

Croisement des captages suivis dans le cadre du contrôle sanitaire et des sites BASIAS, BASOL et ICSP en Aquitaine

d7-hta

Phase 2 : Risque de contamination des captages par des molécules potentiellement émises

Rapport final

BRGM/RP-66692-FR Mai 2017

.89 3740,46 -625.5

Croisement des captages suivis dans le cadre du contrôle sanitaire et des sites BASIAS, BASOL et ICSP en Aquitaine

Phase 2 : Risque de contamination des captages par des molécules potentiellement émises

Rapport final

BRGM/RP-66692-FR

Mai 2017

Étude réalisée dans le cadre des opérations de Service public du BRGM PSP14AQI08

B. Ayache, B. Lopez et V. Mardhel

Vérificateur :

Nom: L. CALLIER

Fonction : Responsable Scientifique de

Programme

Date: 19/06/2017

Approbateur :

Nom: N. PEDRON

Fonction: Directeur du BRGM

Nouvelle-Aquitaine
Date: 02/07/2017

Le système de management de la qualité et de l'environnement est certifié par AFNOR selon les normes ISO 9001 et ISO 14001.

Mots-clés : Aquitaine, Gironde, Dordogne, Lot-et-Garonne, Landes, Pyrénées-Atlantiques, eaux
souterraines, forage, source, puits, AEP, BASIAS, BASOL, ICSP, sites industriels, pollution, vulnérabilité, molécule, polluant, analyse multicritère, SIG, base de données.
En bibliographie, ce rapport sera cité de la façon suivante :
Ayache B., Lopez B. et Mardhel V. (2017) - Croisement des captages suivis dans le cadre du contrôle sanitaire et des sites BASIAS, BASOL et ICSP en Aquitaine. Phase 2. BRGM/RP-66692-FR, 53 p., 16 ill., 5 ann.
© BRGM, 2017, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

Synthèse

n 2008 et 2009, le BRGM a mené une étude nationale (Koch-Mathian et *al.*, 2010) de croisement des bases de données BASIAS et SISE-EAUX dans le but d'identifier les sites industriels susceptibles d'avoir une incidence sur la qualité des captages d'eau potable. Un outil de consultation internet (http://basias.brgm.fr/basiasaep/) avait été élaboré ; il permet à l'utilisateur de sélectionner les ouvrages industriels recensés situés autour d'un captage AEP dans un rayon de recherche donné.

En 2009, dans le cadre du second Plan Régional Santé Environnement 2 (2009 – 2013) en Aquitaine, l'ARS (Agence Régionale de la Santé) a montré un vif intérêt pour cette étude nationale "croisement BASIAS – AEP" et a souhaité collaborer avec le BRGM pour aller au-delà de ce premier travail. Pour cela, une étude composée de 2 phases a été proposée :

- Une première phase (cf. rapport BRGM/RP-61490-FR) pour caractériser plus finement la vulnérabilité des captages suivis dans la cadre du contrôle sanitaire à partir de facteurs hydrogéologiques (profondeur de l'ouvrage, nature et épaisseur du recouvrement géologique, bassin d'alimentation...);
- Une seconde phase pour préciser les molécules susceptibles d'être retrouvées dans les captages à partir du type d'activités des sites industriels.

Ce rapport rend compte de la phase 2 de l'étude. Celle-ci est cofinancée par l'ARS, l'Agence de l'Eau Adour-Garonne, la DREAL Aquitaine et le BRGM dans le cadre de sa SCSP (Subvention pour Charges de Service Public).

Un important travail de caractérisation de molécules (indicateur de danger et de mobilité affecté sur 394 substances) issues de la matrice Activités-Polluants (Aubert et al., 2014) a été réalisé afin de pouvoir, en les combinant via une analyse multicritères avec les substances potentiellement émises par les sites industriels (en fonction de leur activité) et la vulnérabilité intrinsèque des 292 captages identifiés comme tels, évaluer le risque de contamination potentielle de ces derniers.

Les périmètres de vulnérabilité théoriques calculés (définis lors de la phase 1, Mazurier et *al.*, 2012) ont été revus et redéfinis à l'aide d'un réseau de drainage ordonnancé permettant en tout point du réseau de connaitre le sous réseau amont ou aval topographique, notamment afin de pouvoir calculer les distances entre les couples AEP – BASIAS, nécessaire à l'analyse multicritères.

La méthodologie mise en place pour ce projet par le BRGM Nouvelle Aquitaine et présentée au comité de suivi s'est appuyée sur des traitements semi-automatiques. Les résultats obtenus constituent un outil d'aide à la décision à l'échelle régionale mais ne peuvent pas remplacer des études hydrogéologiques fines à l'échelle des « couples » sites industriels/captage AEP).

Sur les 1 548 ouvrages AEP d'Aquitaine, 950 sont décrits comme vulnérables intrinsèquement, selon les critères retenus dans le cadre de cette étude en Aquitaine. Parmi ceux-ci, 292 présentent une vulnérabilité aux sites industriels voisins, c'est-à-dire qu'au moins un site industriel géo-référencé est situé dans le périmètre de vulnérabilité du captage (bassin versant topographique calculé (théorique) ou bassin d'alimentation karstique ou aire d'alimentation).

Croisement des captages suivis dans le cadre du contrôle sanitaire et des sites BASIAS, BASOL et ICSP en Aquitaine - Phase 2

L'ensemble de ces résultats est restitué sous la forme d'une application Access qui permet d'identifier les sites industriels en amont d'un captage, les captages en aval d'un site industriel ou encore d'estimer la source possible d'une pollution observée dans un captage.

La phase 3 permettra d'étendre l'étude à la Nouvelle Aquitaine, mais surtout de pérenniser la base de données produite à l'issue de la phase 2. Pour cela un outil en ligne basé sur un chainage de services web sera développé et accessible depuis un accès restreint des SIGES Aquitaine et Poitou Charentes.

Sommaire

1. Introduction	9
1.1. CONTEXTE	9
1.2. OBJECTIF	10
1.3. METHODE MISE EN ŒUVRE ET LIMITES	11
2. Reprise et évolution de la phase 1	13
2.1. VALIDATION DES RESULTATS DE LA PHASE 1	13
2.1.1. Méthode	
2.1.2.Résultats	
2.2. DONNEES TRAITEES COMPLEMENTAIRES	16
2.2.1. Captages AEP	
2.2.2.Sites industriels BASIAS	
2.3. BASSIN VERSANT SELON L'ARBORESCENCE DE SHREVE	18
2.3.1.Méthode	
2.3.2. Résultats actualisés de la Phase 1	28
3. Lien captage AEP - polluants potentiels	29
3.1. PRINCIPE GENERAL DE LA METHODE	29
3.2. MATRICE ACTIVITES POLLUANTS	29
3.2.1.Présentation	29
3.2.2.Limites d'utilisation de la matrice	32
3.3. CARACTERISATION DES MOLECULES	32
3.3.1.Principe général	
3.3.2. Molécules considérées pour l'étude	33
3.3.3. Sources de données	33
3.3.4. Danger pour la santé humaine - toxicité	
3.3.5. Transfert potentiel vers les eaux souterraines	36
3.4. INDICATEUR FINAL (PRESSION INDUSTRIELLE AUX AEP)	38
4. Outils et valorisation	39
4.1. BD ACCESS	40
4.1.1.Menu général	40
4.1.2. Sites industriels en amont d'un captage AEP	40
4.1.3. Source possible d'une molécule	42

4.1.4. Captages AEP en aval d'un site industriel	43
4.1.5. Interrogation matrice activités - polluants	46
4.1.6. Molécules potentiellement émises par un site industriel	
4.1.7. Requête Pression industrielle potentielle	47
4.2. PROJET SIG	48
4.3. RESULTATS	48
4.3.1. Carte	
4.3.2.Tableau	50
5. Conclusion	51
5.1. LIMITES	51
5.2. PERSPECTIVES	52
6. Bibliographie	53
Liste des figures	
Illustration 1 : Méthodologie nationale du croisement BASIAS - AEP	g
Illustration 2 : Répartition des substances dépassant les seuils de l'arrêté du 11 janvier 2007	14
Illustration 3 : Zone d'étude	17
Illustration 4 : Gradation des captages AEP selon le nombre de sites industriels compris dans leurs emprises de vulnérabilité	18
Illustration 5 : Réseau de drainage	20
Illustration 6 : Exemple de hiérarchisation, en vert le numéro du brin, en bleu le rang d'entrée, en rouge celui de sortie	21
Illustration 7 : Fonctions mises en place avec la topologie de réseau	21
Illustration 8 : Schématisation des relations amont/aval entre points AEP et BASIAS	22
Illustration 9 : Relation AEP (assimilé à un cercle de rayon défini) et bassins versant	23
Illustration 10 : Mise en œuvre de la relation AMONT_DE_AEP (exemple de restitution formulaire Access)	25
Illustration 11 : Exemple de relation EN_AVAL_DE pour un site BASIAS (en bleu les AEP, le site BASIAS en rouge)	25
Illustration 12 : Relation AMONT DE AEP pour l'ouvrage 07104X0501 et huit sites BASIAS en amont.	26
Illustration 13 : Calcul de longueur après la mise en œuvre de la relation AMONT_DE_AEP (exemple de restitution formulaire Access)	
Illustration 14 : Indices de probabilité de présence des substances par activité	31
Illustration 15 : Exemple du croisement des matrices intermédiaires issues des bases de données ADES, BASIAS, BASOL et ETS	31
Illustration 16 : Comparaison de l'étiquetage des produits chimiques selon l'ancienne Directive	35

Liste des annexes

Annexe 1	Liste des substances sur lesquelles une analyse de risque au captage a été réalisée	55
Annexe 2	Indicateur de Pression Industrielle	65
Annexe 3	Dépassements des seuils en Fer et en Manganèse dans les captages classés en non- vulnérables lors de la phase 1	73
Annexe 4	Dépassements des seuils en Fluor et en Arsenic dans les captages classés en non- vulnérables lors de la phase 1	77
Annexe 5	Dépassements des seuils en Ammonium dans les captages classés en non-vulnérables lors de la phase 1	81

1. Introduction

1.1. CONTEXTE

Le BRGM a mené une étude nationale en 2008 et 2009 permettant d'identifier les sites BASIAS¹ ayant potentiellement une incidence sur les captages AEP². La relation pouvant exister entre les sites BASIAS et les captages AEP est définie grâce à la notion de distance (distance autour d'un captage AEP ou autour d'un site BASIAS) (cf. Illustration 1). Cet outil de consultation est mis à disposition sur le site ADES³ et la méthodologie est exposée dans le rapport BRGM RP-58789-FR (Koch-Mathian et al., 2010).

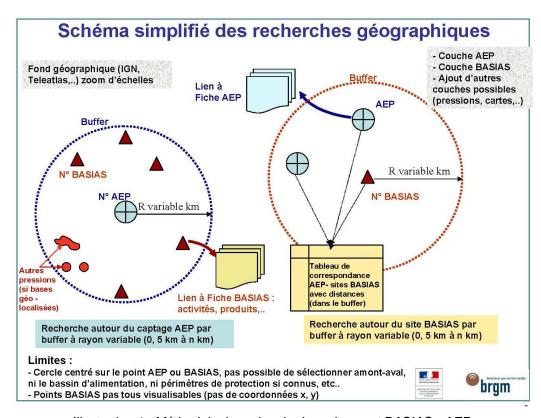


Illustration 1 : Méthodologie nationale du croisement BASIAS - AEP

En 2009, dans le cadre du second Plan Régional Santé Environnement 2 (PRSE2 2009 – 2013) en Aquitaine, l'ARS (Agence Régionale de la Santé) a montré son intérêt pour l'étude nationale "croisement BASIAS - AEP" et a souhaité l'approfondir.

Une réflexion a été menée en 2010 par le BRGM Aquitaine et l'ARS Aquitaine pour définir l'objectif de cette nouvelle étude.

¹ Base de données d'Anciens Sites Industriels et Activités de Service (Il convient de souligner l'ambiguïté du mot « Ancien », car un site peut être « ancien » tout en étant encore en activité. Le qualificatif « ancien » n'est donc pas synonyme de « activité terminée ») : http://basias.brgm.fr/

² Alimentation en Eau Potable

³ Banque nationale d'Accès aux Données sur les Eaux Souterraines - ADES : http://www.ades.eaufrance.fr/

Croisement des captages suivis dans le cadre du contrôle sanitaire et des sites BASIAS, BASOL et ICSP en Aquitaine - Phase 2

Celle-ci doit permettre de caractériser le risque de contamination des captages AEP suivis dans le cadre du contrôle sanitaire, vis-à-vis des pollutions potentiellement émises par les sites industriels issus des bases de données BASIAS, BASOL⁴, Installations classées et sites pollués en région Aquitaine (ICSP).

