – Forage de reconnaissance d'Espezel (11) – Dossier de l'Ouvrage Exécuté - Rapport final. BRGM/RP-66699-FR, 40 p., 6 ill., 2 ann.

Vigouroux P. (2017b) – Projet SAULT – Forage de reconnaissance BLAU à Puivert (11) – Dossier de l'Ouvrage Exécuté - Rapport final. BRGM/RP-67479-FR, 30 p., 6 ill., 1 ann.

Yvroux M (1998) Forage de la Gare - Quillan (Aude). Rapport de fin de travaux.

Zwahlen, F. (2004). Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report COST action 620: European Commission, Brussels.

Centre scientifique et technique 3, avenue Claude-Guillemin BP 36009 45060 – Orléans Cedex 2 – France Tél. : 02 38 64 34 34 - www.brgm.fr

Direction D3E Unité NRE 1039 rue de Pinville 34000 – Montpellier – France Tél. : 04 67 15 79 90

Evaluation des ressources en eaux souterraines du Plateau de Sault -

Amélioration des connaissances sur les potentialités de la ressource et cartographie de la vulnérabilité

h1b-2

d7-h1a

.89 3740,46 -625.5

Annexes du rapport final

BRGM/RP-67528-FR Juin 2018

de-hia hib

Evaluation des ressources en eaux souterraines du Plateau de Sault -Amélioration des connaissances sur les potentialités de la ressource et cartographie de la vulnérabilité

Annexe du rapport final

BRGM/RP-67528-FR

Juin 2018

Étude réalisée dans le cadre des opérations de Service public du BRGM

V. Bailly-Comte, B. Ladouche, C. Allanic, A. Bitri, F. Moiroux, B. Monod, P. Vigouroux, JC. Maréchal Avec la collaboration de A. Grandemange, M. Bardeau et F. Tilloloy

Vérificateur :

Nom : JB Charlier

Fonction : Hydrogéologue

Date : 29/06/2018

harter

Approbateur :	
Nom : A Blum	
Fonction : Directrice	
Date : 29/06/2018	
A	

Le système de management de la qualité et de l'environnement est certifié par AFNOR selon les normes ISO 9001 et ISO 14001. Contact : <u>qualite@brgm.fr</u>

Mots-clés :

En bibliographie, ce rapport sera cité de la façon suivante :

Bailly-Comte V., Ladouche B., Allanic C., Bitri A., Moiroux F., Monod B., Vigouroux P., Maréchal JC. (2018) – Evaluation des ressources en eaux souterraines du Plateau de Sault - Amélioration des connaissances sur les potentialités de la ressource et cartographie de la vulnérabilité. Rapport final. BRGM/RP-67528-FR, p., ill., fig., tabl., ann., CD.

© BRGM, 2018, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

Synthèse

Ce document présente les annexes du rapport final du projet Plateau de Sault.

Sommaire

Liste des annexes

Annexe 1	Prospection sismique : traitement des données 11
Annexe 2	Coupes techniques des forages Espezel et Blau 19
Annexe 3	Informations hydroclimatiques
Annexe 4	Fiches descriptives des points d'eau échantillonnés
Annexe 5	Résultats des jaugeages 45
Annexe 6	Résultats des analyses géochimiques 50
Annexe 7	Résultats complémentaires de l'approche de modélisation Gardenia
Annexe 8	Cartes de vulnérabilité PaPRIKA réalisées à partir de 6 tests de pondération 85
Annexe 9	Fiches d'informations concernant les décharges recensées à Bélesta, Montségur et Fougax-et-Barrineuf, transmises par le CD09
Annexe 10	Données recensées par l'IREP concernant les émissions polluantes issues d'activités industrielles
Annexe 1	Pressions anthropiques recensées sur les bassins d'alimentation des principales sources étudiées117
Annexe 12	2 Carte des pressions liées aux transports, exercées sur le plateau de Sault 123
Annexe 13	3 Carte des pressions industrielles et commerciales, exercées sur le plateau de Sault127
Annexe 14	4 Carte des pressions liées au stockage de déchets, exercées sur le plateau de Sault131
Annexe 18	5 Carte des pressions liées aux activités sportives, culturelles et touristiques, exercées sur le plateau de Sault

Liste des figures

Figure A- 1.	Etapes de traitement sismique réalisées sur un exemple de tir du profil P1 – à gaue tir sismique brut ; à droite : tir sismique après AGC, filtrage fréquentiel, applicat d'un mute et normalisation des traces	che : ion 2
Figure A- 2.	Séquence de traitement sismique réfraction1	3
Figure A- 3.	Coupe technique du forage Espezel 2	:0
Figure A- 4.	Coupe technique du forage Blau 2	:1
Figure A- 5.	Système karstique de Fontestorbes : Précipitation, ETP et température moyenne calculées à l'aide de la fonction de pondération des mailles Safran (cf texte) exprimés en fonction des chroniques Météo-France de Belcaire (période du 01/01/2013-31/07/2014)	25
Figure A- 6.	Système karstique de Fontmaure : Précipitation, ETP et température moyenne calculées à l'aide de la fonction de pondération des mailles Safran (cf texte) exprimés en fonction des chroniques Météo-France de Belcaire (période du 01/01/2013-31/07/2014)	:6
Figure A- 7.	Système karstique de Fontestorbes : evolution des lames d'eau annuelle de précipitation (Pluie+Neige) et de la température moyenne sur l'impluvium 2	.7
Figure A- 8.	Système karstique de Fontmaure : evolution des lames d'eau annuelle de précipita (Pluie+Neige) et de la température moyenne sur l'impluvium 2	ation 8
Figure A- 9.	Systèmes karstiques du Dévonien (Haut-Rébenty): Précipitation, ETP et températu moyenne des mailles Safran de la zone étudiée (cf texte) exprimés en fonction chroniques Météo-France de Belcaire (période du 01/01/2013-31/07/2014) 2	ure des 9
Figure A- 10	D. Systèmes karstiques Dévonien du Haut-Rébenty : evolution des lames d'eau ann de précipitation (Pluie+Neige) et de la température moyenne sur les mailles Sa considérée sur la zone d'étude	uelle fran 0
Figure A- 11	I. Systèmes karstiques Dévonien du Haut-Rébenty (suite) : évolution des lames d'e annuelle de précipitation (Pluie+Neige) et de la température moyenne sur les mailles Safran considérée sur la zone d'étude	au 1
Figure A- 14	 Paramètres de l'analyse des courbes de récession de Fontestorbes et Fontmaure l'approche de Mangin modifiée	e par 2
Figure A- 15	5. Carte de localisation des points d'eau échantillonnées lors de la campagne spatia basses eaux d'octobre 2014 (points Rouge)	ale 4
Figure A- 14	 Liste des points d'eau échantillonnés pour lesquels un N°BSS a été créé dans le du projet «Plateau de Sault »	cadre 5
Figure A- 15	5. Liste des points d'eau complémentaires échantillonnés 3	6
Figure A- 16	6. Fiche de la source Ancienne Forge 3	7
Figure A- 17	7. Fiche de la source Argelier	9
Figure A- 18	3. Fiche source de Belfort-sur-Rébenty 4	.1
Figure A- 19	9. Fiche de la source Lani	.3
Figure A- 20	D. Evolutions temporelles des signatures isotopiques (δ ¹⁸ O, ⁸⁷ Sr/ ⁸⁶ Sr) et des concentrations du système calco-carbonique (HCO3, Ca, Mg et Sr) de la sourc Adouxes	e des 6

Figure A- 21. Evolutions temporelles des signatures isotopiques (δ ¹⁸ O, ⁸⁷ Sr/ ⁸⁶ Sr) et des concentrations du système calco-carbonique (HCO3, Ca, Mg et Sr) de la source des Adoucis
Figure A- 22. Evolutions temporelles des signatures isotopiques (δ ¹⁸ O, ⁸⁷ Sr/ ⁸⁶ Sr) et des concentrations du système calco-carbonique (HCO3, Ca, Mg et Sr) de la source « SRE »
Figure A- 23. Evolutions temporelles des signatures isotopiques (δ ¹⁸ O, ⁸⁷ Sr/ ⁸⁶ Sr) et des concentrations du système calco-carbonique (HCO3, Ca, Mg et Sr) de la source du Moulin (Fajolle)
Figure A- 24. Evolution des rapports ⁸⁷ Sr/ ⁸⁶ Sr des eaux en fonction des signatures isotopiques en oxygène 18
Figure A- 25. Evolution des teneurs en sulfate en fonction de la signature isotopique de l'eau (d18O)71
Figure A- 26. Paramètres du modèle Gardenia de la sources des Adouxes
Figure A- 27. Bilan hydrogéologique mensuel de la source des Adouxes (exprimé en mm)76
Figure A- 28. Paramètres du modèle Gardenia de la source des Adoucis
Figure A- 29. Bilan hydrogéologique mensuel de la source des Adoucis (exprimé en mm)78
Figure A- 30 Paramètres du modèle Gardenia de la source « SRE »
Figure A- 31. Bilans hydrogéologiques mensuels des sources « SRE » (exprimé en mm) 80
Figure A- 32. Paramètres du modèle Gardenia de la source du Moulin(Fajolle)
Figure A- 33. Bilans hydrogéologiques mensuels de la source du Moulin (exprimé en mm) 82
Figure A- 36. Paramètres des modèles Gardénia des sources de Fontesorbes et Fontmaure 83
Figure A- 35. Modélisation du débit de la source de Fontmaure par le modèle Gardenia (période 2000-2017)
Figure A- 36. Carte de vulnérabilité, Test 1 : 0,2P + 0,2R + 0,4I + 0,2Ka
Figure A- 37. Carte de vulnérabilité, Test 2 : 0,2P + 0,2R + 0,3I + 0,3Ka
Figure A- 38. Carte de vulnérabilité, Test 3 : 0,25P + 0,25R + 0,25I + 0,25Ka
Figure A- 39. Carte de vulnérabilité, Test 4 : 0,2P + 0,1R + 0,4I + 0,3Ka
Figure A- 40. Carte de vulnérabilité, Test 5 : 0,2P + 0,2R + 0,5I + 0,1Ka
Figure A- 41. Carte de vulnérabilité, Test 6 : 0,3P + 0,1R + 0,5I + 0,1Ka

Liste des tableaux

ableau A-1. Données des courbes de tarage A et B de la source de Fontmaure	47
ableau A- 2. Jaugeages de la source du Moulin/La Fajolle (Réalisation Hydrogéosphère)	47
ableau A- 3. Jaugeages de la source SRE (Réalisation Hydrogéosphère)	48
ableau A- 4. Jaugeages de la source des Adoucis (Réalisation Hydrogéosphère)	48
ableau A- 5. Jaugeages de la source des Adouxes (Réalisation Hydrogéosphère)	48
ableau A- 6. Paramètres physico-chimiques des points d'eau suivis	52
ableau A- 7. Résultats des analyses majeurs et traces des points d'eau suivis	55

Annexe 1

Prospection sismique : traitement des données

Sismique réflexion

Le but du traitement sismique réflexion est de convertir les données brutes enregistrées sur le terrain en sections sismiques montrant l'agencement des réflecteurs le long des profils. Ces réflecteurs donnent une image des différences de lithologie des couches du sous-sol. Le traitement des données est fait au moyen de séquences de programmes élaborés visant à faire ressortir les informations utiles – élimination des bruits parasites – et améliorer le pouvoir de résolution.

La séquence de traitement varie d'une étude à l'autre, selon la profondeur de l'objectif, la nature des terrains et les paramètres d'enregistrement. Les séquences des traitements appliqués sur les données sont optimisées en fonction de la source utilisée, du dispositif d'acquisition, du contexte géologique et des objectifs recherchés.

Pour les différents traitements, nous avons utilisé le logiciel libre Seismic-Unix (SU) et des codes développés au BRGM.

La séquence de traitement ci-après résume les étapes de traitement appliquées. De nombreux essais sont nécessaires pour chaque phase de traitement.

Pré-traitement

- Edition et mise en forme des données
- Contrôle de la géométrie
- Suppression des traces bruitées
- Correction statique du t₀ de déclenchement
- Amélioration signal / bruit (Figure A- 1)
 - AGC avec fenêtre glissante
 - Analyse fréquentielle
 - Filtrage en fréquence
 - Mute
 - Normalisation des amplitudes

Assemblage

- Mise en collection points milieux communs (CMP)
- Analyse de vitesse (par sommation à vitesses constante CVS)
- Corrections dynamiques (NMO)
- Corrections statiques résiduelles
- Sommation (Stack)

Traitement post-stack

- Déconvolution FX (diminution du bruit aléatoire)
- AGC
- Migration temps dans le domaine F-K
- Filtrage
- Conversion temps-profondeur

Figure A- 1. Etapes de traitement sismique réalisées sur un exemple de tir du profil P1 – à gauche : tir sismique brut ; à droite : tir sismique après AGC, filtrage fréquentiel, application d'un mute et normalisation des traces

Sismique réfraction

La méthode de la sismique réfraction permet d'obtenir la répartition dans le sol de la grandeur physique vitesse sismique des ondes P (Vp). On détermine, à partir de la mesure des temps de propagation des ondes P, la vitesse de propagation des ondes au sein des différentes couches du sous-sol, ainsi que leurs épaisseurs. La profondeur d'investigation dépend de la géométrie du dispositif de mesure et des vitesses sismiques en présence.

Les temps de propagation mesurés aux différents géophones sont reportés sur un graphique temps/géophone également appelé hodochrone à partir duquel on détermine un modèle de vitesse Vp 2D en fonction de la profondeur soit par une méthode conventionnelle de type Plus-Minus, soit par inversion tomographique des temps de propagation des ondes P directes et réfractées à l'aide d'un algorithme itératif. Pour tous les profils traités en tomographie sismique réfraction, 40 itérations ont été réalisées. Pour juger de la fiabilité du modèle de Vp inversé, on effectue à chaque itération du processus d'inversion une comparaison entre les hodochrones mesurées et les hodochrones synthétiques obtenues à partir du modèle de Vp inversé. L'erreur finale obtenue au sens des moindres carrés (RMS) pour tous les profils est comprise entre 1.7 et 3.8%. Ce modèle de Vp est ensuite utilisé pour l'interprétation.

Quelles que soient les performances des algorithmes de convergence, en l'absence d'étalonnage (Vp étalonnée, profondeur des interfaces) les résultats fournis par l'inversion ne sont pas définis de manière univoque (il y a plusieurs solutions satisfaisant au même jeu de données). Cette indétermination ne peut être évaluée qu'en testant différentes solutions ou en contraignant l'inversion au moyen de paramètres (Vp, épaisseurs, profondeurs) obtenus par d'autres moyens (autre méthode géophysique, diagraphies, forages, observations des affleurements).

Pour le traitement, nous avons utilisé le logiciel Rayfract (RAYFRACT® Seismic Refraction & Borehole Tomography - Subsurface Seismic Velocity Models for Geotechnical Engineering and Exploration, Intelligent Ressources Inc. Software). Le tableau 1 résume la séquence de traitement sismique réfraction.

Séquences de traitement	Descriptif de l'opération
Edition des traces	L'édition consiste à analyser chaque tir sismique de façon à juger de sa qualité et écarter les enregistrements trop bruités. Le bilan permet de savoir si l'opération de l'acquisition a rempli sa mission et si des cibles sont déjà visibles.
Corrections statiques de sources	Cette étape permet de corriger le temps t0 de début de chaque tir de manière à obtenir un t0 constant sur l'ensemble des données sismiques ; Elle est réalisée par l'analyse des temps d'arrivée sur les traces à offset 0 de tout le jeu de données. Ceci permet de s'affranchir des différences de temps de déclenchement de l'enregistrement.
Pointer des temps de premières arrivées de l'onde P	Cette opération permet de déterminer les temps de propagation de l'onde P entre chaque point de tir et les géophones de la ligne sismique. Le pointé de tous les enregistrements de la campagne ont été réalisés automatiquement avec une reprise manuelle lorsque cela s'avérait nécessaire
Tracé des hodochrones	Cette étape est la base de l'interprétation graphique en sismique réfraction. on construit un diagramme temps- distance à partir des temps d'arrivées pointés. Les temps sont en ordonnée et les distances en abscisse
Détermination de l'erreur sur le pointé	Cette opération permet d'appréhender l'erreur faite sur le pointé des temps de premières arrivées de l'onde P par l'analyse de la cohérence des temps entre deux points où la source et le géophone sont placé de manière réciproque (ces temps doivent être égaux). L'erreur sur le pointé est obtenu en calculant l'écart type des erreurs individuelles de temps de trajets entre chaque couple source-récepteur. De manière générale sur toutes les données de la campagne, l'erreur sur le pointé est de l'ordre de 2 ms
Obtention d'un modèle de Vp par tomographie	Le modèle de vitesse est ici obtenu par l'inversion des temps de premières arrivées de l'onde P. Le processus itératif démarre d'un modèle de Vp initial puis met à jour ce modèle à chaque itération de manière à minimiser les différences entre les temps de trajets pointés et les temps de trajets synthétiques obtenus à partir du modèle de Vp à l'itération n. De manière générale sur tous les profils de la campagne, l'erreur moyenne entre les temps de trajets observés et calculés est comprise entre 1.7 et 3.8%.

Figure A- 2. Séquence de traitement sismique réfraction.

Paramètre d'acquisition

Type de dispositif: Roll-along Nombre de géophones: 120 Distance inter-trace: 5 m Type de géophones: 10 Hz Ecart points source: 10 m Source d'énergie: chute de poids Responsable d'acquisition: A. Bitri Ecart point milieux commun (cdp): 2.5 m Ordre de couverture: 30 Instrumentation: Geometrics Pas d'échantillonage: 0.5 ms Temps d'écoute: 1500 ms Date: 07/07/2016

Géosciences pour une Terre durable

brgm

Séquence de traitement numérique

Contrôle de la géométrie Analyse de la qualité des données Correction statigue du t0 et topographique Mute premières arrivées AGC avec fenêtre glissante 200 ms Filtre FK (Karunen & Love) Déconvolution spike maxlag=0.02 s Filtre passe-bande (16-20-100-120 Hz) Mise en collection CDP Analyse de vitesse (stacks à vitesse constance, CVS) Correction Normal Move Out (NMO) Correction statiques résiduelles surface consistente Sommation points milieux communs (Stack) Filtre fréquentiel (16-20-100-120 Hz) Déconvolution spatiale FX Convertion en profondeur

P3, stack converti en profondeur
Paramètre d'acquisition

Type de dispositif: Roll-along Nombre de géophones: 120 Distance inter-trace: 5 m Type de géophones: 10 Hz Ecart points source: 10 m Source d'énergie: chute de poids Responsable d'acquisition: A. Bitri Ecart point milieux commun (cdp): 2.5 m Ordre de couverture: 30 Instrumentation: Geometrics Pas d'échantillonage: 0.5 ms Temps d'écoute: 1500 ms Date: 07/07/2016

Séquence de traitement numérique

Contrôle de la géométrie Analyse de la qualité des données Correction statique du t0 et topographique Mute premières arrivées AGC avec fenêtre glissante 200 ms Filtre FK (Karunen & Love) Déconvolution spike maxlag=0.02 s Filtre passe-bande (16-20-100-120 Hz) Mise en collection CDP Analyse de vitesse (stacks à vitesse constance, CVS) Correction Normal Move Out (NMO) Correction statiques résiduelles surface consistente Sommation points milieux communs (Stack) Filtre fréquentiel (16-20-100-120 Hz) Déconvolution spatiale FX Migration Convertion en profondeur

P3, migration et conversion en profondeur

Géosciences pour une Terre durable

brgm

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

Coupes techniques des forages Espezel et Blau

Figure A- 3. Coupe technique du forage Espezel

Figure A- 4. Coupe technique du forage Blau

Informations hydroclimatiques

Figure A- 6. <u>Système karstique de Fontmaure</u> : Précipitation, ETP et température moyenne calculées à l'aide de la fonction de pondération des mailles Safran (cf texte) exprimés en fonction des chroniques Météo-France de Belcaire (période du 01/01/2013-31/07/2014)

Estimation des lames d'eau annuelles de Précipitation (pluie+Neige), d'ETP										
et la ter	npérature mov	yenne de l'ai	r sur l'impluviu	ım (S=85 km)	2)					
année	Précipitation	ETP	Température	année	Précipitation	ETP	Température			
	mm	mm	°C		mm	mm	°C			
1959	1449	766	8.8	1989	862	840	9.8			
1960	1219	754	8.2	1990	1185	778	9.3			
1961	948	847	9.4	1991	1192	743	8.5			
1962	1170	841	8.2	1992	1509	878	9.0			
1963	1227	719	7.3	1993	1127	912	8.8			
1964	1055	786	8.4	1994	1182	954	10.1			
1965	1424	778	8.0	1995	1298	883	9.5			
1966	1324	750	8.4	1996	1618	867	8.7			
1967	872	765	8.8	1997	952	907	9.8			
1968	1306	716	8.6	1998	1242	949	9.2			
1969	1196	683	8.0	1999	1228	857	8.7			
1970	1004	759	8.6	2000	1235	864	9.1			
1971	1331	709	8.3	2001	1094	882	8.8			
1972	1192	636	7.7	2002	1506	793	8.9			
1973	1064	773	8.3	2003	1251	861	9.5			
1974	1465	713	8.1	2004	1322	820	8.8			
1975	1113	716	8.2	2005	1156	814	8.3			
1976	1114	740	8.2	2006	914	851	9.8			
1977	1137	660	8.2	2007	1049	825	9.0			
1978	1332	711	8.0	2008	1113	767	8.8			
1979	1298	728	8.2	2009	1117	843	9.4			
1980	1274	733	7.8	2010	1119	789	8.1			
1981	1344	716	8.8	2011	1110	838	9.7			
1982	1315	725	9.4	2012	1122	884	9.2			
1983	874	785	9.9	2013	1655	786	8.5			
1984	1278	734	7.9	2014	1297	799	9.3			
1985	1007	732	8.9	2015	1008	894	9.4			
1986	1191	751	9.0	2016	827	889	9.1			
1987	1083	741	9.0	2017	883	889	9.3			
1988	1279	743	8.9							

Figure A-7. Système karstique de Fontestorbes : evolution des lames d'eau annuelle de précipitation (Pluie+Neige) et de la température moyenne sur l'impluvium

Système karstique de Fontestorbes :

Système	karstique	de	Fontmaure	:
---------	-----------	----	-----------	---

Estimation des lames d'eau annuelles de Précipitation (pluie+Neige), d'ETP et la température movenne de l'air sur l'impluvium (S=115 km2)

Année	Précipitation	ETP	Température	 Année	Précipitation	ETP	Température
	mm	mm	°C		mm	mm	°C
1959	1331	765	9.7	1989	702	869	10.7
1960	992	759	9.1	1990	1071	798	10.1
1961	853	852	10.4	1991	1208	780	9.2
1962	1065	849	9.2	1992	1528	840	9.4
1963	1114	726	8.3	1993	1119	864	9.2
1964	992	802	9.4	1994	1014	880	10.5
1965	1345	785	9.0	1995	1116	859	9.9
1966	1205	765	9.4	1996	1573	851	9.2
1967	783	781	9.8	1997	801	914	10.6
1968	1253	731	9.5	1998	1090	896	9.7
1969	1248	695	9.0	1999	1143	815	9.6
1970	1038	774	9.6	2000	1182	835	9.9
1971	1274	726	9.3	2001	1006	858	9.7
1972	1203	652	8.7	2002	1281	794	9.8
1973	918	797	9.3	2003	1145	870	10.4
1974	1366	732	9.1	2004	1189	821	9.6
1975	952	744	9.2	2005	949	849	9.1
1976	1050	764	9.2	2006	777	924	10.5
1977	1022	668	9.2	2007	879	898	9.7
1978	1173	723	9.0	2008	899	845	9.4
1979	1200	755	9.2	2009	895	906	10.0
1980	1153	747	8.7	2010	991	861	8.8
1981	1225	740	9.7	2011	929	876	10.3
1982	1278	751	10.3	2012	921	923	9.7
1983	825	799	10.7	2013	1321	840	9.1
1984	1125	766	8.9	2014	1126	855	10.1
1985	889	762	9.7	2015	1032	947	10.1
1986	1078	767	10.0	2016	846	942	9.8
1987	970	765	9.9	2017	904	942	10.0
1988	1140	774	9.8				

Figure A- 8. Système karstique de Fontmaure : evolution des lames d'eau annuelle de précipitation (Pluie+Neige) et de la température moyenne sur l'impluvium

Figure A- 9. <u>Systèmes karstiques du Dévonien (Haut-Rébenty)</u>: Précipitation, ETP et température moyenne des mailles Safran de la zone étudiée (cf texte) exprimés en fonction des chroniques Météo-France de Belcaire (période du 01/01/2013-31/07/2014)

année	Précipitation	Précipitation	ETP	ETP	Température	Température
Maille Safran	9621	9622	9621	9622	9621	9622
	mm	mm	mm	mm	°C	°C
1959	1586	1438	774	779	7.2	8.2
1960	1367	1025	758	768	6.6	7.6
1961	1042	914	854	867	7.9	8.9
1962	1283	1147	841	854	6.7	7.7
1963	1346	1198	721	730	5.8	6.8
1964	1149	1080	786	812	6.9	8.0
1965	1550	1466	778	786	6.4	7.5
1966	1452	1297	748	771	6.8	7.8
1967	959	838	765	786	7.3	8.4
1968	1418	1374	713	736	7.1	8.1
1969	1272	1402	682	701	6.6	7.5
1970	1068	1163	754	776	7.1	8.1
1971	1443	1395	706	734	6.8	7.9
1972	1276	1338	629	653	6.2	7.2
1973	1181	970	768	801	6.8	7.8
1974	1598	1483	710	733	6.6	7.6
1975	1236	1002	708	750	6.7	7.7
1976	1212	1145	734	764	6.7	7.7
1977	1249	1094	658	669	6.7	7.7
1978	1471	1247	712	725	6.5	7.5
1979	1418	1298	725	764	6.7	7.7
1980	1398	1238	729	746	6.4	7.3
1981	1473	1318	712	745	7.4	8.2
1982	1421	1405	713	738	7.8	8.8
1983	950	898	789	807	8.4	9.3
1984	1411	1197	714	758	6.4	7.4
1985	1110	947	726	768	7.4	8.4
1986	1308	1156	755	774	7.5	8.5
1987	1191	1039	731	755	7.6	8.5
1988	1409	1219	735	757	7.4	8.4

Figure A- 10. Systèmes karstiques Dévonien du Haut-Rébenty : evolution des lames d'eau annuelle de précipitation (Pluie+Neige) et de la température moyenne sur les mailles Safran considérée sur la zone d'étude

année	Précipitation	Précipitation	ETP	ETP	Température	Température
Maille Safran	9621	9622	9621	9622	9621	9622
	mm	mm	mm	mm	°C	°C
1989	966	725	828	839	8.4	9.2
1990	1302	1150	784	816	8.0	8.7
1991	1274	1347	745	790	7.2	8.0
1992	1617	1702	888	864	7.9	8.3
1993	1214	1238	931	878	7.6	8.0
1994	1315	1069	989	905	8.9	9.3
1995	1440	1178	881	828	8.2	8.5
1996	1750	1732	858	838	7.4	7.8
1997	1060	839	891	921	8.2	9.2
1998	1373	1158	949	881	7.7	8.3
1999	1341	1240	853	804	6.8	8.2
2000	1340	1295	862	827	7.3	8.6
2001	1198	1087	865	839	6.9	8.2
2002	1675	1346	764	775	7.1	8.3
2003	1370	1234	827	850	7.8	8.9
2004	1455	1275	787	811	7.1	8.1
2005	1295	983	779	856	6.6	7.6
2006	1016	816	799	933	8.3	9.1
2007	1169	916	766	900	7.5	8.1
2008	1250	923	718	849	7.4	7.9
2009	1256	919	807	912	8.1	8.6
2010	1233	1057	756	863	6.8	7.1
2011	1237	969	823	881	8.4	8.6
2012	1255	955	873	929	7.9	8.2
2013	1863	1354	768	859	7.0	7.9
2014	1354	1083	787	860	7.9	8.8
2015	847	848	882	955	8.0	8.9
2016	694	695	877	950	7.6	8.5
2017	741	742	877	950	7.9	8.8

Figure A- 11. Systèmes karstiques Dévonien du Haut-Rébenty (suite) : évolution des lames d'eau annuelle de précipitation (Pluie+Neige) et de la température moyenne sur les mailles Safran considérée sur la zone d'étude

année	Début	Fin	Q0	Qf	К	i(q1)	i (q2)	alpha	QR0	q1	t1	q2	t2	Vi_rapide	Vi_lente	Vdyn
Fontesto	orbes		m3/s	m3/s					m3/s	m3/s	(j)	m3/s	(j)	Mm3	Mm3	Mm3
2017	25/03/17	11/09/17	6.28	3 0.72	0.306	0.31	0.939	0.0063	1.64	2.79	3	1.85	34	0.47	2.75	22.57
2016	24/04/16	10/11/16	4.17	7 0.73	0.455	0.58	0.958	0.0032	1.26	1.66	9	1.26	76	0.52	3.50	33.60
2015	27/02/15	20/11/15	12.55	5 0.68	0.513	0.40	0.976	0.0036	1.59	8.28	11	2.69	90	2.09	10.27	37.84
2014	29/07/14	29/11/14	3.74	4 0.71	0.360	0.32	0.949	0.0035	1.08	1.59	9	1.08	40	0.33	1.90	26.56
2013	01/06/13	29/10/13	8.74	4 0.74	0.381	0.29	0.946	0.0045	1.48	3.65	5	3.62	64	0.63	8.29	28.11
2012	23/05/12	21/09/12	7.45	5 0.70	0.309	0.33	0.809	0.0046	1.21	3.03	3	3.20	48	0.52	3.37	22.81
2011	18/03/11	31/05/11	5.44	4 0.85	0.219	0.31	0.932	0.0082	1.53	2.38	4	1.53	38	0.42	2.37	16.15
2010	12/05/10	10/10/10	7.01	1 0.70	0.374	0.53	0.881	0.0039	1.25	2.50	8	3.25	55	0.70	4.74	27.65
2009	02/05/09	05/11/09	8.45	5 0.68	0.372	0.33	0.938	0.0042	1.33	3.41	3	3.71	51	0.60	7.08	27.43
2008	13/06/08	26/10/08	8.61	1 0.71	0.344	0.42	0.845	0.0043	1.26	3.67	4	3.68	40	0.75	3.99	25.38
2007	04/05/07	06/10/07	7.21	1 0.78	0.379	0.70	0.954	0.0039	1.27	3.73	13	2.21	45	1.65	4.32	28.00
2006	13/03/06	09/09/06	7.57	7 0.77	0.585	0.11	0.955	0.0026	1.29	3.84	4	2.44	47	0.47	4.96	43.16
2005	18/05/05	05/09/05	5.44	4 0.73	0.289	0.11	0.953	0.0057	1.41	2.07	11	1.97	44	0.27	3.81	21.32
2004	13/05/04	23/10/04	6.00	0.78	0.476	0.12	0.906	0.0030	1.22	1.51	20	3.27	52	0.22	5.25	35.16
2003	27/05/03	06/09/03	8.32	2 0.79	0.345	0.25	0.860	0.0040	1.18	4.99	20	2.15	33	1.07	2.25	25.47
2001	06/05/01	13/11/01	6.28	3 0.71	0.422	0.15	0.884	0.0034	1.21	2.50	20	2.56	47	0.40	3.50	31.19
2001	06/05/01	02/11/01	6.28	3 0.67	0.363	0.19	0.934	0.0044	1.38	2.91	11	1.99	31	0.48	2.76	26.81
2000	12/06/00	10/10/00	12.86	5 0.82	0.437	0.41	0.941	0.0032	1.20	10.87	20	0.78	35	3.33	1.21	32.26
1999	20/05/99	02/11/99	6.66	6 0.77	0.474	0.48	0.905	0.0027	1.09	3.32	18	2.25	50	1.12	3.50	35.03
1998	05/05/98	01/08/98	5.31	1 0.79	0.232	0.43	0.915	0.0068	1.35	2.61	17	1.35	24	0.79	1.45	17.13
1996	12/05/96	10/09/96	6.45	5 0.80	0.295	0.46	0.942	0.0060	1.52	3.41	18	1.52	35	1.13	2.37	21.77
1995	12/06/95	11/09/95	3.76	5 0.76	0.829	0.45	0.959	0.0013	0.91	1.94	15	0.91	51	0.58	2.03	61.20
1994	13/04/94	26/09/94	5.49	0.83	0.409	0.43	0.965	0.0037	1.29	1.95	10	2.25	60	0.50	5.80	30.23
1993	28/04/93	22/09/93	6.53	3 0.77	0.379	0.43	0.954	0.0040	1.29	2.99	10	2.25	45	0.77	4.40	27.96
1992	11/06/92	03/10/92	10.07	7 0.82	0.349	0.43	0.958	0.0040	1.19	6.63	10	2.25	50	1.72	4.87	25.80
1991	10/05/91	29/09/91	11.67	7 0.93	0.379	0.40	0.965	0.0040	1.29	6.13	8	4.25	60	1.43	10.97	27.96
1990	25/05/90	14/10/90	4.09	0.82	0.519	0.68	0.961	0.0023	1.02	2.05	14	1.02	55	0.92	2.40	38.33
1989	14/05/89	06/01/90	4.23	3 0.65	0.613	0.50	0.950	0.0018	0.95	1.72	14	1.56	42	0.55	2.84	45.26
1988	14/05/88	10/11/88	9.44	4 0.79	0.510	0.20	0.974	0.0028	1.20	5.46	17	2.78	82	0.98	9.70	37.64
1987	20/05/87	10/11/87	3.96	5 0.76	0.570	0.68	0.961	0.0023	1.12	1.82	14	1.02	55	0.82	2.40	42.09
1986	06/06/86	24/09/86	3.36	5 0.79	0.519	0.63	0.918	0.0023	1.02	1.52	10	0.82	25	0.54	0.91	38.33
1985	08/05/85	26/10/85	9.73	3 0.76	0.519	0.59	0.965	0.0023	1.02	5.71	8	3.00	60	1.76	7.75	38.33
1984	23/05/84	01/09/84	4.20	0.85	0.265	0.02	0.959	0.0056	1.27	0.96	3	1.96	51	0.09	4.38	19.55
1983	27/03/83	13/10/83	4.91	1 0.75	0.570	0.59	0.967	0.0023	1.12	1.79	8	2.00	65	0.55	5.58	42.09
1982	22/03/82	08/10/82	11.50	0 1.09	0.621	0.47	0.976	0.0023	1.22	6.78	5	3.50	90	1.52	13.37	45.85
1981	24/04/81	11/10/81	7.70	0.78	0.426	0.47	0.973	0.0039	1.42	3.08	5	3.20	80	0.69	10.91	31.46
1980	27/05/80	04/10/80	5.17	7 0.75	0.418	0.75	0.869	0.0029	1.02	0.02	20	4.12	55	0.01	5.71	30.87
1979	30/04/79	23/10/79	7.05	5 0.74	0.482	0.56	0.969	0.0027	1.13	2.92	6	3.00	75	0.77	9.33	35.57
1978	01/07/78	01/12/78	6.47	7 0.75	0.353	0.50	0.947	0.0037	1.13	2.84	5	2.50	45	0.66	4.68	26.08
1977	19/05/77	13/11/77	13.38	3 0.77	0.489	0.60	0.935	0.0029	1.23	7.65	5	4.50	50	1.98	8.27	36.13
1976	19/05/76	11/10/76	5.94	4 0.76	0.418	0.36	0.925	0.0029	1.05	2.89	15	2.00	40	0.74	3.05	30.84
1975	16/06/75	08/11/75	4.73	3 0.78	0.347	0.36	0.918	0.0035	1.05	1.78	15	1.90	35	0.45	2.59	25.61
1974	15/04/74	13/08/74	7.28	3 0.79	0.413	0.36	0.971	0.0035	1.25	2.73	15	3.30	75	0.70	10.49	30.49
1973	11/05/73	29/11/73	5.35	5 0.68	0.446	0.36	0.957	0.0035	1.35	1.00	15	3.00	50	0.25	6.47	32.93
1972	11/06/72	30/12/72	6.90	0.80	0.391	0.36	0.961	0.0037	1.25	3.05	15	2.60	55	0.78	6.14	28.86
1971	26/06/71	06/11/71	4.90	0.77	0.336	0.25	0.844	0.0039	1.11	2.13	15	1.66	35	0.43	1.68	24.83
1970	18/05/70	15/11/70	6.00	0.80	0.419	0.51	0.969	0.0032	1.13	1.74	7	3.13	70	0.45	9.38	30.92
1969	29/04/69	02/12/69	8.40	0.74	0.456	0.51	0.958	0.0032	1.23	4.04	7	3.13	50	1.05	6.78	33.66
1968	20/06/68	28/10/68	6.60	0.79	0.358	0.51	0.931	0.0040	1.21	2.76	7	2.63	30	0.71	3.49	26.41
1967	10/06/67	27/12/67	4.25	5 2.41	0.380	0.51	0.682	0.0030	0.96	0.66	7	2.63	45	0.17	1.88	28.04
1966	14/05/66	24/09/66	9.15	5 0.79	0.332	0.33	0.880	0.0053	1.49	1.69	3	5.96	55	0.29	8.67	24.54

année	Début	Fin	Q0	Qf	К	i(q1)	i (q2)	alpha	QR0	q1	t1	q2	t2	Vi_rapide	Vi_lente	Vdyn
Fontmaure			m3/s	m3/s					m3/s	m3/s	(j)	m3/s	(j)	Mm3	Mm3	Mm3
2017	26/03/17	07/07/17	9.94	0.87	0.359	0.17	0.876	0.0059	1.62	5.26	3	3.06	48	0.73	4.08	23.87
2016	10/04/16	06/11/16	4.96	0.61	0.427	0.28	0.965	0.0044	1.45	2.07	5	1.45	72	0.36	4.19	28.41
2015	27/02/15	19/11/15	12.81	0.59	0.559	0.53	0.979	0.0049	2.11	8.60	8	2.11	107	2.46	9.51	37.16
2013	31/05/13	26/09/13	11.65	0.95	0.399	0.62	0.966	0.0060	1.83	7.98	18	1.83	62	3.53	4.92	26.52
2011	16/03/11	31/05/11	10.27	0.84	0.213	0.54	0.941	0.0112	1.84	6.58	6	1.85	35	1.67	2.83	14.18

Figure A- 12. Paramètres de l'analyse des courbes de récession de Fontestorbes et Fontmaure par l'approche de Mangin modifiée

Fiches descriptives des points d'eau échantillonnés

Figure A- 13. Carte de localisation des points d'eau échantillonnées lors de la campagne spatiale basses eaux d'octobre 2014 (points Rouge)

Nom	Туре	Nature	indice BSS	X_L93	Y_L93	Z_(m)
Fleuve Aude (Amont sce Argens)	Eau de surface		10888X0253	625162	6183103	800
Rivière Hers (Pertes Aval Step Comus)	Eau de surface		10881X0047	608215	6191095	1130
Rivière Rebenty (aval Niort)	Eau de surface		10883X0224	618715	6190019	810
Rivière Rebenty (début défilé, amont de Joucou)	Eau de surface		10883X0225	623415	6193471	670
Ruisseau des Taillades (amont des Pertes du Rebounédou)	Eau de surface		10747X0247	622298	6195021	860
Rivière Hers (aval de la source des Esquielles)	Eau de surface		10765X0206	607984	6195177	610
Riviere Hers (Pertes en Amont de Prades)	Eau de surface	Pertes	10881X0048	607844	6187480	1120
Ruisseau de l'Ourza (zone de Pertes de l'Ourza)	Eau de surface	Pertes	10881X0049	606312	6190193	1340
Ruisseau du Basqui (zone de Pertes du Basqui)	Eau de surface	Pertes	10881X0050	605957	6191674	1250
Exutoire TM71 (Aude)	Eau souterrainne	source	10884X0241	626628	6185754	650
Pertes de la Jasse	Eau de surface	Pertes	10747X0248	616629	6197681	870
Ruisseau de Blau (zone de résurgence)	Eau souterrainne	source	10747X0249	622497	6199096	625
Pertes de Camurac	Eau de surface	Pertes	10882X0216	611822	6188926	1250
Pertes des Quérines	Eau de surface	Pertes	10883X0226	618496	6192395	910
Ruisseau du Lasset	Eau de surface		10765X0207	603405	6195336	950
Ruisseau du Lasset (Zone de Pertes)	Eau de surface		10765X0208	604992	6197685	770
Sce Cailla	Eau souterrainne	source	10891X0043	634010	6191700	455

Figure A- 14. Liste des points d'eau échantillonnés pour lesquels un N°BSS a été créé dans le cadre du projet «Plateau de Sault »

Nom	Туре	Nature	désignation BSS	X_L93	Y_L93	Z_(m)
Sce Lani(AEP)	Eau souterrainne	source	10883X0213/LANI	622230	6184750	1110
Sce Coume (AEP)	Eau souterrainne	source	10882X0002/HY	611205	6187928	1290
Sce Col de la Farge (AEP)	Eau souterrainne	source	10883X0210/FAGE	619653	6188687	1120
Sce Font d'Argens	Eau souterrainne	source	10888X0013/HY	625049	6183135	820
Sce Fout del Frach (AEP)	Eau souterrainne	source	10884X208/FRACH	626152	6189242	958
Sce Ancienne Forge (non exploité)	Eau souterrainne	source	10883X0223/S	616512	6188242	921
Sce Argelier (AEP)	Eau souterrainne	source	10883X0208/ARGELI	617599	6188734	900
Sce Belfort (AEP)	Eau souterrainne	source	10883X0212/BELFOR	621885	6192431	738
Sce Quirbajou (ex AEP)	Eau souterrainne	source	10891X0005/AMONT	632960	6192978	850
Sce Gesse AEP	Eau souterrainne	source	10884X0214/GESSE	630525	6186652	550
Sce Récent (AEP)	Eau souterrainne	source	10891X0008/RECENT	636839	6192344	400
Sce Froide (AEP)_Ginoles	Eau souterrainne	source	10775X0014	631934	6197050	310
sce Bourde (AEP)	Eau souterrainne	source	10768X0022	629010	6195804	920
Sce Ladoux (AEP)	Eau souterrainne	source	10884X0211/LADOUX	625520	6191469	780
Sce Labeau (AEP)	Eau souterrainne	source	10767X0235	622642	6199111	560
Sce Courent (AEP)	Eau souterrainne	source	10765X0201/HY	608267	6195401	690
Sce Pelail (AEP)	Eau souterrainne	source	10675X0117/HY	607988	6195543	610
Sce CONTES	Eau souterrainne	source	10765X0116/HY	607876	6198827	588

Figure A- 15. Liste des points d'eau complémentaires échantillonnés

Vues du cône d'éboulis dans laquel s'écoule la source (Hydrogeosphere, 2004)

Figure A- 16. Fiche de la source Ancienne Forge

Vue de l'écoulement en aval le long de la route

Géologie superficielle Nécessite carte Ax-les-Thermes

> Usage Source non captée

> > Suivi

Equipement

Infos supplémentaires Source pérenne en rive gauche.

Données disponibles

	Annexe 11: Source de l'ancienne forge														
	paramètros physiques														
		TC		1	PH			Conductivi	té	Turbiditi	5	O, dissou	15	Com	menteire
Date	Source	Amont	Aval	Sourco	Amont	Aval	Source	Amont	Aval	Source	Source	Amont	Aval		
02/12/2002	7,5	8,48		8,4	8,48		312	288					-		
14/12/2002	6,8	6,1	6,1	8,35	8,41	8,41	316	280	283	· ·		-	· ·		I
14/01/2003	6,1	4,7	4,7	8,34	8,38	8,38	315	258	262	· ·	· ·	· ·			
28/01/2003	7,2	6	6	8,38	8,45	8,45	315	270	274			1 -	-		
06/02/2003	6,1	· ·		8,31		-	· ·	-		· ·	-	· ·			
14/02/2003	6,8	5,5	5,6	8,32	8,37	8,39	315	286	290	· ·		·			
27/02/2003	8,1	7	6,8	8,23	8,37	8,36	318	308	307		8,62	9,23	9,1		
13/03/2003	11,8	8,5	9,3	8,27	8,3	8,40	318	260	261	<0,1	9,8	11,1	10,7		
16/03/2003	10,8	-	· ·	8,3	-	-	319	-		· ·	9,85	1			I
26/03/2003	11.6	8,4	8,3	8,27	8,43	8,38	316	258	249		9,44	10,3	10,48		I
09/04/2003	8,5	-		8,41	· ·	-	322		-	<0,1	9,8	· ·	· ·		
14/05/2003	9	-	· ·	8,38	· · ·		319			<0,1	9,4		1 100		
02/07/2003	8,3	10,9	10,4		6,92	6,91	334	246	252		9,91	11,09	10,2	sonce p	en en parimer
06/08/2003	8,4	10,8	10	7,06	8,71	8,64	334	260	262	0,37	9,4	12,71	9,64		
20/08/2003	8,4	11,1	11,2	8,1	8,71	8,68	333	260	261	1	10,14	10,31	11,41		
16/09/2003	8,6	10,8	11	7,95	8,8	8,64	327	241	254	<0,1	8,14	0,00	0,15		
23/10/2003		-	L		1			1		<0,1	-				
24/11/2003	8,4	7,9	7,8	7,42	7,8	7,97	324	244	240	· ·	0,2	0,54	0,/4		I
12/12/2003	8,5	1 .	1 .	8,34			305		-		9,62	-			1
23/12/2003	8,1	4.1	4,1	7,9	0,40	0,44	323	242	243	-	1	1 -	1 -		
15/01/2004	7.		· ·	8,36			303	· ·			14,44		1 :	Sonda	nH en nanne
27/01/2004	10,4	· ·					1 200							001100	pri tan pasare
						Annexe	12: Source	de l'ancien	ne forge						
							paramètres	chimiques							
															Oilgo
	Paran microbio	iètres logiques	Equilibre Calco- Carbonique				Minéralisation				Fer et Manganàse	Paramètr	es Azote et P	hosphore	Micropoliua nts
dates	Coliformes thermotoléra nts /100ml (MS)	Streptocoque s fécaux /100ML MS	Hydrogéno- carbonates mg/l	Magnésium mg/l	Potassium mg/l	Sodium mg/l	Calcium mg/l	Chlorures mg/l	Silicates (SIO2) mg/l	Sulfatos mg/l	Fer Total µg/l	Ammonium (NH4) mg/l	Nitrites (NO2) mg/l	Nitrates (NO3) mg/l	Strontium µg/l
06/02/2003	15	9	-	7	0,2	1.3	56	1	4,9	5	50	<0,05	~0,02	2,4	51
06/03/2003	-		-				· ·		1			-0.05	-0.02		49
09/04/2003	0	0	210	8	0,3	1,2	64	2	5,1	6	-20	<0,05	<0,02	29	55
14/05/2003	-	· ·	200	8,1	0,3	1,3	60	2	4,6		<20	<0,05	<0.05	2.6	51
10/07/2003	-		200	8,8	<1	<2	59	100	3,1	13	= <u>-</u> 20	<0.05	<0.05	2.9	57
06/08/2003	0	0	200	8,4	<	<2	59			6	20	<0.05	<0.05	2.7	55
16/09/2003	:	1 :	190	7,5	1	4	63		5	<5	<20	<0.05	<0.05	2,6	45
23/10/2003	6		200	7,5		2	33	<5	5.1	<5	<20	<0.05	<0.05	2,9	47
23/12/2003	1	<u> </u>	1 190	L.,3	1 -1										

Figure A-16 (suite). Fiche de la source Ancienne Forge

Figure A- 17. Fiche de la source Argelier

								Cara	ctér	istiq	ues	de la	sou	urce									
Vue de	e la	conf	iluer	nce (115/0	4/20	014)							BR							BR	GM	
に行いた。					PI	T T T	grap	ohies	du d	capt	age	princ	cipal	(Nac	ı dal,	2011						3	
							5 1			•	5			•	Í								
								Ģ	Séol	ogie	sup	erfic	ielle	2									
							Ν	éces	site	cart	e Ax	-les-	The	rme	S								
								- 11		U	Isage	ŝ					C - 1						
				U	nqu	e so	urce	alın	ient	ant l	a co	mmu	une	ue N	iort	ae-	sault						
0	:+4	dec			vic (der	nác	da		د مانہ ت		blas	da	, ui e i	0010	dar		dal	2011		áh:+	· 2	
Qua	nte	ues	eau)	sul	vie (uoni	nees	sue	I AK	Juis	μομ	bies	uep	Juis	-010	uan	12 149	udl,	2013	.j - D	יפטוז	.5 [-
										Equi	perr	ent											
								I	nfos	sup	olén	nent	aires	S									
Seul	e la	conf	luer	nce o	du ru	iisse	au is	ssu d	le la	soui	rce d	es A	rgel	iers,	ave	cle	Rébe	enty	a ét	é ob	serv	ée.	
								5	Sour	ce ei	n riv	e dro	oite.										
								<u> </u>	Doni	nées	dis	oni	bles										
				Ana	alvse	s ch	imio	ues	des	eaux	k dai	ns le	rapi	port	de N	lada	l, 20	11.					
					.,		9				2.01						, _0.						j
1	Bactéric	Chimie	ANAE	CTF	CTHF	ECOLI	GT22	GT37	STRF	TURB	NH4	NO2	NOJ	COT	CL	S04	HCO3	PH	TA	TAC	ТН	URBNFI	j
03/05/00	С	С	0,00	0.00	0,00		4,00	0,00	0,00	0,26	0,10	0,00	1,10	415,00	1,40	68,30		7,40					
10/05/01	C	C	0,00	0,00	0.00		7,00	0,00	0,00	0,13	0,00	0.00	1,00	407,00	19.00	66,00	310.54	7,60	0.00	12.64	25,00		
27/10/09	C	C			6,00	0,00			0,00	0,25	0,00	0,00	0,00	420,00	0,00	63,60	218,38	7,50	0,00	18,00	21,50	0,00	
						٨٣	مرادر		pc -	0.11	la co	uree	do.	c / r~	مانہ	rc	1		·				
						Ar	idiys	es A	ins b	our	id SC	urce	: ues	s Arg	ene	15							J

Figure A- 17 (suite). Fiche de la source Argelier

Figure A- 18. Fiche source de Belfort-sur-Rébenty

Infos supplémentaires

revoli la realisation de plusieurs campagnes de jaugeages.	Prévoir la réalisation	de plusieurs	campagnes de	jaugeages.
--	------------------------	--------------	--------------	------------

	Données disponibles														
	Annexe 14: Belfort sur Rébenty														
	paramétres chimiques														
	Paramètres Equilibre Catoo- microbiologiques Catoo- Carbonique Carbonique Peramètres Azote et Pho							hosphore	Oligo éléments et Micropolium nts						
date	Coliformes thermotoléra nts /100ml (MS)	Streptocoque s fécaux /100ML MS	Hydrogéno- carbonates mg/l	Magnésium mg/l	Potassium mg/l	Sodium mg/l	Calcium mg/l	Chlorures mg/l	Silicates (SIO2) mg/l	Sulfates mg/l	Fer Total µg/l	Ammonium (NH4) mg/l	Nitrites (NO2) mg/l	Nitrates (NO3) mg/l	Strontium µg/l
06/02/2003	13	2		1.8	0,4	1,4	62	2	4,2	3	75	<0,05	<0,02	9,3	100
06/03/2003			170	1.9	0,51	1,7	61	3	4,8	3	90	<0,05	<0,02	13	85
09/04/2003	80	85	130	2,1	0,5	1,5	48	2	5,4	2	40	<0,05	<0,02	18	88
14/05/2003		1 .	110	2,2	0,5	1,5	45	2	5,2	2	<20	<0,05	<0,02	21	100
10/07/2003		-	130	2,3	<1	<2	49	<5	5,5	5	<20	<0,05	<0,05	18	100
06/08/2003	0	0	120	2,1	<1	<2	44	<5	5,7	5	<20	<0,05	<0.05	21	93
16/09/2003		- 1	150	3,1	<1	<2	54	2	3,8	5	<20	<0,05	<0,05	2,4	54
23/10/2003	0	0	110	<2	<1	<2	47	<5	5,7	5	<20	<0,05	<0,05	24	97
24/11/2003	-	· ·	100	<2	<1	<2	42	<5	5,4	5	<20	<0,05	<0,05	25	°'
23/12/2003	24	33	160	2	<1	<2	65	<5	4,9	1 5	<20	1 -0,05	~0,05	10	1

Figure A- 17 (suite). Fiche source de Belfort-sur-Rébenty

Figure A- 19. Fiche de la source Lani

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

Résultats des jaugeages

Date Heure	unité	20/02/15 10:25	08/04/15 10:15	16/12/14 10:40	01/06/15 10:40	30/07/15 09:00	04/09/15 17:30	08/10/15 15:30	20/10/15 11:00	20/11/15 15:30	15/07/16 07:30	06/03/17 15:30
Hauteur d'eau au seuil (échelle)	m	0.43	0.38	0.31	0.21	0.09	0.08	0.07	0.03	0.00	0.11	0.43
Jaugeage au seuil	(I/s)	4320	2509	1569	452	240	143	57	16			
Aude (Amont source)	(I/s)		}							6751	4298	5518
Aude (Aval Source)	(I/s)									7440	5921	9661
Jaugeage global (par différence Amont-Aval sur l'Aude)	(I/s)									689	1220	3740
Débit Fontmaure estimé (si Q fuite =cste=690 I/s)_Tarage A	(I/s)	5009	3198	2258	1141	929	832	746	705	689	1220	3740
Incertitude	(I/s)	482	325	253	157	124	112	102	83	69	122	374
Débit Fontmaure estimé (si Q fuite devient limité en hautes eaux par l'Aude)_Tarage B	(I/s)	4825	3250	2530	1566	1237	1115	1015	832	689	1220	3740
Incertitude	(I/s)	482	325	253	157	124	112	102	83	69	122	374

Le tableau ci-après présentent les résultats des jaugeages effectués à la source de Fontmaure au cours du projet Sault.

Tableau A-1. Données des courbes de tarage A et B de la source de Fontmaure

Les tableaux ci-après présentent les résultats des jaugeages effectués sur les sources du dévonien instrumentées au cours du projet Sault.

Dévonien_Moulin/Fajolle											
Date Heure	Q (I/s) dilution	Q (I/s) courantomètre	Q (I/s) empotage	Hauteur d'eau au seuil (m)	Débit (l/s) validé						
12/12/2014 11:00	59			0.078	59						
19/02/2015 10:45	27			0.058	27						
09/04/2015 14:30	115			0.17	115						
10/06/2015 16:00	70			0.1	70						
10/06/2015		74		0.1	74						
04/09/2015 16:30			4	0.031	4						

Tableau A- 2. Jaugeages de la source du Moulin/La Fajolle (Réalisation Hydrogéosphère).

Dévonien_SRE											
Date Heure	Q (l/s) Dilution	Q (I/s) Courantomètre	Q(l/s) empotage	Hauteur d'eau seuil	Hauteur d'eau seuil						
	Diration	eearanterretre	(seau)	Bas (m)	Haut (m)						
12/12/2014 12:00	13	-	-	0.016	0.014						
19/02/2015 11:45	24	-	-	0.017	0.019						
09/04/2015 13:30	171	-	-	0.026	0.068						
10/06/2015 15:00	87	92	-	0.024	0.056						
04/09/2015 15:45	1.6	-	1.6	0.016	0.014						

Tableau A- 3. Jaugeages de la source SRE (Réalisation Hydrogéosphère)..

Dévonien_Adoucis										
Date Heure	Hauteur d'eau validée (cm)*	Hauteur d'eau validée (cm)* Hauteur seuil (cm) Débit jaugé (l/s) Débit jaugé (l/s) Débit jaugé (l/s) Débit jaugé (l/s) Débit jaugé (l/s) Difference Néthode		Q Amont Rébenty (I/s)	Q Aval Rébenty (l/s)					
12/12/2014 16:00	47.0	17.0	155	15	Dilution chimique (fluorescéine)	376	530			
19/02/2015 15:30	46.2	15.7	125	12	Dilution chimique (fluorescéine), par différence (Amont-Aval)	288	413			
12/03/2015 11:00	60.6	30.9	563	56	Dilution chimique (fluorescéine), par différence (Amont-Aval)					
09/04/2015 10:15	50.7	25.9	332	33	Dilution chimique (fluorescéine), par différence (Amont-Aval)					
10/06/2015 11:15	47.8	21.8	207	21	Dilution chimique (fluorescéine) et courantomètre					
04/09/2015 12:00	38.2	12.3	78	8	Dilution chimique (fluorescéine)	82	160			
* The start of the second of the second of the second										

* Hauteur d'eau au dessus de la sonde de mesure ** Hauteur d'eau au dessus de la lame du seuil

Tableau A- 4. Jaugeages de la source des Adoucis (Réalisation Hydrogéosphère).

Dévonien_Adouxes											
Date Heure	Hauteur d'eau au dessus de la sonde (m), validée	Débit jaugé (l/s) Dillution	incertitude (l/s)	itude s) Débit jaugé (I/s) Courantomètre incertitude (I/s) Méthode		Q Amont Rébenty (I/s)	Q Aval Rébenty (l/s)				
12/12/2014 15:00	1.81	206	21			Dilution chimique (fluorescéine), par différence (Amont-Aval)	170	376			
19/02/2015 14:30	1.9	211	21			Dilution chimique (fluorescéine), par différence (Amont-Aval)	77	288			
12/03/2015 12:00	4.4	857	86			Dilution chimique (fluorescéine), par différence (Amont-Aval)					
09/04/2015 11:15	3.7	528	53	629	63	Dilution chimique (fluorescéine), par différence (Amont-Aval) et courantomètre					
10/06/2015 12:30	1.9	216	22	179	18	Dilution chimique (fluorescéine), par différence (Amont-Aval) et courantomètre					
04/09/2015 13:30	1.2	50	5			Dilution chimique (fluorescéine), par différence (Amont-Aval)	33	83			

Tableau A- 5. Jaugeages de la source des Adouxes (Réalisation Hydrogéosphère).

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

Résultats des analyses géochimiques

Prélèvement et conditionnement des échantillons

Toutes les techniques de prélèvement, d'échantillonnage et de conservation ont été validées au BRGM afin de répondre à trois objectifs, représentativité du milieu, caractérisation des phénomènes et limitation des transformations et font l'objet d'un mode opératoire spécifique qui permet de garantir la non-contamination des échantillons.

Certaines analyses ont été réalisées sur les eaux brutes : 60 mL pour l'analyse des isotopes stables (H et O) de la molécule d'eau (bouteille en polypropylène),

Certaines analyses nécessitent au préalable une filtration des échantillons sur un filtre en acétate de cellulose préalablement rincé (0,45 µm). Ces échantillons sont conditionnés de la façon suivante dans des bouteilles en polypropylène :

- 100 mL pour l'analyse des anions,

- 100 mL acidifié à pH = 2 avec de l'HNO3 suprapur pour l'analyse des cations et éléments traces, pour l'analyse des compositions du strontium et du lithium

- 1000 mL avec 50 mL d'acétate de Cd (précipitation des éventuels sulfures), pour analyse des isotopes (δ^{34} S) et (δ^{18} O) des sulfates.

Les échantillons ainsi conditionnés sont ensuite stockés à 4°C dans le noir jusqu'à l'analyse.

Les analyses physico-chimiques sont faites au moment du prélèvement selon les normes NF EN ISO/CEI 17025 et NF EN ISO 9001-2000. Les paramètres mesurés sont les suivants : pH, température, teneur en oxygène dissous, conductivité et potentiel d'oxydo-réduction (Eh). Le pH-mètre est préalablement calibré à l'aide de solutions standards à pH=4, pH=7 et pH=10. Le conductimètre est étalonné avec une solution standard à 1413 μ S/cm à 25°C.

Méthodes analytiques

Toutes les analyses géochimiques classiques et isotopiques ont été effectuées dans les laboratoires du service Métrologie Monitoring Analyse du BRGM à Orléans. Les anions ont été analysés par chromatographie ionique, les cations et les traces par ICP-MS. Les incertitudes des résultats concernant les majeurs et les traces sont respectivement de 5% et 10%.

Les isotopes stables de l'eau ($\delta^{18}O-\delta^{2}H$) ont été mesurés par spectrométrie de masse en phase gazeuse. La composition isotopique de l'eau ($\delta^{18}O-\delta^{2}H$) est exprimée en différence relative en part pour mille (‰) par rapport au standard international V-SMOW (Vienna Standard Mean Ocean Water). L'incertitude des résultats concernant les isotopes de l'eau est de 0.8‰ pour le deutérium et de 0.1‰ pour l'oxygène.

Les analyses isotopiques du strontium ont été faites par spectrométrie de masse à source solide (TIMS spectrométrie de masse à thermo-ionisation) après séparation sur résine. La justesse et la reproductibilité des mesures des rapports isotopiques ⁸⁷Sr/⁸⁶Sr sont obtenues par l'analyse répétée du standard international NBS 987. Durant la période d'analyse, 42 déterminations du standard Sr NBS987 ont donné une valeur moyenne de 0.710250 ± 0.000008 (2 σ). Les rapports isotopiques des échantillons sont normalisés à la valeur certifiée du standard NBS 987 (0.710240).
								
IndiceBSS	nom Fontostorbos	date 15/10/2014	cond_25°C	pH 7.5	Temp	O2_mg/l	02%	Eh_mV 106
10766X0089/HY	Fontestorbes	12/03/2014	344	7,5	9,7	9,09	9,09	302
10766X0089/HY	Fontestorbes	07/04/2015	544	7,42		10,04	51	502
10766X0089/HY	Fontestorbes	15/04/2015	314	7,65	8,8	10,66		248,5
10766X0089/HY	Fontestorbes	20/05/2015	321	7,48	9,1	10,28	94,2	247,5
10766X0089/HY	Fontestorbes	15/06/2015	317	7,46	9,1	10,38	95,5	251
10766X0089/HY	Fontestorbes	06/07/2015	325	7,34	9,3	10,66	98	235
10766X0089/HY	Fontestorbes	03/08/2015	310	7,54	9,5	10,5	97,4	273
10766X0089/HY	Fontestorbes	15/09/2015	319	7,64	9,5	10,55	98,8	253,5
10766X0089/HY	Fontestorbes	07/10/2015	329	7,75	9,6	10,4	96,2 107.6	207,5
10766X0089/HY	Fontestorbes	07/12/2015	345	7,42	9,4	10,39	94.8	184.5
10766X0089/HY	Fontestorbes	12/01/2016	341	7,53	9,3	10,35	95,6	169
10766X0089/HY	Fontestorbes	08/02/2016	366	7,45	9,3	10,5	96,7	198
10766X0089/HY	Fontestorbes	08/03/2016	363	7,38	9,2	10,6	97,3	197
10766X0089/HY	Fontestorbes	06/04/2016	325	7,64	9	10,93	99,9	275
10766X0089/HY	Fontestorbes	02/05/2016	335	7,67	9,1	10,78	98,1	245
10766X0089/HY	Fontestorbes	07/06/2016	335	7,59	9,2	10,36	94,4	245,5
10775X0004/S	Fontmaure	13/10/2014	845	7,39	11,4	8,6	402.4	184
10775X0004/S	Fontmaure	12/03/2015	386	7,44	9,6	11,35	103,1	292
10775X0004/5	Fontmaure	20/05/2015	725	7,45	10,6	10,88	101,2	22/
10775X0004/3	Fontmaure	16/06/2015	723	7,43	11,1	9.8	92.4	231
10775X0004/S	Fontmaure	06/07/2015	645	7,28	11,6	9,53	90,7	247,5
10775X0004/S	Fontmaure	04/08/2015	765	7,53	11,7	9,43	89,6	247
10775X0004/S	Fontmaure	16/09/2015	795	7,49	11,8	9,5	92,3	259,5
10775X0004/S	Fontmaure	07/10/2015	877	7,58	11,8	9,59	91,4	258
10775X0004/S	Fontmaure	03/11/2015	874	7,81	11,9	9,57	91,9	235,5
10775X0004/S	Fontmaure	08/12/2015	397	7,25	10,9	10,95	101,1	228
10775X0004/S	Fontmaure	12/01/2016	779	7,48	11,5	10,43	99	258
10775X0004/S	Fontmaure	08/02/2016	623 E10	7,45	10,8	10,83	101	2/0
1077520004/5	Fontmaure	06/03/2016	704	7,3	10,0	10.52	105,8	212
10775X0004/S	Fontmaure	02/05/2016	718	7,48	10,7	10,52	98.4	296
10775X0004/S	Fontmaure	07/06/2016	744	7,47	11,3	9,95	94,1	243
10747X0248	Blau	15/10/2014	498	7,89	12	9,22		188
10747X0249	Blau	13/03/2015	551	8,14	9,4	10,51	97,8	241
10747X0249	Blau	14/04/2015	418	8,15	11,6	10,73	104,9	234
10747X0249	Blau	19/05/2015	485	7,44	10,1	6,09	57,8	281
10747X0249	Blau	16/06/2015	542	7,55	11,1	4,12	39,8	247,5
10747X0249	Blau	06/07/2015	555	7,26	13,7	5,8	59,6	238
10747X0249	Blau	16/09/2015	624	7,42	15,7	5,63	59.3	236,5
10747X0249	Blau	06/10/2015	607	7.5	12.4	5,03	50,6	210
10747X0249	Blau	03/11/2015	600	7,74	10,4	2,13	20,2	-138
10747X0249	Blau	08/12/2015	477	7,45	8,2	8,43	75,5	243
10747X0249	Blau	12/01/2016	461	7,66	8,4	9,08	82,5	192
10747X0249	Blau	08/02/2016	419	8,29	8,1	11,23	101	176,5
10747X0249	Blau	08/03/2016	425	8,4	8,6	11,12	101,2	191
10747X0249	Blau	06/04/2016	459	7,66	9,5	8,32	77,7	243
10747X0249	Blau	02/05/2016	4/4	/,/ ד 2 ד	9,3	8,28	/6,3	228
10882X0216	Pertes Camurac	13/03/2016	554 200	7,57 Q 11	11	5,14 10 9	49,3 100 0	215
10882X0216	Pertes Camurac	14/04/2015	315	8,18	11	9,44	98.2	240
10882X0216	Pertes Camurac	18/05/2015	388	8.1	17.4	98.9	8.16	250
10882X0216	Pertes_Camurac	15/06/2015	327	8,38	16,6	96,5	8,13	164,5
10882X0216	Pertes_Camurac	07/07/2015	333	8,01	22,5	95,9	7,19	172,5
10882X0216	Pertes_Camurac	03/08/2015	297	8,36	20,7	9,49	96,4	237
10882X0216	Pertes_Camurac	15/09/2015	323	8,15	16,8	7,24	87,3	221
10882X0216	Pertes_Camurac	05/10/2015	332	8,41	13	8,78	96,5	240,5
1088270216	Pertes_Camurac	02/11/2015	200	0.00	2.0	44.24	00.4	100
1088270210	Perices_Camurac	07/12/2015	280	8,09	3,9	11,34	98,4	162
10881X0048	Pertes Hers (Amont Prades)	13/10/2014	298 797	ຽ,34 ຊາງ	/,/	9,44 11 0	100 6	1/8
10881X0048	Pertes Hers (Amont Prades)	18/05/2015	267	8,35	4,0 16 7	8.83	100,0	203 5
10881X0048	Pertes Hers (Amont Prades)	15/06/2015	283	8,54	11,8	9,47	103,5	173
10881X0048	Pertes Hers (Amont Prades)	07/07/2015	286	8,21	16	8,78	102,7	182
10881X0048	Pertes Hers (Amont Prades)	03/08/2015	243	8,5	17,8	8,36	101,4	216
10881X0048	Pertes Hers (Amont Prades)	15/09/2015	282	8,73	11,8	8,84	106,5	211,5
10881X0048	Pertes Hers (Amont Prades)	05/10/2015	268	8,72	14,8	9,18	105,5	213,5
10881X0048	Pertes Hers (Amont Prades)	02/11/2015	337	8,63	8,9	8,55	85,9	208
10881X0048	Pertes Hers (Amont Prades)	0//12/2015	317	8,27	6	10,85	99,2	210

Tableau A- 6. Paramètres physico-chimiques des points d'eau suivis

						"		-
IndiceBSS r	nom	date	cond_25°C	рН	Temp	O2_mg/l	02%	Eh_mV
10747X0247	Pertes Rébounidou	15/10/2014	425	7.84	9.1	7.25		209
10747X0247	Pertes Rébounidou	12/03/2015	372	7.99	9.2	10.53	101.2	196
10747X0247	Pertes Rebounidou	14/04/2015	401	8.06	8.7	11.13	104.7	188
10747X0247	Pertes Rebounidou	18/05/2015	405	7.82	10.8	8.88	88.9	12/
10747X0247	Pertes Rébounidou	06/07/2015	410	0.00 7.76	11.0	7.04	79.0	221
10747X0247	Portos Rébounidou	02/02/2015	409	7.70	10.2	7.09	79.5	221
10747X0247	Pertes Rébounidou	15/00/2015	412	7.95	12.5	0.11	04.1 92.2	10/ 5
10747X0247	Pertes Rébounidou	05/10/2015	412		10.7	7.61	75.6	227
10747X0247	Pertes Rébounidou	02/11/2015	435	8 15	9.5	6 19	59.7	130.6
10747X0247	Pertes Rébounidou	07/12/2015	389	7.8	7	9.6	86.4	121.5
10883X0225	Pertes Bouvchettes/Quérines	18/05/2015					83.5	
10883X0226	Pertes Bouychettes/Quérines	15/06/2015	407	7.86	13.8	7.35	79	100 5
10883X0226	Pertes Bouvchettes/Quérines	06/07/2015	336	8.03	22	6.54	83.5	134
10883X0226	Pertes Bouvchettes/Quérines	03/08/2015	290	7.75	15.7	6.94	77.5	218
10883X0226	Pertes Bouychettes/Quérines	15/09/2015	305	7.9	12	6.27	65.4	88.7
10883X0226 F	Pertes Bouychettes/Quérines	05/10/2015	308	8	18.2	6.87	71.5	189.5
10883X0226	Pertes Bouychettes/Quérines	02/11/2015	304	8.23	9.2	6.55	63.1	187
10883X0226	Pertes Bouychettes/Quérines	07/12/2015						
10882X0215/ADOUX /	Adouxes	14/10/2014	275	7.66	7.7	9.67		188
10882X0215/ADOUX	Adouxes	12/03/2015	274	7.7	7.7	8.46		
10882X0215/ADOUX /	Adouxes	15/04/2015	255	7.73	7.3	11.06	102.4	206.5
10882X0215/ADOUX	Adouxes	20/05/2015	264	7.62	7.5	10.76	100.4	258
10882X0215/ADOUX	Adouxes	15/06/2015	268	7.81	7.6	10.66	99.5	213
10882X0215/ADOUX	Adouxes	07/07/2015	273	7.69	7.7	10.75	100.3	209
10882X0215/ADOUX	Adouxes	03/08/2015						
10882X0215/ADOUX	Adouxes	15/09/2015	267	7.82	7.8	10.61	100.3	264
10882X0215/ADOUX	Adouxes	07/10/2015	266	7.83	7.8	10.6	99.3	251
10882X0215/ADOUX	Adouxes	02/11/2015	269	8.18	7.8	10.56	99.1	213
10882X0215/ADOUX	Adouxes	07/12/2015	305	7.66	7.9	10.74	99.9	171.5
10882X0203/MOULIN	Fajole/Moulin	14/10/2014	245	7.72	8.1	9.75		188
10882X0203/MOULIN	Fajole/Moulin	12/03/2015	258	7.95	7.2	7.99		
10882X0203/MOULIN F	Fajole/Moulin	14/04/2015	164	7.97	6.7	9.24		
10882X0203/MOULIN	Fajole/Moulin	19/05/2015	234	7.87	7.2	10.67	101.1	264
10882X0203/MOULIN	Fajole/Moulin	15/06/2015	307	7.99	8.5	10.05	98.5	241
10882X0203/MOULIN	Fajole/Moulin	07/07/2015	243	7.86	7.5	10.67	101.4	217.5
10882X0203/MOULIN	Fajole/Moulin	03/08/2015	195	8.06	8	10.53	100.8	237
10882X0203/MOULIN	Fajole/Moulin	15/09/2015	239	8.02	8.2	10.31	100.8	240
10882X0203/MOULIN	Fajole/Moulin	05/10/2015	241	8.08	8.2	10.32	100.5	242
10882X0203/MOULIN	Fajole/Moulin	02/11/2015	242	8.32	8.2	10.35	100.3	2/2
10882X0203/MOULIN		0//12/2015	243	7.87	8.1	10.48	100.2	192
10882X0214/BASSE	SRE Roqueteuil	14/10/2014	303	7.79	8.06	9.57		1/2
10882X0214/BASSE		12/03/2015	327	7.8/	7.5	7.72		
10882X0214/BASSE		14/04/2015	311	7.71	7.4	8.77	00.2	252.5
10882X0214/BASSE		19/05/2015	300	7.87	7.9	10.19	90.5	303.0
10882X0214/BASSE 3		07/07/2015	240	0.01 7 72	9.2	10.09	101.1	220
10882X0214/BASSE 3		07/07/2013	303	7.72	0.2	10.25	90.0 00 /	213
10882X0214/BASSE	SRE Roquefeuil	15/09/2015	200	7.91	0.3	10.27	97.5	250
10882X0214/BASSE	SRE Roquefeuil	05/10/2015	299	7.00	81	10.02	98.1	230
10882X0214/BASSE	SRE Roquefeuil	02/11/2015	304	8.06	8.5	9.6	93.7	266
10882X0214/BASSE	SRE Roquefeuil	07/12/2015	314	7.55	7.9	10.02	95.4	180.5
10882X0212/ADOUCI	Adoucis	14/10/2014	300	7.86	8.8	10 51		171
10882X0212/ADOUCI	Adoucis	12/03/2015	318	7.50	7.7	8 66		1/1
10882X0212/ADOUCI	Adoucis	14/04/2015	289	7.62	7.7	9.07		
10882X0212/ADOUCI	Adoucis	19/05/2015	279	7.83	8.1	10.57	100	287
10882X0212/ADOUCI	Adoucis	15/06/2015	278	7.7	7.8	10.59	99.2	206.5
10882X0212/ADOUCI /	Adoucis	07/07/2015	<u>2</u> 91	7.58	8.2	10.56	99.8	211
10882X0212/ADOUCI /	Adoucis	03/08/2015	220	7.85	7.7	10.65	99.5	256
10882X0212/ADOUCI /	Adoucis	15/09/2015	287	7.84	8.5	10.32	99.4	258.9
10882X0212/ADOUCI /	Adoucis	05/10/2015	294	7.89	8.5	10.39	99.4	237.5
10882X0212/ADOUCI /	Adoucis	02/11/2015	289	8.13	8.4	10.4	98.9	220
10882X0212/ADOUCI /	Adoucis	07/12/2015	319	7.6	8.2	10.6	98.9	162.5

Tableau A-6 (suite). Paramètres physico-chimiques des points d'eau suivis

IndiceBSS	nom	date	cond 25°C	рH	Temp	O2 mg/l	02%	Eh mV
10775X0077/S	Ginoles	13/10/2014	476	7.21	10.8	8		176
10775X0077/S	Ginoles	12/03/2015	413	7.29	10.1	8.06		
10775X0077/S	Ginoles	14/04/2015	464	7.34	10.3	8.1		
10775X0077/S	Gingles	19/05/2015	457	7.35	10.3	8.27	76.7	302
10775X0077/S	Gingles	16/06/2015	440	7.52	10.4	7.8	72.2	234
10775X0077/S	Ginoles	06/07/2015	444	7.25	10.5	8.33	77.4	264
10775X0077/S	Ginoles	04/08/2015	410	7.44	10.6	7.54	69.9	253
10775X0077/S	Ginoles	16/09/2015	457	7.44	11.1	6.55	62.9	250.5
10775X0077/S	Ginoles	06/10/2015	469	7.47	10.8	6.97	65.5	250
10775X0077/S	Ginoles	03/11/2015	460	7.73	10.9	6.49	60.9	167
10775X0077/S	Ginoles	08/12/2015	436	7.2	10.5	82.8	9.07	234
10891X0043/S	Cailla	12/03/2015	573	8.2	11.8	8.5		-
10891X0043/S	Cailla	14/04/2015	567	7.94	12.1	9.47		
10891X0043/S	Cailla	19/05/2015	534	7.66	11.8	10.1	98.1	264
10891X0043/S	Cailla	16/06/2015	569	8.14	12.3	10.18	99.5	230
10891X0043/S	Cailla	06/07/2015	573	7.82	13.1	9,96	101.7	256.5
10891X0043/S	Cailla	04/08/2015	520	8.14	12.9	10.25	101.6	238
10891X0043/S	Cailla	16/09/2015	557	8.15	13.1	10.04	102.2	225
10891X0043/S	Cailla	06/10/2015	585	8 11	13.2	9.82	99.6	231
10891X0043/S	Cailla	03/11/2015	588	7.86	12.6	8 54	84.9	187
10891X0043/S	Cailla	08/12/2015	516	7.28	12.0	89	9.23	199
10765X0204/S	Esqueille	12/03/2015	285	7.75	7.9	11.18	100.9	273
10765X0204/S	Esqueille	07/04/2015	270		8.3			
10765X0204/S	Esqueille	14/04/2015	267	7 97	7.8	11.23	100.7	235
10765X0204/S	Esqueille	18/05/2015	207	/15/	/10	11120	10017	200
10765X0204/S	Esqueille	15/06/2015						
10765X0204/S	Esqueille	06/07/2015						
10765X0204/S	Esqueille	03/08/2015						
10765X0204/S	Esqueille	15/09/2015						
10765X0204/S	Esqueille	07/10/2015						
10765X0204/S	Esqueille	02/11/2015						
10765X0204/S	Esqueille	07/12/2015	295	7.88	8	11.17	100.1	186.5
10765X0204/S	Esqueille	12/01/2016						
10765X0204/S	Esqueille	08/02/2016	287	7.87	8	10.45	94.6	230
10765X0204/S	Esqueille	08/03/2016	302	7.84		11.02	100.1	253
10765X0204/S	Esqueille	06/04/2016	272	8.09	7.9	11.16	100.6	269
10765X0204/S	Esqueille	02/05/2016	281	8.14	8	11.15	100.4	229.5
10765X0204/S	Esqueille	27/05/2016						
10765X0204/S	Esqueille	07/06/2016						
10765X0116/HY	Contes	21/10/2015						
10765X0116/HY	Contes	12/01/2016	146.5	8.18	7.5	11.06	98.4	232
10765X0116/HY	Contes	08/02/2016	161	8.08	7.1	12.72	111.9	203.5
10765X0116/HY	Contes	07/03/2016						
10765X0116/HY	Contes	0.70072020						
10765X0116/HY	Contes							
10765X0116/HY	Contes							
10765X0208	Pertes Lasset	06/04/2016	46.3	7 32	4.8	11.73	101.5	262
10765X0208	Pertes Lasset	02/05/2016	102.5	7.96	4.8	12.06	101.8	258
10765X0208	Pertes Lasset	07/06/2016	48.9	7.50	0 9.6	10 67	101.6	275
10765X0207	Lasset (amont)	06/04/2016	40.5 27 9	2.04 2.04	5.0	11 05	104.1	159
10765X0207	Lasset (amont)	02/05/2016	65.0	7 76	J.7 // 1	12.93	101 8	164
1076520207	Lasset (amont)	07/06/2016	22 0	7.70	4.1 2 0	10 67	101.0	<u>104</u>
101 00/0201	Lasser (amone)	0770072010	33.9	1.55	0.9	10.02	101.4	713

Tableau A- 6 (suite). Paramètres physico-chimiques des points d'eau suivis

NH4 NO2 NO3 Na Na PO4 PO4
NH4 NO2 NO3 NO3 A
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
<u>а 131 ста 0,5</u> <u>а 185 ста 0,5</u> <u>а 178 ста 0,5</u> <u>а 178 ста 0,5</u>
,24 0,2 0,16 <lq <lq<="" td=""></lq>
<lq 59<="" td=""></lq>
1,89 0,13 1,5 3,13 4,46 0,15 2,5 3,74 <iq< td=""></iq<>