Cette étude est ainsi cofinancée par la DREAL Aquitaine, l'ARS Aquitaine, l'Agence de l'Eau Adour Garonne et le BRGM.

La méthodologie mise en place se déroule en 2 phases, la première vise à caractériser la vulnérabilité potentielle des captages AEP et assimilés en fonction des sites industriels voisins, selon une méthodologie semi-automatique (cf. Mazurier et al. 2012, RP-61490-FR).

La caractérisation de la vulnérabilité comprend 2 étapes successives :

- une première qui permet de déterminer la vulnérabilité intrinsèque du captage AEP (selon son environnement hydrogéologique),
- une seconde au cours de laquelle la vulnérabilité aux sites industriels (selon la présence ou non de sites industriels dans le bassin versant du captage) est précisée.

La phase 2, objet du présent rapport, permet de définir une gradation du risque en fonction des types de polluants potentiellement émis selon le type d'activité (qu'elle soit actuelle ou passée) pratiquée sur les sites industriels retenus dans cette étude.

1.2. OBJECTIF

La phase 1 a permis d'écarter près de 3 captages sur 4 ne présentant pas de risque de contamination vis-à-vis d'éventuelles pollutions émises par des sites industriels. Soit parce qu'ils ne présentent pas de vulnérabilité intrinsèque (hydrogéologique), soit parce que leur périmètre de vulnérabilité ne contient aucun site industriel.

L'objectif de la phase 2 est désormais de pouvoir ordonnancer le risque de contamination pour les 292 captages vulnérables, toujours à l'aide d'une méthodologie géomatique via une analyse multi critères.

La première partie du présent rapport revient sur les compléments ou évolutions méthodologiques apportés aux résultats de la phase 1. La deuxième partie décrit le lien entre les captages AEP et les molécules potentiellement émises par les sites industriels. Enfin la troisième partie présente la base de données produite.

_

⁴ Base de données sur les sites et sols pollués (ou potentiellement pollués) appelant une action des pouvoirs publics, à titre préventif ou curatif : http://basol.environnement.gouv.fr/

1.3. METHODE MISE EN ŒUVRE ET LIMITES

La phase 2 de l'étude propose, comme pour la première phase, de caractériser les captages AEP à l'aide d'une analyse multi critères.

Mise en garde préalable: la méthode mise en œuvre a été développée dans l'objectif d'être appliquée sur un nombre important de sites simultanément (près de 300 captages AEP identifiés comme vulnérables intrinsèquement) à l'échelle régionale. Il ne s'agit pas de faire une analyse détaillée du risque sur chaque forage AEP pris indépendamment mais de les classer de manière semi-automatique en fonction d'un risque théorique potentiel de pollution industrielle.

La méthode met en place une relation spatiale entre points AEP et points BASIAS (sites industriels) fondée <u>sur la topologie des écoulements de surfaces ou plus simplement, sur les relations entre bassins versants topographiques et talwegs.</u>

La gravité du risque potentiel de pollution de type industriel est estimée grâce aux informations sur la mobilité et la toxicité des molécules, en supposant une relation directe entre topographie de surface et écoulement souterrain (ce qui n'est pas forcément et systématiquement le cas, mais supposé puisque les captages vulnérables intrinsèquement sont peu profonds).

Les résultats doivent donc être utilisés comme des éléments d'orientation des futurs suivis chimiques afin d'identifier et de prioriser :

- parmi l'ensemble des captages AEP de la région Aquitaine, quels sont ceux qui semblent être les plus exposés aux pollutions industrielles potentielles ;
- parmi l'ensemble des molécules que l'on pourrait potentiellement retrouver aux captages, quelles sont les plus toxiques et les plus mobiles ? Ce qui pourrait conduire à renforcer les suivis sur celles-ci.

Au final la base de données produite est un outil d'aide à la décision qui ne se substitue pas à une étude hydrogéologique fine.

2. Reprise et évolution de la phase 1

2.1. VALIDATION DES RESULTATS DE LA PHASE 1

2.1.1. Méthode

Dans une optique de validation de la méthode semi-automatique utilisée lors de la phase 1 pour classer les captages en vulnérables intrinsèquement ou non, une vérification via les suivis sanitaires présents sur le site Internet <u>ADES</u> était souhaitée sur les captages « non-vulnérables intrinsèquement ».

L'idée initiale était donc de regarder si des substances potentiellement émises par les sites industriels ne se retrouvaient pas en concentration élevée dans les eaux des captages concernés. Néanmoins cette vérification a été partielle en raison des limites de surveillance au titre de la DCE qui vise exclusivement les substances pour lesquelles les normes de qualité environnementale sont fixées (c'est-à-dire, les substances prioritaires définies au niveau communautaire et les polluants spécifiques de l'état écologique).

Ce sont les seuils de l'Arrêté du 11 janvier 2007 relatifs aux limites de références de qualité des eaux brutes utilisées pour la production d'eau destinée à la consommation humaine mentionnées aux articles R. 1321-2, R. 1321-3, R. 1321-7 et R. 1321-38 du code de la santé publique qui ont servi au croisement avec les suivis ADES. Ceci a été réalisé sous Microsoft Excel© grâce à la fonction Tableaux croisés dynamiques.

2.1.2. Résultats

La validation géochimique s'est faite sur les 605 captages classés lors de la phase 1 en non-vulnérables intrinsèquement (c'est-à-dire exploitant dans des nappes captives ou à des profondeurs importantes) sur les 1546 ouvrages AEP que comptent l'Aquitaine. Sur ces 605 captages, 501 figuraient dans ADES. Dans l'optique de réduire le nombre de données à étudier et de traiter une problématique actuelle, seuls les suivis à partir de 1998 ont été retenus. Il faut aussi noter ainsi une meilleure fiabilité des données depuis ces 15 dernières années, en raison de l'amélioration des méthodes de prélèvement (normalisation des protocoles d'acquisition), de conservation, de transport et d'analyses des échantillons.

Résultats de l'étude de dépassement des seuils de potabilité

Sur les 501 captages, 335 révèlent une ou plusieurs contaminations. En regardant de plus près (Illustration 1), elles sont majoritairement dues à quelques éléments tels que le Fer, le Manganèse, le Fluor, l'Arsenic, et l'Ammonium.

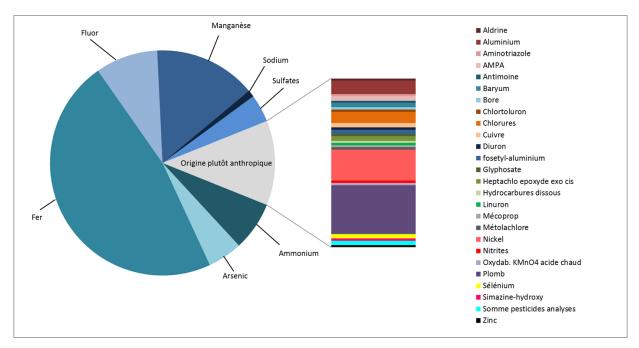


Illustration 2 : Répartition des substances dépassant les seuils de l'arrêté du 11 janvier 2007

Origine des substances dépassant le plus les normes de potabilité

L'Arsenic

La majeure partie des dépassements en Arsenic ont été relevés dans les Landes (cf. Annexe 4 : Dépassements des seuils en Fluor et Arsenic dans les captages classés en non-vulnérables lors de la phase 1). L'arsenic hydrique peut avoir plusieurs origines : naturelle, en relation avec la composition des roches traversées, ou industrielle. Dans ce département, il est considéré comme d'origine naturelle (ARS Aquitaine, 2008).

Le Fluor, le Fer et le Manganèse

Le Fluor (Annexe 4 : Dépassements des seuils en Fluor et Arsenic dans les captages classés en non-vulnérables lors de la phase 1) est un élément naturel contenu dans certaines roches de la région Aquitaine (ARS Aquitaine, 2008).

Quant au Fer et au Manganèse (Annexe 3 : Dépassements des seuils en Fer et en Manganèse dans les captages classés en non-vulnérables lors de la phase 1), ils abondent eux aussi à l'état naturel dans tous types de roches et se retrouvent à l'état dissous dans bon nombre de systèmes aquifères (Division Nationale des Eaux Minérales et Thermales et BRGM, Mars 1999). Ils sont, de plus, facilement éliminables lors des processus de potabilisation et ne représentent donc pas un problème majeur.

L'Ammonium

Dans le cas de l'Ammonium (Annexe 5 : Dépassements des seuils en Ammonium dans les captages classés en non-vulnérables lors de la phase 1), ce dernier peut être présent à des teneurs non négligeables dans le cas de réactions de dénitrification, associé à des faibles teneurs en nitrates (Cary et al., 2012). Le phénomène ne peut alors s'accompagner que d'une augmentation des teneurs en fer, en manganèse ou en sulfates de l'eau (BRGM-RP-50304-FR). Lors de la validation chimique, les captages révélant une teneur élevée en ammonium

(>0,5 mg/L) présentaient en parallèle des faibles teneurs en nitrates et en nitrites et des teneurs élevées en fer. Cela laisse donc supposer que les eaux qu'ils captent ont subi ce type de processus naturel.

La réaction de dénitrification s'inscrit dans un contexte d'oxydo-réduction où les oxydes d'azote jouent le rôle d'accepteurs d'électrons (réaction de réduction) et la matière organique ou les composés inorganiques jouent le rôle de donneurs (réaction d'oxydation). Les réactions d'oxydation associées à la réduction des nitrates peuvent impliquer différents composés, les plus courants étant la matière organique et les minéraux sulfurés tels que la pyrite essentiellement qui est un minéral ubiquiste présents dans les roches cristallines et métamorphiques (sous forme de massifs sulfurés, associée à des filons de quartz...) ou dans des roches sédimentaires (BRGM- RP-50304-FR).

La dénitrification est une réaction qui permet la transformation des nitrates en une espèce gazeuse (N2). Mais cette réduction des nitrates ne mène pas forcément à une espèce gazeuse facilement éliminable dans l'eau. Dans certaines conditions mal connues, elle peut en effet mener à la production d'ions ammonium (NH4+). On parle alors d'ammonification (BRGM- RP-50304-FR). Ce processus s'effectue par l'action de bactéries fixatrices d'azote dans le sol ou de bactéries (ou champignons) qui décomposent directement les nitrates en ammonium.

Après discussion avec l'ARS en Comité de suivi du 5 mai 2015, les dépassements de seuil en ammonium ont été classés en origine naturelle.

Conclusion de la validation géochimique

Au final après validation par l'ARS, sur les 57 captages révélant des pollutions anthropiques, seuls 6 captages ont été sujets à des pollutions non naturelles réellement récurrentes. Seuls ceux-là ont donc été reclassés en vulnérables intrinsèquement.

Captage AEP	Substance	Valeur Maximale	Valeur seuil *	Informations
10052X0041/F	Nickel	34,8 µg/L	20 μg/L	Mesures en 2007; 2008; 2010; 2011; 2014. Seuil atteint en 2008 et dépassé en 2010
08297X0001/F	Plomb	17 μg/L	10 μg/L	2 mesures en 1998 (mai et octobre), les 2 dépassent le seuil. 1 autre en 2002 sous le seuil.
08788X0003/F	Plomb	19 μg/L	10 μg/L	Mesures en 1999 et 2001. Les deux dépassent le seuil
09024X0002/F	Plomb	21 μg/L	10 μg/L	Mesures en 1999 et 2001. Les deux dépassent le seuil
09032X0001/F	Plomb	29 μg/L	10 μg/L	Mesures en 1998 et 2001. Les deux dépassent le seuil
08277X0169/F2	Sélénium	18 μg/L	10 μg/L	Mesures en 2003; 2006; 2010 et 2013. Toutes dépassent le seuil

^{*:} destinées à la consommation humaine

Après avoir calculé leur enveloppe de vulnérabilité, 3 seulement sont vulnérables aux sites industriels (contenant au moins 1 site industriel dans son enveloppe de vulnérabilité).

2.2. DONNEES TRAITEES COMPLEMENTAIRES

2.2.1. Captages AEP

Entre la phase 1 et la phase 2, de nouveaux captages AEP ont été réalisés.

Ceux-ci ont été intégrés à l'étude, voici la liste de ces 6 captages :

Indice BSS	Département	Commune	Aquifère capté	Positions crépines
08028X0345/F1BIS	GIRONDE	SAINT-MEDARD-EN- JALLES	AQUITANIEN	de 11 à 17 m
08046X0162/F1BIS	GIRONDE	MOULON	EOCENE MOYEN	de 167 à 284 m
08752X0186/F	GIRONDE	SAINT-SYMPHORIEN	AQUITANIEN ET BURDIGALIEN	de 50.5 à 59 et de 63 à 77 m
08753X0121/F	GIRONDE	SAINT-LEGER-DE- BALSON	OLIGOCENE	de 124 à 160 m
09245X0128/F4	LANDES	LESPERON	AQUITANIEN	de 201.7 à 283.7 m
09248X0113/F3	LANDES	VILLENAVE	OLIGOCENE	de 217 à 280 m

Les captages 08028X0345/F1BIS et le 08752X0186/F ont été classés en captages vulnérables intrinsèquement au vue de la position des crépines et conformément à la méthodologie définie lors de la Phase 1.