Tableau A-7. Résultats des analyses majeurs et traces des points d'eau suivis

0.5 ug/l		đ	0.53	0.52	۲Q	۲V		0.65		0.51	18.2	Å	۲Ö	Å	μ	₹	Å	0.8	۲Q	<lq< th=""><th>65.8</th><th>۲Q</th><th><lq< th=""><th>0.68</th><th>۲Q</th><th>۲Q</th><th>۲Q</th><th>۲Q</th><th>1.18</th><th>0.88</th><th>0.82</th><th>6.65</th><th>3.9</th><th>۲Q</th><th>2.44</th><th>1.09</th><th>2.79</th><th>1.85</th><th>1.29</th></lq<></th></lq<>	65.8	۲Q	<lq< th=""><th>0.68</th><th>۲Q</th><th>۲Q</th><th>۲Q</th><th>۲Q</th><th>1.18</th><th>0.88</th><th>0.82</th><th>6.65</th><th>3.9</th><th>۲Q</th><th>2.44</th><th>1.09</th><th>2.79</th><th>1.85</th><th>1.29</th></lq<>	0.68	۲Q	۲Q	۲Q	۲Q	1.18	0.88	0.82	6.65	3.9	۲Q	2.44	1.09	2.79	1.85	1.29
0.1 Ig/I	613	71.8	80.2	74.8	84.3	85.1		79.9		69.6	85.3	69.4	75.7	80.6	81.9	77.3	105	98.8	115	91.5	346	249	309	324	309	337	322	308	322	330	304	167	158	150	138	133	132	132	192
0.5 12/1 U	02 S	6.9	7.4	7.3	3	5.2		6.2		6.8	3.4	2.6	3.3	3.2	3.5	3.5	3.3	2.9	3.5	3.2	7.6	4.7	4.8	7.2	8.4	8.7	8.5	7.8	8.3	8.1	6.3	3.8	4.4	4.4	4.8	4.2	4.2	4.4	4.1
0.5 g/l n	04 S 43	4.4	4.6	4.4	3.9	3.1		4.1		4.2	4	2.8	3.1	3.5	2.6	2.2	6.4	6.3	6.5	4.2	7	5.3	5.3	5.7	5.8	5.4	5.8	6.3	6.7	6.3	6.4	10.3	9.3	6.3	7.3	8	8.1	8.1	7.2
0.05 g/l m	a C	g	g	ΓQ	ΓØ	ΓØ		0.06		ГQ	Γ	Ŋ	ΓQ	ğ	Ŋ	ď	ď	Γ	ΓQ	Ŋ	ΓQ	ΓQ	ΓQ	ΓQ	ΓQ	ΓQ	ď	ď	0.31	ď	ď	q	Γ	ΓØ	ď	ď	0.42	g	ď
0.05 g/l u	4 C	₫ ₫	v q	⊽ Ø	⊽ o	⊽ Ø		ď		⊽	v Ø	⊽ q	v Ø	⊽ q	⊽ q	v	⊽ q	₽	v o	0.08 <	⊽ ⊽	⊳ ⊽	⊽ ⊽	v o	⊽ v	⊽ q	⊽	ď	ď	0.07 <	0.06 <1	1.63 <	1.48 <	0.09 <1	0.11 <	0.1 <	0.12	0.18 <	⊽ q
0.1 m	0 22 <i< td=""><td>0.89 <1</td><td>0.6 < l</td><td>0.29 <1</td><td>0.31 <1</td><td>0.35 <1</td><td></td><td>0.36 <1</td><td></td><td>0.39 <1</td><td>0.17 <1</td><td>ı⊳ ⊿</td><td>0.29 <1</td><td>⊽ a</td><td>0.11 <1</td><td>0.11 <l< td=""><td>0.11 < l</td><td>0.11 <1</td><td>0.23 <1</td><td>ď</td><td>0.25 <1</td><td>0.31 <1</td><td>1.54 <l< td=""><td>1.03 <1</td><td>0.29 <1</td><td>0.18 <l< td=""><td>0.18 <1</td><td>0.14 <l< td=""><td>0.16 <l< td=""><td>0.22</td><td>0.41</td><td>0.9</td><td>0.38</td><td>0.16</td><td>0.2</td><td>0.13</td><td>σ</td><td>0.15</td><td>0.19 <1</td></l<></td></l<></td></l<></td></l<></td></l<></td></i<>	0.89 <1	0.6 < l	0.29 <1	0.31 <1	0.35 <1		0.36 <1		0.39 <1	0.17 <1	ı⊳ ⊿	0.29 <1	⊽ a	0.11 <1	0.11 <l< td=""><td>0.11 < l</td><td>0.11 <1</td><td>0.23 <1</td><td>ď</td><td>0.25 <1</td><td>0.31 <1</td><td>1.54 <l< td=""><td>1.03 <1</td><td>0.29 <1</td><td>0.18 <l< td=""><td>0.18 <1</td><td>0.14 <l< td=""><td>0.16 <l< td=""><td>0.22</td><td>0.41</td><td>0.9</td><td>0.38</td><td>0.16</td><td>0.2</td><td>0.13</td><td>σ</td><td>0.15</td><td>0.19 <1</td></l<></td></l<></td></l<></td></l<></td></l<>	0.11 < l	0.11 <1	0.23 <1	ď	0.25 <1	0.31 <1	1.54 <l< td=""><td>1.03 <1</td><td>0.29 <1</td><td>0.18 <l< td=""><td>0.18 <1</td><td>0.14 <l< td=""><td>0.16 <l< td=""><td>0.22</td><td>0.41</td><td>0.9</td><td>0.38</td><td>0.16</td><td>0.2</td><td>0.13</td><td>σ</td><td>0.15</td><td>0.19 <1</td></l<></td></l<></td></l<></td></l<>	1.03 <1	0.29 <1	0.18 <l< td=""><td>0.18 <1</td><td>0.14 <l< td=""><td>0.16 <l< td=""><td>0.22</td><td>0.41</td><td>0.9</td><td>0.38</td><td>0.16</td><td>0.2</td><td>0.13</td><td>σ</td><td>0.15</td><td>0.19 <1</td></l<></td></l<></td></l<>	0.18 <1	0.14 <l< td=""><td>0.16 <l< td=""><td>0.22</td><td>0.41</td><td>0.9</td><td>0.38</td><td>0.16</td><td>0.2</td><td>0.13</td><td>σ</td><td>0.15</td><td>0.19 <1</td></l<></td></l<>	0.16 <l< td=""><td>0.22</td><td>0.41</td><td>0.9</td><td>0.38</td><td>0.16</td><td>0.2</td><td>0.13</td><td>σ</td><td>0.15</td><td>0.19 <1</td></l<>	0.22	0.41	0.9	0.38	0.16	0.2	0.13	σ	0.15	0.19 <1
0.5 z/1 με	10.5 N	10.1	10.8	12	12.4	12.9		12.9		10.8	1.3	2.1 <l< td=""><td>1.2</td><td>1.6 <l< td=""><td>1.1</td><td>1.1</td><td>1.4</td><td>1.6</td><td>2.1</td><td>2 <l< td=""><td>2.3</td><td>2.9</td><td>2.7</td><td>2.5</td><td>2.7</td><td>2.2</td><td>2.4</td><td>2.1</td><td>2.4</td><td>3.1</td><td>3.1</td><td>7.6</td><td>4.4</td><td>1.2</td><td>1.1</td><td>1</td><td>0.9 <l< td=""><td>1</td><td>1.4</td></l<></td></l<></td></l<></td></l<>	1.2	1.6 <l< td=""><td>1.1</td><td>1.1</td><td>1.4</td><td>1.6</td><td>2.1</td><td>2 <l< td=""><td>2.3</td><td>2.9</td><td>2.7</td><td>2.5</td><td>2.7</td><td>2.2</td><td>2.4</td><td>2.1</td><td>2.4</td><td>3.1</td><td>3.1</td><td>7.6</td><td>4.4</td><td>1.2</td><td>1.1</td><td>1</td><td>0.9 <l< td=""><td>1</td><td>1.4</td></l<></td></l<></td></l<>	1.1	1.1	1.4	1.6	2.1	2 <l< td=""><td>2.3</td><td>2.9</td><td>2.7</td><td>2.5</td><td>2.7</td><td>2.2</td><td>2.4</td><td>2.1</td><td>2.4</td><td>3.1</td><td>3.1</td><td>7.6</td><td>4.4</td><td>1.2</td><td>1.1</td><td>1</td><td>0.9 <l< td=""><td>1</td><td>1.4</td></l<></td></l<>	2.3	2.9	2.7	2.5	2.7	2.2	2.4	2.1	2.4	3.1	3.1	7.6	4.4	1.2	1.1	1	0.9 <l< td=""><td>1</td><td>1.4</td></l<>	1	1.4
0.5 e/l m	03 Na	1.9	0.8	0.5	0.5	0.5		0.5		1.6	0.9	1.1	0.8	0.7	1.1	0.7	0.5	0.5	0.5	0.7	5.6	4	5.2	5.3	5.3	5.7	5	5.5	4.4	3.8	4	23.1	15.9	2.3	2.5	2.5	1.8	1.7	3.5
0.01 g/l	02 NG	q	0.01	ď	ď	Q.		ď		ď	0.01	ď	q	ď	ď	ď	ď	Q.	ď	ď	0.01	0.03	0.03	0.04	0.03	0.02	0.02	ď	ď	0.02	0.06	0.09	0.05	0.02	0.02	0.02	ą	ą	q
0.05 m_l	z F C	₫	g	LQ ⊲I	LQ <i< td=""><td>ro ⊲</td><td></td><td>LQ <i< td=""><td></td><td>LQ ⊲I</td><td>0.05</td><td>ro ⊲</td><td>ro ⊲</td><td>Γ Ν</td><td>ro ⊲</td><td>ro ⊲</td><td>⊿ I></td><td>ro ⊲</td><td>0.37 <1</td><td>LΩ ⊲</td><td>ď</td><td>0.12</td><td>ď</td><td>ГQ</td><td>ď</td><td>0.05</td><td>ď</td><td>LΩ ></td><td>LQ ⊲I</td><td>ğ</td><td>ď</td><td>0.1</td><td>0.06</td><td>ď</td><td>g</td><td>ď</td><td>₽</td><td>a⊓</td><td>d</td></i<></td></i<>	ro ⊲		LQ <i< td=""><td></td><td>LQ ⊲I</td><td>0.05</td><td>ro ⊲</td><td>ro ⊲</td><td>Γ Ν</td><td>ro ⊲</td><td>ro ⊲</td><td>⊿ I></td><td>ro ⊲</td><td>0.37 <1</td><td>LΩ ⊲</td><td>ď</td><td>0.12</td><td>ď</td><td>ГQ</td><td>ď</td><td>0.05</td><td>ď</td><td>LΩ ></td><td>LQ ⊲I</td><td>ğ</td><td>ď</td><td>0.1</td><td>0.06</td><td>ď</td><td>g</td><td>ď</td><td>₽</td><td>a⊓</td><td>d</td></i<>		LQ ⊲I	0.05	ro ⊲	ro ⊲	Γ Ν	ro ⊲	ro ⊲	⊿ I>	ro ⊲	0.37 <1	LΩ ⊲	ď	0.12	ď	ГQ	ď	0.05	ď	LΩ >	LQ ⊲I	ğ	ď	0.1	0.06	ď	g	ď	₽	a⊓	d
0.1 g/l m	1 1 1 1 1 1	4.75 <	6.23 <	6.39 <	2.45 <	1.25 <		2.51 <		3.31 <	6.65	1.65 <	7.22 <	6.2 <	5.5 <	3.92 <	1.04 <	0.93 <	2.11	2.94 <	5.47 <	7.39	12.1 <	9.83 <	17.5 <	9.36	9.46 <	4.69 <	3.8 <	3.82 <	6.19 <	6.39	5.74	5.99 <	9.86 <	8.02 <	6.08 <	8.55 <	4.06 <1
0.5 ne/l u		2.1	2.1	2.1	2.2	2.2		2.2		1.7	2.2	1.8	2	2.1	2	2	2.7	2.9	3.7	2.3	2.3	1.7	2.1	2.2	2.1	2.3	2.2	2.2	2.4	2.6	1.6	с	2.9	2.7	3	2.9	e	3.2	2.5
0.1 ug/l n	0.78 0.78	0.29	0.36	0.35	0.33	0.36		0.26		0.22	1.51	1.05	1.4	1.51	1.55	1.48	2.41	2.12	2.2	1.6	3.11	1.52	1.96	2.69	2.6	3.2	2.88	2.77	2.66	2.77	1.73	2.82	2.52	2.27	2.52	2.31	2.31	2.4	1.58
0.5 ng/l u		0.6	0.8	0.6	0.5	1		1		1.3	0.5	0.5	ŋ	ğ	ĽQ	μ	ğ	ΓQ	5.1	ĽQ	0.7	ĽQ	0.6	0.8	0.6	ğ	0.6	0.6	0.9	1.4	ĽQ	2.2	1.4	ĽQ	0.6	0.7	0.6	0.8	ď
10 g/l r	118	148	156	151	160	161		157		128	181	162	157 <	167 <	171 <	166 <	166 <	148 <	198	188 <	254	209 <	239	243	240	243 <	248	255	245	257	223 <	223	210	198 <	190	187	178	177	255 <
0.02 g/l m	Ť	q	q	0.069	0.029	ď		D.052		D.027	0.022	q	g	q	q	q	q	ď	ď	ď	0.036	D.042	0.072	0.061	7.70.C	0.039	D.044	0.029	q	ď	D.037	q	ď	0.06	0.05	0.03	q	q	q
0.1 g/l m	<u></u>	d∆	⊽	a 0	o O	Ω.		ď		ď	0.1 (Ω.	⊳ ∣>	d ⊿	ι> Ν	ہ ⊳	₫	Ω.	o ⊳	∆ I>	0.1 (o O	ď	ø	ď	ď	ď	ď	l⊳ I>	.a	o 0	₽	Ω.	a.	q	ď	₫	d ∆	₫
0.1 m	1 F	0.49 <	0.5 <1	0.52 <1	0.51 <1	0.43 <1		0.25 <1		0.8 <1	0.44	0.1 <1	0.15 <l< td=""><td>0.12 <1</td><td>0.16 <1</td><td>0.18 <1</td><td>0.14 <1</td><td>0.32 <1</td><td>0.36 <1</td><td>0.16 <l< td=""><td>0.4</td><td>0.34 <l< td=""><td>0.24 <1</td><td>0.19 <1</td><td>0.14 <l< td=""><td>0.15 <1</td><td>0.15 <l< td=""><td>₫</td><td>0.11 <1</td><td>0.15 <1</td><td>0.5 <1</td><td>2.17 <1</td><td>1.37 <1</td><td>0.63 <1</td><td>0.44 <1</td><td>0.27 <1</td><td>0.25 <1</td><td>0.35 <1</td><td>0.52 <1</td></l<></td></l<></td></l<></td></l<></td></l<>	0.12 <1	0.16 <1	0.18 <1	0.14 <1	0.32 <1	0.36 <1	0.16 <l< td=""><td>0.4</td><td>0.34 <l< td=""><td>0.24 <1</td><td>0.19 <1</td><td>0.14 <l< td=""><td>0.15 <1</td><td>0.15 <l< td=""><td>₫</td><td>0.11 <1</td><td>0.15 <1</td><td>0.5 <1</td><td>2.17 <1</td><td>1.37 <1</td><td>0.63 <1</td><td>0.44 <1</td><td>0.27 <1</td><td>0.25 <1</td><td>0.35 <1</td><td>0.52 <1</td></l<></td></l<></td></l<></td></l<>	0.4	0.34 <l< td=""><td>0.24 <1</td><td>0.19 <1</td><td>0.14 <l< td=""><td>0.15 <1</td><td>0.15 <l< td=""><td>₫</td><td>0.11 <1</td><td>0.15 <1</td><td>0.5 <1</td><td>2.17 <1</td><td>1.37 <1</td><td>0.63 <1</td><td>0.44 <1</td><td>0.27 <1</td><td>0.25 <1</td><td>0.35 <1</td><td>0.52 <1</td></l<></td></l<></td></l<>	0.24 <1	0.19 <1	0.14 <l< td=""><td>0.15 <1</td><td>0.15 <l< td=""><td>₫</td><td>0.11 <1</td><td>0.15 <1</td><td>0.5 <1</td><td>2.17 <1</td><td>1.37 <1</td><td>0.63 <1</td><td>0.44 <1</td><td>0.27 <1</td><td>0.25 <1</td><td>0.35 <1</td><td>0.52 <1</td></l<></td></l<>	0.15 <1	0.15 <l< td=""><td>₫</td><td>0.11 <1</td><td>0.15 <1</td><td>0.5 <1</td><td>2.17 <1</td><td>1.37 <1</td><td>0.63 <1</td><td>0.44 <1</td><td>0.27 <1</td><td>0.25 <1</td><td>0.35 <1</td><td>0.52 <1</td></l<>	₫	0.11 <1	0.15 <1	0.5 <1	2.17 <1	1.37 <1	0.63 <1	0.44 <1	0.27 <1	0.25 <1	0.35 <1	0.52 <1
0.1 g/l us	: Ŭ	0.37	0.13	ΓØ	ΓØ	ΓØ		ГQ		0.11	0.1	ΓQ	ΓQ	ğ	ΓQ	ΓQ	ğ	ΓØ	ΓØ	ΓQ	0.1	0.1	0.49	0.1	ГQ	ГQ	Ŋ	LQ <l< td=""><td>ГQ</td><td>LQ</td><td>0.13</td><td>0.16</td><td>ΓØ</td><td>ΓØ</td><td>ď</td><td>ГQ</td><td>g</td><td>ď</td><td>ď</td></l<>	ГQ	LQ	0.13	0.16	ΓØ	ΓØ	ď	ГQ	g	ď	ď
0.05 2/1 ц	0.05	0.29	0.25	0.06 <	⊽ ⊽	⊽ ⊽		0.11 <		q	0.05	⊽ q	0.23 <	⊽ q	⊽ ⊽	⊽ ⊽	0.16 <	0.1 <	⊽ ⊽	⊽ ⊽	0.05	0.06	0.44	0.36	0.06 <	o' ⊳	v	0.15 <	0.09 <	o' ⊳	0.06	0.4	0.06 <	⊽ ⊽	⊽	0.14 <	0.08 <	⊽	⊽
0.5 g/1 ш	22.7	21	22.4	23.5	20.8 <1	21 <		21.3		17.1 <1	1.7	4.1 <1	1.9	2.5 <1	1.6 <	1.6 <1	2.3	2.5	3.7 <1	3.7 <1	4.8	5.5	5.2	4.4	4.7	4.2 <1	4.6 <	4.4	4.9	5.8 <1	5.1	8	4.7	2.2 <1	1.8 <1	1.5	1.5	1.5 <1	2.1 <1
0.01 e/l m		g	0.01	ď	ğ	ğ		0.01		ď	0.01	ď	Ŋ	ď	ď	0.01	g	0.02	ğ	ď	0.01	Ŋ	ď	Ŋ	ď	ď	ď	ď	0.07	ď	ď	0.01	ď	ğ	0.01	ď	0.08	ď	0.02
0.5 12/1 u	a 416<	49.2 <	50.1	50.8 <	53.8 <	52.4 <		49.8		42.3 <	58.1	53.6 <	49.3 <	53.9 <	56.9<	57.3	51.8 <	49.4	64.9 <	62 <	79.9	71.5 <	78.9 <	76.6 <	81.2 <	82.9<	83.1 <	78.2 <	82.5	90.2 <	76.6 <	73.8	73.7 <	67.4 <	63.4	55.6 <	57.4	60.7 <	88.2
10 ng/l n	0000	đ	ĥ	۲Q	ζLQ	ξLQ		LQ		LQ	۲Q	μ	۲a	μ	μ	μ	μ	ξLQ	ζLQ	μ	۲Q	٤LQ	۲Q	۲a	LQ	۲Q	۲Q	۲Q	۲Q	LQ	۲Q	μ	۲Q	ζLQ	ų,	LQ	μ	à	ď
0.01 12/1		q	ň	ra <	۲Q	۲Q <		۲Q <		ς Δ	0.01 <	۲Q <	۲Q <	ς μ	s c	s LQ	å	, v	۲Q	۲Q	¢ ∧	۲Q <	°LQ <	۲Q <	۲Q <	μ	ų,	μ	s a	sta <	sta <	μ	ra <	۲Q	ς Δ	ς Δ	ų,	å	a' ∧
0.05 ug/l	Ba E	60.9	8.23 <	3.32 <	8.88 <	10.5 <		9.59 <		7.01 <	4.5	4.23 <	4.17 <	ŝ	4.31 <	4.49 <	7.11 <	6.63 <	10.1 <	5.82 <	9.4 <	6.42 <	6.62 <	7.88 <	8.82 <	8.65 <	8.07 <	8.87 <	8.9 <	8.86 <	7.17 <	7.05 <	7.51 <	5.61 <	5.55 <	5.07 <	4.37 <	4.4 <	6.17 <
5 0.5 ug/l	B 1 33	3 1.13	1.73	l 1.82	3 1.47	2.7		3 2.16		2.27	3 0.87	3 0.6	0.94	l 1.09	0.82	1.3	1.53	1.58	2.95	1.15	5 7.49	8 6.61	6.57	7.95	2 7.93	8.39	8.8	8.28	8.61	9.3	8.27	13.6	8.46	3.26	3.6	3.76	3.2	3.12	4.01
0.05 ug/l	As 2.68	3.98	6.11	l 7.21	10.9	12.3		3 12.8		3 5.37	t 0.13	9 0.23	t 0.16	8 0.11	0.14	l 0.2	t 0.14	0.15	3 0.17	8 0.09	L 0.15	5 0.33	9 0.23	0.21	9 0.2	5 0.18	3 0.19	0.15	L 0.14	0.19	0.18	§ 0.88	3 0.67	t 0.35	L 0.34	3 0.29	t 0.28	9 0.32	t 0.17
1 0.5 Ug/l	AI 22	4.21	7.91	11.1	4.05	2 4.17		2.8		4 5.48	3.6/	1.69	3.54	3.28	3.46	2 5.41	2.1	4.42	5 2.95	5 2.28	2.91	6.05	2.69	2.57	2.69	2.85	2 3.28	0.72	1.31	0.5	4.72	6.36	8.28	8.97	3 7.71	3.58	5.14	5.19	5.0
0.0 Ug/l	a a c	å	Ϋ́	<lq< td=""><td><lq< td=""><td>0.0</td><td></td><td><lq< td=""><td></td><td>0.0</td><td><lq< td=""><td>۲V</td><td>×۲۵</td><td>۲V</td><td>۲V</td><td>0.0</td><td>Ϋ́</td><td>۲V</td><td>0.0</td><td>0.0</td><td><lq< td=""><td><lq< td=""><td>×۲۵</td><td>×۲۵</td><td><lq< td=""><td>۲V</td><td>0.0</td><td>۲V</td><td>≤LQ</td><td>≤LQ</td><td>≤LQ</td><td>۲V</td><td><lq< td=""><td><lq< td=""><td>0.0</td><td>۲V</td><td>۲V</td><td>Ϋ́</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.0</td><td></td><td><lq< td=""><td></td><td>0.0</td><td><lq< td=""><td>۲V</td><td>×۲۵</td><td>۲V</td><td>۲V</td><td>0.0</td><td>Ϋ́</td><td>۲V</td><td>0.0</td><td>0.0</td><td><lq< td=""><td><lq< td=""><td>×۲۵</td><td>×۲۵</td><td><lq< td=""><td>۲V</td><td>0.0</td><td>۲V</td><td>≤LQ</td><td>≤LQ</td><td>≤LQ</td><td>۲V</td><td><lq< td=""><td><lq< td=""><td>0.0</td><td>۲V</td><td>۲V</td><td>Ϋ́</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.0		<lq< td=""><td></td><td>0.0</td><td><lq< td=""><td>۲V</td><td>×۲۵</td><td>۲V</td><td>۲V</td><td>0.0</td><td>Ϋ́</td><td>۲V</td><td>0.0</td><td>0.0</td><td><lq< td=""><td><lq< td=""><td>×۲۵</td><td>×۲۵</td><td><lq< td=""><td>۲V</td><td>0.0</td><td>۲V</td><td>≤LQ</td><td>≤LQ</td><td>≤LQ</td><td>۲V</td><td><lq< td=""><td><lq< td=""><td>0.0</td><td>۲V</td><td>۲V</td><td>Ϋ́</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>		0.0	<lq< td=""><td>۲V</td><td>×۲۵</td><td>۲V</td><td>۲V</td><td>0.0</td><td>Ϋ́</td><td>۲V</td><td>0.0</td><td>0.0</td><td><lq< td=""><td><lq< td=""><td>×۲۵</td><td>×۲۵</td><td><lq< td=""><td>۲V</td><td>0.0</td><td>۲V</td><td>≤LQ</td><td>≤LQ</td><td>≤LQ</td><td>۲V</td><td><lq< td=""><td><lq< td=""><td>0.0</td><td>۲V</td><td>۲V</td><td>Ϋ́</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	۲V	×۲۵	۲V	۲V	0.0	Ϋ́	۲V	0.0	0.0	<lq< td=""><td><lq< td=""><td>×۲۵</td><td>×۲۵</td><td><lq< td=""><td>۲V</td><td>0.0</td><td>۲V</td><td>≤LQ</td><td>≤LQ</td><td>≤LQ</td><td>۲V</td><td><lq< td=""><td><lq< td=""><td>0.0</td><td>۲V</td><td>۲V</td><td>Ϋ́</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>×۲۵</td><td>×۲۵</td><td><lq< td=""><td>۲V</td><td>0.0</td><td>۲V</td><td>≤LQ</td><td>≤LQ</td><td>≤LQ</td><td>۲V</td><td><lq< td=""><td><lq< td=""><td>0.0</td><td>۲V</td><td>۲V</td><td>Ϋ́</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	×۲۵	×۲۵	<lq< td=""><td>۲V</td><td>0.0</td><td>۲V</td><td>≤LQ</td><td>≤LQ</td><td>≤LQ</td><td>۲V</td><td><lq< td=""><td><lq< td=""><td>0.0</td><td>۲V</td><td>۲V</td><td>Ϋ́</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	۲V	0.0	۲V	≤LQ	≤LQ	≤LQ	۲V	<lq< td=""><td><lq< td=""><td>0.0</td><td>۲V</td><td>۲V</td><td>Ϋ́</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.0</td><td>۲V</td><td>۲V</td><td>Ϋ́</td><td><lq< td=""></lq<></td></lq<>	0.0	۲V	۲V	Ϋ́	<lq< td=""></lq<>
	te '03/2015	04/2015	05/2015	/06/2015	07/2015	08/2015	(09/2015	10/2015	11/2015	12/2015	10/2014	/03/2015	05/2015	(06/2015	07/2015	/08/2015	09/2015	10/2015	11/2015	12/2015	10/2014	03/2015	/04/2015	05/2015	/06/2015	/07/2015	/08/2015	/09/2015	10/2015	/11/2015	'12/2015	05/2015	06/2015	07/2015	/08/2015	/09/2015	10/2015	/11/2015	/12/2015
Γ	dat 13/	14/	18/	15/	07/	03/	15/	05/	02/	07,	15/	13/	18/	15/	/20	03/	15/	05/	02/	07/	15/	12/	14,	18/	15,	06,	03,	15,	05/	02/	07/	s 18/	s 15/	s 06/	s 03/	s 15,	s 05,	s 02,	s 07,
	nom Pertes Camirac	Pertes_Camurac	Pertes_Camurac	Pertes_Camurac	Pertes_Camurac	Pertes_Camurac	Pertes_Camurac	Pertes_Camurac	Pertes_Camurac	Pertes_Camurac	Pertes Hers (Amont Prades)	Pertes Hers (Amont Prades)	Pertes Hers (Amont Prades)	Pertes Hers (Amont Prades)	Pertes Hers (Amont Prades)	Pertes Hers (Amont Prades)	Pertes Hers (Amont Prades)	Pertes Hers (Amont Prades)	Pertes Hers (Amont Prades)	Pertes Hers (Amont Prades)	Pertes Rébounidou	Pertes Rébounidou	Pertes Rébounidou	Pertes Rébounidou	Pertes Rébounidou	Pertes Rébounidou	Pertes Rébounidou	Pertes Rébounidou	Pertes Rébounidou	Pertes Rébounidou	Pertes Rébounidou	Pertes Bouychettes/Quérine	Pertes Bouychettes/Quérine	Pertes Bouychettes/Quérine	Pertes Bouychettes/Quérine	Pertes Bouychettes/Quérine	Pertes Bouychettes/Quérine	Pertes Bouychettes/Quérine	Pertes Bouychettes/Quérine