Seul le captage 08028X0345/F1BIS est vulnérable aux sites industriels puisque son périmètre de vulnérabilité théorique calculé (bassin versant topographique ayant pour exutoire le captage) contient 2 sites industriels.

2.2.2. Sites industriels BASIAS

Aux sites industriels listés lors de la phase 1 du projet ont été ajoutés ceux des ex-régions Midi-Pyrénées, Languedoc-Roussillon, Auvergne, Limousin et Poitou-Charentes.

Illustration 3 : Zone d'étude

Ce travail était nécessaire en raison de certains bassins qui s'étendaient sur les régions voisines. Après homogénéisation des systèmes de projection et, surtout, vérification de l'indication des codes NAF (Nomenclature d'Activités Française), seuls les sites présents dans les bassins versants des captages vulnérables ont été conservés grâce à l'outil de sélection, selon l'emplacement, du logiciel de Système d'Information Géographique ArcGIS©.

Si l'ajout de ces sites industriels n'a pas changé le nombre de captages AEP vulnérables aux sites industriels identifiés lors de la phase 1, elle a néanmoins considérablement augmenté leur nombre dans certains bassins versants.

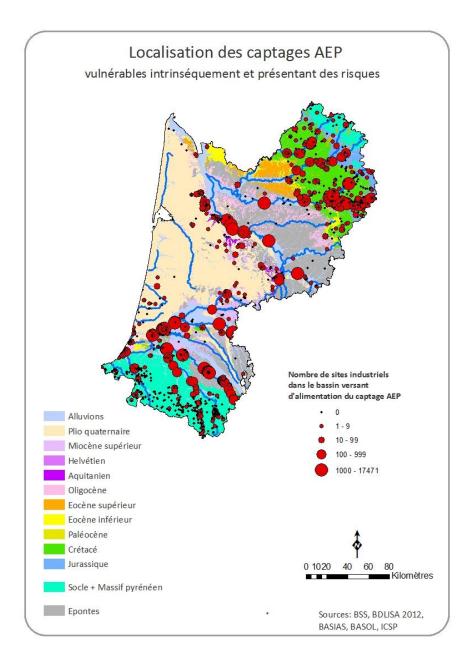


Illustration 4 : Gradation des captages AEP selon le nombre de sites industriels compris dans leurs emprises de vulnérabilité

2.3. BASSIN VERSANT SELON L'ARBORESCENCE DE SHREVE

Il est apparu nécessaire de recalculer les bassins versants topographique ayant pour exutoires les captages AEP calculé lors de la Phase 1, en particulier afin de pouvoir calculer les distances entre les captages AEP et les sites industriels à partir du réseau de drainage (et non en droite ligne).

Cela a également contribué à rendre l'application d'interrogation de la base de données plus complète en permettant d'avoir des relations topologiques entre l'amont et l'aval.

2.3.1. Méthode

La mise en place d'une relation spatiale entre points AEP et points BASIAS est fondée <u>sur la topologie des écoulements de surfaces ou plus simplement, sur les relations entre bassins versants topographiques et talwegs.</u> Pour établir cette topologie, le MNT au pas de 25 mètres de l'IGN a été utilisé sur l'ensemble du secteur d'étude (bassin Adour Garonne) afin de calculer :

- 1. Un réseau de talwegs et les bassins versants élémentaires qui les alimentent,
- 2. Une topologie de réseau permettant le parcours amont ou aval de ce réseau de talwegs qui forme un arbre hiérarchique dont les nœuds sont les confluences de chaque talweg.

Calcul du réseau de talweg

Les outils de modélisation hydrologique utilisés pour ce calcul sont ceux de l'Extension ArcGIS© Spatial Analyst© qui mettent en œuvre des méthodes permettant de décrire les composants physiques d'une surface. Ces outils s'appliquent à un modèle d'altitude (MNA) ou modèle numérique de terrain (MNT).

Le réseau de talweg (ou réseau de drainage) découle d'un calcul d'accumulation de flux pour chacune des mailles du modèle. Une valeur seuil de cette accumulation de flux permet d'initier un talweg. Dans le cadre de cette étude, la valeur seuil utilisée est 3,125 hectares soit 50 cellules de 25 m de côté (625m²). Afin de préserver les directions et les cours d'eau naturels existants, le modèle numérique de terrain a été contraint en entrée par le réseau naturel des rivières.

L'illustration suivante présente une partie de réseau de drainage.

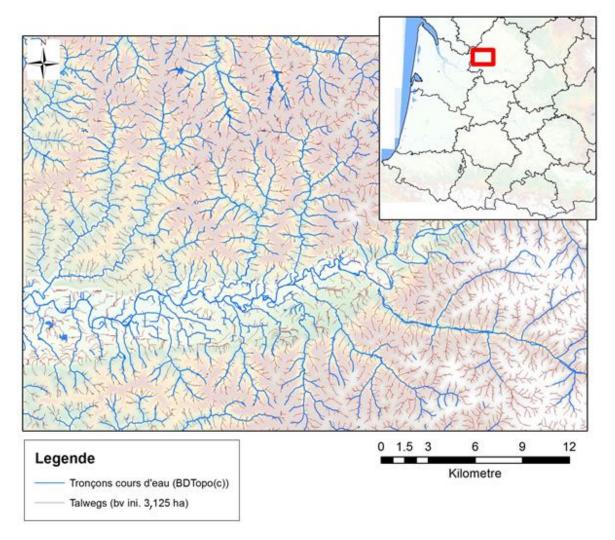
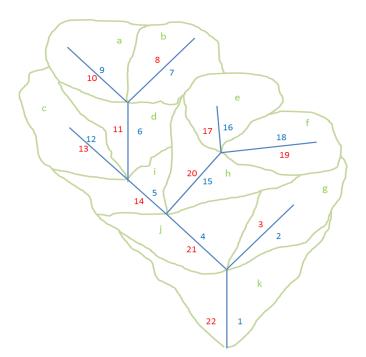



Illustration 5 : Réseau de drainage

Mise en place d'une topologie sur le réseau de talweg

Cette topologie permet le parcours orienté de l'arbre de drainage, vers l'amont ou l'aval. L'illustration suivante en décrit les composantes principales, chaque brin est qualifié par un rang d'entrée et de sortie en fonction du parcours de l'arbre depuis l'exutoire. Cette qualification est appelée 'ordre hiérarchique inverse'.

Chaque brin de talweg est identifié par un indice unique, un rang d'entrée (attribut ENTREE dans les illustrations suivantes) et un rang de sortie (attribut SORTIE), une longueur et le bassin versant global qui correspond à l'exutoire final du réseau.

ID_BRIN	ENTREE	SORTIE	LONGUEUR
а	9	10	5
b	7	8	5
С	12	13	6
d	6	11	5
е	16	17	4
f	18	19	5
g	2	3	5
h	15	20	6
i	5	14	5
j	4	21	4
k	1	22	5

ID_BASSIN	ENTREE	SORTIE	SURFACE
а	9	10	25
b	7	8	25
С	12	13	36
d	6	11	25
е	16	17	16
f	18	19	25
g	2	3	25
h	15	20	36
i	5	14	25
j	4	21	16
k	1	22	25

SORTIE

17 19 20 LONGUEUR

Illustration 6 : Exemple de hiérarchisation, en vert le numéro du brin, en bleu le rang d'entrée, en rouge celui de sortie

Cette qualification des brins de talweg est associée aux bassins versants calculés pour chacun de ces talwegs. Il existe donc une topologie de réseau dont les bassins versants héritent. Dans la suite de cette analyse, la relation entre points AEP et sites Basias sera fondée sur cette topologie dont les sites BASIAS et les AEP héritent par la relation d'appartenance à un bassin versant.

Exemples d'utilisation de la topologie

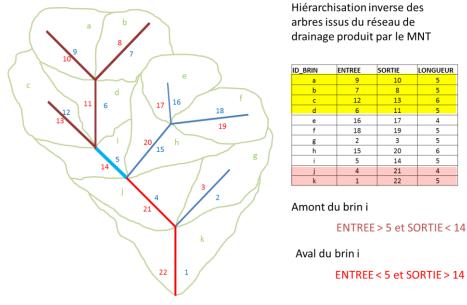


Illustration 7 : Fonctions mises en place avec la topologie de réseau

L'illustration précédente montre la capacité de parcours des arbres hiérarchisés de talwegs, selon une direction amont ou aval. En héritant des propriétés des bassins versants dans lesquels ils sont inclus, les points AEP ou BASIAS peuvent bénéficier de ces propriétés.

L'illustration suivante montre l'utilisation des attributs d'entrée et de sortie hérités des talwegs pour établir des relations de type amont/aval entre les points.

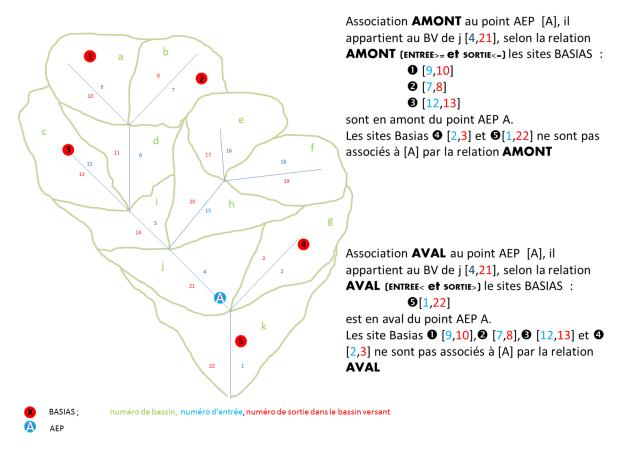


Illustration 8 : Schématisation des relations amont/aval entre points AEP et BASIAS

Remarque: Une relation univoque entre un point AEP et un bassin versant associé à un talweg n'est pas satisfaisante au regard de la précision des coordonnées des AEP et de l'éventuel cône de rabattement que peut induire un pompage. Ce dernier intersecte une plus grande quantité de 'lignes d'eau' qu'un unique point. Il a donc été considéré une relation de type (1,n) entre les AEP et les BV qui les entourent en considérant le point AEP non plus comme un point unique mais comme un cercle de rayon variable. En pratique, un rayon de 50 à 300 mètres a été affecté à chaque point AEP en fonction de la pente des terrains où est implanté l'ouvrage. Dans des zones de pentes très faible à nulle où le gradient de la nappe captée est supposé faible, le cône d'appel potentiel est arbitrairement fixé à 300 mètres; pour des zones de fortes pentes il est supposé de 50 mètres. Il est également envisageable d'utiliser le périmètre de protection des ouvrages, lorsqu'il existe, plutôt qu'un 'buffer' arbitraire (cf. paragraphe suivant)

La relation BASIAS et bassin versant reste en revanche univoque (1,1). Elle évite ainsi le risque de compter deux fois ou plus un site BASIAS situé en amont d'un ouvrage AEP.

L'illustration suivante présente un point AEP interceptant deux bassins versants et l'impact en termes de relations spatiales.

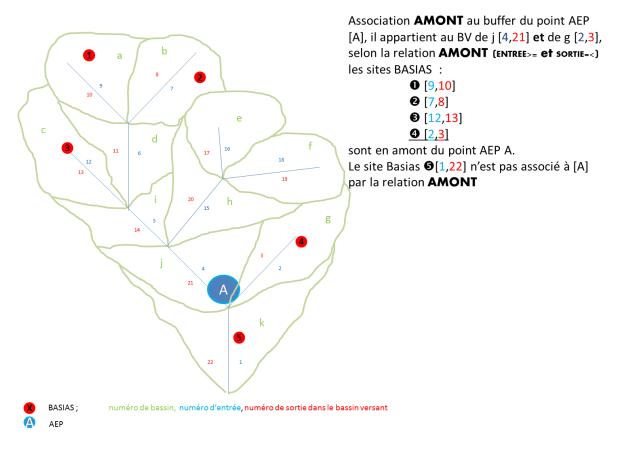


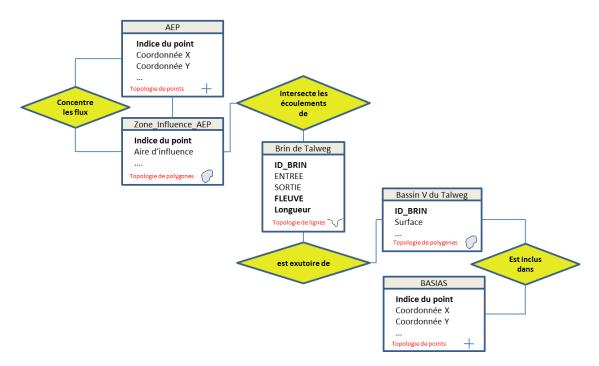
Illustration 9 : Relation AEP (assimilé à un cercle de rayon défini) et bassins versant

Mise en œuvre du modèle topologique à l'échelle du secteur d'étude

Pour chaque point AEP (doté d'un identifiant unique), un cercle de rayon variable selon la pente a été défini (zone d'influence) ; l'analyse de l'intersection de cette surface avec les bassins versants élémentaires permet d'associer à ces points les attributs d'ENTREE et SORTIE des brins de talwegs intersectés.