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

	LQ	0.01 (0.5 0.0	15 0.5	5 0.05	5 0.0	1 1	0.0	5 0.02	1 0.5	0.0	0.0	0.1	0.1	0.02	10	0.5	0.1	0.5	0.1	0.05	0.01	0.5	0.5	0.1	0.05	0.05	0.5	0.5	0.1	0.5
		µg/l µg,	1/BH 1/	I µg/I	I µg/I	µg/l	mg/l	mg/l	hg/l	mg/l	µg/l	hg/l	hg/l	mg/l	mg/l	mg/l	mg/l	µg/l	mg/l	ug/l i	mg/l i	ng/l r.	ng/l n	1 l/gu	ug/l r	μ l/gr	g/l m	g/l mg	./l µg/	1 µg/	_
nom	date	Ag Al	As	В	Ba	Be	CO3	ca	Cd	Ū	Co	ა	CL	ц	Fe	HCO3	×		Mg	Mn	NH4	V02 P	V03 N	Va N	Li F	204 P	b SC	D4 SiC	02 Sr	Zn	
Adouxes	14/10/2014	0.01	1.5 0.1	5 1.1;	7 1.55	3 0.0	11 <lq< td=""><td>51.5</td><td>0.0</td><td>1 1.7</td><td>0.0</td><td>5 0.15</td><td>3 0.14</td><td>0.1</td><td>0.02</td><td>166</td><td>۲D</td><td>1.38</td><td>3</td><td>0.32</td><td>⊾</td><td>₹Ω</td><td>2.4</td><td>0.6</td><td>0.12 <</td><td><lq <<="" td=""><td>LQ</td><td>3.3</td><td>3.8</td><td>52.2 2</td><td>4.3</td></lq></td></lq<>	51.5	0.0	1 1.7	0.0	5 0.15	3 0.14	0.1	0.02	166	۲D	1.38	3	0.32	⊾	₹Ω	2.4	0.6	0.12 <	<lq <<="" td=""><td>LQ</td><td>3.3</td><td>3.8</td><td>52.2 2</td><td>4.3</td></lq>	LQ	3.3	3.8	52.2 2	4.3
Adouxes	12/03/2015	<lq 3.<="" td=""><td>54 0.3</td><td>3 1.15</td><td>9 2.55</td><td>2 <lq< td=""><td>≤LQ</td><td>50.</td><td>7 <lq< td=""><td>1.5</td><td>0.0</td><td>5 0.15</td><td>3 0.44</td><td><lq< td=""><td><ra> </ra></td><td>165</td><td>۲D</td><td>0.76</td><td>3.4</td><td>0.32</td><td>ς ΓΩ</td><td>٩D</td><td>2.2</td><td>0.6</td><td>0.17 <</td><td><lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.9</td><td>32.4 2</td><td>.05</td></lq></td></lq<></td></lq<></td></lq<></td></lq>	54 0.3	3 1.15	9 2.55	2 <lq< td=""><td>≤LQ</td><td>50.</td><td>7 <lq< td=""><td>1.5</td><td>0.0</td><td>5 0.15</td><td>3 0.44</td><td><lq< td=""><td><ra> </ra></td><td>165</td><td>۲D</td><td>0.76</td><td>3.4</td><td>0.32</td><td>ς ΓΩ</td><td>٩D</td><td>2.2</td><td>0.6</td><td>0.17 <</td><td><lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.9</td><td>32.4 2</td><td>.05</td></lq></td></lq<></td></lq<></td></lq<>	≤LQ	50.	7 <lq< td=""><td>1.5</td><td>0.0</td><td>5 0.15</td><td>3 0.44</td><td><lq< td=""><td><ra> </ra></td><td>165</td><td>۲D</td><td>0.76</td><td>3.4</td><td>0.32</td><td>ς ΓΩ</td><td>٩D</td><td>2.2</td><td>0.6</td><td>0.17 <</td><td><lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.9</td><td>32.4 2</td><td>.05</td></lq></td></lq<></td></lq<>	1.5	0.0	5 0.15	3 0.44	<lq< td=""><td><ra> </ra></td><td>165</td><td>۲D</td><td>0.76</td><td>3.4</td><td>0.32</td><td>ς ΓΩ</td><td>٩D</td><td>2.2</td><td>0.6</td><td>0.17 <</td><td><lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.9</td><td>32.4 2</td><td>.05</td></lq></td></lq<>	<ra> </ra>	165	۲D	0.76	3.4	0.32	ς ΓΩ	٩D	2.2	0.6	0.17 <	<lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.9</td><td>32.4 2</td><td>.05</td></lq>	۲Q	2.4	2.9	32.4 2	.05
Adouxes	15/04/2015	<lq 0.<="" td=""><td>86 0.1</td><td>4 0.85</td><td>5 0.95</td><td>3<lq< td=""><td>۲V</td><td>47</td><td>7 <lq< td=""><td>1.3</td><td>0.2</td><td>3 0.37</td><td>7 0.11</td><td>₹Ω</td><td><لم</td><td>153</td><td>۲Ŋ</td><td>0.84</td><td>2.4</td><td>0.1</td><td>ς Γ</td><td>٩Q</td><td>2.7</td><td>0.5</td><td>0.53 <</td><td>< ∠LQ</td><td>ΓQ</td><td>1.8</td><td>3.3</td><td>35.1 <lc< td=""><td>~</td></lc<></td></lq<></td></lq<></td></lq>	86 0.1	4 0.85	5 0.95	3 <lq< td=""><td>۲V</td><td>47</td><td>7 <lq< td=""><td>1.3</td><td>0.2</td><td>3 0.37</td><td>7 0.11</td><td>₹Ω</td><td><لم</td><td>153</td><td>۲Ŋ</td><td>0.84</td><td>2.4</td><td>0.1</td><td>ς Γ</td><td>٩Q</td><td>2.7</td><td>0.5</td><td>0.53 <</td><td>< ∠LQ</td><td>ΓQ</td><td>1.8</td><td>3.3</td><td>35.1 <lc< td=""><td>~</td></lc<></td></lq<></td></lq<>	۲V	47	7 <lq< td=""><td>1.3</td><td>0.2</td><td>3 0.37</td><td>7 0.11</td><td>₹Ω</td><td><لم</td><td>153</td><td>۲Ŋ</td><td>0.84</td><td>2.4</td><td>0.1</td><td>ς Γ</td><td>٩Q</td><td>2.7</td><td>0.5</td><td>0.53 <</td><td>< ∠LQ</td><td>ΓQ</td><td>1.8</td><td>3.3</td><td>35.1 <lc< td=""><td>~</td></lc<></td></lq<>	1.3	0.2	3 0.37	7 0.11	₹Ω	<لم	153	۲Ŋ	0.84	2.4	0.1	ς Γ	٩Q	2.7	0.5	0.53 <	< ∠LQ	ΓQ	1.8	3.3	35.1 <lc< td=""><td>~</td></lc<>	~
Adouxes	20/05/2015	<lq 1.4<="" td=""><td>63 0.1</td><td>5 1.52</td><td>2 1.25</td><td>٩ LQ</td><td>Ϋ́</td><td>47.:</td><td>3 <lq< td=""><td>1.6</td><td>0.5</td><td>2.0.1</td><td>0.13</td><td>۲V</td><td>۲D</td><td>160</td><td>0.5</td><td>1.1</td><td>2.8</td><td>ړه</td><td>μ γ</td><td>μ</td><td>2.3</td><td>0.7</td><td>0.21 <</td><td>v ∠</td><td>g</td><td>2.4</td><td>3.7</td><td>12.8 1</td><td>.37</td></lq<></td></lq>	63 0.1	5 1.52	2 1.25	٩ LQ	Ϋ́	47.:	3 <lq< td=""><td>1.6</td><td>0.5</td><td>2.0.1</td><td>0.13</td><td>۲V</td><td>۲D</td><td>160</td><td>0.5</td><td>1.1</td><td>2.8</td><td>ړه</td><td>μ γ</td><td>μ</td><td>2.3</td><td>0.7</td><td>0.21 <</td><td>v ∠</td><td>g</td><td>2.4</td><td>3.7</td><td>12.8 1</td><td>.37</td></lq<>	1.6	0.5	2.0.1	0.13	۲V	۲D	160	0.5	1.1	2.8	ړه	μ γ	μ	2.3	0.7	0.21 <	v ∠	g	2.4	3.7	12.8 1	.37
Adouxes	15/06/2015	ן ≺גע (0.1	2 1.45	5 1.35	Q1>€	۲Ŋ	50.	7 <lq< td=""><td>1.6</td><td>۲</td><td>Å</td><td>۲V</td><td>٩</td><td><لم</td><td>158</td><td>۲Ŋ</td><td>1.17</td><td>2.9</td><td>¢ ≤LQ</td><td>å.</td><td>ά</td><td>2.5</td><td>0.6<</td><td>å</td><td>×</td><td>۲Q</td><td>2.8</td><td>3.7</td><td>15.8 <lc< td=""><td>~</td></lc<></td></lq<>	1.6	۲	Å	۲V	٩	<لم	158	۲Ŋ	1.17	2.9	¢ ≤LQ	å.	ά	2.5	0.6<	å	×	۲Q	2.8	3.7	15.8 <lc< td=""><td>~</td></lc<>	~
Adouxes	07/07/2015	<lq 1.<="" td=""><td>16 0.1.</td><td>2 1.2</td><td>4 1.35</td><td>3 <lq< td=""><td>۲V</td><td>52.4</td><td>4 <lq< td=""><td>1.7</td><td>d^∧</td><td>0.5</td><td>. 0.16</td><td>Å</td><td>۲Q</td><td>164</td><td>۲Ŋ</td><td>1.17</td><td>'n</td><td>₹ΓΩ</td><td>, ,</td><td>ά</td><td>2.6</td><td>0.7</td><td>0.11 <</td><td>×</td><td>ΓQ</td><td>2.5</td><td>3.7</td><td>t7.1 C</td><td>.92</td></lq<></td></lq<></td></lq>	16 0.1.	2 1.2	4 1.35	3 <lq< td=""><td>۲V</td><td>52.4</td><td>4 <lq< td=""><td>1.7</td><td>d^∧</td><td>0.5</td><td>. 0.16</td><td>Å</td><td>۲Q</td><td>164</td><td>۲Ŋ</td><td>1.17</td><td>'n</td><td>₹ΓΩ</td><td>, ,</td><td>ά</td><td>2.6</td><td>0.7</td><td>0.11 <</td><td>×</td><td>ΓQ</td><td>2.5</td><td>3.7</td><td>t7.1 C</td><td>.92</td></lq<></td></lq<>	۲V	52.4	4 <lq< td=""><td>1.7</td><td>d^∧</td><td>0.5</td><td>. 0.16</td><td>Å</td><td>۲Q</td><td>164</td><td>۲Ŋ</td><td>1.17</td><td>'n</td><td>₹ΓΩ</td><td>, ,</td><td>ά</td><td>2.6</td><td>0.7</td><td>0.11 <</td><td>×</td><td>ΓQ</td><td>2.5</td><td>3.7</td><td>t7.1 C</td><td>.92</td></lq<>	1.7	d^∧	0.5	. 0.16	Å	۲Q	164	۲Ŋ	1.17	'n	₹ΓΩ	, ,	ά	2.6	0.7	0.11 <	×	ΓQ	2.5	3.7	t7.1 C	.92
Adouxes	03/08/2015	0.56 0.	92 0.1	7 2.5	5 3.7£	2 <lq< td=""><td>۲V</td><td>54.4</td><td>5 0.02</td><td>2.4</td><td>۲V</td><td>0.12</td><td>20.28</td><td>۲V</td><td><lq< td=""><td>180</td><td>0.9</td><td>1.75</td><td>3.6</td><td>0.24</td><td>'n.</td><td>έQ</td><td>2.2</td><td>0.9</td><td>0.14 <</td><td></td><td>۲Q</td><td>3.6</td><td>4.4 (</td><td>55.3 1</td><td>. 27</td></lq<></td></lq<>	۲V	54.4	5 0.02	2.4	۲V	0.12	20.28	۲V	<lq< td=""><td>180</td><td>0.9</td><td>1.75</td><td>3.6</td><td>0.24</td><td>'n.</td><td>έQ</td><td>2.2</td><td>0.9</td><td>0.14 <</td><td></td><td>۲Q</td><td>3.6</td><td>4.4 (</td><td>55.3 1</td><td>. 27</td></lq<>	180	0.9	1.75	3.6	0.24	'n.	έQ	2.2	0.9	0.14 <		۲Q	3.6	4.4 (55.3 1	. 27
Adouxes	15/09/2015	רע קע	0.1	5 1.5	3 1.46	S <lq< td=""><td>۲V</td><td>48.</td><td>3 <lq< td=""><td>1.6</td><td>0</td><td>1 0.15</td><td>Z</td><td>۲Q</td><td><لم</td><td>165</td><td>۲Ŋ</td><td>1.28</td><td>2.9</td><td>₹ΓΩ</td><td>, LQ</td><td>ά</td><td>3.2</td><td>0.7<</td><td>, LQ</td><td>< ∠\</td><td>۲Q</td><td>3.2</td><td>3.8</td><td>01> 7.6t</td><td>~</td></lq<></td></lq<>	۲V	48.	3 <lq< td=""><td>1.6</td><td>0</td><td>1 0.15</td><td>Z</td><td>۲Q</td><td><لم</td><td>165</td><td>۲Ŋ</td><td>1.28</td><td>2.9</td><td>₹ΓΩ</td><td>, LQ</td><td>ά</td><td>3.2</td><td>0.7<</td><td>, LQ</td><td>< ∠\</td><td>۲Q</td><td>3.2</td><td>3.8</td><td>01> 7.6t</td><td>~</td></lq<>	1.6	0	1 0.15	Z	۲Q	<لم	165	۲Ŋ	1.28	2.9	₹ΓΩ	, LQ	ά	3.2	0.7<	, LQ	< ∠\	۲Q	3.2	3.8	01> 7.6t	~
Adouxes	07/10/2015	<lq 1.<="" td=""><td>18 0.1</td><td>4 1.45</td><td>8 1.4£</td><td>Z∠LQ</td><td>۲V</td><td>49.8</td><td>8 0.01</td><td>1 1.6</td><td>0.0</td><td>5 0.15</td><td>3<lq< td=""><td>Å</td><td><لم</td><td>159</td><td>۲Ŋ</td><td>1.24</td><td>'n</td><td>¢ ≤LQ</td><td>, LQ</td><td>ά</td><td>2.2</td><td>0.7<</td><td>å</td><td></td><td>۲Q</td><td>3.2</td><td>3.9</td><td>51 C</td><td>.58</td></lq<></td></lq>	18 0.1	4 1.45	8 1.4£	Z∠LQ	۲V	49.8	8 0.01	1 1.6	0.0	5 0.15	3 <lq< td=""><td>Å</td><td><لم</td><td>159</td><td>۲Ŋ</td><td>1.24</td><td>'n</td><td>¢ ≤LQ</td><td>, LQ</td><td>ά</td><td>2.2</td><td>0.7<</td><td>å</td><td></td><td>۲Q</td><td>3.2</td><td>3.9</td><td>51 C</td><td>.58</td></lq<>	Å	<لم	159	۲Ŋ	1.24	'n	¢ ≤LQ	, LQ	ά	2.2	0.7<	å		۲Q	3.2	3.9	51 C	.58
Adouxes	02/11/2015	<lq 0.<="" td=""><td>77 0.1</td><td>6 1.25</td><td>8 1.35</td><td>¢لم</td><td>۲V</td><td>52.5</td><td>2 ⊲LQ</td><td>1.6</td><td>۲V</td><td>0.14</td><td>t<lq< td=""><td>۲V</td><td><لم</td><td>159</td><td>۲Ŋ</td><td>1.29</td><td>3.1</td><td>₹ΓΩ</td><td>, Là</td><td>ά</td><td>2.4</td><td>0.7 <</td><td>, LQ</td><td>< ∠\</td><td>۲Q</td><td>3.2</td><td>4</td><td>53.8 <lc< td=""><td>~</td></lc<></td></lq<></td></lq>	77 0.1	6 1.25	8 1.35	¢لم	۲V	52.5	2 ⊲LQ	1.6	۲V	0.14	t <lq< td=""><td>۲V</td><td><لم</td><td>159</td><td>۲Ŋ</td><td>1.29</td><td>3.1</td><td>₹ΓΩ</td><td>, Là</td><td>ά</td><td>2.4</td><td>0.7 <</td><td>, LQ</td><td>< ∠\</td><td>۲Q</td><td>3.2</td><td>4</td><td>53.8 <lc< td=""><td>~</td></lc<></td></lq<>	۲V	<لم	159	۲Ŋ	1.29	3.1	₹ΓΩ	, Là	ά	2.4	0.7 <	, LQ	< ∠\	۲Q	3.2	4	53.8 <lc< td=""><td>~</td></lc<>	~
Adouxes	07/12/2015	<lq 1.<="" td=""><td>64 0.1</td><td>3 1.85</td><td>5</td><td>2 <lq< td=""><td><lq< td=""><td>56.:</td><td>1 0.0</td><td>3 1.4</td><td><lq< td=""><td>0.12</td><td>2 0.16</td><td>۲Ö</td><td><lq< td=""><td>184</td><td>×LQ</td><td>1.09</td><td>4.6</td><td><lq td="" ↓<=""><td>ŝĹQ</td><td>₹Ω</td><td>1.9</td><td>0.6 <</td><td>, LQ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3.2</td><td>t7.2</td><td>1.1</td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq>	64 0.1	3 1.85	5	2 <lq< td=""><td><lq< td=""><td>56.:</td><td>1 0.0</td><td>3 1.4</td><td><lq< td=""><td>0.12</td><td>2 0.16</td><td>۲Ö</td><td><lq< td=""><td>184</td><td>×LQ</td><td>1.09</td><td>4.6</td><td><lq td="" ↓<=""><td>ŝĹQ</td><td>₹Ω</td><td>1.9</td><td>0.6 <</td><td>, LQ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3.2</td><td>t7.2</td><td>1.1</td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>56.:</td><td>1 0.0</td><td>3 1.4</td><td><lq< td=""><td>0.12</td><td>2 0.16</td><td>۲Ö</td><td><lq< td=""><td>184</td><td>×LQ</td><td>1.09</td><td>4.6</td><td><lq td="" ↓<=""><td>ŝĹQ</td><td>₹Ω</td><td>1.9</td><td>0.6 <</td><td>, LQ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3.2</td><td>t7.2</td><td>1.1</td></lq></td></lq></td></lq<></td></lq<></td></lq<>	56.:	1 0.0	3 1.4	<lq< td=""><td>0.12</td><td>2 0.16</td><td>۲Ö</td><td><lq< td=""><td>184</td><td>×LQ</td><td>1.09</td><td>4.6</td><td><lq td="" ↓<=""><td>ŝĹQ</td><td>₹Ω</td><td>1.9</td><td>0.6 <</td><td>, LQ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3.2</td><td>t7.2</td><td>1.1</td></lq></td></lq></td></lq<></td></lq<>	0.12	2 0.16	۲Ö	<lq< td=""><td>184</td><td>×LQ</td><td>1.09</td><td>4.6</td><td><lq td="" ↓<=""><td>ŝĹQ</td><td>₹Ω</td><td>1.9</td><td>0.6 <</td><td>, LQ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3.2</td><td>t7.2</td><td>1.1</td></lq></td></lq></td></lq<>	184	×LQ	1.09	4.6	<lq td="" ↓<=""><td>ŝĹQ</td><td>₹Ω</td><td>1.9</td><td>0.6 <</td><td>, LQ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3.2</td><td>t7.2</td><td>1.1</td></lq></td></lq>	ŝĹQ	₹Ω	1.9	0.6 <	, LQ	<lq <<="" td=""><td>LQ</td><td>2.7</td><td>3.2</td><td>t7.2</td><td>1.1</td></lq>	LQ	2.7	3.2	t7.2	1.1
Fajole/Moulin	14/10/2014	0.01	1.6 0.1	5 0.81	1	1 0.0	1 <lq< td=""><td>47.5</td><td>0.0 6</td><td>1 0.7</td><td>0.0</td><td>0.1</td><td>.0.1</td><td>0.1</td><td>0.02</td><td>150</td><td>0.5</td><td>1.52</td><td>1.8</td><td>0.42</td><td>0.05</td><td>0.01</td><td>2 <</td><td>,LQ <</td><td>ξΩ</td><td><lq <<="" td=""><td>гq</td><td>3.6</td><td>3.3</td><td>94.3 3</td><td>8.7</td></lq></td></lq<>	47.5	0.0 6	1 0.7	0.0	0.1	.0.1	0.1	0.02	150	0.5	1.52	1.8	0.42	0.05	0.01	2 <	,LQ <	ξΩ	<lq <<="" td=""><td>гq</td><td>3.6</td><td>3.3</td><td>94.3 3</td><td>8.7</td></lq>	гq	3.6	3.3	94.3 3	8.7
Fajole/Moulin	12/03/2015	0.01 3.	51 0.3	4 0.7	4 0.7,	Z <lq< td=""><td><lq< td=""><td>44.5</td><td>5 ⊲LQ</td><td>3.0</td><td>0.0</td><td>5 0.14</td><td>1 0.17</td><td>۲V</td><td><lq< td=""><td>136</td><td><lq< td=""><td>0.84</td><td>1</td><td>0.17</td><td><lq< td=""><td>٩D</td><td>2.4 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.5</td><td>15.9 1</td><td>67</td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>44.5</td><td>5 ⊲LQ</td><td>3.0</td><td>0.0</td><td>5 0.14</td><td>1 0.17</td><td>۲V</td><td><lq< td=""><td>136</td><td><lq< td=""><td>0.84</td><td>1</td><td>0.17</td><td><lq< td=""><td>٩D</td><td>2.4 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.5</td><td>15.9 1</td><td>67</td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	44.5	5 ⊲LQ	3.0	0.0	5 0.14	1 0.17	۲V	<lq< td=""><td>136</td><td><lq< td=""><td>0.84</td><td>1</td><td>0.17</td><td><lq< td=""><td>٩D</td><td>2.4 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.5</td><td>15.9 1</td><td>67</td></lq></td></lq<></td></lq<></td></lq<>	136	<lq< td=""><td>0.84</td><td>1</td><td>0.17</td><td><lq< td=""><td>٩D</td><td>2.4 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.5</td><td>15.9 1</td><td>67</td></lq></td></lq<></td></lq<>	0.84	1	0.17	<lq< td=""><td>٩D</td><td>2.4 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.5</td><td>15.9 1</td><td>67</td></lq></td></lq<>	٩D	2.4 <	<pre>> </pre>	¢	<lq <<="" td=""><td>۲Q</td><td>2.4</td><td>2.5</td><td>15.9 1</td><td>67</td></lq>	۲Q	2.4	2.5	15.9 1	67
Fajole/Moulin	14/04/2015	0.01 1.	75 0.	1 <lq< td=""><td>0.57</td><td>Z<lq< td=""><td><lq< td=""><td>45.t</td><td>5 <lq< td=""><td>0.5</td><td>0.2</td><td>1 0.5</td><td>3 0.1</td><td><lq< td=""><td><lq< td=""><td>137</td><td><lq< td=""><td>0.7</td><td>0.8</td><td>0.16</td><td>دلم</td><td>٩Q</td><td>2.4 <</td><td>ίΩ</td><td>0.94 <</td><td><lq <<="" td=""><td>LQ</td><td>1.4</td><td>2.5</td><td>11.4 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.57	Z <lq< td=""><td><lq< td=""><td>45.t</td><td>5 <lq< td=""><td>0.5</td><td>0.2</td><td>1 0.5</td><td>3 0.1</td><td><lq< td=""><td><lq< td=""><td>137</td><td><lq< td=""><td>0.7</td><td>0.8</td><td>0.16</td><td>دلم</td><td>٩Q</td><td>2.4 <</td><td>ίΩ</td><td>0.94 <</td><td><lq <<="" td=""><td>LQ</td><td>1.4</td><td>2.5</td><td>11.4 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>45.t</td><td>5 <lq< td=""><td>0.5</td><td>0.2</td><td>1 0.5</td><td>3 0.1</td><td><lq< td=""><td><lq< td=""><td>137</td><td><lq< td=""><td>0.7</td><td>0.8</td><td>0.16</td><td>دلم</td><td>٩Q</td><td>2.4 <</td><td>ίΩ</td><td>0.94 <</td><td><lq <<="" td=""><td>LQ</td><td>1.4</td><td>2.5</td><td>11.4 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	45.t	5 <lq< td=""><td>0.5</td><td>0.2</td><td>1 0.5</td><td>3 0.1</td><td><lq< td=""><td><lq< td=""><td>137</td><td><lq< td=""><td>0.7</td><td>0.8</td><td>0.16</td><td>دلم</td><td>٩Q</td><td>2.4 <</td><td>ίΩ</td><td>0.94 <</td><td><lq <<="" td=""><td>LQ</td><td>1.4</td><td>2.5</td><td>11.4 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	0.5	0.2	1 0.5	3 0.1	<lq< td=""><td><lq< td=""><td>137</td><td><lq< td=""><td>0.7</td><td>0.8</td><td>0.16</td><td>دلم</td><td>٩Q</td><td>2.4 <</td><td>ίΩ</td><td>0.94 <</td><td><lq <<="" td=""><td>LQ</td><td>1.4</td><td>2.5</td><td>11.4 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>137</td><td><lq< td=""><td>0.7</td><td>0.8</td><td>0.16</td><td>دلم</td><td>٩Q</td><td>2.4 <</td><td>ίΩ</td><td>0.94 <</td><td><lq <<="" td=""><td>LQ</td><td>1.4</td><td>2.5</td><td>11.4 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<>	137	<lq< td=""><td>0.7</td><td>0.8</td><td>0.16</td><td>دلم</td><td>٩Q</td><td>2.4 <</td><td>ίΩ</td><td>0.94 <</td><td><lq <<="" td=""><td>LQ</td><td>1.4</td><td>2.5</td><td>11.4 <lc< td=""><td>~</td></lc<></td></lq></td></lq<>	0.7	0.8	0.16	دلم	٩Q	2.4 <	ίΩ	0.94 <	<lq <<="" td=""><td>LQ</td><td>1.4</td><td>2.5</td><td>11.4 <lc< td=""><td>~</td></lc<></td></lq>	LQ	1.4	2.5	11.4 <lc< td=""><td>~</td></lc<>	~
Fajole/Moulin	19/05/2015	<lq 1.<="" td=""><td>51 0.1.</td><td>3 0.85</td><td>5 0.65</td><td>9 <lq< td=""><td>×۲۵</td><td>43.5</td><td>9 <lq< td=""><td>0.6</td><td>0.18</td><td>3 <lq< td=""><td>٩٢</td><td>۲V</td><td><lq< td=""><td>143</td><td>۲a</td><td>1.27</td><td>1.5</td><td>۲o ۲o</td><td>۲o</td><td>¢۲α</td><td>2 <</td><td>ίΩ</td><td>0.2 <</td><td><lq <<="" td=""><td>ΓQ</td><td>3.1</td><td>3.1</td><td>72.2 0</td><td>.53</td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq>	51 0.1.	3 0.85	5 0.65	9 <lq< td=""><td>×۲۵</td><td>43.5</td><td>9 <lq< td=""><td>0.6</td><td>0.18</td><td>3 <lq< td=""><td>٩٢</td><td>۲V</td><td><lq< td=""><td>143</td><td>۲a</td><td>1.27</td><td>1.5</td><td>۲o ۲o</td><td>۲o</td><td>¢۲α</td><td>2 <</td><td>ίΩ</td><td>0.2 <</td><td><lq <<="" td=""><td>ΓQ</td><td>3.1</td><td>3.1</td><td>72.2 0</td><td>.53</td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	×۲۵	43.5	9 <lq< td=""><td>0.6</td><td>0.18</td><td>3 <lq< td=""><td>٩٢</td><td>۲V</td><td><lq< td=""><td>143</td><td>۲a</td><td>1.27</td><td>1.5</td><td>۲o ۲o</td><td>۲o</td><td>¢۲α</td><td>2 <</td><td>ίΩ</td><td>0.2 <</td><td><lq <<="" td=""><td>ΓQ</td><td>3.1</td><td>3.1</td><td>72.2 0</td><td>.53</td></lq></td></lq<></td></lq<></td></lq<>	0.6	0.18	3 <lq< td=""><td>٩٢</td><td>۲V</td><td><lq< td=""><td>143</td><td>۲a</td><td>1.27</td><td>1.5</td><td>۲o ۲o</td><td>۲o</td><td>¢۲α</td><td>2 <</td><td>ίΩ</td><td>0.2 <</td><td><lq <<="" td=""><td>ΓQ</td><td>3.1</td><td>3.1</td><td>72.2 0</td><td>.53</td></lq></td></lq<></td></lq<>	٩٢	۲V	<lq< td=""><td>143</td><td>۲a</td><td>1.27</td><td>1.5</td><td>۲o ۲o</td><td>۲o</td><td>¢۲α</td><td>2 <</td><td>ίΩ</td><td>0.2 <</td><td><lq <<="" td=""><td>ΓQ</td><td>3.1</td><td>3.1</td><td>72.2 0</td><td>.53</td></lq></td></lq<>	143	۲a	1.27	1.5	۲o ۲o	۲o	¢۲α	2 <	ίΩ	0.2 <	<lq <<="" td=""><td>ΓQ</td><td>3.1</td><td>3.1</td><td>72.2 0</td><td>.53</td></lq>	ΓQ	3.1	3.1	72.2 0	.53
Fajole/Moulin	15/06/2015	<lq 0.<="" td=""><td>69 0.1</td><td>6 2.3</td><td>3 1.25</td><td>0≤LQ</td><td><lq< td=""><td>58.4</td><td>4 <lq< td=""><td>1.5</td><td>Z <</td><td>≤LQ</td><td>۲Q</td><td>×۲۵</td><td><lq< td=""><td>176</td><td><lq< td=""><td>2.52</td><td>2.7</td><td><lq< td=""><td>LQ</td><td>٩Q</td><td>2.6</td><td>0.7<</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>6.4</td><td>4</td><td>110 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq>	69 0.1	6 2.3	3 1.25	0≤LQ	<lq< td=""><td>58.4</td><td>4 <lq< td=""><td>1.5</td><td>Z <</td><td>≤LQ</td><td>۲Q</td><td>×۲۵</td><td><lq< td=""><td>176</td><td><lq< td=""><td>2.52</td><td>2.7</td><td><lq< td=""><td>LQ</td><td>٩Q</td><td>2.6</td><td>0.7<</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>6.4</td><td>4</td><td>110 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	58.4	4 <lq< td=""><td>1.5</td><td>Z <</td><td>≤LQ</td><td>۲Q</td><td>×۲۵</td><td><lq< td=""><td>176</td><td><lq< td=""><td>2.52</td><td>2.7</td><td><lq< td=""><td>LQ</td><td>٩Q</td><td>2.6</td><td>0.7<</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>6.4</td><td>4</td><td>110 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	1.5	Z <	≤LQ	۲Q	×۲۵	<lq< td=""><td>176</td><td><lq< td=""><td>2.52</td><td>2.7</td><td><lq< td=""><td>LQ</td><td>٩Q</td><td>2.6</td><td>0.7<</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>6.4</td><td>4</td><td>110 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<>	176	<lq< td=""><td>2.52</td><td>2.7</td><td><lq< td=""><td>LQ</td><td>٩Q</td><td>2.6</td><td>0.7<</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>6.4</td><td>4</td><td>110 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<>	2.52	2.7	<lq< td=""><td>LQ</td><td>٩Q</td><td>2.6</td><td>0.7<</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>6.4</td><td>4</td><td>110 <lc< td=""><td>~</td></lc<></td></lq></td></lq<>	LQ	٩Q	2.6	0.7<	¢la	<lq <<="" td=""><td>LQ</td><td>6.4</td><td>4</td><td>110 <lc< td=""><td>~</td></lc<></td></lq>	LQ	6.4	4	110 <lc< td=""><td>~</td></lc<>	~
Fajole/Moulin	07/07/2015	<lq 0.<="" td=""><td>79 0.1</td><td>2 0.5</td><td>5 0.7</td><td>7 <lq< td=""><td><lq< td=""><td>48.</td><td>2 <lq< td=""><td>0.7</td><td>v<lq< td=""><td>≤LQ</td><td>0.11</td><td><lq< td=""><td><lq< td=""><td>146</td><td><lq< td=""><td>1.3</td><td>1.5</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq>	79 0.1	2 0.5	5 0.7	7 <lq< td=""><td><lq< td=""><td>48.</td><td>2 <lq< td=""><td>0.7</td><td>v<lq< td=""><td>≤LQ</td><td>0.11</td><td><lq< td=""><td><lq< td=""><td>146</td><td><lq< td=""><td>1.3</td><td>1.5</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>48.</td><td>2 <lq< td=""><td>0.7</td><td>v<lq< td=""><td>≤LQ</td><td>0.11</td><td><lq< td=""><td><lq< td=""><td>146</td><td><lq< td=""><td>1.3</td><td>1.5</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	48.	2 <lq< td=""><td>0.7</td><td>v<lq< td=""><td>≤LQ</td><td>0.11</td><td><lq< td=""><td><lq< td=""><td>146</td><td><lq< td=""><td>1.3</td><td>1.5</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.7	v <lq< td=""><td>≤LQ</td><td>0.11</td><td><lq< td=""><td><lq< td=""><td>146</td><td><lq< td=""><td>1.3</td><td>1.5</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	≤LQ	0.11	<lq< td=""><td><lq< td=""><td>146</td><td><lq< td=""><td>1.3</td><td>1.5</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>146</td><td><lq< td=""><td>1.3</td><td>1.5</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<>	146	<lq< td=""><td>1.3</td><td>1.5</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<>	1.3	1.5	<lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq>	<lq< td=""><td>۲Q</td><td>2.2 <</td><td>:LQ <</td><td>ŝLQ</td><td><lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<>	۲Q	2.2 <	:LQ <	ŝLQ	<lq <<="" td=""><td>LQ</td><td>2.8</td><td>3.1 8</td><td>30.7 <lc< td=""><td>~</td></lc<></td></lq>	LQ	2.8	3.1 8	30.7 <lc< td=""><td>~</td></lc<>	~
Fajole/Moulin	03/08/2015	0.03 0.	76 0.1	5 0.5	9 0.7£	2 <lq< td=""><td>≤LQ</td><td>47</td><td>1 <lq< td=""><td>0.É</td><td><lq< td=""><td>0.3</td><td>i⊲to</td><td>۲Q</td><td><ra> </ra></td><td>143</td><td>۲D</td><td>1.54</td><td>1.8</td><td><lq <<="" td=""><td>ς ΓΩ</td><td>٩D</td><td>1.9 <</td><td>× ro</td><td>ŝĽQ</td><td></td><td>۲Q</td><td>2.5</td><td>3.2 8</td><td>37.3 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<>	≤LQ	47	1 <lq< td=""><td>0.É</td><td><lq< td=""><td>0.3</td><td>i⊲to</td><td>۲Q</td><td><ra> </ra></td><td>143</td><td>۲D</td><td>1.54</td><td>1.8</td><td><lq <<="" td=""><td>ς ΓΩ</td><td>٩D</td><td>1.9 <</td><td>× ro</td><td>ŝĽQ</td><td></td><td>۲Q</td><td>2.5</td><td>3.2 8</td><td>37.3 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<>	0.É	<lq< td=""><td>0.3</td><td>i⊲to</td><td>۲Q</td><td><ra> </ra></td><td>143</td><td>۲D</td><td>1.54</td><td>1.8</td><td><lq <<="" td=""><td>ς ΓΩ</td><td>٩D</td><td>1.9 <</td><td>× ro</td><td>ŝĽQ</td><td></td><td>۲Q</td><td>2.5</td><td>3.2 8</td><td>37.3 <lc< td=""><td>~</td></lc<></td></lq></td></lq<>	0.3	i⊲to	۲Q	<ra> </ra>	143	۲D	1.54	1.8	<lq <<="" td=""><td>ς ΓΩ</td><td>٩D</td><td>1.9 <</td><td>× ro</td><td>ŝĽQ</td><td></td><td>۲Q</td><td>2.5</td><td>3.2 8</td><td>37.3 <lc< td=""><td>~</td></lc<></td></lq>	ς ΓΩ	٩D	1.9 <	× ro	ŝĽQ		۲Q	2.5	3.2 8	37.3 <lc< td=""><td>~</td></lc<>	~
Fajole/Moulin	15/09/2015	<lq 1.<="" td=""><td>16 0.1</td><td>5 1.04</td><td>4 0.92</td><td>2 <lq< td=""><td><lq< td=""><td>43.5</td><td>9 <lq< td=""><td>0.£</td><td>0.0</td><td>0.1</td><td>i 0.29</td><td>۲Q</td><td><lq< td=""><td>148</td><td><lq< td=""><td>1.44</td><td>1.8</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.6 <</td><td>:LQ <</td><td>۲Q</td><td><lq <<="" td=""><td>٢Q</td><td>3.5</td><td>3.2</td><td>90.7 C</td><td>.62</td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq>	16 0.1	5 1.04	4 0.92	2 <lq< td=""><td><lq< td=""><td>43.5</td><td>9 <lq< td=""><td>0.£</td><td>0.0</td><td>0.1</td><td>i 0.29</td><td>۲Q</td><td><lq< td=""><td>148</td><td><lq< td=""><td>1.44</td><td>1.8</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.6 <</td><td>:LQ <</td><td>۲Q</td><td><lq <<="" td=""><td>٢Q</td><td>3.5</td><td>3.2</td><td>90.7 C</td><td>.62</td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>43.5</td><td>9 <lq< td=""><td>0.£</td><td>0.0</td><td>0.1</td><td>i 0.29</td><td>۲Q</td><td><lq< td=""><td>148</td><td><lq< td=""><td>1.44</td><td>1.8</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.6 <</td><td>:LQ <</td><td>۲Q</td><td><lq <<="" td=""><td>٢Q</td><td>3.5</td><td>3.2</td><td>90.7 C</td><td>.62</td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	43.5	9 <lq< td=""><td>0.£</td><td>0.0</td><td>0.1</td><td>i 0.29</td><td>۲Q</td><td><lq< td=""><td>148</td><td><lq< td=""><td>1.44</td><td>1.8</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.6 <</td><td>:LQ <</td><td>۲Q</td><td><lq <<="" td=""><td>٢Q</td><td>3.5</td><td>3.2</td><td>90.7 C</td><td>.62</td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<>	0.£	0.0	0.1	i 0.29	۲Q	<lq< td=""><td>148</td><td><lq< td=""><td>1.44</td><td>1.8</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.6 <</td><td>:LQ <</td><td>۲Q</td><td><lq <<="" td=""><td>٢Q</td><td>3.5</td><td>3.2</td><td>90.7 C</td><td>.62</td></lq></td></lq<></td></lq></td></lq<></td></lq<>	148	<lq< td=""><td>1.44</td><td>1.8</td><td><lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.6 <</td><td>:LQ <</td><td>۲Q</td><td><lq <<="" td=""><td>٢Q</td><td>3.5</td><td>3.2</td><td>90.7 C</td><td>.62</td></lq></td></lq<></td></lq></td></lq<>	1.44	1.8	<lq <<="" td=""><td><lq< td=""><td>۲Q</td><td>2.6 <</td><td>:LQ <</td><td>۲Q</td><td><lq <<="" td=""><td>٢Q</td><td>3.5</td><td>3.2</td><td>90.7 C</td><td>.62</td></lq></td></lq<></td></lq>	<lq< td=""><td>۲Q</td><td>2.6 <</td><td>:LQ <</td><td>۲Q</td><td><lq <<="" td=""><td>٢Q</td><td>3.5</td><td>3.2</td><td>90.7 C</td><td>.62</td></lq></td></lq<>	۲Q	2.6 <	:LQ <	۲Q	<lq <<="" td=""><td>٢Q</td><td>3.5</td><td>3.2</td><td>90.7 C</td><td>.62</td></lq>	٢Q	3.5	3.2	90.7 C	.62
Fajole/Moulin	05/10/2015	<lq 1.<="" td=""><td>33 0.1</td><td>5 1.1</td><td>1 0.96</td><td>S⊲LQ</td><td>۲V</td><td>45</td><td>7 0.02</td><td>2 0.E</td><td>0.0</td><td>2<lq< td=""><td>۲¢</td><td>۲Q</td><td><lq< td=""><td>143</td><td>۲D</td><td>1.44</td><td>2</td><td><lq td="" ↓<=""><td>ŝ.</td><td>ά</td><td>1.8 <</td><td>,LQ</td><td>, LQ</td><td>≮ل</td><td>0.07</td><td>3.5</td><td>3.4 9</td><td>34.4 C</td><td>.65</td></lq></td></lq<></td></lq<></td></lq>	33 0.1	5 1.1	1 0.96	S⊲LQ	۲V	45	7 0.02	2 0.E	0.0	2 <lq< td=""><td>۲¢</td><td>۲Q</td><td><lq< td=""><td>143</td><td>۲D</td><td>1.44</td><td>2</td><td><lq td="" ↓<=""><td>ŝ.</td><td>ά</td><td>1.8 <</td><td>,LQ</td><td>, LQ</td><td>≮ل</td><td>0.07</td><td>3.5</td><td>3.4 9</td><td>34.4 C</td><td>.65</td></lq></td></lq<></td></lq<>	۲¢	۲Q	<lq< td=""><td>143</td><td>۲D</td><td>1.44</td><td>2</td><td><lq td="" ↓<=""><td>ŝ.</td><td>ά</td><td>1.8 <</td><td>,LQ</td><td>, LQ</td><td>≮ل</td><td>0.07</td><td>3.5</td><td>3.4 9</td><td>34.4 C</td><td>.65</td></lq></td></lq<>	143	۲D	1.44	2	<lq td="" ↓<=""><td>ŝ.</td><td>ά</td><td>1.8 <</td><td>,LQ</td><td>, LQ</td><td>≮ل</td><td>0.07</td><td>3.5</td><td>3.4 9</td><td>34.4 C</td><td>.65</td></lq>	ŝ.	ά	1.8 <	,LQ	, LQ	≮ل	0.07	3.5	3.4 9	34.4 C	.65
Fajole/Moulin	02/11/2015	0.1 1.	04 0.1	2	1 1.05	3 <lq< td=""><td>۲V</td><td>49.</td><td>2 0.02</td><td>2 0.5</td><td><lq< td=""><td>0.13</td><td>3<lq< td=""><td>₹Ω</td><td><لم</td><td>143</td><td>۲D</td><td>1.46</td><td>2</td><td><lq <<="" td=""><td>¢ ¢</td><td>٩Q</td><td>1.9 <</td><td>× TQ</td><td>ξ</td><td><lq <<="" td=""><td>гq</td><td>3.2</td><td>3.5</td><td>97.6 C</td><td>.55</td></lq></td></lq></td></lq<></td></lq<></td></lq<>	۲V	49.	2 0.02	2 0.5	<lq< td=""><td>0.13</td><td>3<lq< td=""><td>₹Ω</td><td><لم</td><td>143</td><td>۲D</td><td>1.46</td><td>2</td><td><lq <<="" td=""><td>¢ ¢</td><td>٩Q</td><td>1.9 <</td><td>× TQ</td><td>ξ</td><td><lq <<="" td=""><td>гq</td><td>3.2</td><td>3.5</td><td>97.6 C</td><td>.55</td></lq></td></lq></td></lq<></td></lq<>	0.13	3 <lq< td=""><td>₹Ω</td><td><لم</td><td>143</td><td>۲D</td><td>1.46</td><td>2</td><td><lq <<="" td=""><td>¢ ¢</td><td>٩Q</td><td>1.9 <</td><td>× TQ</td><td>ξ</td><td><lq <<="" td=""><td>гq</td><td>3.2</td><td>3.5</td><td>97.6 C</td><td>.55</td></lq></td></lq></td></lq<>	₹Ω	<لم	143	۲D	1.46	2	<lq <<="" td=""><td>¢ ¢</td><td>٩Q</td><td>1.9 <</td><td>× TQ</td><td>ξ</td><td><lq <<="" td=""><td>гq</td><td>3.2</td><td>3.5</td><td>97.6 C</td><td>.55</td></lq></td></lq>	¢ ¢	٩Q	1.9 <	× TQ	ξ	<lq <<="" td=""><td>гq</td><td>3.2</td><td>3.5</td><td>97.6 C</td><td>.55</td></lq>	гq	3.2	3.5	97.6 C	.55
Fajole/Moulin	07/12/2015	0.06 0.	84 0.1:	5 1.07	7 0.5	S≺LQ	<lq< td=""><td>47.5</td><td>5 ⊲LQ</td><td>1.£</td><td><lq< td=""><td>0.15</td><td>ZIS</td><td>٩U</td><td><lq< td=""><td>144</td><td><lq< td=""><td>1.54</td><td>1.7</td><td><lq <<="" td=""><td><lq< td=""><td>٩Ľ</td><td>1.7 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>3.2</td><td>3.3</td><td>94.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	47.5	5 ⊲LQ	1.£	<lq< td=""><td>0.15</td><td>ZIS</td><td>٩U</td><td><lq< td=""><td>144</td><td><lq< td=""><td>1.54</td><td>1.7</td><td><lq <<="" td=""><td><lq< td=""><td>٩Ľ</td><td>1.7 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>3.2</td><td>3.3</td><td>94.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<></td></lq<>	0.15	ZIS	٩U	<lq< td=""><td>144</td><td><lq< td=""><td>1.54</td><td>1.7</td><td><lq <<="" td=""><td><lq< td=""><td>٩Ľ</td><td>1.7 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>3.2</td><td>3.3</td><td>94.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<></td></lq<>	144	<lq< td=""><td>1.54</td><td>1.7</td><td><lq <<="" td=""><td><lq< td=""><td>٩Ľ</td><td>1.7 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>3.2</td><td>3.3</td><td>94.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq></td></lq<>	1.54	1.7	<lq <<="" td=""><td><lq< td=""><td>٩Ľ</td><td>1.7 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>3.2</td><td>3.3</td><td>94.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq>	<lq< td=""><td>٩Ľ</td><td>1.7 <</td><td><pre>> </pre></td><td>¢</td><td><lq <<="" td=""><td>۲Q</td><td>3.2</td><td>3.3</td><td>94.7 <lc< td=""><td>~</td></lc<></td></lq></td></lq<>	٩Ľ	1.7 <	<pre>> </pre>	¢	<lq <<="" td=""><td>۲Q</td><td>3.2</td><td>3.3</td><td>94.7 <lc< td=""><td>~</td></lc<></td></lq>	۲Q	3.2	3.3	94.7 <lc< td=""><td>~</td></lc<>	~
SRE Roquefeuil	14/10/2014	0.01 1.	61 0.2	1 2.07	7 1.45	ZLQ	۲Ŋ	58.	1 <lq< td=""><td>1.7</td><td>Z_LQ</td><td>Å</td><td>0.43</td><td>₹Q</td><td><lq< td=""><td>180</td><td>۲Q</td><td>2.84</td><td>ε</td><td>0.47</td><td>0.05</td><td>0.01</td><td>2.4</td><td>0.8</td><td>0.14 <</td><td><pre></pre></td><td>ΓQ</td><td>∞</td><td>4.3</td><td>126 2</td><td>6.2</td></lq<></td></lq<>	1.7	Z_LQ	Å	0.43	₹Q	<lq< td=""><td>180</td><td>۲Q</td><td>2.84</td><td>ε</td><td>0.47</td><td>0.05</td><td>0.01</td><td>2.4</td><td>0.8</td><td>0.14 <</td><td><pre></pre></td><td>ΓQ</td><td>∞</td><td>4.3</td><td>126 2</td><td>6.2</td></lq<>	180	۲Q	2.84	ε	0.47	0.05	0.01	2.4	0.8	0.14 <	<pre></pre>	ΓQ	∞	4.3	126 2	6.2
SRE Roquefeuil	12/03/2015	יז זי	2.5 0.3	3 1.92	2 1.1	1⊲LQ	۲V	58.	7 <lq< td=""><td>1.5</td><td>0.05</td><td>5 0.36</td><td>5 0.14</td><td>۲¢</td><td><lq< td=""><td>185</td><td>۲D</td><td>1.72</td><td>1.8</td><td>0.15</td><td>ŝĹQ</td><td>βĴ</td><td>2.5</td><td>0.7</td><td>0.22 <</td><td>< C</td><td>ΓØ</td><td>4.6</td><td>3.3</td><td>72.6 1</td><td>.14</td></lq<></td></lq<>	1.5	0.05	5 0.36	5 0.14	۲¢	<lq< td=""><td>185</td><td>۲D</td><td>1.72</td><td>1.8</td><td>0.15</td><td>ŝĹQ</td><td>βĴ</td><td>2.5</td><td>0.7</td><td>0.22 <</td><td>< C</td><td>ΓØ</td><td>4.6</td><td>3.3</td><td>72.6 1</td><td>.14</td></lq<>	185	۲D	1.72	1.8	0.15	ŝĹQ	βĴ	2.5	0.7	0.22 <	< C	ΓØ	4.6	3.3	72.6 1	.14
SRE Roquefeuil	14/04/2015	<lq 2.<="" td=""><td>02 0.1</td><td>6 1.85</td><td>5 0.94</td><td>t≺LQ</td><td>۲Ŋ</td><td>56.8</td><td>8 <lq< td=""><td>1.2</td><td>0.2</td><td>7 0.32</td><td>0.14</td><td>۲</td><td><لم</td><td>171</td><td>۲Ŋ</td><td>1.97</td><td>2.1</td><td>0.32</td><td>å.</td><td>ά</td><td>2.6</td><td>0.7</td><td>0.59 <</td><td>×</td><td>۲Q</td><td>4.1</td><td>3.6</td><td>34.7</td><td>0.7</td></lq<></td></lq>	02 0.1	6 1.85	5 0.94	t≺LQ	۲Ŋ	56.8	8 <lq< td=""><td>1.2</td><td>0.2</td><td>7 0.32</td><td>0.14</td><td>۲</td><td><لم</td><td>171</td><td>۲Ŋ</td><td>1.97</td><td>2.1</td><td>0.32</td><td>å.</td><td>ά</td><td>2.6</td><td>0.7</td><td>0.59 <</td><td>×</td><td>۲Q</td><td>4.1</td><td>3.6</td><td>34.7</td><td>0.7</td></lq<>	1.2	0.2	7 0.32	0.14	۲	<لم	171	۲Ŋ	1.97	2.1	0.32	å.	ά	2.6	0.7	0.59 <	×	۲Q	4.1	3.6	34.7	0.7
SRE Roquefeuil	19/05/2015	<lq 0.<="" td=""><td>88 0.1</td><td>8 2.3</td><td>1.11</td><td>1 <lq< td=""><td>۲V</td><td>53.</td><td>1 <lq< td=""><td>1.5</td><td>0.2</td><td>۲V</td><td>0.16</td><td>۲V</td><td>×LQ</td><td>177</td><td>0.7</td><td>2.48</td><td>2.6</td><td>۲o ۲o</td><td>۲Q.</td><td>۲a</td><td>2.3</td><td>0.9</td><td>0.26 <</td><td><lq <<="" td=""><td>ΓO</td><td>6.6</td><td>4</td><td>108 1</td><td>6</td></lq></td></lq<></td></lq<></td></lq>	88 0.1	8 2.3	1.11	1 <lq< td=""><td>۲V</td><td>53.</td><td>1 <lq< td=""><td>1.5</td><td>0.2</td><td>۲V</td><td>0.16</td><td>۲V</td><td>×LQ</td><td>177</td><td>0.7</td><td>2.48</td><td>2.6</td><td>۲o ۲o</td><td>۲Q.</td><td>۲a</td><td>2.3</td><td>0.9</td><td>0.26 <</td><td><lq <<="" td=""><td>ΓO</td><td>6.6</td><td>4</td><td>108 1</td><td>6</td></lq></td></lq<></td></lq<>	۲V	53.	1 <lq< td=""><td>1.5</td><td>0.2</td><td>۲V</td><td>0.16</td><td>۲V</td><td>×LQ</td><td>177</td><td>0.7</td><td>2.48</td><td>2.6</td><td>۲o ۲o</td><td>۲Q.</td><td>۲a</td><td>2.3</td><td>0.9</td><td>0.26 <</td><td><lq <<="" td=""><td>ΓO</td><td>6.6</td><td>4</td><td>108 1</td><td>6</td></lq></td></lq<>	1.5	0.2	۲V	0.16	۲V	×LQ	177	0.7	2.48	2.6	۲o ۲o	۲Q.	۲a	2.3	0.9	0.26 <	<lq <<="" td=""><td>ΓO</td><td>6.6</td><td>4</td><td>108 1</td><td>6</td></lq>	ΓO	6.6	4	108 1	6
SRE Roquefeuil	15/06/2015	<10 (0.8	1 0.85	5 0.77	Z <lq< td=""><td><lq< td=""><td>47.4</td><td>4 <lq< td=""><td>0.7</td><td>∠LQ</td><td>0.1</td><td>i⊲LQ</td><td>۲Q</td><td><lq< td=""><td>147</td><td>۲Q</td><td>1.21</td><td>1.3</td><td><lq <<="" td=""><td>≺LQ</td><td>₹IΩ</td><td>2.3 <</td><td>s s</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3 (</td><td>55.2 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>47.4</td><td>4 <lq< td=""><td>0.7</td><td>∠LQ</td><td>0.1</td><td>i⊲LQ</td><td>۲Q</td><td><lq< td=""><td>147</td><td>۲Q</td><td>1.21</td><td>1.3</td><td><lq <<="" td=""><td>≺LQ</td><td>₹IΩ</td><td>2.3 <</td><td>s s</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3 (</td><td>55.2 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<>	47.4	4 <lq< td=""><td>0.7</td><td>∠LQ</td><td>0.1</td><td>i⊲LQ</td><td>۲Q</td><td><lq< td=""><td>147</td><td>۲Q</td><td>1.21</td><td>1.3</td><td><lq <<="" td=""><td>≺LQ</td><td>₹IΩ</td><td>2.3 <</td><td>s s</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3 (</td><td>55.2 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<>	0.7	∠LQ	0.1	i⊲LQ	۲Q	<lq< td=""><td>147</td><td>۲Q</td><td>1.21</td><td>1.3</td><td><lq <<="" td=""><td>≺LQ</td><td>₹IΩ</td><td>2.3 <</td><td>s s</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3 (</td><td>55.2 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<>	147	۲Q	1.21	1.3	<lq <<="" td=""><td>≺LQ</td><td>₹IΩ</td><td>2.3 <</td><td>s s</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>2.7</td><td>3 (</td><td>55.2 <lc< td=""><td>~</td></lc<></td></lq></td></lq>	≺LQ	₹IΩ	2.3 <	s s	μ	<lq <<="" td=""><td>LQ</td><td>2.7</td><td>3 (</td><td>55.2 <lc< td=""><td>~</td></lc<></td></lq>	LQ	2.7	3 (55.2 <lc< td=""><td>~</td></lc<>	~
SRE Roquefeuil	07/07/2015	<lq 1.<="" td=""><td>07 0.1</td><td>7 1.84</td><td>4 1.1£</td><td>S <lq< td=""><td><lq< td=""><td>59.</td><td>2 <lq< td=""><td>1.4</td><td><lq< td=""><td>0.1</td><td>0.18</td><td>۲Q</td><td><lq< td=""><td>180</td><td><lq< td=""><td>2.31</td><td>2.6</td><td>0.12</td><td><lq< td=""><td>۲Q</td><td>2.5</td><td>0.8</td><td>0.1 <</td><td><lq <<="" td=""><td>٢Q</td><td>9</td><td>4</td><td>115 C</td><td>.92</td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq>	07 0.1	7 1.84	4 1.1£	S <lq< td=""><td><lq< td=""><td>59.</td><td>2 <lq< td=""><td>1.4</td><td><lq< td=""><td>0.1</td><td>0.18</td><td>۲Q</td><td><lq< td=""><td>180</td><td><lq< td=""><td>2.31</td><td>2.6</td><td>0.12</td><td><lq< td=""><td>۲Q</td><td>2.5</td><td>0.8</td><td>0.1 <</td><td><lq <<="" td=""><td>٢Q</td><td>9</td><td>4</td><td>115 C</td><td>.92</td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>59.</td><td>2 <lq< td=""><td>1.4</td><td><lq< td=""><td>0.1</td><td>0.18</td><td>۲Q</td><td><lq< td=""><td>180</td><td><lq< td=""><td>2.31</td><td>2.6</td><td>0.12</td><td><lq< td=""><td>۲Q</td><td>2.5</td><td>0.8</td><td>0.1 <</td><td><lq <<="" td=""><td>٢Q</td><td>9</td><td>4</td><td>115 C</td><td>.92</td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	59.	2 <lq< td=""><td>1.4</td><td><lq< td=""><td>0.1</td><td>0.18</td><td>۲Q</td><td><lq< td=""><td>180</td><td><lq< td=""><td>2.31</td><td>2.6</td><td>0.12</td><td><lq< td=""><td>۲Q</td><td>2.5</td><td>0.8</td><td>0.1 <</td><td><lq <<="" td=""><td>٢Q</td><td>9</td><td>4</td><td>115 C</td><td>.92</td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1.4	<lq< td=""><td>0.1</td><td>0.18</td><td>۲Q</td><td><lq< td=""><td>180</td><td><lq< td=""><td>2.31</td><td>2.6</td><td>0.12</td><td><lq< td=""><td>۲Q</td><td>2.5</td><td>0.8</td><td>0.1 <</td><td><lq <<="" td=""><td>٢Q</td><td>9</td><td>4</td><td>115 C</td><td>.92</td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	0.1	0.18	۲Q	<lq< td=""><td>180</td><td><lq< td=""><td>2.31</td><td>2.6</td><td>0.12</td><td><lq< td=""><td>۲Q</td><td>2.5</td><td>0.8</td><td>0.1 <</td><td><lq <<="" td=""><td>٢Q</td><td>9</td><td>4</td><td>115 C</td><td>.92</td></lq></td></lq<></td></lq<></td></lq<>	180	<lq< td=""><td>2.31</td><td>2.6</td><td>0.12</td><td><lq< td=""><td>۲Q</td><td>2.5</td><td>0.8</td><td>0.1 <</td><td><lq <<="" td=""><td>٢Q</td><td>9</td><td>4</td><td>115 C</td><td>.92</td></lq></td></lq<></td></lq<>	2.31	2.6	0.12	<lq< td=""><td>۲Q</td><td>2.5</td><td>0.8</td><td>0.1 <</td><td><lq <<="" td=""><td>٢Q</td><td>9</td><td>4</td><td>115 C</td><td>.92</td></lq></td></lq<>	۲Q	2.5	0.8	0.1 <	<lq <<="" td=""><td>٢Q</td><td>9</td><td>4</td><td>115 C</td><td>.92</td></lq>	٢Q	9	4	115 C	.92
SRE Roquefeuil	03/08/2015	0.27 0.	88 0	2 2.4	4 1.25	2 <lq< td=""><td><lq< td=""><td>57.:</td><td>Z <lq< td=""><td>1.7</td><td>∠LQ</td><td><lq< td=""><td>0.22</td><td>۲Ö</td><td><lq< td=""><td>181</td><td><lq< td=""><td>2.82</td><td>2.9</td><td><lq <<="" td=""><td>LQ</td><td>₹Ω</td><td>2.3</td><td>0.8<</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>6.6</td><td>4.2</td><td>121 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>57.:</td><td>Z <lq< td=""><td>1.7</td><td>∠LQ</td><td><lq< td=""><td>0.22</td><td>۲Ö</td><td><lq< td=""><td>181</td><td><lq< td=""><td>2.82</td><td>2.9</td><td><lq <<="" td=""><td>LQ</td><td>₹Ω</td><td>2.3</td><td>0.8<</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>6.6</td><td>4.2</td><td>121 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	57.:	Z <lq< td=""><td>1.7</td><td>∠LQ</td><td><lq< td=""><td>0.22</td><td>۲Ö</td><td><lq< td=""><td>181</td><td><lq< td=""><td>2.82</td><td>2.9</td><td><lq <<="" td=""><td>LQ</td><td>₹Ω</td><td>2.3</td><td>0.8<</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>6.6</td><td>4.2</td><td>121 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	1.7	∠LQ	<lq< td=""><td>0.22</td><td>۲Ö</td><td><lq< td=""><td>181</td><td><lq< td=""><td>2.82</td><td>2.9</td><td><lq <<="" td=""><td>LQ</td><td>₹Ω</td><td>2.3</td><td>0.8<</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>6.6</td><td>4.2</td><td>121 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<>	0.22	۲Ö	<lq< td=""><td>181</td><td><lq< td=""><td>2.82</td><td>2.9</td><td><lq <<="" td=""><td>LQ</td><td>₹Ω</td><td>2.3</td><td>0.8<</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>6.6</td><td>4.2</td><td>121 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<>	181	<lq< td=""><td>2.82</td><td>2.9</td><td><lq <<="" td=""><td>LQ</td><td>₹Ω</td><td>2.3</td><td>0.8<</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>6.6</td><td>4.2</td><td>121 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<>	2.82	2.9	<lq <<="" td=""><td>LQ</td><td>₹Ω</td><td>2.3</td><td>0.8<</td><td>μ</td><td><lq <<="" td=""><td>LQ</td><td>6.6</td><td>4.2</td><td>121 <lc< td=""><td>~</td></lc<></td></lq></td></lq>	LQ	₹Ω	2.3	0.8<	μ	<lq <<="" td=""><td>LQ</td><td>6.6</td><td>4.2</td><td>121 <lc< td=""><td>~</td></lc<></td></lq>	LQ	6.6	4.2	121 <lc< td=""><td>~</td></lc<>	~
SRE Roquefeuil	15/09/2015	<lq 0.<="" td=""><td>99 0.1</td><td>8 2.4</td><td>5 1.34</td><td>4 <lq< td=""><td><lq< td=""><td>53</td><td>3 <lq< td=""><td>1.4</td><td>0.0</td><td>3<lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>178</td><td><lq< td=""><td>2.6</td><td>2.8</td><td><lq <<="" td=""><td>, LQ</td><td>۲Q</td><td>2.9</td><td>0.8<</td><td>¢LQ <</td><td><lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq>	99 0.1	8 2.4	5 1.34	4 <lq< td=""><td><lq< td=""><td>53</td><td>3 <lq< td=""><td>1.4</td><td>0.0</td><td>3<lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>178</td><td><lq< td=""><td>2.6</td><td>2.8</td><td><lq <<="" td=""><td>, LQ</td><td>۲Q</td><td>2.9</td><td>0.8<</td><td>¢LQ <</td><td><lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>53</td><td>3 <lq< td=""><td>1.4</td><td>0.0</td><td>3<lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>178</td><td><lq< td=""><td>2.6</td><td>2.8</td><td><lq <<="" td=""><td>, LQ</td><td>۲Q</td><td>2.9</td><td>0.8<</td><td>¢LQ <</td><td><lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	53	3 <lq< td=""><td>1.4</td><td>0.0</td><td>3<lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>178</td><td><lq< td=""><td>2.6</td><td>2.8</td><td><lq <<="" td=""><td>, LQ</td><td>۲Q</td><td>2.9</td><td>0.8<</td><td>¢LQ <</td><td><lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1.4	0.0	3 <lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>178</td><td><lq< td=""><td>2.6</td><td>2.8</td><td><lq <<="" td=""><td>, LQ</td><td>۲Q</td><td>2.9</td><td>0.8<</td><td>¢LQ <</td><td><lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	۲Q	<lq< td=""><td><lq< td=""><td>178</td><td><lq< td=""><td>2.6</td><td>2.8</td><td><lq <<="" td=""><td>, LQ</td><td>۲Q</td><td>2.9</td><td>0.8<</td><td>¢LQ <</td><td><lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>178</td><td><lq< td=""><td>2.6</td><td>2.8</td><td><lq <<="" td=""><td>, LQ</td><td>۲Q</td><td>2.9</td><td>0.8<</td><td>¢LQ <</td><td><lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<></td></lq<>	178	<lq< td=""><td>2.6</td><td>2.8</td><td><lq <<="" td=""><td>, LQ</td><td>۲Q</td><td>2.9</td><td>0.8<</td><td>¢LQ <</td><td><lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq></td></lq></td></lq<>	2.6	2.8	<lq <<="" td=""><td>, LQ</td><td>۲Q</td><td>2.9</td><td>0.8<</td><td>¢LQ <</td><td><lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq></td></lq>	, LQ	۲Q	2.9	0.8<	¢LQ <	<lq <<="" td=""><td>LQ</td><td>8</td><td>4.1</td><td>125 <lc< td=""><td>~</td></lc<></td></lq>	LQ	8	4.1	125 <lc< td=""><td>~</td></lc<>	~
SRE Roquefeuil	05/10/2015	<lq 1.<="" td=""><td>07 0.1</td><td>8 2.3(</td><td>6 1.36</td><td>S∠LQ</td><td><lq< td=""><td>55.1</td><td>5 0.02</td><td>1.5</td><td>0.0</td><td>2<lq< td=""><td>۲Q</td><td>≤LQ</td><td><lq< td=""><td>172</td><td>۲Q</td><td>2.55</td><td>ŝ</td><td><lq <<="" td=""><td>LQ</td><td>٩Q</td><td>2</td><td>0.8 <</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>80</td><td>4.4</td><td>125 C</td><td>.68</td></lq></td></lq></td></lq<></td></lq<></td></lq<></td></lq>	07 0.1	8 2.3(6 1.36	S∠LQ	<lq< td=""><td>55.1</td><td>5 0.02</td><td>1.5</td><td>0.0</td><td>2<lq< td=""><td>۲Q</td><td>≤LQ</td><td><lq< td=""><td>172</td><td>۲Q</td><td>2.55</td><td>ŝ</td><td><lq <<="" td=""><td>LQ</td><td>٩Q</td><td>2</td><td>0.8 <</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>80</td><td>4.4</td><td>125 C</td><td>.68</td></lq></td></lq></td></lq<></td></lq<></td></lq<>	55.1	5 0.02	1.5	0.0	2 <lq< td=""><td>۲Q</td><td>≤LQ</td><td><lq< td=""><td>172</td><td>۲Q</td><td>2.55</td><td>ŝ</td><td><lq <<="" td=""><td>LQ</td><td>٩Q</td><td>2</td><td>0.8 <</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>80</td><td>4.4</td><td>125 C</td><td>.68</td></lq></td></lq></td></lq<></td></lq<>	۲Q	≤LQ	<lq< td=""><td>172</td><td>۲Q</td><td>2.55</td><td>ŝ</td><td><lq <<="" td=""><td>LQ</td><td>٩Q</td><td>2</td><td>0.8 <</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>80</td><td>4.4</td><td>125 C</td><td>.68</td></lq></td></lq></td></lq<>	172	۲Q	2.55	ŝ	<lq <<="" td=""><td>LQ</td><td>٩Q</td><td>2</td><td>0.8 <</td><td>¢la</td><td><lq <<="" td=""><td>LQ</td><td>80</td><td>4.4</td><td>125 C</td><td>.68</td></lq></td></lq>	LQ	٩Q	2	0.8 <	¢la	<lq <<="" td=""><td>LQ</td><td>80</td><td>4.4</td><td>125 C</td><td>.68</td></lq>	LQ	80	4.4	125 C	.68
SRE Roquefeuil	02/11/2015	0.03 0.	96 0.2.	2 2.0	8 1.47	Z≺LQ	<lq< td=""><td>58.</td><td>9 0.0</td><td>7 1.4</td><td>ZI≻</td><td><lq< td=""><td>0.33</td><td>₹Ω</td><td><lq< td=""><td>171</td><td><lq< td=""><td>2.61</td><td>3.1</td><td>0.11</td><td>LQ</td><td>μ</td><td>2.1</td><td>0.8 <</td><td>μ</td><td>≤LQ</td><td>0.06</td><td>80</td><td>4.4</td><td>128 2</td><td>. 59</td></lq<></td></lq<></td></lq<></td></lq<>	58.	9 0.0	7 1.4	ZI≻	<lq< td=""><td>0.33</td><td>₹Ω</td><td><lq< td=""><td>171</td><td><lq< td=""><td>2.61</td><td>3.1</td><td>0.11</td><td>LQ</td><td>μ</td><td>2.1</td><td>0.8 <</td><td>μ</td><td>≤LQ</td><td>0.06</td><td>80</td><td>4.4</td><td>128 2</td><td>. 59</td></lq<></td></lq<></td></lq<>	0.33	₹Ω	<lq< td=""><td>171</td><td><lq< td=""><td>2.61</td><td>3.1</td><td>0.11</td><td>LQ</td><td>μ</td><td>2.1</td><td>0.8 <</td><td>μ</td><td>≤LQ</td><td>0.06</td><td>80</td><td>4.4</td><td>128 2</td><td>. 59</td></lq<></td></lq<>	171	<lq< td=""><td>2.61</td><td>3.1</td><td>0.11</td><td>LQ</td><td>μ</td><td>2.1</td><td>0.8 <</td><td>μ</td><td>≤LQ</td><td>0.06</td><td>80</td><td>4.4</td><td>128 2</td><td>. 59</td></lq<>	2.61	3.1	0.11	LQ	μ	2.1	0.8 <	μ	≤LQ	0.06	80	4.4	128 2	. 59
SRE Roquefeuil	07/12/2015	0.06 0.	78 0	2 2.65	9 1.34	4 <lq< td=""><td>ZLA</td><td>61.4</td><td>4 0.01</td><td>1.5</td><td>۲</td><td>0.15</td><td>3 0.26</td><td>₹Q</td><td><lq< td=""><td>184</td><td>۲D</td><td>2.55</td><td>2.3</td><td><lq <<="" td=""><td>^</td><td>Å</td><td>2.5</td><td>0.7 <</td><td>ζί</td><td><lq <<="" td=""><td>٢Q</td><td>5.9</td><td>3.7</td><td>119 C</td><td>.98</td></lq></td></lq></td></lq<></td></lq<>	ZLA	61.4	4 0.01	1.5	۲	0.15	3 0.26	₹Q	<lq< td=""><td>184</td><td>۲D</td><td>2.55</td><td>2.3</td><td><lq <<="" td=""><td>^</td><td>Å</td><td>2.5</td><td>0.7 <</td><td>ζί</td><td><lq <<="" td=""><td>٢Q</td><td>5.9</td><td>3.7</td><td>119 C</td><td>.98</td></lq></td></lq></td></lq<>	184	۲D	2.55	2.3	<lq <<="" td=""><td>^</td><td>Å</td><td>2.5</td><td>0.7 <</td><td>ζί</td><td><lq <<="" td=""><td>٢Q</td><td>5.9</td><td>3.7</td><td>119 C</td><td>.98</td></lq></td></lq>	^	Å	2.5	0.7 <	ζί	<lq <<="" td=""><td>٢Q</td><td>5.9</td><td>3.7</td><td>119 C</td><td>.98</td></lq>	٢Q	5.9	3.7	119 C	.98
Adoucis	14/10/2014	0.01 1.	49 0.1,	8 1.85	5 4.07	Z <lq< td=""><td><lq< td=""><td>5</td><td>5 <lq< td=""><td>1.5</td><td><lq< td=""><td>0.0</td><td>1. 0.32</td><td>0.1</td><td>0.02</td><td>181</td><td><lq< td=""><td>1.67</td><td>3.8</td><td>0.46</td><td>Ϋ́</td><td>ίΩ</td><td>2.2</td><td>> 0.0</td><td>دلم ۸</td><td><lq <<="" td=""><td>LQ</td><td>4.9</td><td>4.5</td><td>70.1 3</td><td>2.2</td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>5</td><td>5 <lq< td=""><td>1.5</td><td><lq< td=""><td>0.0</td><td>1. 0.32</td><td>0.1</td><td>0.02</td><td>181</td><td><lq< td=""><td>1.67</td><td>3.8</td><td>0.46</td><td>Ϋ́</td><td>ίΩ</td><td>2.2</td><td>> 0.0</td><td>دلم ۸</td><td><lq <<="" td=""><td>LQ</td><td>4.9</td><td>4.5</td><td>70.1 3</td><td>2.2</td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	5	5 <lq< td=""><td>1.5</td><td><lq< td=""><td>0.0</td><td>1. 0.32</td><td>0.1</td><td>0.02</td><td>181</td><td><lq< td=""><td>1.67</td><td>3.8</td><td>0.46</td><td>Ϋ́</td><td>ίΩ</td><td>2.2</td><td>> 0.0</td><td>دلم ۸</td><td><lq <<="" td=""><td>LQ</td><td>4.9</td><td>4.5</td><td>70.1 3</td><td>2.2</td></lq></td></lq<></td></lq<></td></lq<>	1.5	<lq< td=""><td>0.0</td><td>1. 0.32</td><td>0.1</td><td>0.02</td><td>181</td><td><lq< td=""><td>1.67</td><td>3.8</td><td>0.46</td><td>Ϋ́</td><td>ίΩ</td><td>2.2</td><td>> 0.0</td><td>دلم ۸</td><td><lq <<="" td=""><td>LQ</td><td>4.9</td><td>4.5</td><td>70.1 3</td><td>2.2</td></lq></td></lq<></td></lq<>	0.0	1. 0.32	0.1	0.02	181	<lq< td=""><td>1.67</td><td>3.8</td><td>0.46</td><td>Ϋ́</td><td>ίΩ</td><td>2.2</td><td>> 0.0</td><td>دلم ۸</td><td><lq <<="" td=""><td>LQ</td><td>4.9</td><td>4.5</td><td>70.1 3</td><td>2.2</td></lq></td></lq<>	1.67	3.8	0.46	Ϋ́	ίΩ	2.2	> 0.0	دلم ۸	<lq <<="" td=""><td>LQ</td><td>4.9</td><td>4.5</td><td>70.1 3</td><td>2.2</td></lq>	LQ	4.9	4.5	70.1 3	2.2
Adoucis	12/03/2015	0.01 4	4.6 0.3	4 1.67	7 2.95	Z∠LQ	<lq< td=""><td>2</td><td>2 <lq< td=""><td>1.6</td><td>0.00</td><td>5 0.15</td><td>3 0.2</td><td>۲Q</td><td><lq< td=""><td>179</td><td>۲Q</td><td>1.09</td><td>2.6</td><td>0.29</td><td>, LQ</td><td>μ</td><td>2.3</td><td>0.8</td><td>0.12 <</td><td><lq <<="" td=""><td>LQ</td><td>4</td><td>3.4 4</td><td>15.1 2</td><td>. 28</td></lq></td></lq<></td></lq<></td></lq<>	2	2 <lq< td=""><td>1.6</td><td>0.00</td><td>5 0.15</td><td>3 0.2</td><td>۲Q</td><td><lq< td=""><td>179</td><td>۲Q</td><td>1.09</td><td>2.6</td><td>0.29</td><td>, LQ</td><td>μ</td><td>2.3</td><td>0.8</td><td>0.12 <</td><td><lq <<="" td=""><td>LQ</td><td>4</td><td>3.4 4</td><td>15.1 2</td><td>. 28</td></lq></td></lq<></td></lq<>	1.6	0.00	5 0.15	3 0.2	۲Q	<lq< td=""><td>179</td><td>۲Q</td><td>1.09</td><td>2.6</td><td>0.29</td><td>, LQ</td><td>μ</td><td>2.3</td><td>0.8</td><td>0.12 <</td><td><lq <<="" td=""><td>LQ</td><td>4</td><td>3.4 4</td><td>15.1 2</td><td>. 28</td></lq></td></lq<>	179	۲Q	1.09	2.6	0.29	, LQ	μ	2.3	0.8	0.12 <	<lq <<="" td=""><td>LQ</td><td>4</td><td>3.4 4</td><td>15.1 2</td><td>. 28</td></lq>	LQ	4	3.4 4	15.1 2	. 28
Adoucis	14/04/2015	0.01 1.	29 0.1-	4 1.45	5 2.35	0√	V⊳	50.5	9 <lq< td=""><td>1</td><td>0.2</td><td>3 0.2t</td><td>5 0.1</td><td>۲Q</td><td>۲Q</td><td>160</td><td>۲Q</td><td>1.18</td><td>2.5</td><td>۲Q</td><td>۲Q</td><td>ŝLQ</td><td>2.2</td><td>0.7</td><td>0.49 <</td><td><lq <<="" td=""><td>LQ</td><td>3</td><td>3.8</td><td>19.1 <lc< td=""><td>~</td></lc<></td></lq></td></lq<>	1	0.2	3 0.2t	5 0.1	۲Q	۲Q	160	۲Q	1.18	2.5	۲Q	۲Q	ŝLQ	2.2	0.7	0.49 <	<lq <<="" td=""><td>LQ</td><td>3</td><td>3.8</td><td>19.1 <lc< td=""><td>~</td></lc<></td></lq>	LQ	3	3.8	19.1 <lc< td=""><td>~</td></lc<>	~
Adoucis	19/05/2015	<lq 1.<="" td=""><td>38 0.1</td><td>6 1.75</td><td>9 3.12</td><td>2 <lq< td=""><td>×۲۵</td><td>48.</td><td>Z <lq< td=""><td>1.5</td><td>0.15</td><td>ol⊳€</td><td>۶LQ</td><td>۲V</td><td><lq< td=""><td>167</td><td>0.6</td><td>1.4</td><td>3.</td><td>۲o ۲o</td><td>۲o</td><td>¢۲α</td><td>1.9</td><td>0.8</td><td>0.19 <</td><td><lq <<="" td=""><td>ΓQ</td><td>3.6</td><td>4.1</td><td>56.3 <lc< td=""><td>a</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq>	38 0.1	6 1.75	9 3.12	2 <lq< td=""><td>×۲۵</td><td>48.</td><td>Z <lq< td=""><td>1.5</td><td>0.15</td><td>ol⊳€</td><td>۶LQ</td><td>۲V</td><td><lq< td=""><td>167</td><td>0.6</td><td>1.4</td><td>3.</td><td>۲o ۲o</td><td>۲o</td><td>¢۲α</td><td>1.9</td><td>0.8</td><td>0.19 <</td><td><lq <<="" td=""><td>ΓQ</td><td>3.6</td><td>4.1</td><td>56.3 <lc< td=""><td>a</td></lc<></td></lq></td></lq<></td></lq<></td></lq<>	×۲۵	48.	Z <lq< td=""><td>1.5</td><td>0.15</td><td>ol⊳€</td><td>۶LQ</td><td>۲V</td><td><lq< td=""><td>167</td><td>0.6</td><td>1.4</td><td>3.</td><td>۲o ۲o</td><td>۲o</td><td>¢۲α</td><td>1.9</td><td>0.8</td><td>0.19 <</td><td><lq <<="" td=""><td>ΓQ</td><td>3.6</td><td>4.1</td><td>56.3 <lc< td=""><td>a</td></lc<></td></lq></td></lq<></td></lq<>	1.5	0.15	ol⊳€	۶LQ	۲V	<lq< td=""><td>167</td><td>0.6</td><td>1.4</td><td>3.</td><td>۲o ۲o</td><td>۲o</td><td>¢۲α</td><td>1.9</td><td>0.8</td><td>0.19 <</td><td><lq <<="" td=""><td>ΓQ</td><td>3.6</td><td>4.1</td><td>56.3 <lc< td=""><td>a</td></lc<></td></lq></td></lq<>	167	0.6	1.4	3.	۲o ۲o	۲o	¢۲α	1.9	0.8	0.19 <	<lq <<="" td=""><td>ΓQ</td><td>3.6</td><td>4.1</td><td>56.3 <lc< td=""><td>a</td></lc<></td></lq>	ΓQ	3.6	4.1	56.3 <lc< td=""><td>a</td></lc<>	a
Adoucis	15/06/2015	<lq 0.<="" td=""><td>78 0.1</td><td>5 1.82</td><td>2 3.07</td><td>Z<lq< td=""><td>۲V</td><td>52.4</td><td>6 <lq< td=""><td>1.1</td><td>۲V</td><td>≤LQ</td><td>۲Q</td><td>×۲۵</td><td><lq< td=""><td>164</td><td>۲Q</td><td>1.46</td><td>2.6</td><td><lq< td=""><td>LQ</td><td>٩Q</td><td>2.3</td><td>0.7<</td><td>cLQ.</td><td><lq <<="" td=""><td>LQ</td><td>3.7</td><td>3.8</td><td>59.9 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<></td></lq>	78 0.1	5 1.82	2 3.07	Z <lq< td=""><td>۲V</td><td>52.4</td><td>6 <lq< td=""><td>1.1</td><td>۲V</td><td>≤LQ</td><td>۲Q</td><td>×۲۵</td><td><lq< td=""><td>164</td><td>۲Q</td><td>1.46</td><td>2.6</td><td><lq< td=""><td>LQ</td><td>٩Q</td><td>2.3</td><td>0.7<</td><td>cLQ.</td><td><lq <<="" td=""><td>LQ</td><td>3.7</td><td>3.8</td><td>59.9 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<></td></lq<>	۲V	52.4	6 <lq< td=""><td>1.1</td><td>۲V</td><td>≤LQ</td><td>۲Q</td><td>×۲۵</td><td><lq< td=""><td>164</td><td>۲Q</td><td>1.46</td><td>2.6</td><td><lq< td=""><td>LQ</td><td>٩Q</td><td>2.3</td><td>0.7<</td><td>cLQ.</td><td><lq <<="" td=""><td>LQ</td><td>3.7</td><td>3.8</td><td>59.9 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq<>	1.1	۲V	≤LQ	۲Q	×۲۵	<lq< td=""><td>164</td><td>۲Q</td><td>1.46</td><td>2.6</td><td><lq< td=""><td>LQ</td><td>٩Q</td><td>2.3</td><td>0.7<</td><td>cLQ.</td><td><lq <<="" td=""><td>LQ</td><td>3.7</td><td>3.8</td><td>59.9 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<>	164	۲Q	1.46	2.6	<lq< td=""><td>LQ</td><td>٩Q</td><td>2.3</td><td>0.7<</td><td>cLQ.</td><td><lq <<="" td=""><td>LQ</td><td>3.7</td><td>3.8</td><td>59.9 <lc< td=""><td>~</td></lc<></td></lq></td></lq<>	LQ	٩Q	2.3	0.7<	cLQ.	<lq <<="" td=""><td>LQ</td><td>3.7</td><td>3.8</td><td>59.9 <lc< td=""><td>~</td></lc<></td></lq>	LQ	3.7	3.8	59.9 <lc< td=""><td>~</td></lc<>	~
Adoucis	07/07/2015	<lq 0.<="" td=""><td>89 0.1</td><td>5 1.7</td><td>1 3.25</td><td>0×LQ</td><td>ZLA</td><td>55.5</td><td>9 <lq< td=""><td>1.5</td><td>۲</td><td>∠LQ</td><td>۲Q</td><td>۶ľ</td><td><lq< td=""><td>175</td><td>۲D</td><td>1.47</td><td>3.3</td><td>, ∠LQ</td><td>LQ</td><td>₹Ω</td><td>2.2</td><td>0.8 <</td><td>d.</td><td><lq <<="" td=""><td>۲Q</td><td>3.7</td><td>4.2 (</td><td>54.2 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<></td></lq>	89 0.1	5 1.7	1 3.25	0×LQ	ZLA	55.5	9 <lq< td=""><td>1.5</td><td>۲</td><td>∠LQ</td><td>۲Q</td><td>۶ľ</td><td><lq< td=""><td>175</td><td>۲D</td><td>1.47</td><td>3.3</td><td>, ∠LQ</td><td>LQ</td><td>₹Ω</td><td>2.2</td><td>0.8 <</td><td>d.</td><td><lq <<="" td=""><td>۲Q</td><td>3.7</td><td>4.2 (</td><td>54.2 <lc< td=""><td>~</td></lc<></td></lq></td></lq<></td></lq<>	1.5	۲	∠LQ	۲Q	۶ľ	<lq< td=""><td>175</td><td>۲D</td><td>1.47</td><td>3.3</td><td>, ∠LQ</td><td>LQ</td><td>₹Ω</td><td>2.2</td><td>0.8 <</td><td>d.</td><td><lq <<="" td=""><td>۲Q</td><td>3.7</td><td>4.2 (</td><td>54.2 <lc< td=""><td>~</td></lc<></td></lq></td></lq<>	175	۲D	1.47	3.3	, ∠LQ	LQ	₹Ω	2.2	0.8 <	d.	<lq <<="" td=""><td>۲Q</td><td>3.7</td><td>4.2 (</td><td>54.2 <lc< td=""><td>~</td></lc<></td></lq>	۲Q	3.7	4.2 (54.2 <lc< td=""><td>~</td></lc<>	~
Adoucis	03/08/2015	0.03 0.	99 0.1	3 1.(6 1.35	۲¢	۲Q	51	2 0.01	1 1.7	Z_k	0.1	1 0.17	Å	<lq< td=""><td>161</td><td><lq< td=""><td>1.37</td><td>ŝ</td><td>, ≤LQ</td><td>LQ</td><td>₹lΩ</td><td>2.5</td><td>0.7</td><td>0.11 <</td><td><lq <<="" td=""><td>٢Q</td><td>2.1</td><td>3.8</td><td>t7.7 1</td><td>.42</td></lq></td></lq<></td></lq<>	161	<lq< td=""><td>1.37</td><td>ŝ</td><td>, ≤LQ</td><td>LQ</td><td>₹lΩ</td><td>2.5</td><td>0.7</td><td>0.11 <</td><td><lq <<="" td=""><td>٢Q</td><td>2.1</td><td>3.8</td><td>t7.7 1</td><td>.42</td></lq></td></lq<>	1.37	ŝ	, ≤LQ	LQ	₹lΩ	2.5	0.7	0.11 <	<lq <<="" td=""><td>٢Q</td><td>2.1</td><td>3.8</td><td>t7.7 1</td><td>.42</td></lq>	٢Q	2.1	3.8	t7.7 1	.42
Adoucis	15/09/2015	0.01 0.	83 0.1	6 2.24	4 3.95	۲¢	≤LQ	51	3 <lq< td=""><td>1.5</td><td>0.0</td><td>3 0.12</td><td>Z≺LQ</td><td>Å</td><td><lq< td=""><td>178</td><td><lq< td=""><td>1.56</td><td>3.6</td><td>, ≤LQ</td><td>, LQ</td><td>₹IQ</td><td>2.9</td><td>> 0.0</td><td>ď</td><td><lq <<="" td=""><td>٢Q</td><td>4.7</td><td>4.3</td><td>69 C</td><td>.52</td></lq></td></lq<></td></lq<></td></lq<>	1.5	0.0	3 0.12	Z≺LQ	Å	<lq< td=""><td>178</td><td><lq< td=""><td>1.56</td><td>3.6</td><td>, ≤LQ</td><td>, LQ</td><td>₹IQ</td><td>2.9</td><td>> 0.0</td><td>ď</td><td><lq <<="" td=""><td>٢Q</td><td>4.7</td><td>4.3</td><td>69 C</td><td>.52</td></lq></td></lq<></td></lq<>	178	<lq< td=""><td>1.56</td><td>3.6</td><td>, ≤LQ</td><td>, LQ</td><td>₹IQ</td><td>2.9</td><td>> 0.0</td><td>ď</td><td><lq <<="" td=""><td>٢Q</td><td>4.7</td><td>4.3</td><td>69 C</td><td>.52</td></lq></td></lq<>	1.56	3.6	, ≤LQ	, LQ	₹IQ	2.9	> 0.0	ď	<lq <<="" td=""><td>٢Q</td><td>4.7</td><td>4.3</td><td>69 C</td><td>.52</td></lq>	٢Q	4.7	4.3	69 C	.52
Adoucis	05/10/2015	<lq 1.<="" td=""><td>38 0.1</td><td>5 2.1</td><td>2 3.95</td><td>γγ</td><td>۲Q</td><td>53</td><td>3 0.02</td><td>2 1.4</td><td>l≤LQ</td><td>0.12</td><td>Z≺LQ</td><td>۲Q</td><td><lq< td=""><td>174</td><td>۲Q</td><td>1.51</td><td>3.8</td><td>≤LQ</td><td>ŗ</td><td>μ</td><td>2</td><td>> 0.0</td><td>ŝ</td><td>₹Ω</td><td>0.09</td><td>4.7</td><td>4.4 (</td><td>57.5 C</td><td>1</td></lq<></td></lq>	38 0.1	5 2.1	2 3.95	γγ	۲Q	53	3 0.02	2 1.4	l≤LQ	0.12	Z≺LQ	۲Q	<lq< td=""><td>174</td><td>۲Q</td><td>1.51</td><td>3.8</td><td>≤LQ</td><td>ŗ</td><td>μ</td><td>2</td><td>> 0.0</td><td>ŝ</td><td>₹Ω</td><td>0.09</td><td>4.7</td><td>4.4 (</td><td>57.5 C</td><td>1</td></lq<>	174	۲Q	1.51	3.8	≤LQ	ŗ	μ	2	> 0.0	ŝ	₹Ω	0.09	4.7	4.4 (57.5 C	1
Adoucis	02/11/2015	0.01 0.	73 0.1	6 1.82	2 3.5	%∠Ω	۲Q	56.0	6 0.02	2 1.5	ZI≤	0.12	Z≮Q	۲Q	<lq< td=""><td>172</td><td>۲Ŋ</td><td>1.5</td><td>3.9.</td><td>≜LQ</td><td>Ϋ́L</td><td>μ</td><td>2.2</td><td>> 0.0</td><td>ξĹ</td><td>≤LQ</td><td>٢Q</td><td>4.5</td><td>4.6</td><td>59.2 <lc< td=""><td>~</td></lc<></td></lq<>	172	۲Ŋ	1.5	3.9.	≜LQ	Ϋ́L	μ	2.2	> 0.0	ξĹ	≤LQ	٢Q	4.5	4.6	59.2 <lc< td=""><td>~</td></lc<>	~
Adoucis	07/12/2015	0.01 1.	49 0.1.	5 2.55	5 4.05	Q1⊳6	۲Q	90.4	4 0.0	3 1.6	d1∧	0.1	2 0.18	Å	<lq< td=""><td>189</td><td>۲D</td><td>1.59</td><td>3.5</td><td>0.15</td><td>,</td><td>μ</td><td>2.1</td><td>> 0.0</td><td>ď</td><td>0.1 <</td><td>٢Q</td><td>4.4</td><td>4</td><td>71.8 1</td><td>.31</td></lq<>	189	۲D	1.59	3.5	0.15	,	μ	2.1	> 0.0	ď	0.1 <	٢Q	4.4	4	71.8 1	.31