Pour chaque point BASIAS (doté d'un identifiant unique), le croisement avec les bassins versant élémentaires permet d'associer à ces points un seul couple d'attribut ENTREE et SORTIE issu du bassin versant dans lequel ces points se situent.

Ces tables sont conservées dans une base de données à laquelle sont ajoutés :


- l'ensemble des brins qui composent le réseau de talwegs (doté d'un identifiant unique) et des attributs de la topologie de réseau (ENTREE et SORTIE) ainsi que la longueur de chaque brin;
- 2. L'ensemble des bassins versant associés à ces brins de talwegs.

Modèle conceptuel simplifié

L'organisation des données est illustrée par le modèle conceptuel simplifié présenté dans l'illustration ci-dessous. Cinq tables le composent :

- 1. **AEP**: La table des points AEP contenant l'indice national du point et ses coordonnées spatiales,
- 2. Zone d'influence : La table de la zone d'influence des points AEP. C'est actuellement la zone dite de buffer autour des points tels que décrite dans les paragraphes précédents. Cela peut aussi être, lorsqu'on dispose de l'information, l'aire d'Alimentation de Captage, le bassin d'alimentation karstique, le Périmètre de Protection Eloigné, etc... toute surface susceptible de permettre la convergence des lignes de courants vers l'ouvrage,
- 3. **BASIAS**: La table des points BASIAS contenant l'indice du point et ses coordonnées spatiales,
- 4. **Bassin_V_du_Talweg**: Il s'agit des polygones décrivant le bassin versant topographique de chaque brin du réseau de talweg,
- 5. **Brin_de_Talweg**: Il s'agit de l'arbre topologique du réseau de talweg tel que décrit précédemment. Cette table possède les éléments géométriques permettant le calcul des distances entre les différents points à partir du moment où les associations de type AMONT et AVAL (topographiques) peuvent être établies (cf. paragraphe précédent).

La relation entre AEP et BASIAS se fait donc par l'intermédiaire de la table **Bassin_V_du_Talweg**.

Enfin des requêtes simples ont été implémentées selon les règles de topologie décrites cidessus.

Pour les points il s'agit de :

1 - FONCTION_AMONT_DE_AEP, elle donne une liste de couples [AEP, BASIAS amont]

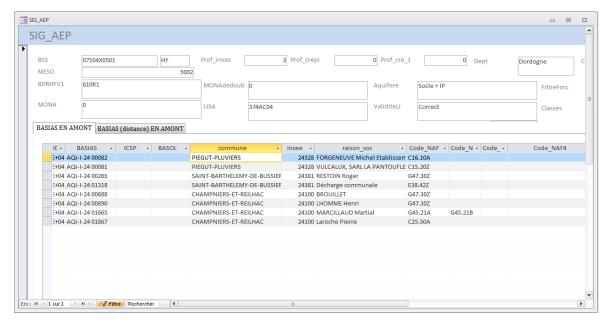


Illustration 10 : Mise en œuvre de la relation AMONT_DE_AEP (exemple de restitution formulaire Access)

2- FONCTION_AEP_AVAL_DE_BASIAS, elle donne la liste des AEP qui sont à l'aval des BASIAS

Illustration 11 : Exemple de relation EN_AVAL_DE pour un site BASIAS (en bleu les AEP, le site BASIAS en rouge)

Pour les recherches de distance, il s'agit de :

3 - FONCTION_CHEMINS_VERS_AEP, elle donne la liste des brins de talwegs qui séparent les couples AEP, BASIAS en amont

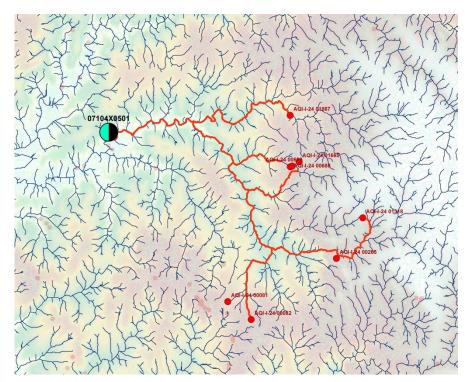


Illustration 12: Relation AMONT DE AEP pour l'ouvrage 07104X0501 et huit sites BASIAS en amont

4 - FONCTION_LONGUEUR_CHEMIN_VERS_AEP, elle donne la longueur totale (somme des longueurs de brins) entre les couples [AEP, BASIAS amont]

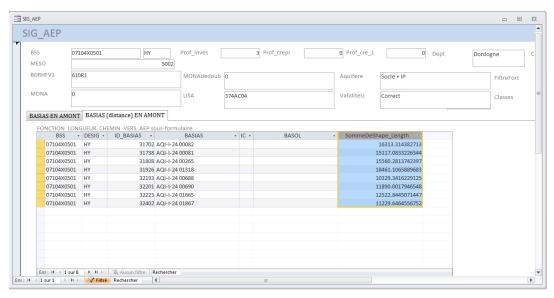


Illustration 13 : Calcul de longueur après la mise en œuvre de la relation AMONT_DE_AEP (exemple de restitution formulaire Access)

5 - FONCTION_BRINS_AVAL_DE_BASIAS, elle donne la liste des brins talwegs qui découlent des points BASIAS

Un ensemble de combinaisons existent encore. Les trois fonctions principales dont découlent les analyses de sensibilité des AEP sont les fonctions : 1, 3 et 4.

- Elles associent les sites BASIAS et les AEP (fonction 1),
- Elles qualifient la distance entre les points selon le parcours suivi par les écoulements modélisés (fonctions 1 et 4),
- Elles permettent enfin d'individualiser les chemins parcourus selon les couples (AEP, BASIAS) et donc de qualifier les talwegs selon le nombre de fois ou un polluant éventuel les parcourt.

Remarques sur les relations et la qualification des distances

- 1. Les calculs et relations entre les points sont dépendants de la précision des traitements initiaux qui ont conduit à l'élaboration des talwegs et des bassins versant. L'unité de surface élémentaire pour initier un BV est de 3,125 ha, soit une précision maximale, si on assimile cette surface à un cercle, de +/- 250 mètres en moyenne.
 - Une analyse plus fine des distances pourrait être menée en établissant pour chacun des sites BASIAS, un tronçon de talweg spécifique reliant ce site au talweg le plus proche. Toutefois, au regard de la précision géométrique à laquelle sont réduits ces sites (un point plutôt qu'une surface), de leur complexité (sites industriels), une telle précision semble tout autant aléatoire que l'imprécision associée à la simplification qui consiste à assimiler la longueur du talweg du bassin versant à la longueur qui sépare le site de l'exutoire de ce bassin versant.
- 2. Le découpage en bassins versants ne permet pas de distinguer la notion de rive droite ou rive gauche des axes de drainage, la relation entre les points BASIAS et AEP ne tient pas compte de l'orientation de l'écoulement (rive droite/rive gauche) mais de la relation amont/aval uniquement.
- 3. Le calcul du 'rayon d'influence' des points AEP qui varie de 50 à 300 mètres selon la pente des terrains naturels pourrait être affiné par la connaissance des paramètres hydrodynamique de l'aquifère sollicité et la prise en compte des débits d'exhaure. Le choix arbitraire d'un « buffer » relativement important parait plus respectueux du principe de précaution visant à rechercher l'intersection d'un plus grand nombre de ligne de talwegs. Dans l'idéal, l'utilisation des périmètres de protection rapprochés et éloignés serait plus adaptée aux sites AEP. Le modèle conceptuel mis en place est aisément adaptable aux périmètres de protection qui peuvent remplacer les périmètres de vulnérabilité théoriques calculés lorsqu'ils existent.

2.3.2. Résultats actualisés de la Phase 1

Cette évolution méthodologique a conduit à une modification des résultats de la Phase 1, en particulier le nombre de captages vulnérables final.

En effet l'évolution méthodologique permettant de définir les périmètres de vulnérabilité des captages, lorsque ceux-ci ne sont pas connus (existence d'un périmètre de protection ou d'une aire d'alimentation de captage), a entrainé dans certains cas une modification du contour des périmètres de vulnérabilité. En fonction du nouveau nombre de sites industriels présents ou non dans les nouveaux périmètres, cela a également entrainé une modification du nombre de captages vulnérables aux sites industriels.

La Phase 1 indiquait 423 captages vulnérables aux sites industriels. La nouvelle arborescence de Shreve réévalue à 292 le nombre de captages vulnérables aux éventuels polluants des activités industrielles présentes sur le bassin versant concerné.

Répartition du nombre de captages selon leur vulnérabilité :

Classe	Nombre captage	
Classe 1	785	Vulnérable intrinsèquement
Classe 2	165	vullierable ilittilisequellielit
Classe 3	172	Name vivile é emble interior à sur ausent
Classe 4	426	Non vulnérable intrinsèquement

Répartition du nombre de captages vulnérables intrinsèquement selon leur type d'enveloppe de vulnérabilité :

Aire d'Alimentation de Captage	11
Bassin d'alimentation karstique	96
Bassin versant ayant pour exutoire l'ouvrage	825
Périmètre de Protection Eloigné	18

Répartition du nombre de captages selon leur vulnérabilité finale aux sites industriels selon le type d'enveloppe de vulnérabilité :

	Nombre captage vulnérable	Nombre captage non vulnérable
Bassin d'alimentation connu	45	80
Bassin d'alimentation calculé	247	578
TOTAL	292	658

3. Lien captage AEP - polluants potentiels

3.1. PRINCIPE GENERAL DE LA METHODE

Une fois identifiés et sélectionnés les points de prélèvements AEP vulnérables intrinsèquement, il est proposé de définir une classification du risque des ouvrages vis-à-vis de la présence possible de polluants, plus ou moins toxiques, potentiellement émis par les sites industriels présents dans leur bassin versant d'alimentation. La définition de ce risque spécifique prend en compte :

- les caractéristiques intrinsèques connues des molécules qui guident leur devenir dans le milieu souterrain et leur transfert potentiel vers les aquifères (solubilité, adsorption, demivie, ..);
- les caractéristiques structurelles du couple AEP-BASIAS (distance, localisation hydraulique du rejet par rapport au captage ...);
- l'occurrence connue des substances dans les eaux souterraines ;
- les connaissances sur la toxicité des molécules et de leurs métabolites si connus et pertinents dans les eaux souterraines.

La méthode repose en premier lieu sur l'établissement d'un lien entre les activités industrielles et la présence de molécules chimiques dans les eaux souterraines. Ce lien est réalisé en utilisant la matrice Activités/Polluants décrite par la suite. Dans un second temps, connaissant les activités industrielles présentes dans les bassins versants des captages AEP, à chaque ouvrage AEP est associée une liste spécifique de polluants potentiels des eaux souterraines. Ces polluants sont alors classés en fonction de leur toxicité humaine. Dans la mesure du possible, les informations relatives à la mobilité de ces molécules en milieu souterrain ont également été renseignées.

3.2. MATRICE ACTIVITES POLLUANTS

3.2.1. Présentation

Un des verrous principaux à lever pour répondre à l'objectif général de l'étude est la capacité à lier les activités industrielles avec les polluants potentiels dans les eaux souterraines. Or, dans le cadre de la politique de gestion des sites et sols pollués en France, la Direction Générale de la Prévention des Risques du Ministère de l'Ecologie, du Développement Durable et de l'Energie (MEDDE - DGPR) met à disposition des guides et outils de gestion des sites et sols pollués. Parmi ces outils, le guide « diagnostic du site » révisé en 2007 propose dans son « annexe D » une matrice simplifiée permettant de faire la correspondance entre les activités industrielles et les principaux paramètres minéraux, métalliques et organiques. Cette matrice avait été élaborée en 1994 à partir des différentes sources bibliographiques (fiches toxicologiques, monographies ADEME,...) et n'avait pas fait l'objet d'une mise à jour en 2007.

En 2014, dans le cadre du programme annuel MEDDE - BRGM, une nouvelle matrice de corrélation Activités-Polluants potentiels a été élaborée (Aubert et Koch-Mathian, 2014). Il s'agissait d'abord d'évaluer les bases de données les plus pertinentes possédant des données exploitables sur les activités industrielles et les polluants associés, et ensuite de mettre en œuvre des traitements statistiques qui permettent de recenser les substances les plus couramment utilisées ou produites par les installations industrielles et activités de service.

Les principales bases de données consultées afin d'en extraire les informations sur les liens entre les activités industrielles et les polluants sont la base ADES / ICSP⁵, BASIAS⁶ et BASOL⁷. Les données de l'action nationale RSDE⁸ (sur les rejets de substances dangereuses dans les eaux) et celles du programme Etablissements Sensibles (ETS) ont également été consultées afin de compléter le traitement de l'information.

Les données bancarisées dans ADES relatives à la qualité des eaux souterraines des installations classées et sites pollués représentent l'échantillonnage statistique le plus important avec près de 2 millions de mesures sur plus de 3 000 paramètres dans plus de 13 000 ouvrages de contrôle.

L'inventaire national historique des sites industriels, dont les données de 262 000 sites (fin 2013) sont stockées dans la base nationale BASIAS, renseigne sur les produits déclarés dans les anciens dossiers d'autorisation ou de déclaration des installations classées mais ne donne pas directement d'information sur les substances chimiques associées à chacune des activités du site. L'exploitation des résultats statistiques « Produits - Activités » de BASIAS est présentée dans ce rapport mais son interprétation peut être biaisée du fait que l'activité industrielle n'est pas directement reliée au produit mais au site industriel, siège d'activités multiples dans le temps, sans pouvoir distinguer les polluants potentiels de chaque activité.

La base BASOL des sites et sols pollués ou susceptibles de l'être ayant appelé une action des pouvoirs publics a fait l'objet d'une étude statistique concernant près de 3 700 sites dont les données sur les activités ont pu faire l'objet d'un traitement des données, après codification en 84 activités différentes codées dans la nomenclature NAF 2008.

Les données de l'action nationale RSDE concernent un certain nombre d'activités industrielles relatives aux rejets des substances dangereuses dans les eaux.

Pour ces bases, les substances ont été codifiées à l'aide du référentiel national SANDRE® de la banque ADES et les activités à l'aide du référentiel national de l'INSEE (nomenclature NAF® 2008 la plus récente). Les données issues des bases ADES, BASIAS, BASOL et ETS, une fois référencées par les nomenclatures nationales INSEE pour les activités et SANDRE pour les substances, ont été croisées afin de constituer une matrice de corrélation à double entrée croisant les activités avec les substances / groupes de substances les plus fréquemment rencontrées dans les bases (détectés, quantifiées ou saisies suivant les bases de données).

-

⁵ ICSP : Installation Classée et Site pollué (inscrits dans BASOL), sigle utilisé dans le cadre de la bancarisation dans ADES des données qualité des eaux souterraines relatives aux sites industriels.

⁷ BASOL : Base de données des sites faisant l'objet d'une action de la part des pouvoirs publics à titre préventif ou curatif. Site internet public : http://basol.ecologie.gouv.fr

⁸ RSDE : Action nationale de Recherche et de Réduction des Rejets de Substances Dangereuses dans l'Eau par les installations classées.

⁹ SANDRE : Service d'Administration Nationale des Données et Référentiels sur l'Eau.

¹⁰ NAF : Nomenclatures des Activités Françaises (Insee)

Présence de la substance par activité	Explication	Indice dans la matrice
Absence de	Les données traitées disponibles ne permettent	Non
données	pas de fournir l'information (pas de données)	rempli
probabilité faible de présence	Les données traitées disponibles montrent que la substance ou famille de substances est peu souvent détectée ou mentionnée (moins de 5 détections / référencements)	1
Probable (probabilité moyenne à forte)	Les données traitées disponibles montrent que la substance ou famille de substances est détectée ou mentionnée plus fréquemment ou dans plusieurs bases. Sa probabilité de corrélation avec l'activité donnée est meilleure. (plus de 5 détections / référencements)	2

Illustration 14 : Indices de probabilité de présence des substances par activité

Les corrélations entre les substances et les activités ont été définies dans la matrice selon une approche par seuil : à partir de 5 référencements ou détections dans les eaux souterraines d'un composé pour une activité, la présence du composé a été estimée comme réellement liée à l'activité. Entre 1 et 5 référencements ou détections d'un composé pour une activité, le lien de ce composé avec l'activité concernée n'a pas été considéré comme certain (interférence, présence d'autres activités à proximité,...). Le lien entre l'activité et les polluants a cependant été indiqué mais avec un degré moindre de probabilité de présence comme indiqué dans l'Illustration 14. Ces seuils ont été appliqués pour les composés, mais également pour les groupes et sous-groupes de composés. L'ensemble des travaux ayant permis l'élaboration de cette matrice est décrit dans Aubert et Koch-Mathian (BRGM/RP-64125-FR - 2014).

La matrice construite en 2014 constitue un premier niveau d'interprétation, appliqué à chacune des 4 bases de données (ADES, BASIAS, BASOL et ETS). Pour ce croisement, il a été retenu pour chaque couple activité / composés et activité / sous-groupes, l'indice le plus élevé des 4 matrices intermédiaires (ADES, BASIAS, BASOL et ETS) comme montré en exemple dans l'Illustration 1514.

		activité 1	activité 2	activité 3	activité 4
Composé X	ADES	1	2		
	BASIAS	1			
	BASOL		1		
	ETS				1
indice retenu dans la matrice finale		1	2		1

Illustration 15 : Exemple du croisement des matrices intermédiaires issues des bases de données ADES, BASIAS. BASOL et ETS

La matrice utilisée pour l'étude présente les indicateurs de corrélation entre 264 activités (codées en NAF) et 828 substances chimiques (codées en SANDRE) regroupés en 71 sous-groupes. Seules les corrélations les plus fortes, codées « 2 » dans la matrice, ont été considérées pour l'étude. La probabilité de détection des molécules listées pour chaque captage AEP est ainsi la plus forte.

3.2.2. Limites d'utilisation de la matrice

La matrice de corrélation entre les substances et les activités industrielles a été élaborée dans le but de proposer un outil permettant d'orienter les divers utilisateurs sur les principaux polluants ou familles de polluants à rechercher potentiellement associés aux installations exploitées sur les sites industriels. <u>Il ne remplace en aucun cas les études spécifiques (études historiques et documentaires, diagnostics,...) à mener sur chaque site.</u>

Les limites de l'outil sont liées à la non exhaustivité des données sources ne permettant généralement pas de remonter aux substances chimiques spécifiques et à leur qualité variable (fiabilité des prélèvements et des mesures pour ADES, archives peu documentées ou manquantes sur les substances ou produits associés aux anciens sites industriels dans BASIAS et aux sites pollués dans BASOL, etc.). De plus, certaines des bases de données utilisées pour la compilation des informations n'ont pu fournir des indications que pour les sousgroupes de substances présentes, et non pas pour les substances individuelles (notamment BASIAS, BASOL et ETS). Il est aussi important de préciser que les bases consultées (ADES, BASIAS, BASOL, ETS) ne présentaient pas nécessairement des données pour toutes les activités recensées.

La matrice « substances » a été utilisée en gardant à l'esprit que la variabilité des substances utilisées, produites ou émises d'un site à l'autre peut être importante tout comme les conditions physico-chimiques qui guident leur transfert vers les eaux souterraines. En considérant aussi les erreurs qui entachent les bases de données utilisées ainsi que la non exhaustivité des informations disponibles, notamment en ce qui concerne les substances individuelles, la marge d'incertitude apparait relativement importante. Elle reste toutefois cohérente avec le type d'exercice réalisé à l'échelle régionale sur un nombre important de captages AEP, d'activités industrielles et de substances différentes.

Malgré ces limites d'utilisation, la matrice Activités-Polluants constitue un outil primordial sans lequel l'exercice n'aurait pu être mis en œuvre. Cette matrice des corrélations est en effet la seule actuellement disponible qui permette d'obtenir des informations spécifiques sur la présence potentielle de substances dans les sols et les eaux souterraines en lien avec les activités industrielles. L'INERIS propose en effet une matrice des corrélations activités/substances mais cette dernière est axée sur l'émission des substances et non sur leur présence dans le milieu aquatique. Le nombre de substances y est aussi beaucoup moins important (1 ordre de grandeur) car focalisé uniquement sur le règlement RSDE.

3.3. CARACTERISATION DES MOLECULES

3.3.1. Principe général

La deuxième phase de la méthode proposée pour lier les captages AEP avec les polluants industriels potentiels repose sur l'analyse des propriétés des molécules. L'objectif consiste à caractériser les molécules en fonction de leur capacité à engendrer des effets néfastes sur la santé humaine (toxicité) et de leur aptitude de transfert vers les eaux souterraines une fois émises dans le milieu aquatique naturel. Les données recherchées pour cette phase d'analyse du risque appartiennent ainsi à 2 grandes familles de propriétés que sont 1) la mobilité et la dégradation et 2) la toxicité des molécules.

L'exercice de caractérisation des molécules dans le but de définir un risque pour les captages bénéficie de l'expérience acquise dans ce domaine au sein des groupes de travail nationaux et européens : Le Comité national Experts Priorisation (CEP) et le groupe de travail « Priorisation » (WG-1) au sein du réseau européen NORMAN (Dulio et von Der Ohe, 2014) œuvrent en effet depuis plusieurs années à la définition de méthodes de classement des molécules en fonction du risque qu'elles représentent pour la santé humaine et l'environnement.

La méthode proposée pour l'étude repose sur des concepts développés au sein de ces groupes de travail, notamment le principe de priorisation des molécules par attribution de scores. Pour chaque famille de propriété, une note est donnée à la molécule en suivant le principe du « scoring ». Cette méthode est basée sur un système de points permettant d'établir un classement des molécules entre elles : au sein de chaque famille de propriété, les paramètres étudiés se voient attribuer une note de 0 à 10 exprimant leur contribution plus ou moins importante à l'expression de la propriété. Les notes individuelles de chaque paramètre sont ensuite agrégées pour noter les molécules selon leur capacité de transfert vers les eaux souterraines et leur toxicité.

3.3.2. Molécules considérées pour l'étude

La matrice de corrélation Activités-Polluants - version 2 (2014) - utilisée pour l'étude liste 831 paramètres potentiellement reliés à un code d'activité NAF. Or 167 de ces paramètres correspondent soit à des sommes de molécules, soit à des indices obsolètes non présents dans le référentiel international d'enregistrement unique auprès de la banque de données de Chemical Abstracts Service (numéro CAS). Ce numéro étant indispensable pour la recherche des propriétés des molécules dans les différentes bases européennes et internationales, ces paramètres ont été écartés de l'analyse de risque.

De plus, considérant les fortes incertitudes liées à l'élaboration de la matrice Activités-Polluants, seules les corrélations les plus fortes, codées « 2 » dans la matrice, ont été prises en compte pour l'étude. Le croisement entre les activités industrielles présentes dans les bassins versants des captages identifiés comme vulnérables intrinsèquement et les molécules possédant un numéro CAS à probabilité de présence moyenne ou forte (indice 2 dans la matrice) aboutit ainsi à la sélection 394 substances pour lesquelles une analyse de risque est engagée.

Ces substances sont classées en 6 groupes et 56 sous-groupes chimiques. La liste complète est produite en Annexe 1.

3.3.3. Sources de données

La principale source de données consultée pour la recherche des propriétés de transfert et de toxicité des molécules est la base de l'Agence européenne des produits chimiques (ECHA, https://echa.europa.eu/fr) qui joue un rôle central au sein des autorités de réglementation pour la mise en œuvre de la nouvelle législation européenne sur les produits chimiques. L'ECHA centralise, gère et met à disposition les données sur les substances que requiert la nouvelle législation sur les produits chimiques de l'Union Européenne. Cette législation s'applique à tous les secteurs industriels concernés par la manipulation de produits chimiques ainsi qu'à l'ensemble de la chaîne d'approvisionnement. Il s'agit de 4 textes règlementaires majeurs dans le domaine de la mise sur le marché et de l'utilisation de produits chimiques :

- REACH pour l'enregistrement des substances chimiques (règlement (UE) No 1907/2006, https://echa.europa.eu/fr/regulations/reach/)
- CLP pour la communication et l'étiquetage des produits contenant des substances chimiques (règlement (UE) No 1272/2008, https://echa.europa.eu/fr/regulations/clp)

- RPB pour réguler la mise sur le marché et l'utilisation des produits biocides (règlement (UE) n° 528/2012, https://echa.europa.eu/fr/regulations/biocidal-products-regulation)
- PIC pour le consentement préalable informé relatif aux importations et aux exportations de produits chimiques dangereux (règlement (UE) n° 649/2012, https://echa.europa.eu/fr/regulations/prior-informed-consent-regulation)

La base de l'ECHA contient actuellement 16 108 substances enregistrées dans REACH. 10 399 d'entre elles possèdent un numéro CAS. Cette base contient une somme très importante d'informations demandées par les différentes réglementations, notamment sur les propriétés de transfert des molécules et leur toxicité. L'inconvénient majeur de la base repose sur la nécessité de rechercher ces informations substance par substance.