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

1 1	1 0.5	μg/l	zn	5 76.9	1.42	1 1.01	0.61	2 <lq< th=""><th>2<lq< th=""><th>7<lq< th=""><th>5 <lq< th=""><th>2 0.64</th><th>3 <lq< th=""><th>t <lq< th=""><th>1 1.65</th><th>9 0.62</th><th>9 0.5</th><th>5 <lq< th=""><th>7 <lq< th=""><th>)<lq< th=""><th>3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	2 <lq< th=""><th>7<lq< th=""><th>5 <lq< th=""><th>2 0.64</th><th>3 <lq< th=""><th>t <lq< th=""><th>1 1.65</th><th>9 0.62</th><th>9 0.5</th><th>5 <lq< th=""><th>7 <lq< th=""><th>)<lq< th=""><th>3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	7 <lq< th=""><th>5 <lq< th=""><th>2 0.64</th><th>3 <lq< th=""><th>t <lq< th=""><th>1 1.65</th><th>9 0.62</th><th>9 0.5</th><th>5 <lq< th=""><th>7 <lq< th=""><th>)<lq< th=""><th>3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	5 <lq< th=""><th>2 0.64</th><th>3 <lq< th=""><th>t <lq< th=""><th>1 1.65</th><th>9 0.62</th><th>9 0.5</th><th>5 <lq< th=""><th>7 <lq< th=""><th>)<lq< th=""><th>3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	2 0.64	3 <lq< th=""><th>t <lq< th=""><th>1 1.65</th><th>9 0.62</th><th>9 0.5</th><th>5 <lq< th=""><th>7 <lq< th=""><th>)<lq< th=""><th>3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	t <lq< th=""><th>1 1.65</th><th>9 0.62</th><th>9 0.5</th><th>5 <lq< th=""><th>7 <lq< th=""><th>)<lq< th=""><th>3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	1 1.65	9 0.62	9 0.5	5 <lq< th=""><th>7 <lq< th=""><th>)<lq< th=""><th>3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	7 <lq< th=""><th>)<lq< th=""><th>3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>) <lq< th=""><th>3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	3 <lq< th=""><th>7 0.5</th><th>2<lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	7 0.5	2 <lq< th=""><th>2<lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	2 <lq< th=""><th>2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	2 <lq< th=""><th>5 6.7</th><th>Z<lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	5 6.7	Z <lq< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>9.0.97</th><th></th><th>01>€</th><th>3<lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<></th></lq<>								9.0.97		01>€	3 <lq< th=""><th>5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<></th></lq<>	5 <lq< th=""><th>2 <lq< th=""><th>-</th></lq<></th></lq<>	2 <lq< th=""><th>-</th></lq<>	-
	0.1	hg/l	s	366	234	264	300	285	315	30,	305	322	323	264	364	435	496	505	54;	54(548	577	596	407	56.5	61.5	62.5								73.5		84.5	7:	55.5	65.5	Ļ
	0.5	mg/l	si02	4.9	3.7	4.3	4.6	4.5	4.3	4.8	4.6	4.9	5.2	3.7	6.3	7.3	7.4	7.8	7.2	7.6	7.1	7.6	8	6.4	2.5	2.4	2.4								2.3		2.7	2.7	2	2.5	
I col Not Not </td <td>0.5</td> <td>mg/l</td> <td>S04</td> <td>14.9</td> <td>8.7</td> <td>9.9</td> <td>11.6</td> <td>13.8</td> <td>10.2</td> <td>11.6</td> <td>15.6</td> <td>14.6</td> <td>13.6</td> <td>7</td> <td>12.6</td> <td>13.9</td> <td>16.4</td> <td>17.7</td> <td>15.9</td> <td>17.4</td> <td>19.7</td> <td>19.3</td> <td>18.7</td> <td>4.7</td> <td>3.2</td> <td>2.9</td> <td>2.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.8</td> <td></td> <td>3.5</td> <td>3.2</td> <td>2.3</td> <td>2.9</td> <td></td>	0.5	mg/l	S04	14.9	8.7	9.9	11.6	13.8	10.2	11.6	15.6	14.6	13.6	7	12.6	13.9	16.4	17.7	15.9	17.4	19.7	19.3	18.7	4.7	3.2	2.9	2.5								2.8		3.5	3.2	2.3	2.9	
$ \begin{array}{ $	0.05	µg/l	Pb	۲Q	<lq< td=""><td><٢٥</td><td><lq< td=""><td><٢٥</td><td><٢٥</td><td>∠LQ</td><td><lq< td=""><td>₹Ω</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<٢٥	<lq< td=""><td><٢٥</td><td><٢٥</td><td>∠LQ</td><td><lq< td=""><td>₹Ω</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<٢٥	<٢٥	∠LQ	<lq< td=""><td>₹Ω</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	₹Ω	<lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	۲Q	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><لم</td><td><لم</td><td><lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<لم	<لم	<lq< td=""><td><٢٥</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<></td></lq<>	<٢٥	<lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<></td></lq<>								<lq< td=""><td></td><td><لم</td><td>۲Q</td><td>≤LQ</td><td>≤LQ</td><td></td></lq<>		<لم	۲Q	≤LQ	≤LQ	
$ \begin{array}{ $	0.05	mg/l	P04	۲Q	<lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td>۲D</td><td>۲Q</td><td>0.1</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><لم</td><td><لم</td><td>۲D</td><td>۲Q</td><td>0.1</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><لم</td><td><لم</td><td>۲D</td><td>۲Q</td><td>0.1</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<لم	<لم	۲D	۲Q	0.1	<lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	۲Q	<lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	۲Q	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0.09</td><td>0.07</td><td><lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<></td></lq<>	0.09	0.07	<lq< td=""><td><lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<></td></lq<>	<lq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٩L</td><td></td><td><lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<></td></lq<>								٩L		<lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<>	۲Q	۲Q	۲Q	
$ \begin{array}{ $	0.1	μg/l	ïz	0.27	0.23	1.02	0.39	0.17	0.24	0.15	0.15	0.13	0.15	0.21	0.21	1.16	1.54	0.1	0.12	0.1	0.12	<٢٥	0.11	0.22	<٢٥	۲Q	0.58								۲Q		<lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td></td></lq<>	۲Q	۲Q	۲Q	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5	mg/l	Na	2.8	2.3	2.7	2.8	2.7	2.8	2.8	3.1	3.1	3.4	2.1	2.2	2.4	2.4	2.5	2.7	2.7	2.8	2.8	3	2.3	0.6	0.6	0.6								0.6		0.6	٩	٩	0.6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5	mg/l	NO3	3.9	2	1.9	2.5	3	3.1	3.3	4.5	3.8	4.6	2.3	2.8	2.7	2.9	2.9	3.4	3	4.9	3.6	3.4	4.7	2.4	2	1.8								1.9		2.3	2	1.9	2	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.01	mg/l	NO2	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	<lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>۲D</td><td></td><td>۲Q</td><td>۲Q</td><td>۲Q</td><td>۲Q</td><td> </td></lq<>	۲Q	۲Q	۲Q								۲D		۲Q	۲Q	۲Q	۲Q	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.05	ng/l	H4	å	<lq <<="" td=""><td>¢ ₹</td><td><lq .<="" td=""><td>¢ ₹</td><td>¢ ₹</td><td>å</td><td>Å.</td><td>å</td><td>¢.</td><td><lq td="" •<=""><td>, L∆</td><td>, LQ</td><td><lα .<="" td=""><td><lq td="" •<=""><td><lq td="" •<=""><td><lq td="" •<=""><td><ror></ror></td><td>۲Q.</td><td>۲ų</td><td>, LQ</td><td>¢ ₹</td><td>¢.</td><td>₹Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Å.</td><td></td><td>Å.</td><td>Å.</td><td>Ϋ́</td><td>Ϋ́</td><td></td></lq></td></lq></td></lq></td></lα></td></lq></td></lq></td></lq>	¢ ₹	<lq .<="" td=""><td>¢ ₹</td><td>¢ ₹</td><td>å</td><td>Å.</td><td>å</td><td>¢.</td><td><lq td="" •<=""><td>, L∆</td><td>, LQ</td><td><lα .<="" td=""><td><lq td="" •<=""><td><lq td="" •<=""><td><lq td="" •<=""><td><ror></ror></td><td>۲Q.</td><td>۲ų</td><td>, LQ</td><td>¢ ₹</td><td>¢.</td><td>₹Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Å.</td><td></td><td>Å.</td><td>Å.</td><td>Ϋ́</td><td>Ϋ́</td><td></td></lq></td></lq></td></lq></td></lα></td></lq></td></lq>	¢ ₹	¢ ₹	å	Å.	å	¢.	<lq td="" •<=""><td>, L∆</td><td>, LQ</td><td><lα .<="" td=""><td><lq td="" •<=""><td><lq td="" •<=""><td><lq td="" •<=""><td><ror></ror></td><td>۲Q.</td><td>۲ų</td><td>, LQ</td><td>¢ ₹</td><td>¢.</td><td>₹Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Å.</td><td></td><td>Å.</td><td>Å.</td><td>Ϋ́</td><td>Ϋ́</td><td></td></lq></td></lq></td></lq></td></lα></td></lq>	, L∆	, LQ	<lα .<="" td=""><td><lq td="" •<=""><td><lq td="" •<=""><td><lq td="" •<=""><td><ror></ror></td><td>۲Q.</td><td>۲ų</td><td>, LQ</td><td>¢ ₹</td><td>¢.</td><td>₹Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Å.</td><td></td><td>Å.</td><td>Å.</td><td>Ϋ́</td><td>Ϋ́</td><td></td></lq></td></lq></td></lq></td></lα>	<lq td="" •<=""><td><lq td="" •<=""><td><lq td="" •<=""><td><ror></ror></td><td>۲Q.</td><td>۲ų</td><td>, LQ</td><td>¢ ₹</td><td>¢.</td><td>₹Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Å.</td><td></td><td>Å.</td><td>Å.</td><td>Ϋ́</td><td>Ϋ́</td><td></td></lq></td></lq></td></lq>	<lq td="" •<=""><td><lq td="" •<=""><td><ror></ror></td><td>۲Q.</td><td>۲ų</td><td>, LQ</td><td>¢ ₹</td><td>¢.</td><td>₹Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Å.</td><td></td><td>Å.</td><td>Å.</td><td>Ϋ́</td><td>Ϋ́</td><td></td></lq></td></lq>	<lq td="" •<=""><td><ror></ror></td><td>۲Q.</td><td>۲ų</td><td>, LQ</td><td>¢ ₹</td><td>¢.</td><td>₹Γ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Å.</td><td></td><td>Å.</td><td>Å.</td><td>Ϋ́</td><td>Ϋ́</td><td></td></lq>	<ror></ror>	۲Q.	۲ų	, LQ	¢ ₹	¢.	₹Γ								Å.		Å.	Å.	Ϋ́	Ϋ́	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1	ıg∕l ı	Ę	0.8	0.27	0.16	, LQ	, LQ	, LQ	ď	ų,	å	0.1	, LQ	0.27	0.23 +	0.13	0.13	۲Q.	۲Q.	0.13	, LQ	0.27	, LQ	, LQ	0.13	0.25 •								ų,		, v	ų,	d.	d.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5	ng/l	Ag Z	3.3	2.2	2.5	2.9 <	2.9<	2.8<	÷	3.2 <	3.5 <	3.4	2.1 <	3.3	4	4.5	4.8	5	5.3 <	5	5.6 <	5.8	2.9 <	5	4.5	4.6								4.6<		4.8	5.2 <	4.1 <	4.9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1	ug/l r		1.41	0.65	0.87	1.16	1.16	1.06	1.34	1.21	1.26	1.21	0.88	3.49	4.58	5.64	5.87	6.15	6.49	6.24	6.2	6.35	4.03	0.35	0.36	0.35								0.43		0.43	0.45	0.3	0.37	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5	1 l/gu		0.6	Ľ	ğ	0.8	ğ	ğ	ğ	0.5	ğ	Ľ	ĽQ	0.7	0.9	1.3	0.9	0.8	1	1.1	1.1	1	1.6	Ŋ	Ŋ	ğ								ď		ď	ğ	ğ	ğ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	u /	e S	279	254 <	194 <	273	252 <	263 <	270<	273	267 <	265 <	259 <	313	314	358	341	346	336	329	334	354	307	167 <	167 <	162 <								178 <		175 <	181 <	165 <	171 <	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.02	3/1 mg	보	0.02	ď	ď	ø	ď	ď	ď	ď	ď	ď	ď	ď	ď	ø	ď	σ	σ	ď	ď	ď	ď	ď	ď	ď	_	_	_	-	_	_		ď	-	ď	ď	ď	ď	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1	3m /	Fe	0.1	γ ∠	ז> רו	o ≤L	ז> רו	ז> <ו	v ₹	v ∠	۲ ۲	y ⊲L(ע <נ	v ∠L(ע <נ	a <	ע <נ	ע <נ	ע <נ	ע <ו	ע <ו	v ∠	ע <נ	ע <נ	ע <נ	v ∠	_	_	-			_		J √	_	v Z	ς Γ	v ⊂	С С	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1	βm [<u> </u>	0.46).52 <l(< td=""><td>0.62 <l0< td=""><td>).13 <l(< td=""><td>).18 <l(< td=""><td>).24 <l(< td=""><td>).13 <l(< td=""><td>0.12 <l0< td=""><td>).11 <l0< td=""><td>).26 <l0< td=""><td>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<></td></l0<></td></l0<></td></l0<></td></l(<></td></l(<></td></l(<></td></l(<></td></l0<></td></l(<>	0.62 <l0< td=""><td>).13 <l(< td=""><td>).18 <l(< td=""><td>).24 <l(< td=""><td>).13 <l(< td=""><td>0.12 <l0< td=""><td>).11 <l0< td=""><td>).26 <l0< td=""><td>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<></td></l0<></td></l0<></td></l0<></td></l(<></td></l(<></td></l(<></td></l(<></td></l0<>).13 <l(< td=""><td>).18 <l(< td=""><td>).24 <l(< td=""><td>).13 <l(< td=""><td>0.12 <l0< td=""><td>).11 <l0< td=""><td>).26 <l0< td=""><td>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<></td></l0<></td></l0<></td></l0<></td></l(<></td></l(<></td></l(<></td></l(<>).18 <l(< td=""><td>).24 <l(< td=""><td>).13 <l(< td=""><td>0.12 <l0< td=""><td>).11 <l0< td=""><td>).26 <l0< td=""><td>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<></td></l0<></td></l0<></td></l0<></td></l(<></td></l(<></td></l(<>).24 <l(< td=""><td>).13 <l(< td=""><td>0.12 <l0< td=""><td>).11 <l0< td=""><td>).26 <l0< td=""><td>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<></td></l0<></td></l0<></td></l0<></td></l(<></td></l(<>).13 <l(< td=""><td>0.12 <l0< td=""><td>).11 <l0< td=""><td>).26 <l0< td=""><td>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<></td></l0<></td></l0<></td></l0<></td></l(<>	0.12 <l0< td=""><td>).11 <l0< td=""><td>).26 <l0< td=""><td>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<></td></l0<></td></l0<></td></l0<>).11 <l0< td=""><td>).26 <l0< td=""><td>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<></td></l0<></td></l0<>).26 <l0< td=""><td>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<></td></l0<>).31 <lc< td=""><td>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<></td></lc<>).54 <l0< td=""><td>0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<></td></l0<>	0.12 <l0< td=""><td>0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<></td></l0<>	0.1 <l< td=""><td>ע ⊲רנ</td><td>0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></l<>	ע ⊲רנ	0.1 <l0< td=""><td>ע <וכ</td><td>).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<>	ע <וכ).51 <l0< td=""><td>ע <וכ</td><td>S ∠LC</td><td>). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<></td></l0<>	ע <וכ	S ∠LC). 39 <lc< td=""><td>0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<></td></lc<>	0.1 <lc< td=""><td>0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<></td></lc<>	0.2 <lc< td=""><td>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<></td></lc<>). 31 <l(< td=""><td>_</td><td>_</td><td>_</td><td>-</td><td>_</td><td>_</td><td></td><td>0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<></td></l(<>	_	_	_	-	_	_		0.15 <l0< td=""><td>_</td><td>S ∠LC</td><td>0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<></td></l0<>	_	S ∠LC	0.11 <l0< td=""><td>v ₹</td><td>v ₹</td><td></td></l0<>	v ₹	v ₹	
Id 0.01 0.5 0.05 0.05 0.01 0.5 0.01 0.5 0.01 0.5 0.05 <th0.05< th=""> 0.05 0.05<</th0.05<>	0.1	/I µg/	5	D. 14 (0.16 (0.33 (о С	0 7	0 7	0.13 (0.14 (0.15 (0.16 (0.16 (0.22 (0.31 (c	ע <וכ	γ	ג <נ	ں ۲	ע <ונ	vrc v	D.14 (0.1	0.12	0.25 (-	-		-		_		0.11 (_	0.1 <lc< td=""><td>0.11 (</td><td>0.15 <l0< td=""><td>0.13 <l0< td=""><td></td></l0<></td></l0<></td></lc<>	0.11 (0.15 <l0< td=""><td>0.13 <l0< td=""><td></td></l0<></td></l0<>	0.13 <l0< td=""><td></td></l0<>	
IC 0.01 0.5 0.05 0.01 10 0.5 0.01 0.5	0.05	/I µg/	ວັ	0.05	0.07 (0.42 ().35 <l(< td=""><td>ז <רכ</td><td>ז <רכ</td><td>~</td><td>0.09</td><td>0.05 (</td><td>2</td><td>٥ ۲</td><td>0.06 (</td><td>0.52 (</td><td>0.44 <l0< td=""><td>ך <וכ</td><td>¢ <וכ</td><td>ג ⊲נס</td><td>0.08 <lc< td=""><td>ך ⊲רנ</td><td>S S</td><td>٥ ۲</td><td>~</td><td>о ~</td><td>0.21 (</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>с с</td><td>-</td><td>~</td><td>~</td><td></td><td></td><td></td></lc<></td></l0<></td></l(<>	ז <רכ	ז <רכ	~	0.09	0.05 (2	٥ ۲	0.06 (0.52 (0.44 <l0< td=""><td>ך <וכ</td><td>¢ <וכ</td><td>ג ⊲נס</td><td>0.08 <lc< td=""><td>ך ⊲רנ</td><td>S S</td><td>٥ ۲</td><td>~</td><td>о ~</td><td>0.21 (</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>с с</td><td>-</td><td>~</td><td>~</td><td></td><td></td><td></td></lc<></td></l0<>	ך <וכ	¢ <וכ	ג ⊲נס	0.08 <lc< td=""><td>ך ⊲רנ</td><td>S S</td><td>٥ ۲</td><td>~</td><td>о ~</td><td>0.21 (</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>с с</td><td>-</td><td>~</td><td>~</td><td></td><td></td><td></td></lc<>	ך ⊲רנ	S S	٥ ۲	~	о ~	0.21 (-	-	-	-	-	+		с с	-	~	~			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.5	/l µg/	ප	5.3	4.5 (5	5.3 (4.6 <l0< td=""><td>4.5 <l0< td=""><td>4.9 <lc< td=""><td>5.3 (</td><td>5.4 (</td><td>5.7 <lc< td=""><td>3.8 <lc< td=""><td>4.3 (</td><td>4.3 (</td><td>4.2 (</td><td>4.3 <l0< td=""><td>4.2 <lc< td=""><td>4 <lc< td=""><td>4.5 (</td><td>4.2 <lc< td=""><td>4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<>	4.5 <l0< td=""><td>4.9 <lc< td=""><td>5.3 (</td><td>5.4 (</td><td>5.7 <lc< td=""><td>3.8 <lc< td=""><td>4.3 (</td><td>4.3 (</td><td>4.2 (</td><td>4.3 <l0< td=""><td>4.2 <lc< td=""><td>4 <lc< td=""><td>4.5 (</td><td>4.2 <lc< td=""><td>4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<>	4.9 <lc< td=""><td>5.3 (</td><td>5.4 (</td><td>5.7 <lc< td=""><td>3.8 <lc< td=""><td>4.3 (</td><td>4.3 (</td><td>4.2 (</td><td>4.3 <l0< td=""><td>4.2 <lc< td=""><td>4 <lc< td=""><td>4.5 (</td><td>4.2 <lc< td=""><td>4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<>	5.3 (5.4 (5.7 <lc< td=""><td>3.8 <lc< td=""><td>4.3 (</td><td>4.3 (</td><td>4.2 (</td><td>4.3 <l0< td=""><td>4.2 <lc< td=""><td>4 <lc< td=""><td>4.5 (</td><td>4.2 <lc< td=""><td>4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<>	3.8 <lc< td=""><td>4.3 (</td><td>4.3 (</td><td>4.2 (</td><td>4.3 <l0< td=""><td>4.2 <lc< td=""><td>4 <lc< td=""><td>4.5 (</td><td>4.2 <lc< td=""><td>4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<>	4.3 (4.3 (4.2 (4.3 <l0< td=""><td>4.2 <lc< td=""><td>4 <lc< td=""><td>4.5 (</td><td>4.2 <lc< td=""><td>4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<>	4.2 <lc< td=""><td>4 <lc< td=""><td>4.5 (</td><td>4.2 <lc< td=""><td>4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<>	4 <lc< td=""><td>4.5 (</td><td>4.2 <lc< td=""><td>4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<>	4.5 (4.2 <lc< td=""><td>4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<>	4.1 <l0< td=""><td>4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<></td></l0<>	4 <lc< td=""><td>1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<></td></lc<>	1.4 <lc< td=""><td>1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<></td></lc<>	1.1 <lc< td=""><td>0.9</td><td>_</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<></td></lc<>	0.9	_	_	_					1.1 <l0< td=""><td>-</td><td>1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<></td></l0<>	-	1.3 <l0< td=""><td>1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></l0<>	1.2 <lc< td=""><td>0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<></td></lc<>	0.9 <lc< td=""><td>1.1 <lc< td=""><td></td></lc<></td></lc<>	1.1 <lc< td=""><td></td></lc<>	
I I 0.01 0.5 0.05 0.01 0.01 0.05 0.01 0.05 0.01 0.01 0.01 0.05 0.01<	0.01	1 mg	0	0.01	~	0.01	a	۲	۲	0.01	~	0.02	~	2	~	~	ď	2	2	2	2	0.01	~	α	~	~	~	_	_	_	_	_	_		~		0.21	~	~	0.13	
LQ 0.01 0.5 0.05 0.05 0.01 mg/l m	0.5	/l µg/	CG	9.2	32.5 <lc< td=""><td>88.4 (</td><td>36.2 <l0< td=""><td>36.8 <lc< td=""><td>38.9 <lc< td=""><td>39.7</td><td>85.6 <lc< td=""><td>0.8</td><td>6.5 <lc< td=""><td>8.1 <lc< td=""><td>9.8 <lc< td=""><td>.7.6 <lc< td=""><td>3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<>	88.4 (36.2 <l0< td=""><td>36.8 <lc< td=""><td>38.9 <lc< td=""><td>39.7</td><td>85.6 <lc< td=""><td>0.8</td><td>6.5 <lc< td=""><td>8.1 <lc< td=""><td>9.8 <lc< td=""><td>.7.6 <lc< td=""><td>3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<>	36.8 <lc< td=""><td>38.9 <lc< td=""><td>39.7</td><td>85.6 <lc< td=""><td>0.8</td><td>6.5 <lc< td=""><td>8.1 <lc< td=""><td>9.8 <lc< td=""><td>.7.6 <lc< td=""><td>3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	38.9 <lc< td=""><td>39.7</td><td>85.6 <lc< td=""><td>0.8</td><td>6.5 <lc< td=""><td>8.1 <lc< td=""><td>9.8 <lc< td=""><td>.7.6 <lc< td=""><td>3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	39.7	85.6 <lc< td=""><td>0.8</td><td>6.5 <lc< td=""><td>8.1 <lc< td=""><td>9.8 <lc< td=""><td>.7.6 <lc< td=""><td>3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.8	6.5 <lc< td=""><td>8.1 <lc< td=""><td>9.8 <lc< td=""><td>.7.6 <lc< td=""><td>3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<>	8.1 <lc< td=""><td>9.8 <lc< td=""><td>.7.6 <lc< td=""><td>3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<>	9.8 <lc< td=""><td>.7.6 <lc< td=""><td>3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<>	.7.6 <lc< td=""><td>3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<>	3.1 <l0< td=""><td>.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<>	.7.4 <lc< td=""><td>.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.8.1 <lc< td=""><td>.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.6.6 <lc< td=""><td>107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	107 <lc< td=""><td>116 (</td><td>:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	116 (:6.1 <lc< td=""><td>102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	102 <lc< td=""><td>0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.9 <lc< td=""><td>8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	8.7 <lc< td=""><td>8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	8.5 <lc< td=""><td>_</td><td>_</td><td>-</td><td>_</td><td></td><td>_</td><td></td><td>54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<></td></lc<>	_	_	-	_		_		54 <lc< td=""><td>-</td><td>61.8</td><td>3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<></td></lc<>	-	61.8	3.4 <lc< td=""><td>48 <lc< td=""><td>0.2</td><td></td></lc<></td></lc<>	48 <lc< td=""><td>0.2</td><td></td></lc<>	0.2	
LQ 0.01 0.5 0.05 0.05 0.01 $gg/1$ noles <td>10</td> <td>/I mg</td> <td><u>ی</u> ۳</td> <td>~</td> <td>~</td> <td>3</td> <td>8</td> <td>3</td> <td>3</td> <td>~</td> <td>~</td> <td>6 7</td> <td>6</td> <td>8</td> <td>و 10</td> <td>ر 11</td> <td>11</td> <td>11</td> <td>11</td> <td>11</td> <td>2</td> <td>ĩ</td> <td>12</td> <td>2</td> <td>2</td> <td>4</td> <td>4</td> <td>_</td> <td>_</td> <td>_</td> <td>-</td> <td>_</td> <td>_</td> <td></td> <td>~</td> <td>_</td> <td><u>,</u></td> <td>u,</td> <td>~</td> <td>5</td> <td></td>	10	/I mg	<u>ی</u> ۳	~	~	3	8	3	3	~	~	6 7	6	8	و 10	ر 11	11	11	11	11	2	ĩ	12	2	2	4	4	_	_	_	-	_	_		~	_	<u>,</u>	u,	~	5	
I.Q. 0.01 0.5 0.05 <th< td=""><td>1.01</td><td>l mg</td><td>ö</td><td>v ∠</td><td>ہ <ار</td><td>ע <וכ</td><td>31> C</td><td>ע <וכ</td><td>ע <וכ</td><td>¥ <וכ</td><td>ז <רכ</td><td>ז <רכ</td><td>ן <וכ</td><td>ן <וכ</td><td>ך <lc< td=""><td>ך רכ</td><td>3 <lc< td=""><td>ן <וכ</td><td>ע <וכ</td><td>ע <וכ</td><td>J ≤LC</td><td>ע <וכ</td><td>ע <וכ</td><td>V <lc< td=""><td>ע <וכ</td><td>ך רכ</td><td>S ≤LC</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td></td><td>+</td><td>J ∠</td><td>┥</td><td>S ≤LC</td><td>v LC</td><td>SLC ∠</td><td>SLC ∠</td><td> </td></lc<></td></lc<></td></lc<></td></th<>	1.01	l mg	ö	v ∠	ہ <ار	ע <וכ	31> C	ע <וכ	ע <וכ	¥ <וכ	ז <רכ	ז <רכ	ן <וכ	ן <וכ	ך <lc< td=""><td>ך רכ</td><td>3 <lc< td=""><td>ן <וכ</td><td>ע <וכ</td><td>ע <וכ</td><td>J ≤LC</td><td>ע <וכ</td><td>ע <וכ</td><td>V <lc< td=""><td>ע <וכ</td><td>ך רכ</td><td>S ≤LC</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td></td><td>+</td><td>J ∠</td><td>┥</td><td>S ≤LC</td><td>v LC</td><td>SLC ∠</td><td>SLC ∠</td><td> </td></lc<></td></lc<></td></lc<>	ך רכ	3 <lc< td=""><td>ן <וכ</td><td>ע <וכ</td><td>ע <וכ</td><td>J ≤LC</td><td>ע <וכ</td><td>ע <וכ</td><td>V <lc< td=""><td>ע <וכ</td><td>ך רכ</td><td>S ≤LC</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td></td><td>+</td><td>J ∠</td><td>┥</td><td>S ≤LC</td><td>v LC</td><td>SLC ∠</td><td>SLC ∠</td><td> </td></lc<></td></lc<>	ן <וכ	ע <וכ	ע <וכ	J ≤LC	ע <וכ	ע <וכ	V <lc< td=""><td>ע <וכ</td><td>ך רכ</td><td>S ≤LC</td><td>+</td><td>+</td><td>+</td><td>+</td><td>+</td><td></td><td>+</td><td>J ∠</td><td>┥</td><td>S ≤LC</td><td>v LC</td><td>SLC ∠</td><td>SLC ∠</td><td> </td></lc<>	ע <וכ	ך רכ	S ≤LC	+	+	+	+	+		+	J ∠	┥	S ≤LC	v LC	SLC ∠	SLC ∠	
LQ 0.01 0.5 0.65 0.5 </td <td>05 0</td> <td>g/l μg/</td> <td>Be</td> <td>.13 <lc< td=""><td>.05 <lc< td=""><td>.17 <lc< td=""><td>:94 <lc< td=""><td>6.4 <lc< td=""><td>:75 <lc< td=""><td>.74 <lc< td=""><td>.61 <lc< td=""><td>21> 68.</td><td>6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td>	05 0	g/l μg/	Be	.13 <lc< td=""><td>.05 <lc< td=""><td>.17 <lc< td=""><td>:94 <lc< td=""><td>6.4 <lc< td=""><td>:75 <lc< td=""><td>.74 <lc< td=""><td>.61 <lc< td=""><td>21> 68.</td><td>6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.05 <lc< td=""><td>.17 <lc< td=""><td>:94 <lc< td=""><td>6.4 <lc< td=""><td>:75 <lc< td=""><td>.74 <lc< td=""><td>.61 <lc< td=""><td>21> 68.</td><td>6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.17 <lc< td=""><td>:94 <lc< td=""><td>6.4 <lc< td=""><td>:75 <lc< td=""><td>.74 <lc< td=""><td>.61 <lc< td=""><td>21> 68.</td><td>6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	:94 <lc< td=""><td>6.4 <lc< td=""><td>:75 <lc< td=""><td>.74 <lc< td=""><td>.61 <lc< td=""><td>21> 68.</td><td>6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	6.4 <lc< td=""><td>:75 <lc< td=""><td>.74 <lc< td=""><td>.61 <lc< td=""><td>21> 68.</td><td>6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	:75 <lc< td=""><td>.74 <lc< td=""><td>.61 <lc< td=""><td>21> 68.</td><td>6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.74 <lc< td=""><td>.61 <lc< td=""><td>21> 68.</td><td>6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.61 <lc< td=""><td>21> 68.</td><td>6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	21> 68.	6.4 <lc< td=""><td>.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<></td></lc<>	.67 <lc< td=""><td>.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<></td></lc<>	.25 <lc< td=""><td>.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<></td></lc<>	.36 <lc< td=""><td>9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<></td></lc<>	9.5 <l0< td=""><td>0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></l0<>	0.6 <lc< td=""><td>.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.52 <lc< td=""><td>.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.26 <lc< td=""><td>0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.4 <lc< td=""><td>0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.5 <lc< td=""><td>0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.5 <lc< td=""><td>.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.57 <lc< td=""><td>.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.43 <lc< td=""><td>2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	2.2 <lc< td=""><td>.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	.92 <lc< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>+</td><td></td><td>:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	-	-	-	-	-	+		:57 <lc< td=""><td>_</td><td>34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	_	34 <lc< td=""><td>:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<></td></lc<>	:67 <lc< td=""><td>.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<></td></lc<>	.02 <lc< td=""><td>.14 <lc< td=""><td></td></lc<></td></lc<>	.14 <lc< td=""><td></td></lc<>	
Icq 0.01 0.5 0.65 m date $\mu g/l$	0.5 0	ιμ I/Br	<u> </u>	6.79 7	4.42 5	5.77 5	6.14 5	6.48	6.04 5	7.6 5	7.48 6	7.93 6	7.09	6.45 5	8.08 8	9.09	10.9	10.7	11.1 9	11.9 9	13.6 1	13.8 1	13.7 1	12.3 9	1.35 2	1.6	1.3 1								1.94 2	_	1.74 2	1.82 2	1.22 2	1.51 2	
LQ 0.01 0.51 mm date lug/l lug/l lug/l moles 13/10/2014 Ag Al moles 13/10/2014 Ag Al moles 13/10/2014 Ag Al moles 13/10/2015 cl.0 2.05 moles 13/10/2015 cl.0 2.07 moles 14/04/2015 cl.0 1.50 moles 14/04/2015 cl.0 1.50 moles 14/04/2015 cl.0 1.50 moles 14/04/2015 cl.0 1.50 moles 16/05/2015 cl.0 1.50 moles 06/01/2015 cl.0 1.75 moles 06/01/2015 cl.0 1.76 moles 06/01/2015 cl.0 0.75 moles 06/01/2015 cl.0 0.77 moles 06/01/2015 cl.0 0.77 moles 06/01/2015 cl.0 0.77 <t< td=""><td>0.05</td><td>ug/l </td><td>As</td><td>0.07</td><td>0.21</td><td>0.1</td><td>0.09</td><td>0.07</td><td>0.06</td><td>0.06</td><td>0.07</td><td>0.06</td><td>0.06</td><td>0.09</td><td>0.23</td><td>0.1</td><td>0.1</td><td>0.06</td><td>0.06</td><td>0.07</td><td>0.06</td><td>0.06</td><td>0.07</td><td>0.09</td><td>0.23</td><td>0.11</td><td>0.09</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.12</td><td></td><td>0.11</td><td>0.12</td><td>0.11</td><td>0.11</td><td></td></t<>	0.05	ug/l	As	0.07	0.21	0.1	0.09	0.07	0.06	0.06	0.07	0.06	0.06	0.09	0.23	0.1	0.1	0.06	0.06	0.07	0.06	0.06	0.07	0.09	0.23	0.11	0.09								0.12		0.11	0.12	0.11	0.11	
LQ 0.01 m date Ag moles 13/10/2014 4.0 moles 13/10/2015 4.0 moles 06/07/2015 4.0	0.5	µg/I	 	2.06	5.02	3.92	2.85	2.99	2.3	1.56	1.12	1.62	0.79	1.66	3.53	1.2	1.79	0.83	0.93	0.54	0.57	0.81	٩	0.69	2.17	3.35	3.34								3.1		2.48	2.22	2.55	2.52	
IQ IQ mm date 1 moles 13/10/2014 1 moles 13/10/2014 1 moles 13/10/2015 1 moles 14/04/2015 1 moles 10/02/2015 1 moles	0.01	l/Br	8	ď	μ	ζľQ	۲Q	ζľ	ζľ	0.01	μ	ĥ	μ	0.04	ğ	ζĽ	۲Q	ζľ	ζľ	0.03	ζLQ	μ	g	0.04	μ	μ	μ								ď		β	ά	0.06	0.06	
Induction Induction				014	015 <	015 <	015	015 <	015 <	015	015	015	015 <	015	015 <	015 <	015	015 <	015	015	015 <	015 <	015 <	015	015 <	015 <	015 <	015	015	015	015	015	015	015	015	016	016 <	016	016	016	016
m m noles noles noles nole	q		late	13/10/2	12/03/2	14/04/2	19/05/2	16/06/2	2/10/90	34/08/2	16/09/2	01/0/2	33/11/2	38/12/2	12/03/2	14/04/2	19/05/2	16/06/2	2/07/2	34/08/2	2/60/91	01/30	33/11/2	38/12/2	12/03/2	7/04/2	14/04/2	18/05/2	15/06/2	2/02/2	33/08/2	15/09/2	7/10/2	02/11/2	7/12/2	12/01/2	38/02/2	38/03/2	06/04/2	02/05/2	27/05/2
In the second se	Ē	Π		Γ		Ĺ		Ĺ	ſ	ſ		ſ	Ĺ	Ē	Ē	Ť			_	_			Ĺ			Ĺ					1	1		_		1	Ĩ	Ĩ			<u></u>
In the second se																																									
	1		E	oles	noles	noles	roles	noles	noles	oles	noles	noles	roles	roles	illa	illa	illa	illa	illa	illa	illa	illa	illa	illa	queille	queille	Jueille	queille	queille	queille	queille	queille	queille	queille							

Tableau A-7 (suite). Résultats des analyses majeurs et traces des points d'eau suivis

0.5	l/Br	с.	1.69	۲Q	۲Q	۲Q	۲Q	۲Q	μ	0.52	0.54	0.51	0.57	۲Q	μ
0.1	Hg/I	Sr	61.2	40.1 <	51 <	70.8 <	25.4 <	42.9 <	23.3 <	22.7	26.9	12	9.07	12.9 <	7.85 <
0.5	ng/l	102	6.3	4.9	5	5	4.2	4.8	4.3	4.2	5	4.1	4.4	5	4
0.5	mg/l n	504 S	8.2	5.1	6.4	6.1	3.9	5	3.7	4.2	4.9	3.5	2.9	3.7	2.8
0.05	Hg/I	Pb	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>۲Q</td><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>۲Q</td><td>۲Q</td><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<>	۲Q	۲Q	<lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<>	<lq< td=""><td>۲Q</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<>	۲Q	<lq< td=""><td>۲Q</td></lq<>	۲Q
0.05	ng/l	04	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	۲D	ζ	۲Q	0.08	<lq <<="" td=""><td>۲Q</td><td>ζľα</td></lq>	۲Q	ζľα
0.1	ng/l	ī	0.12	0.1	0.18	0.19	<lq td="" •<=""><td><lq td="" •<=""><td>LQ</td><td>0.11</td><td>0.12</td><td>0.15</td><td>0.15</td><td>0.1</td><td>0.17</td></lq></td></lq>	<lq td="" •<=""><td>LQ</td><td>0.11</td><td>0.12</td><td>0.15</td><td>0.15</td><td>0.1</td><td>0.17</td></lq>	LQ	0.11	0.12	0.15	0.15	0.1	0.17
0.5	ng/l	Ra	1.7	1.2	1.3	1.2	0.9	1.1	0.9	1.3	1.4	0.9	0.8	0.9	0.7
0.5	mg/l	NO3	1.6	1.1	1.5	1.8	0.8	1.1	0.8	1.2	1.4	0.9	<lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<>	<lq< td=""><td>۲Q</td></lq<>	۲Q
0.01	mg/l	NO2	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><r< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></r<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><r< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></r<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><r< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></r<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><لم</td><td><r< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></r<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><لم</td><td><r< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></r<></td></lq<></td></lq<>	<lq< td=""><td><لم</td><td><r< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></r<></td></lq<>	<لم	<r< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></r<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>۲Q</td></lq<></td></lq<>	<lq< td=""><td>۲Q</td></lq<>	۲Q
0.05	mg/l	NH4	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><٢٥</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><٢٥</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><٢٥</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><٢٥</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><٢٥</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><٢٥</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>۲Q</td><td><lq< td=""><td><lq< td=""><td><٢٥</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<></td></lq<>	۲Q	<lq< td=""><td><lq< td=""><td><٢٥</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><٢٥</td><td><lq< td=""><td>۲Q</td></lq<></td></lq<>	<٢٥	<lq< td=""><td>۲Q</td></lq<>	۲Q
0.1	µg/I	ЧЧ	0.13	۲Q	۲Q	<lq< td=""><td>0.13</td><td><lq< td=""><td>0.11</td><td>0.18</td><td>0.17</td><td>0.21</td><td>0.2</td><td>0.17</td><td>0.22</td></lq<></td></lq<>	0.13	<lq< td=""><td>0.11</td><td>0.18</td><td>0.17</td><td>0.21</td><td>0.2</td><td>0.17</td><td>0.22</td></lq<>	0.11	0.18	0.17	0.21	0.2	0.17	0.22
0.5	ng/l	Mg	2.8	1.9	2	2.8	1.4	1.8	1.2	1.5	1.6	0.7	0.6	0.8	۲Q
0.1	ug/l h	-	0.53	0.37	0.41	0.44	0.26	0.35	0.28	0.25	0.29	0.29	0.23	0.27	0.28
0.5	mg/l	×	0.7	۲Q	۲Q	۲Q	۲Q	۲Q	۲Q	0.6	0.5	۲Q	۲Q	۲Q	≤LQ
10	g/1 1	03	101	78 •	86 •	114	59 <	76 <	49	41	50	21 <	25 •	32 •	16
0.02	m l/g	Ŧ	ď	ď	ď	ď	ď	ď	ď	q	ď	ď	q	ď	ď
0.1	g/l m	Ĕ	.a ⊲	a ⊲	a ⊲	a ⊲	a ⊲	a ⊲	o. I≥	Ω. I≥	a ⊲	a ⊲	o ≥	a ⊲	₫
0.1	m 1/2	<u>ц</u>	0.15 <l< td=""><td>0.15 <l< td=""><td>0.14 <l< td=""><td>0.12 <l< td=""><td>0.17 <l< td=""><td>0.11 <l< td=""><td>0.14 <l< td=""><td>0.18 <l< td=""><td>0.15 <l< td=""><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.15 <l< td=""><td>0.14 <l< td=""><td>0.12 <l< td=""><td>0.17 <l< td=""><td>0.11 <l< td=""><td>0.14 <l< td=""><td>0.18 <l< td=""><td>0.15 <l< td=""><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.14 <l< td=""><td>0.12 <l< td=""><td>0.17 <l< td=""><td>0.11 <l< td=""><td>0.14 <l< td=""><td>0.18 <l< td=""><td>0.15 <l< td=""><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.12 <l< td=""><td>0.17 <l< td=""><td>0.11 <l< td=""><td>0.14 <l< td=""><td>0.18 <l< td=""><td>0.15 <l< td=""><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.17 <l< td=""><td>0.11 <l< td=""><td>0.14 <l< td=""><td>0.18 <l< td=""><td>0.15 <l< td=""><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.11 <l< td=""><td>0.14 <l< td=""><td>0.18 <l< td=""><td>0.15 <l< td=""><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.14 <l< td=""><td>0.18 <l< td=""><td>0.15 <l< td=""><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.18 <l< td=""><td>0.15 <l< td=""><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.15 <l< td=""><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<>	0.21 <l< td=""><td>0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<></td></l<>	0.2 <l< td=""><td>0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<></td></l<>	0.12 <l< td=""><td>0.15 <l< td=""></l<></td></l<>	0.15 <l< td=""></l<>
0.1	g/I µ	Ū	ΓQ	ΓQ	ΓQ	ΓQ	0.11	0.11	ĽQ	0.1	ΓQ	ΓQ	ΓQ	ΓQ	ď
0.05	g/l μ	。	LQ <	۲ ۲	۲ ۲	۲ ۲	ď	ď	v V	ď	۲ ۲	۲ ۲	۲ ۲	۲ ۲	ď
0.5	μ l/gr	-	1.6<	1.1 <	1.5 <	2 <1	1	1.2 <	0.7 <	1.6 <	1.5 <	0.7 <	0.6 <	0.6<	0.5 <
0.01	g/l m	o p	0.01	LQ	LQ	LQ	LQ	LQ	Ŋ	Ŋ	LQ	LQ	ΓQ	LQ	ď
0.5	ц l/gr	a a	31.3	23.4 <	26.9<	34.6<	16.6 <	23.8<	15.5 <	11.4 <	15.4 <	6.7 <	6.4 <	9.6<	4.5 <
10	n l/gr	03	LQ	Ŋ	Ŋ	Ŋ	Ŋ	Ŋ	Ŋ	ğ	Ŋ	Ŋ	ΓQ	LQ	ď
0.01	l/₿	a	LQ <	LQ <	٨	٨	٨	٨	د م	ğ	٨	٨	<pre>v</pre>	LQ <	ď
0.05	µg/l ∣	Ba	3.47 <	2.2 <	2.48 <	3.39 <	1.56 <	2.17 <	1.43 <	2.32 <	2.49 <	1.36 <	0.9 <	1.08 <	0.91 <
0.5	µg/l	в	2.25	1.48	1.55	1.83	1.06	1.42	1.13	1.32	1.32	0.92	0.66	0.66	0.63
0.05	μg/l	As	0.3	0.24	0.24	0.21	0.24	0.24	0.26	0.21	0.23	0.19	0.2	0.22	0.16
0.5	μg/l	AI	8.08	12.8	10.8	8.64	17.4	11.9	20.1	25.4	18.2	20.4	26.4	20.2	23.3
0.01	μg/l	Ag	<lq< td=""><td>۲Q</td><td>۲Q</td><td>۲Q</td><td>0.04</td><td>0.06</td><td>0.04</td><td>0.02</td><td>0.05</td><td>0.03</td><td>0.03</td><td>0.06</td><td>0.04</td></lq<>	۲Q	۲Q	۲Q	0.04	0.06	0.04	0.02	0.05	0.03	0.03	0.06	0.04
ГQ		date	21/10/2015	12/01/2016	08/02/2016	07/03/2016				06/04/2016	02/05/2016	07/06/2016	06/04/2016	02/05/2016	07/06/2016
		nom	Contes	Contes	Contes	Contes	Contes	Contes	Contes	Pertes Lasset	Pertes Lasset	Pertes Lasset	Lasset (amont)	Lasset (amont)	Lasset (amont)

Tableau A-7 (suite). Résultats des analyses majeurs et traces des points d'eau suivis

Nom	Date_plvt	Nom abrégé	heure	T(°C)	C (µS/Cm	рН	O2(mg/l)	02%	Eh (mV)
Aude Amont Argens	13/10/14 A	ude	15:30	12.4	139	8.11	9.7		157
Sce Lani à Campagna Q= 41/s	13/10/14 S	_Lani	14:00	9.5	248	7.83	9.8		162
Sce Gesse AEP	13/10/14 S	_Gesse	12:30	11.4	560	7.69	10.0		196
Sce Font d'Argens	13/10/14 S	_FtArgens	15:15	8.6	192	7.84	12.0		147
Sce Fajole Qtrop plein 10l/3s	14/10/14 S	Fajole	16:30	8.1	245	7.72	9.8		188
Sce roquefeuille SRE	14/10/14 S	_SRE	16:15	8.1	303	7.79	9.6		172
Sce Adouxe (non exploité)	14/10/14 S	_Adx	15:30	7.7	275	7.66	9.7		188
Sce Adouci	14/10/14 S	_Adouci	14:30	8.8	300	7.86	10.5		171
Sce Ancienne Forge (non exploité)	14/10/14 S	_Forge	14:00	10.3	314	8.3	9.5		131
Sce Argelier 10I en 2.2 sec	14/10/14 S	_Argellier	13:30	9.9	482	775	9.7		135
Hers Aval Step Comus	14/10/14 P	_HersComus	12:05	7.5	312	8.41	9.4		193
Rebenty aval Niort	14/10/14 R	eb_Niort av	12:15	8.6	270	8.46	9.9		115
Rebenty amont Joucou (début défilé)	14/10/14 R	eb_Joucou Am	17:40	10.7	307	8.17	10.3		182
Sce Fout del Frach à Aunat => lettre + résult au ♪	14/10/14 S	_Frach	10:15	8.8	377	7.34	9.4		157
Sce Belfort Qtrop plein 10l/13.8 s	14/10/14 S	_Belf	17:25	9.8	253	7.44	10.5		177
Sce Ladoux Débit 3 l/s	14/10/14 S	_Ladoux	9:15	9.0	226	8	9.7		160
Sce Quirbajou	13/04/14 S	_Quirbajou	11:15	11.6	666		5.3		231
Sce Récent (10l en 41 sec)	13/10/14 S	_Récent	16:30	11.8	341	7.85	11.5		137
Sce TM71 Aude 180µs-T=10.4	13/10/14 T	M71	13:00	9.9	324	7.67	10.3		177
Sce Ginoles (Q<1 l/s?)	13/10/14 S	_Ginoles	17:45	10.8	476	7.21	8.0		176
Pertes Rebounédou	15/10/14 P	_Rebounédou	9:30	9.1	425	7.84	7.3		209
Blau amont confluence sce Labau (QBlau de l'or	15/10/14 B	lau	17:15	12.0	498	7.89	9.2		188
Sce Coume en rive Gauche, Q ensemble source	15/10/14 S	_Coume	11:00	6.6	253	7.72	9.5		190
Hers à l'aval de la source des Esqueilles	15/10/14 H	lers_avalEsqueilles	15:50	10.7	463	7.33	6.6		204
Pertes Hers Amont Prades	15/10/14 P	_Hers(am)	11:30	7.7	298	8.34	9.4		178
Sce Col de la Farge à Mazubl	14/10/14 S	_Farge	11:15	12.2	170	7.32	8.6		190
Pertes de l'Ourza	15/10/14 P	_Ourza	12:45	9.5	326	8.32	9.6		176
Pertes du Basqui	15/10/14 P	_Basqui	14:00	11.2	420	8.27	8.1		179
SOURCE DU BLAU 19/05/2015	19/05/15 B	lau	9:50	10.1	485	7.44		58	281
REBENTY AMONT JOUCOU 18/05/2015	18/05/15 R	eb_Am_Joucou	13:25	9.8	276	8.27		102	171
PERTES DU BALAGUES 18/05/2015	18/05/15 P	_Camurac	14:55	17.4	388	8.1		99	250
PERTES DE L'HERS 18/05/2015	18/05/15 P	_Hers_am	15:25	16.7	265	8.35		105	203.5
PERTES DU REBOUNIDOU 18/05/2015	18/05/15 P	_Rebou	12:35	10.8	405	7.82		89	127
PERTES DES QUERINES 18/05/2015	18/05/15 P	_Queri	12:00	12.9	436	7.67		86	191
SOURCE DES ADOUXES 20/05/2015	20/05/15 S	_Adoux	10:10	7.5	264	7.62		100	258
SOURCE FAJOLLE 19/05/2015	19/05/15 S	_Fajole	18:00	7.2	234	7.87		101	264
SOURCE SRE ROQUEFEUIL 19/05/2015	19/05/15 S	_SRE	17:30	7.9	300	7.87		98	353.5
SOURCE ADOUCIES 19/05/2015	19/05/15 S	_Adouci	16:40	8.1	279	7.83		100	287
SOURCE DE GINOLES 19/05/2015	19/05/15 S	_Ginoles	11:55	10.3	457	7.35		77	302
SOURCE DE CAILLA 19/05/2015	19/05/15 S	_Cailla	13:05	11.8	534	7.66		98	264
BOURDE (AEP) 20/05/2015	20/05/15 S	_Bourde	11:15	8.0	461	7.67		92	275.5
GESSE (AEP) 19/05/2015	19/05/15 S	_Gesse	14:10	10.8	472	8.1		100	265.5
LABEAU (AEP) 19/05/2015	19/05/15 S	_Labeau	10:25	10.0	367	8.32		99	242.5
BELFORT (AEP) 18/05/2015	18/05/15 S	_Belf	14:05	9.6	255	7.48		99	322
SOURCE ANCIENNE FORGE 18/05/2015	18/05/15 S	_aForge	18:50	11.5	345	8.43		100	238
SOURCE TM71 16/06/2015	16/06/15 T	M71	9:50	9.3	305	7.68		97	240
PERTES DE L'OURZA 18/05/2015	18/05/15 P	_Ourza	16:55	16.7	311	8.38		100	211
PERTES DE LA JASSE 18/05/2015	18/05/15 P	_Jasse	11:15	8.2	410	8.26		100	234
PERTES DU BASQUI 18/05/2015	18/05/15 P	_Basqui	16:10	13.2	336	8		101	283
ARGELIER (AEP) 18/05/2015	18/05/15 S	_Argelier	18:05	10.4	474	7.65		92	245
SOURCE FROIDE (AEP) 19/05/2015	19/05/15 S	_Froide	11:30	11.0	467	7.35		75	290
SOURCE ESQUIELLE 07/04/2015	07/04/15 S	_Esquielle	14:25	8.3	270				
ESQUIELLE 07/12/2015	07/12/15 S	_Esquielle							
SOURCE DE L'ESQUEILLE 08/02/2016	08/02/16 S	_Esquielle							
SOURCE DE L'ESQUEILLE 08/03/2016	08/03/16 S	_Esquielle	40.55	0.0					
SOURCE COURENT 07/04/2015	07/04/15 S	_Courent	13:55	8.6	455				
SOURCE PELAIL	07/04/15 S	_Pelail	14:20	8.8	385				
RUISSEAU LASSET 21/10/2015	21/10/15 L	asset	13:45	7.5	73.2				
LASSET PERTES 21/10/2015	21/10/15 P	_Lasset	14:15	8.3	133.6				
SOURCE CONTES 21/10/2015	21/10/15 S	_contes	13:45	9.7	187.4				
GESSE UB-10-2015	06/10/15 S	_Gesse	13:55	11.5	565	7.91	10.0		232
AKGELIEK UD-10-2015	U6/10/15 S	_argemer	15:25	10.1	557	7.9	8.9		255

Tableau A- 8. Paramètres physico-chimiques des campagnes spatiales d'échantillonnage

10	50	Zn	21.7	80.1	38	14.4	38.7	26.2	24.3	32.2	0.5	43.4	24.2	0.5	23.4	0.88	41.5	0.5	304	37.5	107	76.9	65.8	0.5	0.65	0.72	18.2	41.4	0.54	0.5
10	ы ∕ё	Sr	37.8	72.6	509	34.9	94.3	126	52.2	70.1	55.3	418	69.9	86.7	123	243	104	55.8	606	191	67.3	366	346	280	53.3	630	85.3	36	46.9	73.4
0.5	g/I µ	102	11.7	5.6	5.6	6.1	3.3	4.3	3.8	4.5	5.1	5.8	5.2	4.3	4.8	∞	5.7	7.1	6.5	2	5.9	4.9	7.6	5.4	4.8	5.6	3.4	7.7	5.6	5.4
0.1	g/l m	504 5	4.1	4.4	103.8	2	3.6	80	3.3	4.9	5.6	67.9	4.6	8.8	12.6	7.4	2.7	11.3	15.8	6	7.1	14.9	7	18.3	3.5	21.5	4	5.3	5.1	59.7
0.5	m /2	Pb	q	0.36	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
0.5	g/I µ	P04	0.05 <1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.06	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
0.05	%/ س	ïz	0.17	0.35	0.18	0.14	0.1	0.14	0.12	0.1	0.1	0.1	0.21	0.15	0.24	0.1	0.14	0.1	0.32	0.16	0.21	0.27	0.25	0.11	0.1	0.26	0.17	0.14	0.12	0.55
0.05	щ l/g	Na	4.8	-	2	1	0.5	0.8	0.6	0.9	1	1.4	1.2	-	1.4	1.5	1.3	1.9	3.7	2.3	1.9	2.8	2.3	2.8	0.6	1.4	1.3	2.4	1.2	1.3
0.1	m l∕₿	NO3	0.9	2.1	1.7	1.5	2	2.4	2.4	2.2	2.2	0.9	1.5	1.9	2	0.5	20.2	0.8	0.5	4	2.7	3.9	5.6	2.7	2.1	0.8	0.9	5.3	2.8	4.2
0.5	μ μ	NO2	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.5	μ l/gr	NH4	0.05	0.3	0.05	0.06	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.06	0.13	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
0.01	g/l n	ЧU	1.44	0.55	0.18	0.27	0.42	0.47	0.32	0.46	0.11	0.35	1.69	0.32	2.02	0.1	0.65	0.1	1.39	0.3	0.73	0.8	5.47	0.96	0.15	2.08	6.65	0.57	0.72	0.44
0.05	ц l/gr	Mg	1.7	2.2	17.6	0.7	1.8	e	e	3.8	7.2	21.2	1.7	3.3	3.6	0.5	1.7	6.3	4.2	1.6	7.1	3.3	2.3	3.4	0.9	5.5	2.2	2.6	6.9	15.9
0.1	n l/g	::	3.19	2.16	0.96	1.51	1.52	2.84	1.38	1.67	0.77	1.81	0.85	1.97	1.76	0.42	0.9	2.31	8.37	2.61	0.96	1.41	3.11	2.86	1.07	3.75	1.51	3.64	0.55	0.79
0.5	ц l/gr	¥	1.3	0.7	H	0.6	0.5	0.5	0.5	0.5	0.5	0.7	1.6	0.5	0.5	0.9	0.5	0.5	0.5	0.5	0.7	0.6	0.7	0.7	0.5	0.5	0.5	0.7	1.3	1.4
0.1	n l/gr	HCO3	1	150	229	114	150	180	166	181	187	227	185	153	178	233	125	124	425	194	196	279	254	302	149	274	181	88	198	190
0.5	n l/gr	Fe	0.054	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.036	0.02	0.02	0.02	0.022	0.02	0.02	0.02
0.02	n I/Bm	ш	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0.1	Hg/I	G	0.33	1.72	0.2	0.16	0.1	0.43	0.14	0.32	0.1	0.29	0.47	0.1	0.8	0.1	0.22	0.1	0.66	0.44	0.33	0.46	0.4	0.1	0.1	0.1	0.44	0.64	0.18	0.1
0.1	Hg/I	ъ	0.16	0.13	0.1	0.35	0.1	0.1	0.13	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.46	0.1	0.1	0.48	0.18	0.14	0.1	0.1	0.17	0.1	0.1	0.3	0.1	0.1
0.1	mg/l	S	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.09	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
0.05	hg/l	σ	3.5	1.1	e	2	0.7	1.7	1.7	1.3	2	2.1	e	1.6	2.1	2.7	3.2	2.1	4.5	5.8	2.3	5.3	4.8	5.9	2.5	1.9	1.7	1.8	0.8	1.1
0.5	l/gu	cq	μ	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01
0.01	Hg/I r	ca	19.6 <	47.2	89.8	36.5	47.9	58.1	51.9	56	54.2	67.2	60.4	49.3	56.5	76.1	44.3	34.7	138.3	66.7	54.8	89.2	79.9	97.7	49.6	90.1	58.1	26.7	58	62.1
0.5	hg/l	CO3	٩Ľ	۲¢	۲¢	۲¢	۲¢	₹	۲V	۲¢	۲¢	۲V	۲¢	۲V	۲V	۲ç	۶LQ	۲V	۲¢	۲¢	۲¢	۲¢	۲V	۲V	۲V	≤LQ	۲V	۲V	۲¢	₹γ
0.01	hg/l	Be	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.05	μg/l	Ba	9.45	2	8.89	1.98	1	1.49	1.53	4.07	2.06	38.4	6.06	3.23	6.95	0.79	5.9	3.12	10.8	4.92	8.83	7.13	9.4	136	0.69	7.24	4.5	8.5	6.1	4.98
0.5	l/gr	8	3.95	2.3	3.58	1.43	0.81	2.07	1.17	1.85	2.22	3.29	1.77	1.53	2.23	1.33	2.17	2.51	6.74	5.93	2.78	6.79	7.49	9.05	1.38	3.84	0.87	2.23	2.25	1.84
0.05	1/3	As	2.07	0.35	0.17	1.41	0.15	0.21	0.15	0.18	0.27	0.09	0.38	0.24	0.23	0.05	0.17	0.17	0.08	0.09	0.3	0.07	0.15	0.13	0.33	0.08	0.13	0.42	0.31	0.2
0.5	ц Ц	A	21.7	2.05	2.45	3.51	1.6	1.61	1.5	1.49	1.16	1.33	16.1	4.6	5.84	2.09	2.51	1.11	0.99	1.45	2.76	2.06	2.91	1.35	1.31	1.73	3.64	2.21	10.5	9.91
0.01	щ ∕2	Ag	0.01	0.01	0.73	0.17	0.01	0.01	0.01	0.01	0.01	0.1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01
	a,	¥	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14	/14
Ŋ		Date_pl	13/10	13/10	13/10	13/10	14/10	14/10	14/10	14/10	14/10	14/10	14/10	14/10	14/10	14/10	14/10	14/10	13/04	13/10	13/10	13/10	15/10	15/10	15/10	15/10	15/10	14/10	15/10	15/10
		Nom abrégé	Aude	S_Lani	S_Gesse	S_FtArgens	S_Fajole	S_SRE	S_Adx	S_Adouci	S_Forge	S_Argellier	P_HersComus	Reb_Niort av	Reb_Joucou Am	S_Frach	S_Belf	S_Ladoux	S_Quirbajou	S_Récent	TM71	S_Ginoles	P_Rebounédou	Blau	S_Coume	Hers_avalEsqueille	P_Hers(am)	S_Farge	P_Ourza	P_Basqui

Tableau A- 9. Eléments majeurs et traces des campagnes spatiales d'échantillonnages