C'est pourquoi, en complément des informations disponibles via le site de l'ECHA, d'autres bases ont été consultées pour caractériser les substances. Il s'agit notamment :

- des fiches technico-économiques (FTE) éditées par l'INERIS (http://www.ineris.fr/substances/fr/),
- de la base de données du Comité Experts Priorisation CEP,
- du Registre français des Emissions Polluantes (http://www.georisques.gouv.fr/dossiers/irep-registre-des-emissions-polluantes),
- de la base de données NORMAN EMPODAT database sur les substances émergentes (http://www.norman-network.net/empodat/).

Pour les molécules non référencées dans ces différentes bases, les informations ont été recherchées dans les feuilles de sécurité (safety data sheet) éditées par les producteurs de substances chimiques ainsi que dans la base de données « Fiches toxicologiques » de l'inrs santé et sécurité au travail (http://www.inrs.fr/publications/bdd/fichetox.html).

Pour les produits phytosanitaires, l'université anglaise du Hertfordshire met à disposition une base de données spécifique appelée Pesticide Properties Database (PPDB). Cette base de données consultable via internet (http://sitem.herts.ac.uk/aeru/ppdb/en/index.htm) regroupe des informations sur les propriétés de transfert des pesticides et de leurs métabolites dans l'environnement ainsi que sur leur toxicité. Elle représente à l'heure actuelle la base de données la plus complète et exhaustive pour les produits phytosanitaires.

3.3.4. Danger pour la santé humaine - toxicité

Indicateur retenu

La classification des substances selon leurs effets sur la santé humaine est définie au niveau européen par le Règlement (CE) No 1272/2008 qui abroge, depuis 2008, l'ancienne Directive 67/548/CEE. Un tableau de conversion entre la classification établie selon la Directive 67/548/CEE et la classification établie selon le Règlement (CE) No 1272/2008 est disponible en Annexe VII du Règlement (CE) No 1272/2008. L'Illustration 1615 permet d'apprécier l'évolution de l'étiquetage entre les deux réglementations.

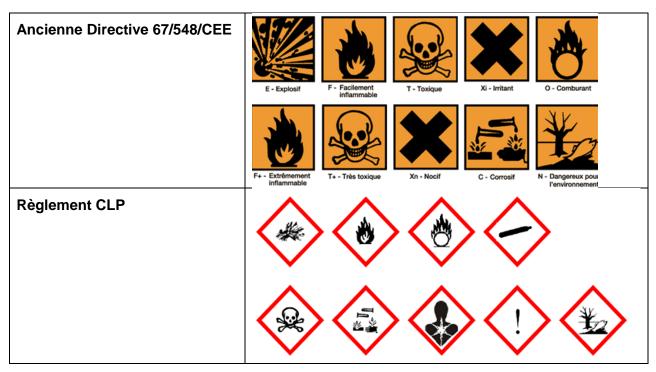


Illustration 16 : Comparaison de l'étiquetage des produits chimiques selon l'ancienne Directive 67/548/CEE et le nouveau règlement CLP

Trois indicateurs ont été recherchés pour qualifier la toxicité des 394 substances retenues pour l'étude :

- le potentiel de la substance comme substance PBT et /ou vPvB (Substances persistantes, bio-accumulatives et toxiques ou Substances très persistantes et très bio-accumulatives) selon les critères définis dans l'annexe XIII du règlement REACH;
- la classification de la substance selon ses propriétés CMR (cancérogénicité, mutagénicité et reprotoxicité) telle que définie dans le règlement n°1272/2008 (règlement CLP) et/ou la Directive 67/548/CEE et/ou dans les rapports IARC (http://monographs.iarc.fr/ENG/Monographs/PDFs/index.php) sur les substances cancérigènes;
- l'identification de la substance comme perturbateur endocrinien avéré ou suspecté selon les listes européennes: COM(2001) 262 final; UE/SEC(2004)1372; SEC(2007)1635 et la Liste "SIN (Substitute It Now!) database" http://www.sinlist.org/.

Score « toxicité »

Le principe du « scoring » a été appliqué afin de caractériser et de classer les molécules selon leur toxicité potentielle vis-à-vis de la santé humaine. Le système de notation en fonction des propriétés de Persistance, de Bioaccumulation et de Toxicité (PBT), de Cancérogénicité, de Mutagénicité et de Reprotoxicité (CMR) et de Perturbation Endocrinienne (PE) des substances et détaillé dans le Tableau 1. Il est important de noter qu'à ce stade de l'étude, les propriétés de perturbation endocrinienne sont considérées comme facteur aggravant de la toxicité des molécules, c'est-à-dire que ce score n'est pris en compte que dans le cas où il n'existe pas d'information disponible à la fois sur les propriétés PBT et sur les propriétés CMR.

Il faut retenir que le score attribué à une molécule n'est valide qu'à la date de l'étude et en fonction des données disponibles consultées à cette date.

	Notation en fonction des valeurs prises par les paramètres
Score PBT	"Score attribué à la substance pour ces propriétés de Persistance (P), de Bioaccumulation (B) et de Toxicité (T). * la substance est PBT ou vPvB => score de 10 * la substance n'est ni PBT, ni vPvB => score de 0 * aucune information n'est disponible concernant les propriétés PBT => nd
Score CMR	Score attribué à la substance pour le calcul du score de danger vis-à-vis de la santé humaine, et qui repose sur les critères suivants : * Carc. 1A ou Muta. 1A ou Repr. 1A => score de 10 * Carc. 1B ou Muta. 1B ou Repr. 1B => score de 7,5 * Carc. 2 ou Muta. 2 ou Repr. 2 => score de 5 * Acute Tox => score de 2,5 * non classé => score de 0 * pas d'information => nd
Score PE	Perturbateur endocrinien avéré => score de 10 Perturbateur endocrinien suspecté => score de 5 Perturbateur endocrinien probable => score de 2,5
Score Toxicité	$max[score\ (PBT); score\ (CMR)]$ $Si\ score\ (PBT)ET\ score\ (CMR) =\ nd\ ;\ ALORS\ score\ (PE)$

Tableau 1 : Principe de calcul du score « Toxicité » des molécules

3.3.5. Transfert potentiel vers les eaux souterraines

Indicateur retenu

Les propriétés de transfert des molécules vers les eaux souterraines constituent le premier groupe de paramètres permettant de définir le risque pour les captages. Ces propriétés correspondent aux caractéristiques intrinsèques des molécules qui guident leur devenir dans le milieu souterrain et leur transfert potentiel vers les aquifères. Il s'agit principalement de :

- la solubilité qui définit la capacité de la molécule à se solubiliser dans l'eau.
- la tension de vapeur (échange phase organique/gaz) et/ou la constante de Henry (échange eau/gaz) qui définissent la capacité de la molécule à se volatiliser,
- le coefficient de partage octanol/eau (Kow) spécifique aux polluants organiques et qui renseigne sur l'affinité de la molécule avec l'eau (polarité, hydrophobie),
- le coefficient de partage liquide/solide (Kd) et le coefficient de partage eau/carbone organique (Koc), qui définissent la capacité des molécules à être adsorbées sur la matrice solide,
- le temps de demi-vie (DT50) qui rend compte de la dégradabilité biologique ou chimique des molécules.

Devant la multitude de molécules existantes sur le marché et la diversité des milieux environnementaux, il est impossible de mener des études au cas par cas pour caractériser le devenir de toutes les molécules dans tous les milieux. De nombreux auteurs ont ainsi proposé d'établir des indicateurs, appelés aussi indices de vulnérabilité, en sélectionnant les propriétés majoritaires permettant d'estimer le devenir des molécules dans l'environnement (Ammon, 1984; Jury et al., 1987; Gustafon, 1989; Warren et Weber, 1994). Ces travaux ont essentiellement porté sur le devenir des produits phytosanitaires dont la capacité de transfert vers les eaux souterraines est un critère à prendre en compte pour l'autorisation de mise sur le marché. La plupart des méthodes décrites pour estimer le risque de transfert vers les eaux souterraines prennent en compte soit les propriétés chimiques des molécules, soit les facteurs liés aux milieux mais rarement les deux. Or Worral a montré en 2002 que le risque de pollution des eaux souterraines résulte bien de l'interaction entre les propriétés intrinsèques des molécules et les caractéristiques du milieu de transfert.

Afin de satisfaire les objectifs de l'étude orientés vers une estimation standardisée du risque pour l'ensemble des molécules industrielles sur la totalité des captages définis comme vulnérables intrinsèquement (cf. §. 2.3.2), 2 indicateurs de transfert potentiel vers les eaux souterraines ont été retenus : il s'agit du coefficient de partage eau/carbone organique (Koc) qui traduit la mobilité des molécules, et du temps de demi-vie dans les sols (DT50_{sol}) qui traduit leur potentiel de dégradation. Pour les métaux spécifiquement, le coefficient de partage liquide/solide (Kd) a été considéré comme indicateur de transfert potentiel (ils sont considérés comme non dégradables). Ces propriétés apparaissent en effet comme majoritaires pour expliquer la capacité de transfert des molécules, notamment organiques, vers le milieu souterrain. Les caractéristiques du milieu sont quant à elles prises en compte par l'analyse de la vulnérabilité intrinsèque des captages.

Score « Transfert »

Les propriétés des molécules peuvent être acquises soit par expérimentations *in situ* ou en laboratoire en conditions contrôlées, soit par modélisation à partir de paramètre établit aussi par l'expérimentation. Les valeurs sont dépendantes des conditions d'expériences de sorte qu'il n'existe pas de Koc (et de Kd) ni de DT50 uniques pour chaque molécule. Le parti a été pris durant l'étude de s'intéresser à l'ensemble des données disponibles sous la condition qu'elles provinssent de bases reconnues au niveau national et international et qu'elles fussent acquises dans des conditions cohérentes avec la réalité environnementale. Dans le cas ou plusieurs valeurs sont disponibles, le principe du « pire cas » (principe de précaution) a été retenu pour la notation finale. Le détail des notes données à la molécule selon les valeurs prises par les propriétés de mobilité et de dégradation est fourni dans le Tableau 2. Le score « transfert » final correspond à la moyenne des scores intermédiaires « mobilité » et « dégradation ».

	Notation en fonction des valeurs prises par les paramètres
Score Mobilité	Score attribué à la substance pour le calcul du score de transfert, et qui repose sur les critères suivants : * si Koc < 1000 => score de 10 * si 1000 ≤ Koc < 5000 => score de 5 * si Koc ≥ 5000 => score de 0 * pas d'information disponible => score de 10 Remarque : les données expérimentales sont choisies préférentiellement aux données calculées par modèle QSAR lorsque les deux sont disponibles
Score Dégradation	Score attribué à la substance pour le calcul du score de transfert, et qui repose sur les critères suivants : * si la substance est non dégradable (demi-vie supérieure à l'année) => score de 10 * si la substance est très peu dégradable (demi-vie de plusieurs mois) => score de 7,5 * si la substance est peu dégradable (demi-vie de la semaine au mois) => score de 5 * si la substance est assez dégradable (demi-vie de plusieurs semaine) => score de 2,5 * si la substance est dégradable (demi-vie du jour à la semaine) => score de 1 * si la substance est très dégradable (demi-vie de plusieurs jours) => score de 0 * pas d'information disponible => score de 10 Remarque : les données expérimentales sont choisies préférentiellement aux données calculées par modèle QSAR lorsque les deux sont disponibles
Score Transfert	Score Mobilité + Score Dégradation 2

Tableau 2 : Principe du calcul du score « Transfert » des molécules

3.4. INDICATEUR FINAL (PRESSION INDUSTRIELLE AUX AEP)

L'indicateur proposé pour définir le risque de contamination d'un captage par les sites industriels se traduit par la formule suivante :

$$Pression\ Industrielle = \sum_{1}^{nbBASIAS\ BVAEP} \frac{Danger}{Distance} * 1000$$

Celui-ci somme au sein de chaque périmètre de vulnérabilité des captages vulnérables, la note de danger multipliée par l'inverse de la distance entre la source (le site industriel) et le captage, afin de tenir compte de la distance et ainsi limiter son influence.

La Pression Industrielle est donc corrélée au nombre de sites industriels présents dans les périmètres de vulnérabilité.

4. Outils et valorisation

Initialement, la proposition technique de l'étude ne prévoyait pas la mise en place d'une base de données consultable à l'aide de formulaires. Le livrable prévu était un atlas de fiches descriptives à l'échelle du captage d'eau potable listant les sites industriels et les molécules pouvant s'y retrouver. Vu le nombre important de sites industriels pouvant dans certains cas se retrouver en lien avec un captage, il est apparu impossible de proposer une mise en page satisfaisante contenant des informations exhaustives.

C'est pourquoi le BRGM a proposé de se réorienter vers la mise en place d'une base de données interrogeable. Vu les moyens à disposition en fin de projet, la base de données a été développée avec les logiciels de bureautiques standards.

Cet outil permettra également d'initier les échanges et spécifications fonctionnelles prévu lors de la phase 3 du projet prévoyant le développement d'un outil en ligne basé sur un chainage de services web permettant de pérenniser la méthodologie mise en place dans le cadre de ce projet.

L'application est développée à l'aide d'Access de la suite Office, dans sa version 2010.

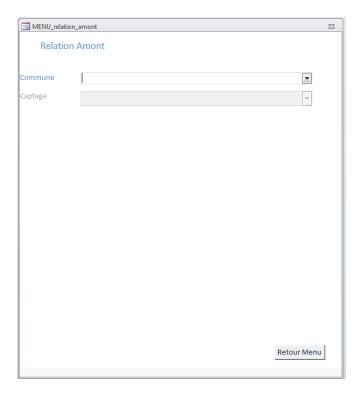

L'application contient les données ainsi que des formulaires et états facilitant l'interrogation des données. Du code VBA a parfois été nécessaire pour parvenir aux objectifs souhaités.

L'application est destinée à la consultation par les services techniques de l'ARS, de la DREAL et de l'Agence de l'eau Adour-Garonne.

Les services informatiques des différentes structures définiront le mode d'accès à l'application (accès direct sur les postes utilisateurs ou accès à distance).

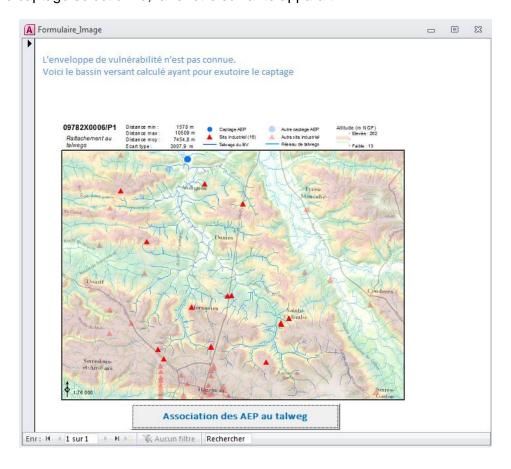
4.1. BD ACCESS

4.1.1. Menu général



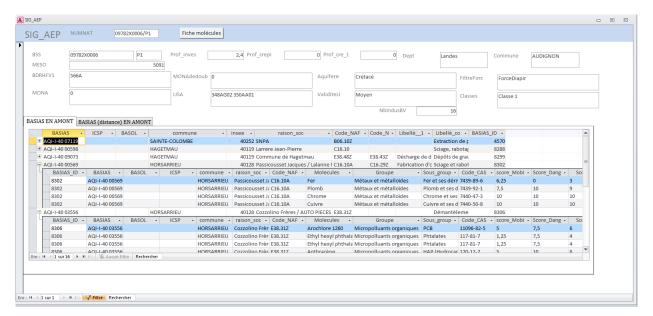
4.1.2. Sites industriels en amont d'un captage AEP

Cette fonction fait appel à la relation topologique de base mise en place dans le cadre de ce projet. Cette relation permet de retrouver l'ensemble des sites industriels situés en amont topographique d'un captage d'eau potable ou à l'inverse de lister les différents captages en aval topographique d'un site industriel.


Celle-ci est détaillée dans le chapitre Arborescence de Shreve.

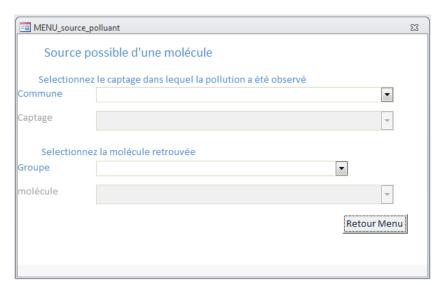
Cette fonction correspond à la première relation topologique et permet de retrouver les sites industriels situés en amont topographique d'un captage d'eau potable (ou présent dans son périmètre de vulnérabilité connu).

En choisissant la commune, la seconde liste est mise à jour et contient l'ensemble des captages présents sur la commune choisie.


Une fois le captage sélectionné, la fenêtre suivante apparaît :

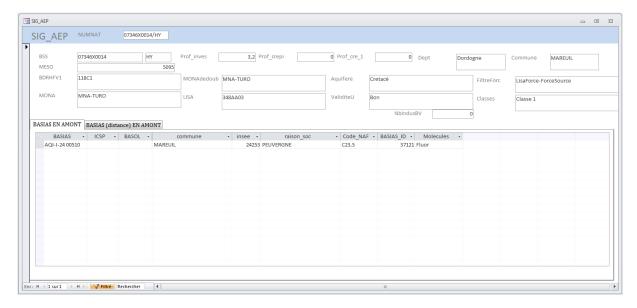
Croisement des captages suivis dans le cadre du contrôle sanitaire et des sites BASIAS, BASOL et ICSP en Aquitaine - Phase 2

Elle précise quelques caractéristiques du captage et est illustrée par une vue du captage avec ses sites industriels voisins et inclus dans son périmètre de vulnérabilité.


Le bouton « Association des AEP au talweg » restitue une vue tabulaire des sites industriels présents dans l'enveloppe de vulnérabilité. L'identifiant du site industriel, sa raison sociale, ses activités, la distance au captage et les molécules potentiellement émises sont décrites.

4.1.3. Source possible d'une molécule

Cette fonction est identique à la précédente mais ajoute une condition supplémentaire correspondant à la molécule recherchée.


Le formulaire retourne l'ensemble des sites industriels situés en amont d'un captage d'eau potable (ou présent dans son périmètre de vulnérabilité connu), ayant une activité faisant potentiellement appel à la molécule recherchée.

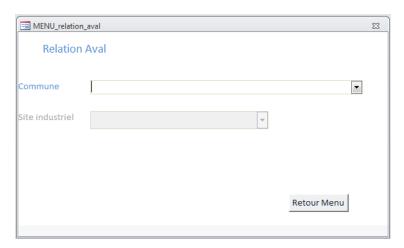
MENU_source_polluant 53 Source possible d'une molécule Selectionnez le captage dans lequel la pollution a été observé • Commune MAREUIL Captage 07346X0014/HY Selectionnez la molécule retrouvée Groupe éléments minéraux • molécule Fluor • Retour Menu

Pour cela il convient de renseigner un captage, puis la molécule recherchée.

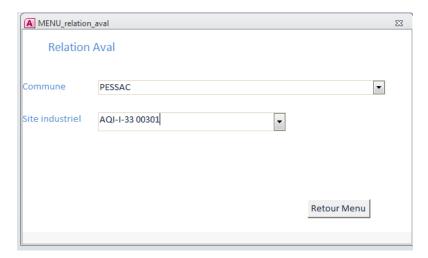
Une fois la molécule renseignée, la fenêtre résultat suivante s'affiche :

L'identifiant du (ou des) site(s) industriel(s) correspondant aux critères de la recherche est (sont) affiché(s).

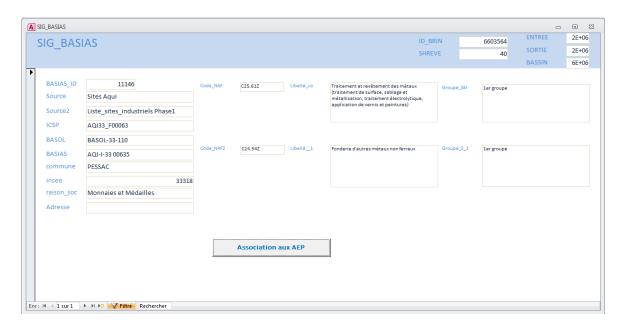
À noter que la recherche Sites industriels en amont d'un captage AEP du même captage 07346X0014/HY liste effectivement davantage de sites industriels.


4.1.4. Captages AEP en aval d'un site industriel

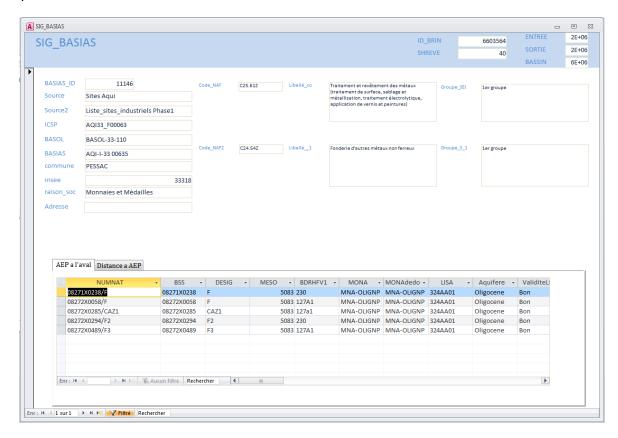
Cette fonction fait appel à la relation topologique de base mise en place dans le cadre de ce projet. Cette relation permet de retrouver l'ensemble des sites industriels situés en amont d'un captage d'eau potable ou à l'inverse de lister les différents captages potentiellement concernés par le ruissellement des eaux en aval d'un site industriel.

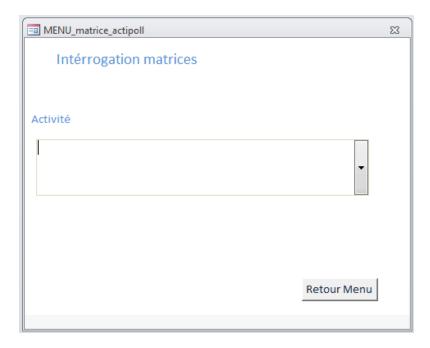

Celle-ci est détaillée dans le chapitre Arborescence de Shreve.

Croisement des captages suivis dans le cadre du contrôle sanitaire et des sites BASIAS, BASOL et ICSP en Aquitaine - Phase 2


Cette fonction correspond à la seconde relation topologique et permet de lister l'ensemble des captages AEP situés en aval d'un site industriel.

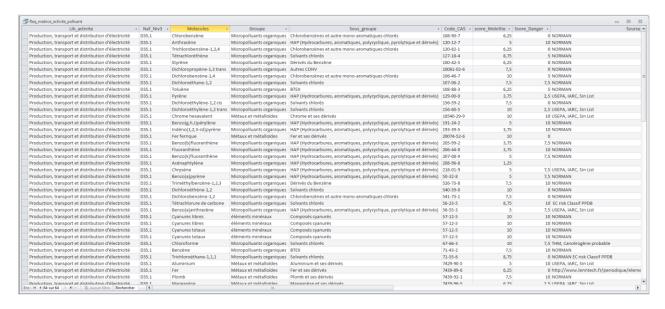
Il convient de choisir la commune, la liste « site industriel » se met alors à jour et propose l'ensemble des sites industriels présents dans la commune.


La fiche descriptive suivante apparaît :

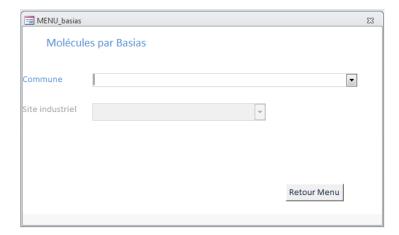

Elle précise quelques caractéristiques du site industriel, principalement sa raison sociale et son (ou ses) activité(s).

A noter également que les identifiants du site correspondant dans les bases de données BASOL et ICSP sont mentionnés lorsque celui-ci en fait partie.

En appuyant sur le bouton « Association aux AEP », la liste des captages AEP présent à l'aval topographique du site est affichée. Elle précise notamment l'aquifère capté, la profondeur de la crépine ou encore la distance au site industriel.



4.1.5. Interrogation matrice activités - polluants



Ce formulaire permet d'interroger la matrice activité polluant.

Il convient de choisir dans la liste déroulante une activité. Une vue tabulaire s'affiche contenant les différentes molécules associées ainsi que les scores de mobilité et de danger afférents. La dernière colonne informe sur la source des données ayant conduit à l'attribution du score.

4.1.6. Molécules potentiellement émises par un site industriel

Ce formulaire permet également d'interroger la matrice activité-polluant. Cette fois en sélectionnant un site industriel.

La matrice activité polluant est interrogée d'après le principal code activité rattaché au site industriel choisi (à noter que l'ensemble des codes activités du site industriel seront pris en compte lors du développement en Phase 3).

La même vue tabulaire que précédemment s'affiche. Seule la raison sociale du site industriel est préalablement indiquée.

4.1.7. Requête Pression industrielle potentielle

Ce bouton permet d'exécuter le calcul de l'indicateur de Pression Industrielle Potentielle. La définition de l'indicateur est rappelée sur la fenêtre.

Le formulaire retourne une vue tabulaire des captages AEP vulnérables, ordonnancés selon l'indicateur de Pression Industrielle Potentielle (cf. 4.3.2).