10	g/1	Zn	0.93	0.61	0.53	ď	0.68	6.65	1.37	0.53	1.01	ď	0.61	0.5	1.19	0.72	0.58	0.95	0.59		ď	1.17	0.53	1.13	0.7	6.7	0.97	ď	ď	8.22	2 5		1.41	1.69	0.64	0.79
10	ц 1/2	Sr	315	116	80.2	75.7 <	324	167	42.8	72.2	108	56.3 <	300	499	326	375	185	96.9	107		43.8 <	76	409	426	331	61.5	73.9	84.9 <	73 <	825	171		42.4	61.2	559	539
0.5	g/l µg	102	3.8	4.8	7.4	3.3	7.2	3.8	3.7	3.1	4	4.1	4.6	7.4	9	8.9	4.6	5.8	8.7	-	5.8	5.4	3.3	6.1	4.9	2.4	2.3	2.7	2.7	6.5	0 4		6.9	6.3	5.5	6.2
0.1	m /9	04 S	43.1	11.1	4.6	3.1	5.7	10.3	2.4	3.1	6.6	3.6	11.6	16.4	12.1	8	14.4	1.9	14		3.9	119	8.7	77	16.4	2.9	2.8	3.5	3.2	22.5	6,2	4 0	00	8.2	106.8	104
0.5	m //	Pb 6	ď	ď	ď	ď	ď	σ	ď	ď	ď	ď	ď	ď	ď	ď	ď	ď	q		ď	ď	ď	ď	ď	ď	ď	ď	ď	a	20.0	è c	ð	ď	ď	a
0.5	3/I με	04	⊿ ∠	Ω <	v ∠	لم م	۲ ۲	1.63 <l< td=""><td>∀ V</td><td>لم م</td><td>⊾ م</td><td>۲ م</td><td>⊿ ∠</td><td>⊿ ∠</td><td>v ⊓</td><td>0.06 <l< td=""><td>⊿ ⊓</td><td>⊿ ∠</td><td>Ω Γ</td><td></td><td>ך ק</td><td>۲ م</td><td>⊾ م</td><td>لم م</td><td>∀ v</td><td>Ω <</td><td>⊿ ⊓</td><td>v ∠</td><td>۲ م</td><td>ך م</td><td></td><td>- -</td><td>√ √</td><td>∀ d</td><td>√ d</td><td>∀ d</td></l<></td></l<>	∀ V	لم م	⊾ م	۲ م	⊿ ∠	⊿ ∠	v ⊓	0.06 <l< td=""><td>⊿ ⊓</td><td>⊿ ∠</td><td>Ω Γ</td><td></td><td>ך ק</td><td>۲ م</td><td>⊾ م</td><td>لم م</td><td>∀ v</td><td>Ω <</td><td>⊿ ⊓</td><td>v ∠</td><td>۲ م</td><td>ך م</td><td></td><td>- -</td><td>√ √</td><td>∀ d</td><td>√ d</td><td>∀ d</td></l<>	⊿ ⊓	⊿ ∠	Ω Γ		ך ק	۲ م	⊾ م	لم م	∀ v	Ω <	⊿ ⊓	v ∠	۲ م	ך م		- -	√ √	∀ d	√ d	∀ d
0.05	/۳ /۱	Ч	0.42 <u< td=""><td>0.31 <u< td=""><td>0.6 <l< td=""><td>0.29 <l< td=""><td>1.03 <u< td=""><td>0.9</td><td>0.21 <u< td=""><td>0.2 <u< td=""><td>0.26 <u< td=""><td>0.19 <l< td=""><td>0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></l<></td></l<></td></u<></td></u<>	0.31 <u< td=""><td>0.6 <l< td=""><td>0.29 <l< td=""><td>1.03 <u< td=""><td>0.9</td><td>0.21 <u< td=""><td>0.2 <u< td=""><td>0.26 <u< td=""><td>0.19 <l< td=""><td>0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></l<></td></l<></td></u<>	0.6 <l< td=""><td>0.29 <l< td=""><td>1.03 <u< td=""><td>0.9</td><td>0.21 <u< td=""><td>0.2 <u< td=""><td>0.26 <u< td=""><td>0.19 <l< td=""><td>0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></l<></td></l<>	0.29 <l< td=""><td>1.03 <u< td=""><td>0.9</td><td>0.21 <u< td=""><td>0.2 <u< td=""><td>0.26 <u< td=""><td>0.19 <l< td=""><td>0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></l<>	1.03 <u< td=""><td>0.9</td><td>0.21 <u< td=""><td>0.2 <u< td=""><td>0.26 <u< td=""><td>0.19 <l< td=""><td>0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<>	0.9	0.21 <u< td=""><td>0.2 <u< td=""><td>0.26 <u< td=""><td>0.19 <l< td=""><td>0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<>	0.2 <u< td=""><td>0.26 <u< td=""><td>0.19 <l< td=""><td>0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<></td></l<></td></u<></td></u<>	0.26 <u< td=""><td>0.19 <l< td=""><td>0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<></td></l<></td></u<>	0.19 <l< td=""><td>0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<></td></l<>	0.39 <l< td=""><td>1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<></td></l<>	1.54 <u< td=""><td>0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<></td></u<>	0.34 <l< td=""><td>0.39</td><td>0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></l<>	0.39	0.27 <u< td=""><td>0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<>	0.17 <u< td=""><td>0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<>	0.18 <u< td=""><td></td><td>0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<></td></u<>		0.24 <u< td=""><td>5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<></td></u<>	5.94 <u< td=""><td>0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<></td></u<>	0.6 <u< td=""><td>0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<></td></u<>	0.22 <u< td=""><td>0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<></td></u<>	0.4 <u< td=""><td>Ω ⊲∟</td><td>0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<></td></u<>	Ω ⊲∟	0.1 <l< td=""><td>ں ⊳</td><td>⊐ ⊳</td><td>0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<></td></l<>	ں ⊳	⊐ ⊳	0.18 <l< td=""><td>1/ 80 0</td><td></td><td>0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<></td></l<>	1/ 80 0		0.15 <u< td=""><td>0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<></td></u<>	0.12 <u< td=""><td>J 2</td><td>⊐ ∿</td></u<>	J 2	⊐ ∿
0.05	/I µg	- P	1.8	1.3	10.8	1.2	2.5	7.6	0.7	~	0.9	0.8	2.8	2.4	1.9	e	2	1.3	4.8	-	1.1	1.4	2.3	1.4	2.9	0.6 <l(< td=""><td>0.6</td><td>0.6 <l(< td=""><td>v ∼Lc</td><td>1.5</td><td>4</td><td>i c</td><td>2.4</td><td>1.7</td><td>2 <10</td><td>1.6 <l< td=""></l<></td></l(<></td></l(<>	0.6	0.6 <l(< td=""><td>v ∼Lc</td><td>1.5</td><td>4</td><td>i c</td><td>2.4</td><td>1.7</td><td>2 <10</td><td>1.6 <l< td=""></l<></td></l(<>	v ∼Lc	1.5	4	i c	2.4	1.7	2 <10	1.6 <l< td=""></l<>
0.1	// mg	03	1	2	0.8	0.8	5.3	23.1	2.3	2 <l0< td=""><td>2.3</td><td>1.9</td><td>2.5</td><td>2.9</td><td>0.5</td><td>1.5</td><td>0.8</td><td>15.6</td><td>5.5</td><td></td><td>2</td><td>2.1</td><td>0.5</td><td>0.9</td><td>2.2</td><td>2</td><td>1.9</td><td>2.3</td><td>2 <l0< td=""><td>0.9</td><td>_</td><td>, (, (</td><td>2.2</td><td>1.6</td><td>1.5</td><td>0.8</td></l0<></td></l0<>	2.3	1.9	2.5	2.9	0.5	1.5	0.8	15.6	5.5		2	2.1	0.5	0.9	2.2	2	1.9	2.3	2 <l0< td=""><td>0.9</td><td>_</td><td>, (, (</td><td>2.2</td><td>1.6</td><td>1.5</td><td>0.8</td></l0<>	0.9	_	, (, (2.2	1.6	1.5	0.8
0.5	/l mg	02 N	~	~	10.0	~	0.04	60.0	~	~	~	~	~	~	~	~	~	10.0	~		~	~	~	~	~	~	~	~	~	~	7	; ,	~	~	~	~
0.5	/l mg	44	۲ ۲	۲ ۲	~	v ∠LO	~	0.1	₹ v	v ∠LC	¢ ₹	ہ ح	۲ ۲	۲ ۲	₹ F	v ∠LC	v ∠LC	-	v 10	-	₹ V	ہ ح	¢ ₹	v ∠LO	v ₹	۲ ۲	¢ ≺FC	۲ ۲	γ ا	40	7	; ;	√ √	₹ ₹	4	V V V
0.01	mg	۲ ا	0.22 <lc< td=""><td>0.79 <lc< td=""><td>5.23 <lc< td=""><td>7.22 <lc< td=""><td>0.83 <lc< td=""><td>6.39</td><td>ÇC ↓</td><td>~FC</td><td>↓ C</td><td>SLC LC</td><td>~FC</td><td>0.13 <lc< td=""><td>0.13 <lc< td=""><td>0.11 <lc< td=""><td>0.25 <lc< td=""><td>~FC</td><td>0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.79 <lc< td=""><td>5.23 <lc< td=""><td>7.22 <lc< td=""><td>0.83 <lc< td=""><td>6.39</td><td>ÇC ↓</td><td>~FC</td><td>↓ C</td><td>SLC LC</td><td>~FC</td><td>0.13 <lc< td=""><td>0.13 <lc< td=""><td>0.11 <lc< td=""><td>0.25 <lc< td=""><td>~FC</td><td>0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	5.23 <lc< td=""><td>7.22 <lc< td=""><td>0.83 <lc< td=""><td>6.39</td><td>ÇC ↓</td><td>~FC</td><td>↓ C</td><td>SLC LC</td><td>~FC</td><td>0.13 <lc< td=""><td>0.13 <lc< td=""><td>0.11 <lc< td=""><td>0.25 <lc< td=""><td>~FC</td><td>0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	7.22 <lc< td=""><td>0.83 <lc< td=""><td>6.39</td><td>ÇC ↓</td><td>~FC</td><td>↓ C</td><td>SLC LC</td><td>~FC</td><td>0.13 <lc< td=""><td>0.13 <lc< td=""><td>0.11 <lc< td=""><td>0.25 <lc< td=""><td>~FC</td><td>0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.83 <lc< td=""><td>6.39</td><td>ÇC ↓</td><td>~FC</td><td>↓ C</td><td>SLC LC</td><td>~FC</td><td>0.13 <lc< td=""><td>0.13 <lc< td=""><td>0.11 <lc< td=""><td>0.25 <lc< td=""><td>~FC</td><td>0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	6.39	ÇC ↓	~FC	↓ C	SLC LC	~FC	0.13 <lc< td=""><td>0.13 <lc< td=""><td>0.11 <lc< td=""><td>0.25 <lc< td=""><td>~FC</td><td>0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.13 <lc< td=""><td>0.11 <lc< td=""><td>0.25 <lc< td=""><td>~FC</td><td>0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.11 <lc< td=""><td>0.25 <lc< td=""><td>~FC</td><td>0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.25 <lc< td=""><td>~FC</td><td>0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	~FC	0.12 <lc< td=""><td>-</td><td>0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	-	0.72 <lc< td=""><td>0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	0.47 <lc< td=""><td>12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	12 <lc< td=""><td>~FC</td><td>²</td><td>0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<></td></lc<>	~FC	²	0.13 <lc< td=""><td>~FC</td><td>~FC</td><td>~FC</td><td>0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<></td></lc<>	~FC	~FC	~FC	0.15 <lc< td=""><td>27 / 10</td><td></td><td>0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<></td></lc<>	27 / 10		0.17 <lc< td=""><td>0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<></td></lc<>	0.13 <lc< td=""><td>97 97</td><td>~FC</td></lc<>	97 97	~FC
05 0	/BH	S ع	5.7 0	3	2.1 6	2	2.2 9	3	2.8 <lq< td=""><td>1.5 <lq< td=""><td>2.6 <lq< td=""><td>3 <lq< td=""><td>2.9 <lq< td=""><td>4.5 0</td><td>4.3 0</td><td>12 0</td><td>2.1 0</td><td>1.9 <lq< td=""><td>7.6 C</td><td>-</td><td>5.9 0</td><td>2.3 C</td><td>1.9 1</td><td>0.3 <lq< td=""><td>3.3 <lq< td=""><td>4.5 C</td><td>4.6 <lq< td=""><td>4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	1.5 <lq< td=""><td>2.6 <lq< td=""><td>3 <lq< td=""><td>2.9 <lq< td=""><td>4.5 0</td><td>4.3 0</td><td>12 0</td><td>2.1 0</td><td>1.9 <lq< td=""><td>7.6 C</td><td>-</td><td>5.9 0</td><td>2.3 C</td><td>1.9 1</td><td>0.3 <lq< td=""><td>3.3 <lq< td=""><td>4.5 C</td><td>4.6 <lq< td=""><td>4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2.6 <lq< td=""><td>3 <lq< td=""><td>2.9 <lq< td=""><td>4.5 0</td><td>4.3 0</td><td>12 0</td><td>2.1 0</td><td>1.9 <lq< td=""><td>7.6 C</td><td>-</td><td>5.9 0</td><td>2.3 C</td><td>1.9 1</td><td>0.3 <lq< td=""><td>3.3 <lq< td=""><td>4.5 C</td><td>4.6 <lq< td=""><td>4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3 <lq< td=""><td>2.9 <lq< td=""><td>4.5 0</td><td>4.3 0</td><td>12 0</td><td>2.1 0</td><td>1.9 <lq< td=""><td>7.6 C</td><td>-</td><td>5.9 0</td><td>2.3 C</td><td>1.9 1</td><td>0.3 <lq< td=""><td>3.3 <lq< td=""><td>4.5 C</td><td>4.6 <lq< td=""><td>4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	2.9 <lq< td=""><td>4.5 0</td><td>4.3 0</td><td>12 0</td><td>2.1 0</td><td>1.9 <lq< td=""><td>7.6 C</td><td>-</td><td>5.9 0</td><td>2.3 C</td><td>1.9 1</td><td>0.3 <lq< td=""><td>3.3 <lq< td=""><td>4.5 C</td><td>4.6 <lq< td=""><td>4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4.5 0	4.3 0	12 0	2.1 0	1.9 <lq< td=""><td>7.6 C</td><td>-</td><td>5.9 0</td><td>2.3 C</td><td>1.9 1</td><td>0.3 <lq< td=""><td>3.3 <lq< td=""><td>4.5 C</td><td>4.6 <lq< td=""><td>4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	7.6 C	-	5.9 0	2.3 C	1.9 1	0.3 <lq< td=""><td>3.3 <lq< td=""><td>4.5 C</td><td>4.6 <lq< td=""><td>4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	3.3 <lq< td=""><td>4.5 C</td><td>4.6 <lq< td=""><td>4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4.5 C	4.6 <lq< td=""><td>4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4.8 <lq< td=""><td>5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	5.2 <lq< td=""><td>5.3 C</td><td>- - -</td><td>1 L 1 L 1 C</td><td>2.5</td><td>2.8</td><td>.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<></td></lq<>	5.3 C	- - -	1 L 1 L 1 C	2.5	2.8	.7.1 <lq< td=""><td>2.1 <lq< td=""></lq<></td></lq<>	2.1 <lq< td=""></lq<>
0.1 C	/gm	Σ	0.8	57	36	1.4	69	82	1.1	27	48	1.4	16	64	24	15	8	55	36		85	49 1	44	77 2	28	36	43	43	45	71	2	5 4	0.5	23	.78	1.5 2
0.5	l/Bu		0.8	0.7 1.	0.8		0.8 2	2.2 2.	0.5	-	0.7 2	.6	0.8 1	1.3 5.	0.7 3.	1.3 1.	0.8	0.9	L.5 4		L.7 0.	L.5 1.	0.5 2	1.9	1.9	0	Ö	0	Ő	4	с и	2	- 0	0.7	0.5	_
0.1 (mg/	3 K	63	54	56 0	57 <lq< td=""><td>43 (</td><td>23</td><td>09</td><td>43 <lq< td=""><td>4</td><td>67 0</td><td>73 (</td><td>28</td><td>22</td><td>60</td><td>11</td><td>34 (</td><td>88</td><td></td><td>86</td><td>54</td><td>51 (</td><td>25 (</td><td>74 0</td><td>67 <lq< td=""><td>78 <lq< td=""><td>75 <lq< td=""><td>81 <lq< td=""><td>63 <lq< td=""><td>ę</td><td>5 5</td><td>8</td><td>5</td><td>3</td><td>23 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	43 (23	09	43 <lq< td=""><td>4</td><td>67 0</td><td>73 (</td><td>28</td><td>22</td><td>60</td><td>11</td><td>34 (</td><td>88</td><td></td><td>86</td><td>54</td><td>51 (</td><td>25 (</td><td>74 0</td><td>67 <lq< td=""><td>78 <lq< td=""><td>75 <lq< td=""><td>81 <lq< td=""><td>63 <lq< td=""><td>ę</td><td>5 5</td><td>8</td><td>5</td><td>3</td><td>23 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	4	67 0	73 (28	22	60	11	34 (88		86	54	51 (25 (74 0	67 <lq< td=""><td>78 <lq< td=""><td>75 <lq< td=""><td>81 <lq< td=""><td>63 <lq< td=""><td>ę</td><td>5 5</td><td>8</td><td>5</td><td>3</td><td>23 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	78 <lq< td=""><td>75 <lq< td=""><td>81 <lq< td=""><td>63 <lq< td=""><td>ę</td><td>5 5</td><td>8</td><td>5</td><td>3</td><td>23 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	75 <lq< td=""><td>81 <lq< td=""><td>63 <lq< td=""><td>ę</td><td>5 5</td><td>8</td><td>5</td><td>3</td><td>23 <lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	81 <lq< td=""><td>63 <lq< td=""><td>ę</td><td>5 5</td><td>8</td><td>5</td><td>3</td><td>23 <lq< td=""></lq<></td></lq<></td></lq<>	63 <lq< td=""><td>ę</td><td>5 5</td><td>8</td><td>5</td><td>3</td><td>23 <lq< td=""></lq<></td></lq<>	ę	5 5	8	5	3	23 <lq< td=""></lq<>
5	mg/l	HCC	2	-	-	H	51 2	2	-	4	-	Ē	2	m	2	2	2	-	93 1		-		2	2	2	Ē	-	-	-	2				Ā	7	2
0 0	1/ mg/l	Fe	Å	Å	Å	Å	0.0	å	Å	Å	۲	Å	Ϋ́	₹Q	Å	Å	Å	å	0.0		Å	Å	Å	Å	Å	Å	Å	Å	Å	Å	7	ý ç	å	Å	å	Å
0.1 0.0	/l mg/	п	.25 <lq< td=""><td>.15 <lq< td=""><td>0.5 <lq< td=""><td>.15 <lq< td=""><td>.19 <lq< td=""><td>.17 <lq< td=""><td>.13 <lq< td=""><td>Z ∠LQ</td><td>.16 <lq< td=""><td>ג ⊲נמ</td><td>.13 <lq< td=""><td>0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.15 <lq< td=""><td>0.5 <lq< td=""><td>.15 <lq< td=""><td>.19 <lq< td=""><td>.17 <lq< td=""><td>.13 <lq< td=""><td>Z ∠LQ</td><td>.16 <lq< td=""><td>ג ⊲נמ</td><td>.13 <lq< td=""><td>0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.5 <lq< td=""><td>.15 <lq< td=""><td>.19 <lq< td=""><td>.17 <lq< td=""><td>.13 <lq< td=""><td>Z ∠LQ</td><td>.16 <lq< td=""><td>ג ⊲נמ</td><td>.13 <lq< td=""><td>0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.15 <lq< td=""><td>.19 <lq< td=""><td>.17 <lq< td=""><td>.13 <lq< td=""><td>Z ∠LQ</td><td>.16 <lq< td=""><td>ג ⊲נמ</td><td>.13 <lq< td=""><td>0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.19 <lq< td=""><td>.17 <lq< td=""><td>.13 <lq< td=""><td>Z ∠LQ</td><td>.16 <lq< td=""><td>ג ⊲נמ</td><td>.13 <lq< td=""><td>0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.17 <lq< td=""><td>.13 <lq< td=""><td>Z ∠LQ</td><td>.16 <lq< td=""><td>ג ⊲נמ</td><td>.13 <lq< td=""><td>0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.13 <lq< td=""><td>Z ∠LQ</td><td>.16 <lq< td=""><td>ג ⊲נמ</td><td>.13 <lq< td=""><td>0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	Z ∠LQ	.16 <lq< td=""><td>ג ⊲נמ</td><td>.13 <lq< td=""><td>0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ג ⊲נמ	.13 <lq< td=""><td>0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.1 <lq< td=""><td>a ≜</td><td>.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	a ≜	.29 <lq< td=""><td>.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.14 <lq< td=""><td>Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	Z <lq< td=""><td>.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.11 <lq< td=""><td>-</td><td>.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	-	.24 <lq< td=""><td>.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.17 <lq< td=""><td>0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.2 <lq< td=""><td>0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.1 <lq< td=""><td>.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.14 <lq< td=""><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0.2 <lq< td=""><td>.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	.15 <lq< td=""><td>ג ⊲נמ</td><td>.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	ג ⊲נמ	.11 <lq< td=""><td>.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<></td></lq<>	.11 <lq< td=""><td></td><td></td><td>0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<></td></lq<>			0.2 <lq< td=""><td>.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<></td></lq<>	.15 <lq< td=""><td>å</td><td>Z∼LQ</td></lq<>	å	Z∼LQ
0.1	g/l µg	ი ე	o q	o q	0.13	o q	0.1 0	0.16 2	0.1 0	d A	o Q	Q A	o q	đ	v V	o q	o q	0.22 <l(< td=""><td>o q</td><td></td><td>o q</td><td>o q</td><td>q</td><td>q</td><td>o Q</td><td>0.12</td><td>0.11 0</td><td>0.1 <l0< td=""><td>0.11 0</td><td>o q</td><td></td><td>7 (</td><td>q</td><td>o q</td><td>d A</td><td>Q ALC</td></l0<></td></l(<>	o q		o q	o q	q	q	o Q	0.12	0.11 0	0.1 <l0< td=""><td>0.11 0</td><td>o q</td><td></td><td>7 (</td><td>q</td><td>o q</td><td>d A</td><td>Q ALC</td></l0<>	0.11 0	o q		7 (q	o q	d A	Q ALC
0.1	βμ /Br	8	0.39 <l< td=""><td>0.22 <l< td=""><td>0.25 (</td><td>0.23 <l< td=""><td>0.36</td><td>0.4</td><td>0.2</td><td>0.18 <</td><td>0.21 <l< td=""><td>0.19 <l< td=""><td>0.35 <1</td><td>0.44 <l< td=""><td>0.34 <l< td=""><td>0.28 <1</td><td>0.27 <l< td=""><td>0.17 (</td><td>0.21 <l< td=""><td></td><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.22 <l< td=""><td>0.25 (</td><td>0.23 <l< td=""><td>0.36</td><td>0.4</td><td>0.2</td><td>0.18 <</td><td>0.21 <l< td=""><td>0.19 <l< td=""><td>0.35 <1</td><td>0.44 <l< td=""><td>0.34 <l< td=""><td>0.28 <1</td><td>0.27 <l< td=""><td>0.17 (</td><td>0.21 <l< td=""><td></td><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.25 (0.23 <l< td=""><td>0.36</td><td>0.4</td><td>0.2</td><td>0.18 <</td><td>0.21 <l< td=""><td>0.19 <l< td=""><td>0.35 <1</td><td>0.44 <l< td=""><td>0.34 <l< td=""><td>0.28 <1</td><td>0.27 <l< td=""><td>0.17 (</td><td>0.21 <l< td=""><td></td><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.36	0.4	0.2	0.18 <	0.21 <l< td=""><td>0.19 <l< td=""><td>0.35 <1</td><td>0.44 <l< td=""><td>0.34 <l< td=""><td>0.28 <1</td><td>0.27 <l< td=""><td>0.17 (</td><td>0.21 <l< td=""><td></td><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.19 <l< td=""><td>0.35 <1</td><td>0.44 <l< td=""><td>0.34 <l< td=""><td>0.28 <1</td><td>0.27 <l< td=""><td>0.17 (</td><td>0.21 <l< td=""><td></td><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.35 <1	0.44 <l< td=""><td>0.34 <l< td=""><td>0.28 <1</td><td>0.27 <l< td=""><td>0.17 (</td><td>0.21 <l< td=""><td></td><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.34 <l< td=""><td>0.28 <1</td><td>0.27 <l< td=""><td>0.17 (</td><td>0.21 <l< td=""><td></td><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.28 <1	0.27 <l< td=""><td>0.17 (</td><td>0.21 <l< td=""><td></td><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<></td></l<>	0.17 (0.21 <l< td=""><td></td><td>0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<></td></l<>		0.21 <l< td=""><td>0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<></td></l<>	0.2 <l< td=""><td>0.33 <1</td><td>0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<></td></l<>	0.33 <1	0.24 <l< td=""><td>0.35 <1</td><td>g</td><td>g</td><td>g</td><td>g</td><td>Ŋ</td><td>۲ 2</td><td>, . , .</td><td>g ∀</td><td>d</td><td>d</td><td>0.05 <l< td=""></l<></td></l<>	0.35 <1	g	g	g	g	Ŋ	۲ 2	, . , .	g ∀	d	d	0.05 <l< td=""></l<>
0.05	n l∕Bµ	σ	3.1	1.9	22.4	1.9	4.4	∞	1.6	0.6	1.5	1.3	5.3	4.2	3.9	3.1	4.5	m	3.4		0.7	0.6	4.1	1.7	S	1.1 <	1.1	1.3 <	1.2 <	2.4 <	Г С		2.8 <	1.6 <	2.3 <	1.7
0.5	mg/l	Cd	0.01	Å	0.01	Å	Å	0.01	å	Å	٩	٩	Å	Å	Å	å	å	0.01	Å		۲D	0.02	٩	Å	Å	Å	0.02	0.21	Å	Å۵	000	50	å	0.01	0.01	0.01
0.01	hg/l	പ	89.8	49.1	50.1	49.3	76.6	73.8	47.3	43.9	53.1	48.7	86.2	113.1	87.4	73	68.9	43.6	55.8		52.6	40	79.8	62.9	85.9	48.7	54	51.8	53.4	87.1	1 1		18.5	31.3	89.5	81
0.5	hg/l	CO3	Å	Å	Å	۲Ŋ	Å	å	Å	Å	٩	Å	å	Å	Å	Å	Å	Å	Å		۲Č	Å	٩	å	Å	Å	Å	Å	Å	۲ç	C V	y q	å	å	å	Å
0.01	hg/l	Be	₹	₹	₹	۲¢	₹	Å	₹	₹	₹	₹	₹	å	₹	Å	Å	Å	₹		۲Q	₹	₹	₹	₹	₹	Å	₹	۲Q	γ	2	y q	Å	Å	Å	γ
0.05	hg/l	Ba	5 18.9	l 4.91	8.23	t 4.17	5 7.88	5 7.05	2.129	5 0.65	l 1.11	3.12	t 5.94	9.5	1 7.82	11.6	35.3	6.53	3.2		3 6.86	3.02	5 7.74	36.8	6.61	5 2.2	t 2.57	t 2.34	2.67	6.33	37 6		5.75	3.47	8.67	3 42.7
0.5	hg/l	8	s 5.46	l 2.1	L 1.73	5 0.94	1.95	3 13.6	1.52	3 0.85	3 2.31	5 1.75	9 6.14	10.5	8.81	7 3.71	9 5.78	t 2.51	3.65		3.76	1.2	3.6	1 3.5	6.55	۱ 1.6	1.94	l 1.74	2 1.82	5.27	۲ د ا		3.05	3 2.25	3.55	7 3.26
5 0.05	hg/l	As	1 0.05	2 0.21	1 6.11	1 0.16	7 0.21	5 0.85	3 0.15	1 0.15	3 0.15	3 0.16	5 0.05	9 0.1	1 0.05	3 0.7	1 0.05	3 0.14	5 0.27		9 0.36	7 0.2	9 0.15	9 0.1	2 0.05	5 0.11	1 0.12	3 0.11	2 0.12	al>€	120		1 0.25	3.0.5	1 0.15	7 0.07
0.5	hg/l	A	1.21	6.2	7.91	3.54	2.57	6.36	1.65	1.51	0.85	1.35	2.85	1.75	2.4	2.75	2.24	2.75	2.1£		10.5	19.7	4.55	1.25	2.82	3.35	3.1	2.48	2.22	1.05	0 70		9.4	8.05	2.11	0.7;

Tableau A-9 (suite). Eléments majeurs et traces des campagnes spatiales d'échantillonnages

18/05/15 <LQ 18/05/15 <LQ 18/05/15 <LQ 19/05/15 <LQ 19/05/15 <LQ 07/04/15 <LQ 07/04/15 <LQ 08/03/16 <LQ 08/03/16 <LQ 08/03/15 <LQ

16/06/15

07/04/15 21/10/15 <LQ 21/10/15 <LQ 21/10/15 <LQ 06/10/15 <LQ 06/10/15 <LQ

Date_plvt

Nom abrégé Blau Reb_Am_Joucou

g

Nom abrégé	Date plvt	n°Labo	87Sr/86Sr	2s(m)	Réf. Labo	dD ‰	d180 ‰
		6 4 6 6	0.7454.60	0.000044	445.405	vs SMOW	vs SMOW
Aude	13/10/14	Sr103	0.715168	0.000011	14E 485	-70.5	-10.3
S_Lani	13/10/14	Sr104	0.711749	0.000013	14E 486	-73.6	-10.7
S_Gesse	13/10/14	Sr105	0.707949	0.000009	14E 487	-63.7	-9.6
S_FtArgens	13/10/14	Sr106	0.712467	0.000008	14E 488	-73.2	-10.7
S_Fajole	14/10/14	Sr107	0.711595	0.000005	14E 489	-73.3	-10.8
S_SRE	14/10/14	Sr108	0.711907	0.000007	14E 490	-71.0	-10.5
S_Adx	14/10/14	Sr109	0.711925	0.000009	14E 491	-72.2	-10.7
S_Adduci	14/10/14	Sr110 Sr111	0.712000	0.000010	14E 492	-70.9	-10.4
S_FUIGE	14/10/14	51111	0.710751	0.000009	14E 495	-09.0	-10.1
	14/10/14	Sr112 Sr112	0.706656	0.000006	14E 494	-07.0	-9.7
Peh Niortay	14/10/14	Sr113	0.711388	0.000000	14E 495	-70.3	-10.4
Reb Jourou Am	14/10/14	Sr115	0.711989	0.000008	14E 490	-70.9	-10.4
S Frach	14/10/14	Sr115	0.710008	0.000007	1/1E //98	-64.5	-10.5
S Belf	14/10/14	Sr117	0.708243	0.000007	1/F /199	-61.1	-9.0
S Ladoux	14/10/14	Sr112	0.700230	0.000000	14E 500	-62.5	-9.4
S Quirbaiou	13/04/14	Sr110	0.711531	0.000007	14E 500	-02.5	-9.4
S Récent	13/10/14	Sr120	0.707863	0.000000	14E 501	-57.5	-8.7
TM71	13/10/14	Sr120	0.707005	0.000005	14E 502	-69.5	-10.1
S Ginoles	13/10/14	Sr121	0.707651	0.000000	14E 505	-56.0	-8.5
P Rebounédou	15/10/14	Sr123	0.707651	0.000007	14E 505	-59.2	-8.9
Blau	15/10/14	Sr124	0.707000	0.000007	14E 500	-53.1	-8.2
S Courre	15/10/14	Sr125	0.707521	0.000008	14E 509	-71 4	-10.5
Hers avalEsqueilles	15/10/14	Sr127	0.707743	0.000008	14E 505	-58.3	-8.7
P Hers(am)	15/10/14	Sr120	0 712034	0.000000	14E 510	-70.3	-10.5
S Farge	14/10/14	Sr120	0.716193	0.000007	14E 511	-67.2	-10.0
P Ourza	15/10/14	Sr131	0.713582	0.000006	14F 513	-74.8	-10.8
P Basqui	15/10/14	Sr132	0.717838	0.000007	14F 514	-70.8	-10.3
Blau	19/05/15	Sr244	0.707822	0.000008	15F 147	-56.1	-8.6
Reb Am Joucou	18/05/15	Sr245	0.709996	0.000009	15E 148	-70.6	-10.4
P Camurac	18/05/15	Sr246	0.714908	0.00008	15E 149	-67.9	-9.8
P Hers am	18/05/15	Sr247	0.712040	0.000009	15E 150	-70.2	-10.5
P Rebou	18/05/15	Sr248	0.707683	0.000007	15E 151	-58.7	-8.9
– P Queri	18/05/15	Sr249	0.709403	0.000007	15E 152	-68.0	-9.9
S Adoux	20/05/15	Sr250	0.711908	0.000007	15E 153	-72.5	-10.7
S Fajole	19/05/15	Sr251	0.711550	0.000009	15E 154	-73.2	-10.9
S SRE	19/05/15	Sr252	0.711891	0.000008	15E 155	-71.8	-10.5
S_Adouci	19/05/15	Sr253	0.712096	0.000009	15E 156	-72.3	-10.7
S_Ginoles	19/05/15	Sr254	0.707655	0.000007	15E 157	-56.3	-8.6
S_Cailla	19/05/15	Sr255	0.707571	0.000007	15E 158	-60.2	-9.0
S_Bourde	20/05/15	Sr256	0.707630	0.00008	15E 159	-56.5	-8.8
S_Gesse	19/05/15	Sr257	0.708355	0.000007	15E 160	-64.2	-9.6
S_Labeau	19/05/15	Sr258	0.707903	0.000007	15E 161	-53.1	-8.2
S_Belf	18/05/15	Sr259	0.708372	0.00008	15E 162	-61.1	-9.1
S_aForge	18/05/15	Sr260	0.716117	0.000007	15E 163	-68.6	-10.0
TM71	16/06/15	Sr266	0.710016	0.00008	15E 183	-69.0	-10.1
P_Ourza	18/05/15	Sr261	0.713693	0.000009	15E 164	-72.8	-10.5
P_Jasse	18/05/15	Sr262	0.707854	0.000006	15E 165	-54.5	-8.4
P_Basqui	18/05/15	Sr263	0.720098	0.000009	15E 166	-71.3	-10.6
S_Argelier	18/05/15	Sr264	0.708816	0.000007	15E 167	-67.1	-9.8
S_Froide	19/05/15	Sr265	0.707661	0.000008	15E 168	-56.8	-8.7
S_Esquielle	07/04/15	Sr408	0.708525	0.00008	15E 365	-65.4	-9.8
S_Esquielle	07/12/15	Sr428	0.708520	0.000005	16E 008	-62.7	-9.5
S_Esquielle	08/02/16	Sr450	0.708406	0.00008	16E 061	-63.8	-9.5
S_Esquielle	08/03/16	Sr463	0.708749	0.000006	16E 105	-63.7	-9.5
S_Courent	07/04/15	Sr409	0.707690	0.000006	15E 366	-58.8	-8.8
S_Pelail	07/04/15				15E 367	-58.8	-8.8
Lasset	21/10/15	Sr410	0.715566	0.000009	15E 368	-63.4	-9.5
P_Lasset	21/10/15	Sr411	0.711285	0.000009	15E 369	-62.5	-9.4
S_Contes	21/10/15	Sr412	0.709905	0.000007	15E 370	-61.3	-9.3
S_Gesse	06/10/15	Sr363	0.707954	0.000007		-63.9	-9.6
S_Argellier	06/10/15	Sr364	0.708927	0.000009		-67.1	-9.7

Tableau A- 10. Signatures isotopiques (strontium et stables de l'eau) mesurées lors des campagnes spatiales d'échantillonnages

LQ=	0.01	0.5	0.05	0.5	0.05	0.01	10	0.5	0.01	0.5	0.05	0.1	0.1	0.1	0.02	10	0.5	0.1	0.5	0.1	0.05	D.01	0.5	0.5	0.1 0	.05 0	.05	0.5 (.5 (0.1 0	ы
	μg/l	hg/l	µg/I	µg/l	µg/l	ug/l r	ng/l r	ng/l L	ug/l n	3μ /gr	3/I με	3/I με	1/1 m	g/l m	∖g/l m	ig/l m _i	g/l με	s/1 m	g/I µg	/l mg	:/l mg	/I mg	/l mg/	l µg/l	l mg/	l µg/l	l mg/	l mg/l	μg/l	µg/I	
Nom	Ag	AI	As	В	Ва	Be	CO3	ca	Cd	ū	Co	ъ	cn	ш	Fe	1003	¥	Li Li	VIg I	VIN N	H4 N	02 N	D3 N	a a	ii PG	04 PI	b sc	14 SIC	12 SI	Zn	
Blau	0.01	30.1	0.18	35.8	62.2	< LQ	< LQ	62.2	< LQ	2	< LQ	0.2	1.33	< LQ C).054	184	< LQ	0.19	1.3	1.15 <	V	Ŋ	1.4	2.2 0.	.32 <	ΓQ 0.	.05	3.4 2	.4 1	28 23	ŝ
Gravier	0.01	26.2	0.15	38.8	103	< LQ	< LQ	69.7	< LQ	1.8	0.06	0.18	2.65	< LQ	0.08	207	< LQ	0.49	1	1.07 <	<pre>> V</pre>	LQ <	ΓQ	2.3 0.	- 29	LQ 0.	.06	3.9 2	2 6.	14 18	5
Rebounidou_(P)	0.02	93.5	0.2	37.7	95.2	0.01	< LQ	29.7	0.01	4.1	0.06	0.3	2.31	<lq c<="" td=""><td>).145</td><td>89</td><td>0.7</td><td>0.2</td><td>0.8</td><td>0.83</td><td>וס</td><td>.01</td><td>1.3</td><td>3.7 (</td><td>> 9.0</td><td>.0 Г</td><td>14</td><td>2.8</td><td>1.8 76</td><td>.5 21</td><td>ε</td></lq>).145	89	0.7	0.2	0.8	0.83	וס	.01	1.3	3.7 (> 9.0	.0 Г	14	2.8	1.8 76	.5 21	ε
Coumeilles_(P)	0.02	160	0.33	38.5	89.1	0.02	< LQ	24.5	< LQ	1.6	0.09	0.42	2.56	< LQ C).236	70	<pre></pre>	0.26	0.7	1.55 <	 LQ 	ľ	0.7	2.1 0	0.7 <	D D	0.3	3.4 2		11 12	2
Fontestorbes	0.01	17.4	0.15	14.1	35.7	< LQ	< LQ	69.7	< LQ	2.7	< LQ	0.21	1.11	< LQ	0.03	216	< LQ	0.23	3	0.57 <	<pre>> </pre>	LQ	1.5	1.8 0.	.27 <	LQ <1	, LQ	4.8	96 97	.7 11	2
Ginoles	0.01	8.17	0.12	7.93	46.9	< LQ	< LQ	84.7	< LQ	4.5	< LQ	0.14	1.16	< LQ	< LQ	250	< LQ	0.47	1.5	0.15 <	<pre>> </pre>	LQ	1.2	2.6 0.	.26 <	LQ <1	۲Q	5.1 3	.5 2	04 12	5
Fontmaure	0.02	10.5	0.15	7.75	55.3	< LQ	< LQ	73.9	< LQ	3.1	< LQ	0.17	2.75	< LQ C	0.021	216	< LQ	0.48	2.3	0.67 <	LQ	LQ	1.9	1.8 0.	.22 <	LQ <1	LQ 1(0.8		12 11	00
																															1

Nom	n°Labo	⁸⁷ Sr/ ⁸⁶ Sr	2σ(m)	n°Labo	DATE	δD ‰ vs SMOW	δ ¹⁸ O ‰ vs SMOW
Blau	Sr139	0.707900	0.000007	18E 130	21/02/2018	-59.6	-9.1
Gravier	Sr140	0.707702	0.000008	18E 131	21/02/2018	-56.7	-8.6
Rebounidou_(P)	Sr141	0.708042	0.000006	18E 132	21/02/2018	-65.9	-9.6
Coumeilles_(P)	Sr142	0.707989	0.000008	18E 133	21/02/2018	-63.3	-9.4
Fontestorbes	Sr143	0.708114	0.000006	18E 134	21/02/2018	-56.8	-8.7
Ginoles	Sr144	0.707669	0.000006	18E 135	21/02/2018	-53.3	-8.3
Fontmaure	Sr145	0.707720	0.000005	18E 136	21/02/2018	-55.1	-8.6

Tableau A- 12. Signatures isotopiques (strontium et stables de l'eau) mesurées lors de la crue du 21/02/2018

Figure A- 20. Evolutions temporelles des signatures isotopiques (δ^{18} O, 87 Sr/ 86 Sr) et des concentrations du système calco-carbonique (HCO3, Ca, Mg et Sr) de la source des Adouxes

Figure A- 21. Evolutions temporelles des signatures isotopiques (δ^{18} O, 87 Sr/ 86 Sr) et des concentrations du système calco-carbonique (HCO3, Ca, Mg et Sr) de la source des Adoucis

Figure A- 22. Evolutions temporelles des signatures isotopiques (δ^{18} O, 87 Sr/ 86 Sr) et des concentrations du système calco-carbonique (HCO3, Ca, Mg et Sr) de la source « SRE »

Figure A- 23. Evolutions temporelles des signatures isotopiques (δ^{18} O, 87 Sr/ 86 Sr) et des concentrations du système calco-carbonique (HCO3, Ca, Mg et Sr) de la source du Moulin (Fajolle).

Figure A- 24. Evolution des rapports ⁸⁷Sr/⁸⁶Sr des eaux en fonction des signatures isotopiques en oxygène 18.

Figure A- 25. Evolution des teneurs en sulfate en fonction de la signature isotopique de l'eau (d18O)¹.

¹ Les données du forage de la Gare à Quillan sont celles acquises par M. Yvroux en 1998 (teneurs en sulfate) et en 2003 (signature isotopique de l'eau). Pour les sulfates, c'est la valeur moyenne qui est reportée : 696 ±53 (n=6)

Annexe 7

Résultats complémentaires de l'approche de modélisation Gardenia

Paramètres du Modèle Gardenia Adouxes			
Superficie	km2	8.84	Optimisé
Débit_extér	m3/s	0	fixé
Correction globale des Pluies :	%	12.48	Optimisé
Correction globale d'ETP :	%	9.27	Optimisé
Capacité de la réserve superf. progress. :	mm	268.64	Optimisé
Hauteur Ruissellement = Percolation :	mm	18.8477	Optimisé
Temps de demi-montée du débit souterrain :	mois	4.2466	Optimisé
Temps de demi-Tarissement Rapide :	mois	1.3403	Optimisé
Correction de température :	°C	-2.24	Optimisé
Rétention de la neige :	%	5	fixé
Évaporation de la neige :	%	0	fixé
Correction de fonte par la pluie :	%	0	fixé
Seuil de fonte naturelle de neige :	°C	0	Optimisé
Coefficient de fonte de la neige :	mm/deg*jour	2.5	Optimisé
Fonte de la neige par le sol :	mm/jour	0.5	fixé

Figure A- 26. Paramètres du modèle Gardenia de la sources des Adouxes

Bilan h	ydrogéo	ologique	(mm) :	Modèle	Garder	nia Sce	des Ado	uxes	Bilan h	ydrogéo	ologique	e (mm) :	Modèle	Garder	nia Sce o	des Ado	ouxes
	2010	2011	2012	2013	2014	2015	2016	2017		2010	2011	2012	2013	2014	2015	2016	2017
Somme	e de Pré	cipitatio	n (Plui	e+Neige)				Somme	e de Qs	simul						
1	138	42	78	278	272	138	107	174	1	45	32	81	102	105	56	75	13
2	68	152	75	243	151	237	212	40	2	42	22	35	88	92	61	90	22
3	100	112	85	122	129	88	103	207	3	82	80	56	113	162	178	90	77
4	94	60	250	136	123	114	157	68	4	70	56	87	247	278	90	91	74
5	225	115	166	284	165	101	126	117	5	112	37	119	176	108	65	75	41
6	161	176	77	104	145	142	81	72	6	86	56	74	162	78	57	55	33
7	82	131	68	142	198	104	93	66	_/	55	41	38	63	/9	33	29	20
8	74	55	69	72	96	96	50	56	0	33	34	12	39	24	29	20	10
9	89	82	116	101	57	63	68	124	10	27	16	17	20	25	17	11	12
10	174	62	136	68	47	74	81	50	11	45	52	27	54	18	22	19	22
11	154	207	131	490	185	330	144	163	12	47	64	54	50	66	71	17	25
12	28	198	160	57	150	13	9	177	Somme	e de Q_r	apid_H						
Somme	e de ETF	२							1	36	22	69	91	93	46	64	7
1	21	27	35	26	25	38	27	25	2	33	14	25	76	80	50	79	17
2	26	36	36	20	27	23	34	37	3	71	70	45	99	146	164	76	69
3	57	51	70	42	58	61	54	70	4	58	45	76	229	258	75	77	64
4	75	88	55	71	78	89	80	93	5	99	26	105	156	87	50	61	30
5	77	103	110	70	97	106	95	90	6	71	45	59	141	61	44	41	23
6	99	101	132	113	129	122	107	109	_/	41	30	24	45	62	21	1/	11
- /	129	112	103	141	102	108	115	100	8	21	12	10	24	23	19	- 11	6
0	59	71	54	76	92	94 62	90	57	10	10	13	10	14	1/	10	5	6
10	51	51	46	54	59	48	41	52	11	37	44	21	45	9	15	13	17
11	26	32	32	23	26	38	30	40	12	38	55	46	40	56	63	11	19
12	30	28	30	37	32	33	35	30	Somme	e de Qis	sout G1						
Somme	de Pl_	effic							1	10	10	12	11	12	11	11	6
1	29	20	25	116	140	80	72	10	2	9	8	11	12	13	10	12	5
2	72	39	47	43	96	80	104	63	3	11	9	11	14	16	14	14	8
3	87	122	51	204	216	195	92	129	4	12	11	11	17	20	16	14	11
4	54	22	150	254	259	64	97	28	5	14	11	14	20	21	15	15	11
5	140	27	98	215	89	33	61	37	6	14	10	14	21	18	13	13	10
6	79	64	29	52	48	53	27	13		14	11	13	19	16	12	12	9
7	18	39	12	36	87	12	12	4	8	12	10	11	15	15	10	10	/
8	13	12	4	14	34	19	5	3	9	10	9	8	12	13	9	6	5
9	10	12	10	19	11	8	3	12	11	9	8	7	9	8	6	5	5
10	52	8	33	13	11	14	9	8	12	10	9	. 8	10	9	8	6	6
11	41	86	34	87	66	65	41	44									
12	50	127	114	57	58	86	2	44									
Somme	e de For	ite															
1	31	18	16	85	125	46	64	19									
2	70	34	62	18	68	23	35	104									
3	73	64	43	149	196	168	65	93									
4	7	0	83	198	174	0	26	7									
5	128	0	8	58	0	0	0	0									
6	0	0	0	2	0	0	0	0									
7	0	0	0	0	0	0	0	0									
8	0	0	0	0	0	0	0	0									
9	0	0	0	0	0	0	0	0									
10	6	0	8	1	0	0	0	0									
12	72	21	4 145	8 7∄	0 40	111	5	34 52									

Figure A- 27. Bilan hydrogéologique mensuel de la source des Adouxes (exprimé en mm)

Paramètres du Modèle Gardenia Adoucis			
Superficie	km 2	6.89	Optimisé
Débit_extér	m3/s	0	fixé
Correction globale des Pluies :	%	1.05	Optimisé
Correction globale d'ETP :	%	13.91	Optimisé
Capacité de la réserve superf. progress. :	mm	275.73	Optimisé
Hauteur Ruissellement = Percolation :	mm	40.84	Optimisé
Temps de demi-montée du débit souterrain :	mois	1.0299	Optimisé
Temps de demi-Tarissement Rapide :	mois	0.2384	Optimisé
Correction de température :	°C	-1.45	Optimisé
Rétention de la neige :	%	5	fixé
Évaporation de la neige :	%	0	fixé
Correction de fonte par la pluie :	%	0	fixé
Seuil de fonte naturelle de neige :	°C	0.2	Optimisé
Coefficient de fonte de la neige :	mm/deg*jour	1.03	Optimisé
Fonte de la neige par le sol :	mm/jour	0.5	fixé

Figure A- 28. Paramètres du modèle Gardenia de la source des Adoucis

Bilan	hydroge	éologic	lue:Mo	dèle Ga	rdenia 🕯	Sce des	Adoucis	s	Bilan	hydrog	éologiq	ue : Mo	dèle Ga	rdenia S	Sce des	Adouci	s
	2010	2011	2012	2013	2014	2015	2016	2017		2010	2011	2012	2013	2014	2015	2016	2017
Som	ne de Pr	écipita	tion (Plu	uie+Neig	ge)				Som	me de Q	_simul						
1	126	38	71	253	248	126	97	159	1	48	24	69	79	148	49	58	10
2	62	138	68	222	138	216	193	37	2	38	21	27	78	109	49	96	15
3	91	102	78	112	117	80	93	188	3	64	70	46	94	112	121	78	66
4	86	54	228	124	112	104	143	62	4	55	45	76	187	171	93	78	62
5	205	105	151	258	150	92	115	107	5	86	29	107	213	82	58	64	35
6	147	160	70	95	132	129	74	66	6	75	44	61	147	62	48	45	26
7	75	119	62	129	181	95	84	61	7	45	31	28	49	62	25	21	14
8	68	51	63	65	87	88	45	51	8	24	26	14	27	53	21	13	8
9	81	75	105	92	52	57	62	113	9	13	15	8	17	24	13	1	6
10	158	57	123	62	43	68	74	46	10	20	10	11	15	17	11	0	16
11	140	188	119	447	169	301	131	148	10	41	43	22	61	67	20	14	27
12	26	180	146	52	137	12	8	161	12 Som	oc O ab er	Joc Linear	39 L	01	07	07	13	21
Som	ne de El	TR							3011	24	_1 apru_ 12	n 50	64	120	25	12	1
1	21	27	36	26	25	38	27	24	2	26	13	15	61	129	30	43	10
2	26	36	36	20	27	23	34	38	2	20	57	34	75	80	102	73 58	54
3	57	51	71	42	58	61	54	70	4	49	30	62	162	145	73	60	47
4	75	87	55	72	78	90	80	92	5	0 7 69	17	87	183	59	30	47	22
5	77	101	110	71	97	106	96	88	6	57	32	42	118	44	33	29	15
6	100	100	130	113	129	120	106	105	7	29	19	15	29	45	13	10	6
7	127	94	98	141	101	103	110	95	8	12	15	5	14	37	12	6	3
8	97	108	75	98	91	90	89	72	9		7	2		12	6	2	2
9	56	67	51	73	80	59	50	53	10	12	. 4	- 6	7	8	5	2	- 3
10	50	48	45	52	56	46	39	49	11	30	34	15	58	5	19	9	10
11	26	32	31	23	25	36	30	40	12	24	43	29	45	56	53	7	19
12	30	28	30	38	32	33	34	30	Som	me de Q	sout (3 1					
Som	ne de Pi			07	000	47	00	-	1	13	10	17	15	20	15	15	5
1	42	17	20	97	203	47	60	9	2	12	8	12	17	22	13	17	5
2	49	47	29	146	106	145	114	38	3	15	13	12	19	23	19	19	12
3	40	10	124	140	120	145	13	97	4	15	15	14	24	26	21	18	15
4	109	20	134	207	75	20	63 52	42	5	17	12	20	30	23	18	18	13
6	70	50	24	43	38	23	21	10	6	18	12	19	29	18	15	15	11
7	14	30	24	28	70	44	21	2	7	17	12	14	20	16	12	11	8
8	10	9	3	10	27	14	3	2	8	12	11	8	13	16	9	8	6
9	7	9	7	14	- 27	5	2	8	9	8	8	5	9	12	7	5	4
10	41	6	25	9	8	10	6	6	10	7	6	5	7	9	6	4	4
11	43	69	28	113	52	79	32	32	11	10	9	7	11	6	6	5	5
12	28	105	67	62	78	48	2	52	12	12	12	10	15	11	13	7	8
Som	ne de Fo	onte					_										
1	26	16	13	67	74	9	36	18									
2	47	23	40	18	44	21	13	65									
3	42	34	39	90	106	122	51	68									
4	2	0	68	149	90	6	19	25									
5	100	0	2	51	0	0	0	0									
6	0	0	0	0	0	0	0	0									
7	0	0	0	0	0	0	0	0									
8	0	0	0	0	0	0	0	0									
9	0	0	0	0	0	0	0	0									
10	5	0	7	1	0	0	0	0									
11	16	0	2	8	0	10	3	25									
12	46	24	83	49	20	58	5	39									

Figure A- 29. Bilan hydrogéologique mensuel de la source des Adoucis (exprimé en mm)

Paramètres du Modèle Gardenia "SRE"		
Superficie	km2	2.5 Optimisé
Débit_extér	m3/s	0 fixé
Correction globale des Pluies :	%	-8.07 Optimisé
Correction globale d'ETP :	%	14.93 Optimisé
Capacité de la réserve superf. progress. :	mm	270.41 Optimisé
Hauteur Ruissellement = Percolation :	mm	9.99 Optimisé
Temps de demi-montée du débit souterrain :	mois	1.4882 Optimisé
Temps de demi-Tarissement Rapide :	mois	0.0228 Optimisé
Correction de température :	°C	-2.93 Optimisé
Rétention de la neige :	%	5 fixé
Évaporation de la neige :	%	0 fixé
Correction de fonte par la pluie :	%	0 fixé
Seuil de fonte naturelle de neige :	°C	2 Optimisé
Coefficient de fonte de la neige :	mm/deg*jc	2.94 Optimisé
Fonte de la neige par le sol :	mm/jour	0.5 fixé

Figure A- 30 Paramètres du modèle Gardenia de la source « SRE »

Bila	n hyd	rogéc	ologiq	ue de	es so	urces	« SR	RE » (S=2.5 k	m2)							
	2010	2011	2012	2013	2014	2015	2016	2017		2010	2011	2012	2013	2014	2015	2016	2017
Somme	de Préd	cipitatio	n (Pluie	+Neige	e)				Somme	de Q_si	imul						
1	113	34.02	63.52	226.8	222.6	112.9	87.5	142.3	1	26.79	13.91	27.93	49.45	37.99	32.38	30.24	4.605
2	55.38	123.9	61.22	198.9	123.7	193.9	173.5	32.91	2	13.02	8.18	13.26	40.67	34.03	44.64	76.1	6.388
3	81.98	91.39	69.7	100.1	105.3	71.68	83.8	169	3	66.37	45.99	56.38	37.07	55.65	112.8	53.67	55.93
4	77.01	48.63	204.3	111.1	100.4	93.37	128.4	55.49	4	49.07	40.43	81.38	178.4	272.3	80.77	97.69	46.36
5	183.8	93.8	136	231.8	135	82.65	103.2	95.92	5	88.51	18.79	96.22	247	136.1	39.72	53.87	19.48
6	131.5	143.8	63.2	85.01	118.3	116.1	66.07	58.8	6	57.22	36.25	36.77	121.3	56.33	34.78	30.41	15.47
7	66.95	106.8	55.58	115.7	162.1	85.08	75.77	54.34	7	25.68	18.87	13.57	25.64	51.69	11.61	9.11	6.191
8	60.74	45.36	56.34	58.66	78.19	78.83	40.56	45.54	8	11.8	14.96	5.027	13.7	36.68	12.63	6.128	3.082
9	72.63	67.4	94.66	82.48	46.68	51.53	55.49	101	9	5.143	1.576	2.815	8.867	11.25	5.903	2.706	2.472
10	142.1	51.06	110.8	55.24	38.27	60.71	66.46	41.07	10	15.02	4.726	8.329	8.555	8.523	6.402	3.01	4.524
11	125.5	169.1	107.1	400.8	151.5	270	117.9	133.2	11	29.26	38.3	15.13	39.74	6.637	13.46	11.58	12.64
12	23.1	161.6	131	46.44	122.8	10.33	7.143	144.4	12	23.89	16.74	20.25	15.78	32.63	32	7.625	8.672
Somme	de ETR	2			ĺ				Somme	de Q_ra		40.05	20.5	07.40	00.00	20.54	4 740
1	21.72	27.37	37.7	27.24	26.66	40.21	27.94	24.48	1	7 4 4 5	1.840	18.05	30.5	27.10	22.82	20.51	1.749
2	27.12	36.35	37.58	21.38	28.73	24.21	35.83	39.44	2	7.445	4.132	1.524	29.11	23.91	33.35	00.48	2.980
3	59.53	54.02	74.68	43.67	61.14	64.09	56.97	72.44	3	32.79	34.48	42.91	20.00	42.42	92.30	40.31	42.04
4	78.84	91.08	57.92	75.16	81.71	93.97	84.38	95.08	4	70.69	29.17	77 07	216.4	239.7	20 10	10.9	34.47
5	80.75	103.5	114.9	73.9	103.4	109.7	100.2	88.79	6	10.00	25.65	25.03	210.4	114.1	20.19	20.84	0 1/3
6	103.3	102.5	133.4	118.5	135.7	122.2	109.3	103.8	7	16.82	11.61	7 677	16 74	38.43	6 234	4 507	2.66
7	128.4	93.76	97.59	145.6	104.5	101.1	111	90.59	8	6 368	8.62	1 984	7.7	25.73	6 972	2.622	0.957
8	95.06	104.3	71.97	98.47	93.3	86.77	85.09	66.22	9	2 074	3 557	0.867	4 414	6.016	2 518	0.794	0.337
9	53.67	64.16	48.55	71.32	80.17	56.79	46.78	50.59	10	8 952	1 803	4 15	4 138	4 17	2.803	0.935	1 712
10	49.1	45.21	44.11	51.01	54.21	43.25	36.85	46.19	11	19.9	28.02	8 797	28.96	3 644	8 676	6.58	7 194
11	26.77	32.24	31.42	23.42	26.09	35.39	29.92	40.28	12	15.47	10.01	13.33	9.177	22.53	21.82	3.555	4.253
12	31.26	29.27	31.38	39.31	33.7	34.51	32.81	31.22	Somme	de Q s	out G1		0.111	22.00	21.02	0.000	
Somme	de Pl_e	effic							1	9.084	6.067	9 284	12.95	10.84	9 562	9.73	2 856
1	11.14	11.25	17.56	56.55	51.62	55.08	38.04	4.739	2	5.571	4.048	5.738	10.91	10.12	11.28	15.63	3.402
2	16.9	12.34	14.37	24.41	27.16	49.63	79.25	12.53	3	13.58	11.51	13.47	10.51	13.24	20.42	13.36	13.29
3	87.13	76.59	68.42	58.49	/5.61	130	60.99	83.25	4	12.88	11.26	15.63	24.73	32.56	16.72	18.79	11.89
4	32.77	15.79	112.6	194	296.4	57.59	96.05	23.59	5	17.83	7.294	18.35	30.65	21.92	11.52	13.73	7.407
5	96.82	15.29	70.16	289.6	123	22.71	46.7	22.01	6	13.89	10.6	10.83	20.32	13.83	10.31	9.571	6.331
0	54.78	35.51	18.64	45.17	33.71	32.74	16.69	6.496	7	8.858	7.262	5.896	8.899	13.26	5.378	4.603	3.531
- /	10.33	20.14	7.19	21.15	55.85	6.175	5.838	1.297	8	5.436	6.341	3.044	6.001	10.95	5.659	3.506	2.125
8	0.029	5.75	2.028	1.283	19.91	9.378	2.219	1.013	9	3.069	4.018	1.948	4.453	5.239	3.385	1.912	1.76
9	4.093	2.734	4.009	9.048	5.324	5.218	2.762	4.531	10	6.07	2.924	4.179	4.417	4.353	3.598	2.075	2.812
11	21.2	3.000	10.10	0.199 50.46	0.114	21.64	3.703	3.009	11	9.364	10.28	6.331	10.78	2.993	4.782	4.999	5.449
12	23.97	25.76	24.56	0.004	11 //	24.55	0 740	12.02	12	8.415	6.732	6.924	6.6	10.1	10.17	4.069	4.419
Somme	de Fon	20.70	34.30	5.504	11.44	24.00	0.143	12.05									
1	15 51	12.86	19.26	49 74	52 79	46 39	43 38	12 29									
2	25.2	12.00	22.54	14 12	29.57	14 45	28.33	31.61									
3	99.91	55 55	77.04	47.86	88.46	124.2	44.84	94.85									
4	16.56	00.00	88 79	194.8	236.9	7 408	56 13	14 02									
5	92.98	0	4 166	147.6	50.86	0	0	0									
6	0	0	0	9.355	0	0	0	0									
7	0	0	0	0	0	0	0	0									
8	0	0	0	0	0	0	0	0									
9	0	0	0	0	0	0	0	0									
10	3.99	0	3.049	0.499	0	0	0	0									
11	18.84	0	7.336	8.483	5.494	5.108	5.454	21.92									
12	43.95	16.27	68.23	17.56	19.53	42.51	3.349	21.59									

Figure A- 31. Bilans hydrogéologiques mensuels des sources « SRE » (exprimé en mm)

Paramètres du Modèle Gardenia Source du	Moulin (Fajolle)	
Superficie	km2	2.32 Optimisé
Débit_extér	m 3/s	0 fixé
Correction globale des Pluies :	%	0.54 Optimisé
Correction globale d'ETP :	%	9.75 Optimisé
Capacité de la réserve superf. progress. :	mm	272.59 Optimisé
Hauteur Ruissellement = Percolation :	mm	54.57 Optimisé
Temps de demi-montée du débit souterrain :	mois	0.575 Optimisé
Temps de demi-Tarissement Rapide :	mois	0.4143 Optimisé
Correction de température :	°C	-2.86 Optimisé
Rétention de la neige :	%	5 fixé
Évaporation de la neige :	%	0 fixé
Correction de fonte par la pluie :	%	0 fixé
Seuil de fonte naturelle de neige :	°C	1.89 Optimisé
Coefficient de fonte de la neige :	mm/deg*jour	3.03 Optimisé
Fonte de la neige par le sol :	mm/jour	0.5 fixé

Figure A- 32. Paramètres du modèle Gardenia de la source du Moulin(Fajolle)

Bilar	ו hydr	ogéol	logiqu	e de	la so	urce	du Mo	oulin_P	-aj	olle	(S=2.3	3 km2	2)					
	2010	2011	2012	2013	2014	2015	2016	2017			2010	2011	2012	2013	2014	2015	2016	2017
Somme	de Préc	cipitatio	n (Pluie	+Neige)				S	somme	de Q si	imul			i	i i	i	ĺ
1	123	37	69	247	243	123	95	155		1	36	24	36	54	39	37	38	7
2	60	135	67	217	135	212	189	36		2	19	13	19	53	41	49	77	8
3	89	100	76	109	115	78	91	184		3	60	44	63	42	55	113	68	65
4	84	53	223	121	110	102	140	61		4	81	61	95	160	255	113	121	67
5	201	102	148	253	147	90	113	105		5	103	33	122	274	221	68	83	34
6	143	157	69	93	129	127	72	64		6	81	49	66	198	92	52	51	26
7	73	117	61	126	177	93	83	59		7	48	32	28	57	73	26	20	12
8	66	49	61	64	85	86	44	50		8	23	27	10	28	58	20	12	6
9	79	74	103	90	51	56	61	110	-	9	10	14	6	16	24	11	6	5
10	155	56	121	60	42	66	73	45	-	10	20	9	10	14	15	10	5	/
11	137	184	117	437	165	295	129	145	-	11	39	45	21	47	9	15	13	16
12	25	176	143	51	134	11	8	158		12	32	28	23	28	40	40	14	14
Somme	deETR								3			ום_ח	0	20	14	11	0	0
1	20	26	35	25	25	37	26	24	-	2	0	3	9	20	14	10	27	1
2	25	35	35	20	21	22	33	36	-	2	2/	21	32	13	22	57	21	32
3	55	50	69 54	40	5/	59	53	08		4	20	20	46	102	171	49	64	23
5	74	100	107	69	70	105	04	91		5	48	5	57	168	114	18	26	6
6	07	07	107	110	128	110	105	105		6	28	17	15	96	28	16	11	4
7	125	97	00	138	00	105	111	95		7	8	6	3	10	25	2	1	. 1
8	96	107	78	98	89	89	91	73		8	2	4	0	3	15	3	1	0
9	56	67	50	73	79	58	51	53		9	1	1	0	2	2	1	0	0
10	49	48	44	51	56	44	38	48		10	5	0	2	2	1	1	0	1
11	25	31	30	22	26	35	29	39		11	12	21	5	20	2	6	4	4
12	29	27	29	36	31	32	33	29		12	7	4	7	3	15	12	1	1
Somme	de PI_e	ffic			ĺ				S	Somme	de Q_s	out_G1						
1	13	15	22	69	62	67	46	7		1	17	11	16	22	15	15	17	0
2	20	17	17	28	31	58	94	17		2	8	5	9	25	19	20	27	1
3	113	97	99	69	85	145	69	114		3	16	13	19	18	21	39	32	21
4	51	27	142	210	324	91	143	35		4	36	28	33	41	62	45	40	30
5	123	24	88	337	192	32	59	32		5	38	1/	46	79	/9	34	40	1/
6	71	53	25	85	45	47	23	10	-	5	37	20	35	/5	45	24	26	12
7	15	31	10	32	76	10	10	3	-	/	20	12	CI 2	32	33	14	10	4
8	11	9	3	12	28	14	4	2	-	0	2	15	0	15	20	0	4	0
9	8	10	8	15	9	6	2	8	-	9	2	1	1	5	12	4	0	0
10	40	67	23	70	50	10	20	20	F	11	17	15	9	16	1	2	3	5
12	33	3/	19	12	5Z 15	40	30	20		12	15	13	8	14	15	17	5	5
Somme	de Eoni		40	12	15	51		17		12	10	10			10			
1	16	15	20	53	55	10	46	13										
2	26	13	20	14	31	14	30	34										
3	118	60	100	51	94	131	47	110										
4	29	10	101	204	250	25	90	19										
5	107	0	6	172	101	0	0	0										
6	0	0	0	42	0	0	0	0										
7	0	0	0	0	0	0	0	0										
8	0	0	0	0	0	0	0	0										
9	0	0	0	0	0	0	0	0										
10	5	0	3	1	0	0	0	0										
11	20	0	9	8	6	5	7	25										
12	52	18	72	18	20	45	4	22										

Figure A- 33. Bilans hydrogéologiques mensuels de la source du Moulin (exprimé en mm)

Paramètres du Modèle sce Fontestorbe	S			Paramètres du Modèle sce Fontmaure	_TarageA		
Superficie	km2	103	fixé	Superficie	km2	135	fixé
Débit_extér	m3/s	0	fixé	Débit_extér	m3/s	0	fixé
Correction globale des Pluies :	%	11.193	Optimisé	Correction globale des Pluies :	%	0	fixé
Correction globale d'ETP :	%	-30	Optimisé	Correction globale d'ETP :	%	0	fixé
Capacité de la réserve superf. progress. :	mm	187.69	Optimisé	Capacité de la réserve superf. progress. :	mm	40.07	Optim
Hauteur Ruissellement = Percolation :	mm	82.83	Optimisé	Hauteur Ruissellement = Percolation :	mm	57.69	Optim
Temps de demi-montée du débit souterrain :	mois	0.3528	Optimisé	Temps de demi-montée du débit souterrain :	mois	1.6586	Optim
Temps de demi-Tarissement Rapide :	mois	1.4988	Optimisé	Temps de demi-Tarissement Rapide :	mois	1.6508	Optim
Correction de température :	°C	-2.9	Optimisé	Correction de température :	°C	0.33	Optim
Rétention de la neige :	%	0	fixé	Rétention de la neige :	%	5	fixé
Évaporation de la neige :	%	0	fixé	Évaporation de la neige :	%	0	fixé
Correction de fonte par la pluie :	%	0	fixé	Correction de fonte par la pluie :	%	0	fixé
Seuil de fonte naturelle de neige :	°C	0	Optimisé	Seuil de fonte naturelle de neige :	°C	0.76	Optim
Coefficient de fonte de la neige :	mm/deg*jour	1.78	Optimisé	Coefficient de fonte de la neige :	mm/deg*jour	0.6	Optim
Fonte de la neige par le sol :	mm/jour	0.5	fixé	Fonte de la neige par le sol :	mm/jour	0.5	fixé

Figure A- 34. Paramètres des modèles Gardénia des sources de Fontesorbes et Fontmaure

Figure A- 35. Modélisation du débit de la source de Fontmaure par le modèle Gardenia (période 2000-2017)

Annexe 8

Cartes de vulnérabilité PaPRIKA réalisées à partir de 6 tests de pondération

Figure A- 36. Carte de vulnérabilité, Test 1 : 0,2P + 0,2R + 0,4I + 0,2Ka

Figure A- 37. Carte de vulnérabilité, Test 2 : 0,2P + 0,2R + 0,3I + 0,3Ka

Figure A- 38. Carte de vulnérabilité, Test 3 : 0,25P + 0,25R + 0,25I + 0,25Ka

Figure A- 39. Carte de vulnérabilité, Test 4 : 0,2P + 0,1R + 0,4I + 0,3Ka

Figure A- 40. Carte de vulnérabilité, Test 5 : 0,2P + 0,2R + 0,5I + 0,1Ka

Figure A- 41. Carte de vulnérabilité, Test 6 : 0,3P + 0,1R + 0,5I + 0,1Ka

Annexe 9

Fiches d'informations concernant les décharges recensées à Bélesta, Montségur et Fougax-et-Barrineuf, transmises par le CD09

BELESTA N° de décharge:								
N°INSEE: 09047	Météo Beau	Type: Communale						
Localisation								
Latitude: 4253'25"N	Longitude: 01%6'29"E							
Numéro de feuille IGN	euille IGN: 2247OT Voie d'accès: Route D							
Contacts								
Personne rencontrée: Mr Roche Fonction: Maire								
Substratum Numéro de carte Géolo	ogique: 1076							
Nature du substratum:	Calcaire facies Urgonien							
Catégorie du substratum 5 (sables, graviers, alluvions); 4 (calcaires et grés); 3 (gneiss, 4 schistes et granites); 2 (marnes); 1 (argiles).								
Présence de fracturation ou de failles 5 (fracturation certaine); 4 (fracturation supposée); 1(absence de fracturation).								
Présence de karst: 5 (certaine); 4 (probable); 2 (absence probable); 1 (absence certaine). 5								
Eaux souterraines								
Périmètre de protectio	n de captage AEP: 5 (périmètre ra de périmètre);	pproché ou éloigné); 4 (en limite 1 (absence de périmètre).	1					
Zone de ressources po	otentielles en eau potable: 4 (ou	ii); 1 (non).	4					
Distance à un puits ou	à un forage pour l'alimentation	n en eau:	1					
5 (moins de 100m); 4 (d	de 100 à 200m); 3 (de 200 à 500m); 1 (pli	us de 500m)						
Eaux de surface								
Périmètre de protectio 5 (périmètre rapproché	n de captage en eau potable: ou éloigné); 4 (en limite de périmètre); 1	(absence de périmètre)	1					
Ressources potentielle	es en eau potable; 4 (oui); 1 (non).		1					
Nappe alluviale d'un cours d'eau: 5 (oui); 1 (non).								
Zone humide ou inond	lable; 5 (oui); 1 (non).		1					
Distance des rives ou rivages: 5 (moins de 50m); 4 (de 50 à 200m); 3 (de 200 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m).								
Nom du cours d'eau:	Ruisseau intermitent de Bichar	ole						
Ecoulements des lixivi	iats: 4 (écoulements constatés); 3 (éco d'écoulement visible).	oulements supposés); 1 (pas	1					

Habitations	
Distance aux lieux habités les plus proches non visibles de la décharge: 4 (moins de 200m); 3 (de 200 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m)	2
Distance aux lieux habités les plus proches visibles de la décharge: 5 (moins de 200m); 4 (de 200 à 500m); 3 (de 500 à 1000m); 1 (plus de 1000m)	1
Paysages et milieux naturels	
Relief du site et modelé de la décharge: Coteau exploité en Talus	
Distance de visibilité de la décharge à partir de lieux fréquentés voisins: 4 (moins de 100m); 3 (de 100 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m)	4
Distance maximale de visibilité à partir de la décharge:	4
4 (plus de 1000m); 3 (de 500 à 1000m); 2 (de 100 à 500m); 1 (moins de 100m)	
Ecran végétal de dissimulation: 4 (aucun); 3 (sur une partie du site); 2 (sur toute la périphérie).	3
Envols de déchets: 4 (oui); 1 (non).	1
Zone de protection particulière des milieux: 5 (arrêté de biotope, ZNIEFF, Réserve naturalle, site classé ou inscrit): 4 (Parc National): 3 (Parc Naturel Régional): 1 (augune)	5
Zone de sensibilité particulière aux incendies 5 (oui avec pratique du brûlage); 4 (oui sans pratique du brûlage); 1 (zone non sensible).	4
Volume du dépôt	
Longueur: 75 mètres Largeur: 25 mètres Superficie: 1500 m ²	
Catégorie superficie: 4 (plusde 10 000m?); 3 (de 5 000 à 10 000m?); 2 (de 1 000 à 5 000 m?); 1 (moins de 1 000m?).	2
Epaisseur: 8 mètres	
Catégorie d'épaisseur moyenne: 4 (plusde 10m); 3 (de 5 à 10m); 2 (de 2 à 5 m); 1 (moins de 2m).	3
Âge du dépôt	
Critère d'âge: 5 (en activité depuis plus de 10 ans); 4 (en activité ou fermé depuis moins de 10 ans); 3 (fermé depuis plus de 10 ans); 1 (dépôt réservé aux inertes).	4
Nature du dépôt	
Mode d'exploitation: Brute en cours de recouvrement	
Pratique du brûlage: 4 (oui); 1 (non).	1
Type de déchets stockés: 5 (présence impotante de déchets toxiques ou dangereux); 4 (dépôt d'ordures ménagères et assimilés); 3 (dépôt de déchets verts); 2 (dépôt d'encombrants ménagers); 1 (dépôt d'inertes).	4

Notation ADEME

Notation thème eau souterraine: 49,00 Notation thème riverains: 34,00 Notation thème eau de surface: 52,00 Notation thème milieux naturels: 52,00

Note globale du site: 46,75

Appréciation générale sur le site et ses problèmes

Site d'importance moyenne, mais très mal placé (obstrue partiellement un vallon). pb : Situation sur un substratum de calcaire karstifié en zone d'alimentation de la source de Fontestorbes. Situation à l'intérieur du périmètre de la Forêt de Belesta (ZNIEFF) et sur un itinéraire touristique.

Problèmes mineurs de stabilité sur le site dus aux déchets verts.

Appréciation générale sur le site et ses problèmes

Arrêt immédiat des apports, empêcher l'accès (possibilité de prolonger le rail de sécurité pour barrer l'entrée du site). Contrôle de la pollution sur les eaux souterraines. Nettoyage des nombreux encombrants du pied de décharge. Évaluer l'opportunité d'un recouvrement.

Classement: Site à problèmes sérieux

BELESTA N° de décharge:									
N°INSEE: 09047	Météo Beau	Type: Sauvage							
Localisation									
Latitude: 42'52'27"N	Longitude: 01%6'05"E	Longitude: 01%6'05"E Altitude: 630m							
Numéro de feuille IGN:	feuille IGN: 2247OT Voie d'accès: Route D								
Contacts									
Personne rencontrée:	Mr Roche	Fonction: Maire							
Substratum Numéro de carte Géolo Nature du substratum:	ogique: 1076 Calcaire								
Catégorie du substratum 5 (sables, graviers, alluvions); 4 (calcaires et grès); 3 (gneiss, schistes et granites); 2 (marnes); 1 (argiles).									
Présence de fracturation ou de failles 5 (fracturation certaine); 4 (fracturation supposée); 1(absence de fracturation).									
Présence de karst: 5 (certaine); 4 (probable); 2 (absence probable); 1 (absence certaine).									
Eaux souterraines									
Périmètre de protectio	n de captage AEP: 5 (périmètre ra de périmètre);	pproché ou éloigné); 4 (en limite 1 (absence de périmètre).	1						
Zone de ressources po	otentielles en eau potable: 4 (o	ui); 1 (non).	4						
Distance à un puits ou 5 (moins de 100m); 4 (d	à un forage pour l'alimentation de 100 à 200m); 3 (de 200 à 500m); 1 (pl	n en eau: ius de 500m)	1						
Eaux de surface									
Périmètre de protectio 5 (périmètre rapproché	n de captage en eau potable: ou éloigné); 4 (en limite de périmètre); 1	(absence de périmètre)	1						
Ressources potentielle	es en eau potable; 4 (oui); 1 (non).		1						
Nappe alluviale d'un co	ours d'eau; 5 (oui); 1 (non).		1						
Zone humide ou inond	lable; 5 (oui); 1 (non).		5						
Distance des rives ou rivages: 5 (moins de 50m); 4 (de 50 à 200m); 3 (de 200 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m).									
Nom du cours d'eau:	Ruisseau de Rieufourcant								
Ecoulements des lixivi	iats: 4 (écoulements constatés); 3 (éc d'écoulement visible).	oulements supposés); 1 (pas	1						

Habitations	
Distance aux lieux habités les plus proches non visibles de la décharge: 4 (moins de 200m); 3 (de 200 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m)	2
Distance aux lieux habités les plus proches visibles de la décharge: 5 (moins de 200m); 4 (de 200 à 500m); 3 (de 500 à 1000m); 1 (plus de 1000m)	1
Paysages et milieux naturels	
Relief du site et modelé de la décharge: Coteau exploité en Talus	
Distance de visibilité de la décharge à partir de lieux fréquentés voisins: 4 (moins de 100m); 3 (de 100 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m)	4
Distance maximale de visibilité à partir de la décharge:	4
4 (plus de 1000m); 3 (de 500 à 1000m); 2 (de 100 à 500m); 1 (moins de 100m)	
Ecran végétal de dissimulation: 4 (aucun); 3 (sur une partie du site); 2 (sur toute la périphérie).	4
Envols de déchets: 4 (oui); 1 (non).	1
Zone de protection particulière des milieux; 5 (arrêté de biotope, ZNIEFF, Réserve naturelle, site classé ou inscrit); 4 (Parc National); 3 (Parc Naturel Régional); 1 (aucune).	5
Zone de sensibilité particulière aux incendies 5 (oui avec pratique du brûlage); 4 (oui sans pratique du brûlage); 1 (zone non sensible).	4
Volume du dépôt	
Longueur: 15 mètres Largeur: 7 mètres Superficie: 100 m ²	
Catégorie superficie; 4 (plusde 10 000m?); 3 (de 5 000 à 10 000m?); 2 (de 1 000 à 5 000 m?); 1 (moins de 1 000m?).	1
Epaisseur: 2 mètres	
Catégorie d'épaisseur moyenne; 4 (plusde 10m); 3 (de 5 à 10m); 2 (de 2 à 5 m); 1 (moins de 2m).	1
Âge du dépôt	
Critère d'âge: 5 (en activité depuis plus de 10 ans); 4 (en activité ou fermé depuis moins de 10 ans); 3 (fermé depuis plus de 10 ans); 1 (dépôt réservé aux inertes).	4
Nature du dépôt	
Mode d'exploitation: sauvage	
Pratique du brûlage: 4 (oui); 1 (non).	1
Type de déchets stockés: 5 (présence impotante de déchets toxiques ou dangereux); 4 (dépôt d'ordures ménagères et assimiles); 3 (dépôt de déchets verts); 2 (dépôt d'encombrants ménagers); 1 (dépôt d'inertes).	4

Notation ADEME

Notation thème eau souterraine: 45,00 Notation thème riverains: 30,00 Notation thème eau de surface: 48,00 Notation thème milieux naturels: 48,00

Note globale du site: 42,75

Appréciation générale sur le site et ses problèmes

Site sauvage très mal placé sur le côté du pont . Pb :situation sur ruisseau de zone karstique, alimentation de Fontestorbes avec pertes importantes. Situé sur un Itinéraire touristique et dans la ZNIEFF de la forêt de Bélesta.

Appréciation générale sur le site et ses problèmes

Nettoyage complet, au moins de la zone basse dans l'axe du ruisseau.

Classement: Site à problèmes

91251

Fiche des	SILES	
FOUGAX-ET-BA	ARRINEUF	N° de décharge:
N°INSEE: 09125	Météo Pluie	Type: Privée C3
Localisation Latitude: 4252'36"N Numéro de feuille IGN:	Longitude: 01%2'53"E 2247OT	Altitude: 650 Voie d'accès: Chemin
Contacts		

Latitude: 42'52'36"N	Altitude: 650m	1 I	
Numéro de feuille IGN: 22	247OT	Voie d'accès: Chemin c	ommunal
Contacts			
Personne rencontrée: Mr	Bertrand	Fonction: Adjoint	
Substratum			
Numéro de carte Géologio	que: 1076		
Nature du substratum: N	larnes		
Catégorie du substratum	5 (sables, graviers, alluvions); 4 (calo schistes et granites); 2 (marnes); 1 (a	aires et grès); 3 (gneiss, rgiles).	2
Présence de fracturation (ou de failles 5 (fracturation certain 1(absence de fractura	e); 4 (fracturation supposée); ation).	1
Présence de karst: 5 (certa	aine); 4 (probable); 2 (absence probab	le); 1 (absence certaine).	1
Eaux souterraines			
Périmètre de protection d	e captage AEP; 5 (périmètre rap de périmètre); 1	proché ou éloigné); 4 (en limite (absence de périmètre).	1
Zone de ressources poter	ntielles en eau potable: 4 (oui)	; 1 (non).	1
Distance à un puits ou à u 5 (moins de 100m); 4 (de 10	ın forage pour l'alimentation 10 à 200m); 3 (de 200 à 500m); 1 (plu:	en eau: ; de 500m)	1
Eaux de surface			
Périmètre de protection d 5 (périmètre rapproché ou é	e captage en eau potable: loigné); 4 (en limite de périmètre); 1 (/	absence de périmètre)	1
Ressources potentielles e	en eau potable; 4 (oui); 1 (non).		1
Nappe alluviale d'un cour	s d'eau; 5 (oui); 1 (non).		1
Zone humide ou inondabl	e; 5 (oui); 1 (non).		1
Distance des rives ou riva	ges; 5 (moins de 50m); 4 (de 50 à (de 500 à 1000m); 1 (plus de	200m); 3 (de 200 à 500m); 2 1000m).	1
Nom du cours d'eau:			
Ecoulements des lixiviats	; 4 (écoulements constatés); 3 (écou d'écoulement visible).	ilements supposés); 1 (pas	1

Habitations	
Distance aux lieux habités les plus proches non visibles de la décharge: 4 (moins de 200m); 3 (de 200 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m)	1
Distance aux lieux habités les plus proches visibles de la décharge: 5 (moins de 200m); 4 (de 200 à 500m); 3 (de 500 à 1000m); 1 (plus de 1000m)	1
Paysages et milieux naturels	
Relief du site et modelé de la décharge: Coteau exploité en Talus	
Distance de visibilité de la décharge à partir de lieux fréquentés voisins: 4 (moins de 100m); 3 (de 100 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m)	1
Distance maximale de visibilité à partir de la décharge: 4 (plus de 1000m); 3 (de 500 à 1000m); 2 (de 100 à 500m); 1 (moins de 100m)	4
Ecran végétal de dissimulation: 4 (aucun); 3 (sur une partie du site); 2 (sur toute la périphérie).	3
Envols de déchets: 4 (oui); 1 (non).	1
Zone de protection particulière des milieux; 5 (arrêté de biotope, ZNIEFF, Réserve naturelle, site classé ou inscrit); 4 (Parc National); 3 (Parc Naturel Régional); 1 (aucune).	1
Zone de sensibilité particulière aux incendies 5 (oui avec pratique du brûlage); 4 (oui sans pratique du brûlage); 1 (zone non sensible).	1
Volume du dépôt	
Longueur: 55 mètres Largeur: 25 mètres Superficie: 1000 m ²	
Catégorie superficie: 4 (plusde 10 000m?); 3 (de 5 000 à 10 000m?); 2 (de 1 000 à 5 000 m?); 1 (moins de 1 000m?).	2
Epaisseur: 6 mètres	
Catégorie d'épaisseur moyenne: 4 (plusde 10m); 3 (de 5 à 10m); 2 (de 2 à 5 m); 1 (moins de 2m).	3
Âge du dépôt	
Critère d'âge; 5 (en activité depuis plus de 10 ans); 4 (en activité ou fermé depuis moins de 10 ans); 3 (fermé depuis plus de 10 ans); 1 (dépôt réservé aux inertes).	4
Nature du dépôt	
Mode d'exploitation: déversement de sciure	
Pratique du brûlage: 4 (oui); 1 (non).	1
Type de déchets stockés: 5 (présence impotante de déchets toxiques ou dangereux); 4 (dépôt d'ordures ménagères et assimiles); 3 (dépôt de déchets verts); 2 (dépôt d'encombrants ménagers); 1 (dépôt d'inertes).	3

Notation ADEME

Notation thème eau souterraine: 31,00 Notation thème riverains: 28,00 Notation thème eau de surface: 30,00 Notation thème milieux naturels: 46,00

Note globale du site: 33,75

Appréciation générale sur le site et ses problèmes

Volume assez important dans un site retiré, pas de problème de pollution. Gestion par nivellement. Pb: accès libre mais pas d'apports autres que des déchets de bois.

Appréciation générale sur le site et ses problèmes

Arrêt simple et stabilisation.

Classement: Réhabilitation sans urgence

MONTSEGUR	92111								
N°INSEE: 09211	Météo Beau	Type: Communale							
Localisation Latitude: 4252'08"N	Longitude: 01%0'15"E								
Numero de feuille IGN:	ero de feuille IGN: 2247OT Voie d'accès: Route D								
Contacts Personne rencontrée: Mr Walter Fonction: adjoint									
Substratum Numéro de carte Géolo Nature du substratum:	ogique: 1076 Moraine								
Catégorie du substratum 5 (sables, graviers, alluvions); 4 (calcaires et grès); 3 (gneiss, schistes et granites); 2 (marnes); 1 (argiles).									
Présence de fracturation ou de failles 5 (fracturation certaine); 4 (fracturation supposée); 1(absence de fracturation).									
Présence de karst: 5 (certaine); 4 (probable); 2 (absence prob	able); 1 (absence certaine).	1						
Eaux souterraines									
Périmètre de protection	n de captage AEP; 5 (périmètre ra de périmètre);	approché ou éloigné); 4 (en limite 1 (absence de périmètre).	1						
Zone de ressources po	otentielles en eau potable: 4 (o	ui); 1 (non).	4						
Distance à un puits ou 5 (moins de 100m); 4 (d	à un forage pour l'alimentatio le 100 à 200m); 3 (de 200 à 500m); 1 (p	n en eau: lus de 500m)	1						
Eaux de surface									
Périmètre de protection 5 (périmètre rapproché d	n de captage en eau potable: ou éloigné); 4 (en limite de périmètre); 3	1 (absence de périmètre)	1						
Ressources potentielle	es en eau potable; 4 (oui); 1 (non)		4						
Nappe alluviale d'un co	ours d'eau; 5 (oui); 1 (non).		5						
Zone humide ou inond	able; 5 (oui); 1 (non).		5						
Distance des rives ou rivages: 5 (moins de 50m); 4 (de 50 à 200m); 3 (de 200 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m).									
Nom du cours d'eau: e	en bordure du Lasset à quelqu	ies mètres de la berge							
Ecoulements des lixivi	ats: 4 (écoulements constatés); 3 (éc d'écoulement visible).	coulements supposés); 1 (pas	1						

Habitations	
Distance aux lieux habités les plus proches non visibles de la décharge: 4 (moins de 200m); 3 (de 200 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m)	3
Distance aux lieux habités les plus proches visibles de la décharge: 5 (moins de 200m); 4 (de 200 à 500m); 3 (de 500 à 1000m); 1 (plus de 1000m)	1
Paysages et milieux naturels	
Relief du site et modelé de la décharge: Coteau exploité en Talus	
Distance de visibilité de la décharge à partir de lieux fréquentés voisins: 4 (moins de 100m); 3 (de 100 à 500m); 2 (de 500 à 1000m); 1 (plus de 1000m)	4
Distance maximale de visibilité à partir de la décharge:	4
4 (plus de 1000m); 3 (de 500 à 1000m); 2 (de 100 à 500m); 1 (moins de 100m)	
Ecran végétal de dissimulation: 4 (aucun); 3 (sur une partie du site); 2 (sur toute la périphérie).	3
Envols de déchets: 4 (oui); 1 (non).	1
Zone de protection particulière des milieux: 5 (arrêté de biotope, ZNIEFF, Réserve naturelle, site classé ou inscrit); 4 (Parc National); 3 (Parc Naturel Régional); 1 (aucune).	1
Zone de sensibilité particulière aux incendies 5 (oui avec pratique du brûlage); 4 (oui sans pratique du brûlage); 1 (zone non sensible).	1
Volume du dépôt	
Longueur: 50 mètres Largeur: 20 mètres Superficie: 900 m ²	
Catégorie superficie; 4 (plusde 10 000m?; 3 (de 5 000 à 10 000m?; 2 (de 1 000 à 5 000 m?); 1 (moins de 1 000m?).	1
Epaisseur: 2,5 mètres	
Catégorie d'épaisseur moyenne; 4 (plusde 10m); 3 (de 5 à 10m); 2 (de 2 à 5 m); 1 (moins de 2m).	2
Âge du dépôt	
Critère d'âge: 5 (en activité depuis plus de 10 ans); 4 (en activité ou fermé depuis moins de 10 ans); 3 (fermé depuis plus de 10 ans); 1 (dépôt réservé aux inertes).	4
Nature du dépôt	
Mode d'exploitation: en cours de revégétalisation	
Pratique du brûlage: 4 (oui); 1 (non).	1
Type de déchets stockés: 5 (présence impotante de déchets toxiques ou dangereux); 4 (dépôt d'ordures ménagères et assimiles); 3 (dépôt de déchets verts); 2 (dépôt d'encombrants ménagers); 1 (dépôt d'inertes).	4

Notation ADEME

Notation thème eau souterraine: 47,00 Notation thème riverains: 38,00 Notation thème eau de surface: 50,00 Notation thème milieux naturels: 44,00

Note globale du site: 44,75

Appréciation générale sur le site et ses problèmes

Ancien site communal fermé en 94 réhabilité par épandage de terre. Pb: pas d'apports récents, sauf quelques apports de DV, à surveiller.

Appréciation générale sur le site et ses problèmes

RAS

Classement: Réhabilitation RAS

Annexe 10

Données recensées par l'IREP concernant les émissions polluantes issues d'activités industrielles

Emissions (kg/an) (Source: IREP)	2003	2004	2005	2006	2007	2008	2009	2011	2013	Somme
AVELANA SA (avant: NESTOR) / TEINTURERIE										
	VILL	ENEUVE-	D'OLME	s						
Carbone organique total (COT)	120000	130000	94700	109000						453700
Demande biologique en oxygène (DBO5)	86000	110000		86000	77400					359400
Demande chimique en oxygène (DCO)	360000	400000	284000	328000	265000	154000				1791000
Nonylphénols								0,04		0,04
CMT FI	NITIONS	(Martine	t) / TEXT	ILES APPI	RETS					
	VILL	ENEUVE-	D'OLME	s						
Carbone organique total (COT)		64000								64000
Chloroforme (trichlorométhane)						1				1
Cuivre et ses composés (Cu)						66				66
Demande chimique en oxygène (DCO)		190000								190000
Dichlorométhane (DCM - chlorure de méthylène)		550		277		35				862
Tétrachloroéthylène (PER - perchloroéthylène)		150	192	620	28	43				1033
Trichloroéthylène (TRI)					1					1

CMT FINITIONS CARREMAN MICHEL THIERRY FINITIONS (MELINA) / TEINTURERIE									
	VILLENEUVE	D'OLME	s						
Ammoniac (NH3)	1500	740	2620						4860
Carbone organique total (COT)	150000	70800	97100						317900
Chloroalcanes (C10-13)							47		47
Chloroforme (trichlorométhane)					2				2
Demande biologique en oxygène (DBO5)	100000	73000	98800						271800
Demande chimique en oxygène (DCO)	440000	330000	291000		198000				1259000
Dichlorométhane (DCM - chlorure de méthylène)		36	116						152
Tétrachloroéthylène (PER - perchloroéthylène)	90	215	265		12	112	31	18	743
Trichloroéthylène (TRI)						26			26

SOTAP CAROL (la Forge) / TEINTURES										
VILLENEUVE-D'OLMES										
Carbone organique total (COT)				53400						53400
Demande chimique en oxygène (DCO)				185000	226000					411000
Tétrachloroéthylène (PER - perchloroéthylène)					22					22
Tétrachlorure de carbone (TCM - tétrachlorométhane)						1,3				1,3

SA FORMICA ex Ets OLARD ELie ex Ets COLL. François et héritiers ex Sté FORTIER-BEAULIEU ex Ets CALARET ex Ets VERGNES Guillaume										
QUILLAN										
Hydrazine	6000	1609								7609
SOTAP CAROL / TEINTURES ET APPRETS										
MONTFERRIER										
Ammoniac (NH3)				8030						8030
Carbone organique total (COT)			67600	52700	71100					191400
Demande biologique en oxygène (DBO5)			56700		47200					103900
Demande chimique en oxygène (DCO)			251000	196000	189000			167000		803000
Zinc et ses composés (Zn)				106						106

Annexe 11

Pressions anthropiques recensées sur les bassins d'alimentation des principales sources étudiées

1. Informations sur les sites industriels, commerciaux, agricoles et de loisirs recensés sur les différentes bases de données en ligne, pour les BA des sources issues de formations crétacées et jurassiques

	Fontmaure	Fontestorbes	Contes	Belfort	Fago	Cailla	Argelier			
Nombre de communes	26	18	6	2	2	1	3			
Données BASIAS, BASOL, ICPE, IREP, Assainissement, AE										
Traitement des eaux usées										
Nombre TOTAL de STEP	10	2	1	0	0	1	0			
Nombre de STEP géoréférencées	7	2	1			1				
Nombre de STEP non géoréférencées	3	0	0			0				
Capacité max (EH)	1500	500								
Capacité min (EH)	100	200								
Capacité moy (EH)	581	350	300			40				
Nombre de rejets de STEP	8	2	1	0	0	0	0			
Débit max (m3/j)	246	75								
Débit min (m3/j)	15	60								
Débit moy (m3/j)	84,5	67,5	45			6				
Sit	es industriels,	agricoles, cultu	rels et touri	stiques						
Nombre TOTAL de sites rencensés	11	11	3	0	0	0	0			
Nombre de sites recensés géoréférencés	10	2	2							
Nombre de sites recensés non géoréférencés	1	9	1							
En activité	6	0	0							
Activité terminée	2	5	2							
Nombre de rejets industriels renseignés	0	0	0	0	0	0	0			
	-	Par type d'activit	és	7						
Industries extractives		1								
Autres industries extractives		1								
Industries manufacturières	3	1								
Travail du bois et fabrication										
d'articles en bois et en liège, à										
l'exception des meubles ;	2									
fabrication d'articles en vannerie										
et sparterie										
Fabrication de produits										
métalliques, à l'exception des	1									
machines et des équipements										
Fabrication de produits										
informatiques, électroniques et		1								
optiques										
Production et distribution d'électricité, de gaz,	1									
Production et distribution d'eau;	3	8	3							
Collecte, traitement et élimination		0								
des déchets ; récupération	3	8	3							
	-									
Commerce, reparation d'automobiles et de	3									
Commerce de detail, a l'exception des	1									
Transports terrestres et transport par		1								
conduites		_								

2. Informations sur les zones bâties indifférenciées, industrielles, commerciales, agricoles et de loisirs, les aires d'activités et les voies de transports recensées dans la BD TOPO, pour les BA des sources issues de formations crétacées et jurassiques

	Fontmaure	Fontestorbes	Contes	Belfort	Fago	Cailla	Argelier			
Nombre de communes	26	18	6	2	2	1	3			
Données BD Topo (IGN)										
Bâtiments										
Nombre TOTAL de bâtiments	1485	383	100	0	1	60	0			
Indifférenciés	1317	346	92			55				
Industriels	115	19	3		1	2				
Commercial	1									
Industriels	67	11	3		1	2				
Agricole	42	8								
Serre	4									
Silo	1									
Remarquables	21	7	2							
Cimetières	9	3	2			2				
Réservoirs	16	6	1			1				
Aménagements sportifs	7	2								
		Aires d'ac	tivités							
Nombre TOTAL d'aires	5	3	2	0	0	0	0			
Culture et loisirs			1							
Gestion des eaux	5	3	1							
		Routes et voie	es ferrées							
Chemins (m linéaires)	498390	337066	104354	3699	3709	10405	5706			
Routes secondaires (m linéaires)	333062	160917	28985	1446	163	6196	1391			
Routes primaires (m linéaires)	4040									
Transports câblés / téléphériques	6	4								
Electricité										
Lignes électriques (nombre	8	7								
Postes de transformation	0	0								
Pylones	51	36								

3. Informations relatives au type d'activité agricole par parcelle (RPG), pour les BA des sources issues de formations crétacées et jurassiques

	Fontmaure	Fontestorbes	Contes	Belfort	Fago	Cailla	Argelier	
Nombre de communes	26	18	6	2	2	1	3	
Nombre TOTAL de parcelles	1443	668	30	22	0	0	5	
1. Blé tendre	58	2		3				
3. Orge	10	2						
4. Autres céréales	57	3		1				
8. Protéagineux	1							
16. Fourrage	4	1						
17. Estives, landes	278	273	17				5	
18. Prairies permanentes	728	356	13	6				
19. Prairies temporaires	286	30		11				
24. Autres cultures industrielles	1							
25. Légumes - Fleurs	16	1		1				
28. Divers	4							

Intrants chimiques essentiellement

Intrants chimiques et épandages de déjections possibles

Epandages de déjections possibles

Peu ou pas d'intrants

Pas d'informations

4. Récapitulatif des informations (bases de données en ligne, BD TOPO, RPG) concernant les 6 sources issues de formations dévoniennes

	Forge	Adouxes	Fajole	SRE	Adouci	Lani	Total		
Nombre de communes	3	6	1	4	5	2			
Données BASIAS, BASOL, ICPE, IREP, Assainissement, AE									
Traitement des eaux usées									
Nombre TOTAL de STEP	0	1	0	0	0	0	1		
Nombre de STEP géoréférencées		1							
Nombre de STEP non géoréférencées		0							
Capacité (EH)		135							
Nombre de rejets de STEP	0	0	0	0	0	0	0		
Débit STEP(m3/j)		25							
Sites industriels,	agricoles,	culturels	et touristi	ques					
Nombre TOTAL de sites rencensés	0	0	0	0	0	0	0		
Nombre de rejets industriels renseignés	0	0	0	0	0	0	0		
Données BD Topo (IGN)									
	Bâtim	ents							
Nombre TOTAL de bâtiments	0	41	1	1	3	0	46		
Indifférenciés		37	1	1	3				
Industriels		1							
Remarquables		2							
Cimetières		1							
Réservoirs		1							
	Aires d'a	ctivités			-				
Nombre TOTAL d'aires	0	0	0	0	0	0	0		
Routes et voies ferrées									
Chemins (m linéaires)	14399	48701	10447	30293	60725	550	165115		
Routes secondaires (m linéaires)	4219	11551		9849	20155	1842	47616		
Transports câblés / téléphériques		3					3		
Données RPG									
Nombre TOTAL de parcelles	4	18	2	8	19	6	57		
17. Estives, landes	4	14	2	8	19	6			
18. Prairies permanentes		4							

Annexe 12

Carte des pressions liées aux transports, exercées sur le plateau de Sault

BRGM/RP-67528-FR – Rapport final (annexes)

Annexe 13

Carte des pressions industrielles et commerciales, exercées sur le plateau de Sault

Légende

GZE PZE Sources

Sites bases de données en ligne, géoréférencés

Activités

- Extraction de minerais métalliques
- Autres industries extractives
- Fabrication de textiles
- Industrie du cuir et de la chaussure
- Travail du bois et fabrication d'articles en bois et en liège, à l'exception des meubles ; fabrication d'articles en vannerie et sparterie
- Industrie du papier et du carton
- Imprimerie et reproduction d'enregistrements
- Industrie chimique
- Fabrication d'autres produits minéraux non métalliques
- Fabrication de produits métalliques, à l'exception des machines et des équipements
- Fabrication de produits informatiques, électroniques et optiques
- Production et distribution d'électricité, de gaz, de vapeur et d'air conditionné
- Travaux de construction spécialisés
- O Commerce et réparation d'automobiles et de motocycles
- Commerce de détail, à l'exception des automobiles et des motocycles
- Stockage et dépôt de produits chimiques, inflammables, gaz
- Transports terrestres et transport par conduites
- Autres services personnels

Sites bases de données en ligne, non géoréférencés Activités

- Autres industries extractives
- Industries alimentaires
- Fabrication de textiles
- Industrie du cuir et de la chaussure
 - Travail du bois et fabrication d'articles en bois et en liège, à l'exception des meubles ; fabrication d'articles en vannerie et sparterie
- A Fabrication d'autres produits minéraux non métalliques
- A Fabrication de produits métalliques, à l'exception des machines et des équipements
- A Fabrication de produits informatiques, électroniques et optiques
- △ Commerce et réparation d'automobiles et de motocycles
- △ Commerce de détail, à l'exception des automobiles et des motocycles
- Stockage et dépôt de produits chimiques, inflammables, gaz
- Transports terrestres et transport par conduites
- Autres services personnels

Rejets renseignés

Rejets industriels

BD TOPO

- Batiment commercial
- Batiment industriel
- Surface d'activité: Industriel ou commercial

Annexe 14

Carte des pressions liées au stockage de déchets, exercées sur le plateau de Sault

BRGM/RP-67528-FR – Rapport final (annexes)

Annexe 15

Carte des pressions liées aux activités sportives, culturelles et touristiques, exercées sur le plateau de Sault

Eaux souterraines du Plateau de Sault - potentialités de la ressource et vulnérabilité

Nota : il faut veiller à ce que le « saut de section page suivante » sur la page précédant celle-ci (4^{ème} de couv.) soit bien présent. Sinon, c'est toute la mise en forme de votre rapport qui se trouve modifiée.

(4^{ème} de couv. pour rapport Orléans)

Centre scientifique et technique Direction XXXXXXXXX (en entier et en minuscules) 3, avenue Claude-Guillemin BP 36009 – 45060 Orléans Cedex 2 – France – Tél. : 02 38 64 34 34 www.brgm.fr

(4^{ème} de couv. pour rapport des régions – SGR ou UTAM)

Centre scientifique et technique 3, avenue Claude-Guillemin BP 36009 45060 – Orléans Cedex 2 – France Tél. : 02 38 64 34 34 - www.brgm.fr **Direction régionale "région"** Adresse Adresse Code postal – Ville – France Tél. :