4.2. PROJET SIG

A titre expérimental un lien entre Access et ArcGis a également été développé mais il n'a pas été déployé sur l'application mise à disposition, puisque ni l'ARS ni la DREAL n'ont de licence ArcGis.

Ce lien fait appel à une boîte à outil ArcGis permettant d'avoir une vue cartographique des liens amont aval topographique entre les captages et les sites industriels.

Ce développement expérimental préfigure ce que pourra permettre le futur outil web qui sera réalisé lors de la phase 3 du projet. Il conviendra en effet de permettre une interrogation cartographique afin de faciliter la compréhension et l'interprétation des relations entre les captages et les sites industriels.

4.3. RESULTATS

On a vu dans le chapitre 4.1.2 la répartition de la vulnérabilité des ouvrages suite à la première phase du projet :

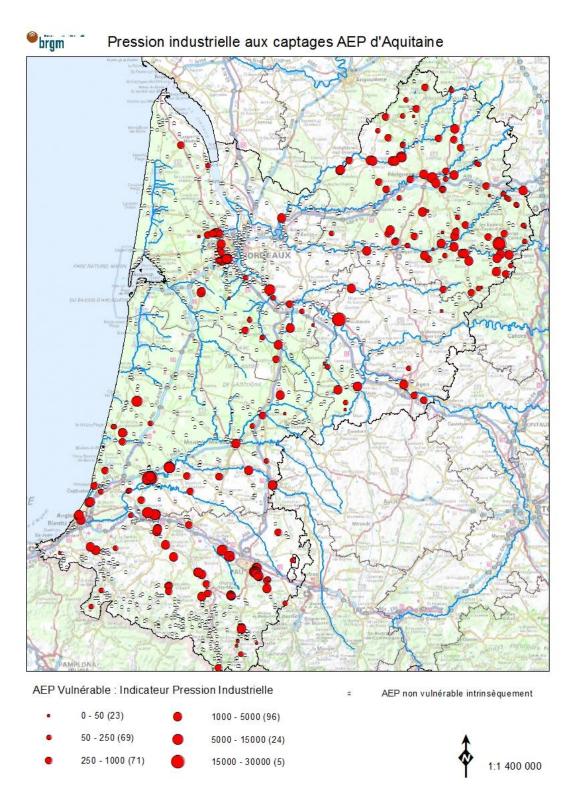
Répartition du nombre de captages selon leur vulnérabilité :

Classe	Nombre captage			
Classe 1	785	Vulnérable intrinsèquement		
Classe 2	165	vullierable intrinsequement		
Classe 3	172	Non vulnárabla intrincà quamant		
Classe 4	426	Non vulnérable intrinsèqueme		

Répartition du nombre de captages vulnérables intrinsèquement selon leur type d'enveloppe de vulnérabilité :

Aire d'Alimentation de Captage	11
Bassin d'alimentation karstique	96
Bassin versant ayant pour exutoire l'ouvrage	825
Périmètre de Protection Eloigné	18

Répartition du nombre de captages selon leur vulnérabilité finale aux sites industriels selon le type d'enveloppe de vulnérabilité :


	Nombre captage vulnérable	Nombre captage non vulnérable
Bassin d'alimentation connu	45	80
Bassin d'alimentation calculé	247	578
TOTAL	292	658

La phase 2, a permis de s'intéresser aux 292 captages vulnérables vis-à-vis des sites industriels voisins, donc présentant un risque de contamination.

La méthodologie suivie permet d'ordonnancer ces 292 ouvrages AEP selon leur risque potentiel de contamination par des polluants industriels, en supposant une relation directe des écoulements de surface (bassin versant topographique).

4.3.1. Carte

La carte ci-dessous présente la répartition spatiale des captages AEP vulnérables selon l'indicateur de Pression Industrielle (cf. 3.4).

A noter que seul 288 captages AEP disposent d'une note de pression industrielle sur les 292 vulnérables aux sites industriels. En effet l'activité potentiellement impliquée dans 4 captages AEP n'est rattachée à aucune molécule dans la matrice activités - polluants.

Il s'agit des captages 09267X0013, 09761X0006, 09761X0043 et 09761X0103 ayant respectivement 1, 2, 1 et 1 sites industriels dans leurs périmètres de vulnérabilités. Ces sites industriels sont rattachés aux activités E38.43Z (Décharge de "déchets verts"), E38.48Z (Dépôts de gravats) et B08.93Z (Production de sel).

4.3.2. Tableau

Le listing ci-dessous correspond à la carte précédente. Il liste les captages AEP vulnérables aux sites industriels hiérarchisés selon l'indicateur de Pression Industrielle.

Le tableau ci-dessous ne liste que les 50 captages AEP à la Pression Industrielle la plus forte. Le listing complet est disponible en Annexe 2.

			T		
BSS	S Département Commune Typ		Type de périmètre de vulnérabilité	Nb Site Industriel dans	Indicateur de Pression
B33	Departement	Commune	Type de permetre de vamerabilite	périmètre de vulnérabilité	Industrielle
09771X0021	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	2977	29752,41052
08536X0133	Lot et Garonne	MARMANDE	Bassin versant ayant pour exutoire l'ouvrage	16771	26758,81655
08536X0002	Lot et Garonne	MARMANDE	Bassin versant ayant pour exutoire l'ouvrage	16771	23356,90961
09771X0123	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	2990	17101,32007
08086X0025	Dordogne	SARLAT-LA-CANEDA	Bassin versant ayant pour exutoire l'ouvrage	50	15496,01781
08521X0200	Gironde	CADILLAC	Bassin versant ayant pour exutoire l'ouvrage	17449	13269,17549
08272X0294	Gironde	GRADIGNAN	Bassin versant ayant pour exutoire l'ouvrage	42	10673,13136
09234X0007	Landes	MEZOS	Bassin versant ayant pour exutoire l'ouvrage	15	9597,407264
08086X0022	Dordogne	SARLAT-LA-CANEDA	Bassin d'alimentation karstique	60	9567,918117
10293X0035	Pyrénées Atlantique	TARSACQ	Bassin versant ayant pour exutoire l'ouvrage	1441	9153,345059
08086X0027	Dordogne	SARLAT-LA-CANEDA	Bassin versant ayant pour exutoire l'ouvrage	50	7702,170041
10292X0024	Pyrénées Atlantique	BESINGRAND	Bassin versant ayant pour exutoire l'ouvrage	1448	7340,27773
10305X0015	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	538	7283,858992
10305X0016	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	532	6716,186368
10031X0005	Landes	SAINT-CRICQ-DU-GAVE	Bassin versant ayant pour exutoire l'ouvrage	2089	6714,086371
10031X0008	Landes	SAINT-CRICQ-DU-GAVE	Bassin versant ayant pour exutoire l'ouvrage	2089	6494,990185
10305X0017	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	519	6431,066376
10031X0014	Landes	SAINT-CRICQ-DU-GAVE	Bassin versant ayant pour exutoire l'ouvrage	2089	6049,884666
10031X0024	Landes	SAINT-CRICQ-DU-GAVE	Bassin versant ayant pour exutoire l'ouvrage	2089	6049,884666
10031X0016		CAUNEILLE	Bassin versant ayant pour exutoire l'ouvrage	2103	5936,505092
10305X0011	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	538	5889,74741
10305X0013	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	538	5889,74741
07595X0022	Dordogne	BOULAZAC	Bassin versant ayant pour exutoire l'ouvrage	401	5828,177561
07583X0004	Dordogne	LISLE	Aire d'Alimentation de Captage	5	5524,462947
10031X0012	Landes	CAUNEILLE	Bassin versant ayant pour exutoire l'ouvrage	2103	5458,278237
10031X0029	Landes	CAUNEILLE	Bassin versant ayant pour exutoire l'ouvrage	2103	5458,278237
09506X0007	Landes	PRECHACQ-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	2635	5082,873976
09506X0053	Landes	PRECHACQ-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	2635	5082,873976
09506X0055	Landes	PRECHACQ-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	2635	5082,873976
10301X0006	Pyrénées Atlantique	PAU	Bassin versant ayant pour exutoire l'ouvrage	16	4933,341873
09237X0001	Landes	LINXE	Bassin versant ayant pour exutoire l'ouvrage	5	4789,152896
	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	514	4537,294199
	Lot et Garonne	LAVARDAC	Bassin versant ayant pour exutoire l'ouvrage	630	4162,432095
09018X0017	Lot et Garonne	LAVARDAC	Bassin versant ayant pour exutoire l'ouvrage	630	4162,432095
09018X0018	Lot et Garonne	LAVARDAC	Bassin versant ayant pour exutoire l'ouvrage	630	4162,432095
09513X0048		MONT-DE-MARSAN	Bassin versant ayant pour exutoire l'ouvrage	203	4147,726301
08272X0058		GRADIGNAN	Bassin versant ayant pour exutoire l'ouvrage	46	4126,584081
10305X0014	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	519	3818,617438
08322X0015	Dordogne	CENAC-ET-SAINT-JULIEN	Bassin d'alimentation karstique	5	3794,858705
09237X0002	Landes	LINXE	Bassin versant ayant pour exutoire l'ouvrage	6	3776,968515
08272X0489	Gironde	GRADIGNAN	Bassin versant ayant pour exutoire l'ouvrage	42	3752,744541
09771X0193	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	12	3687,287845
09771X0200	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	12	3687,287845
10306X0250	Pyrénées Atlantique	BAUDREIX	Bassin versant ayant pour exutoire l'ouvrage	409	3551,572681
09518X0021	Landes	GRENADE-SUR-L'ADOUR	Bassin versant ayant pour exutoire l'ouvrage	1409	3544,586824
08087X0021	Dordogne	GROLEJAC	Bassin versant ayant pour exutoire l'ouvrage	1489	3495,952649
08077X0054	Dordogne	SIORAC-EN-PERIGORD	Bassin versant ayant pour exutoire l'ouvrage	1759	3490,426663
09792X0207	Landes	AIRE-SUR-L'ADOUR	Bassin versant ayant pour exutoire l'ouvrage	1205	3487,863981
09792X0208	Landes	AIRE-SUR-L'ADOUR	Bassin versant ayant pour exutoire l'ouvrage	1205	3487,863981
08035X0337	Gironde	MERIGNAC	Bassin versant ayant pour exutoire l'ouvrage	25	3276,544485

5. Conclusion

La première phase de l'étude avait permis de caractériser la vulnérabilité des captages AEP; la phase 2 s'est focalisée sur les sites industriels et plus particulièrement aux molécules potentiellement émises selon leurs activités et à la matrice Activités-Polluants (Aubert et *al.*, 2014, Cf. 3.2).

La philosophie de la 2^{ème} phase reprend celle de la première, et permet de caractériser le risque de contamination des 292 captages vulnérables à l'aide d'une analyse multicritères, offrant aux opérateurs de l'état tels que l'ARS et la DREAL un outil d'aide à la décision utile aussi bien en cas de pollution observée afin d'aider à la compréhension du phénomène, qu'en préventif lors de l'implantation d'un nouveau captage ou nouveau site industriel.

Cette deuxième phase est également revenue sur des éléments méthodologiques de la première phase, en particulier pour définir les périmètres de vulnérabilité des captages n'ayant pas de périmètres connus. En effet, les périmètres utilisés découlent dorénavant d'une relation topologique d'un réseau de drainage ordonnancé permettant en tout point du réseau de connaître le sous réseau amont ou aval.

5.1. LIMITES

La méthodologie de l'étude comprend de nombreuses hypothèses dont certaines conduisent à des simplifications et des incertitudes. De fait, cet outil est conçu comme une aide à la décision en permettant le traitement et le tri d'un très grand volume de données. Il est destiné à appuyer les services de l'état dans leurs réflexions. Il ne peut en aucun cas se substituer à une analyse hydrogéologique fine et à l'expertise d'un hydrogéologue. Parmi les hypothèses simplificatrices de la méthode, on notera notamment :

- les périmètres de vulnérabilité théoriques sont basés sur des bassins topographiques (hypothèse simplificatrice car il ne correspond pas toujours au BV hydrogéologique) lorsqu'il n'existe pas de BAC ou de périmètre de protection. Se surimposent les hypothèses liées à l'utilisation des méthodes géomatiques (Cf. 2.3.1 - Remarques sur les relations et la qualification des distances).
- l'analyse multicritère, déterminant l'indicateur de Pression Industrielle finale, s'appuie sur la matrice Activités Polluants, elle-même intégrant des biais. Cf. 3.2.2.

Enfin, il faut garder en mémoire que ce travail s'appuie sur la base de données BASIAS dont la dernière actualisation en Aquitaine remonte au début des années 2000 et dont l'exhaustivité est relative (variable selon les départements et le type d'inventaire réalisé à l'époque – ex. prise en compte ou non des stations-service). Il manque de fait les sites industriels les plus récents.

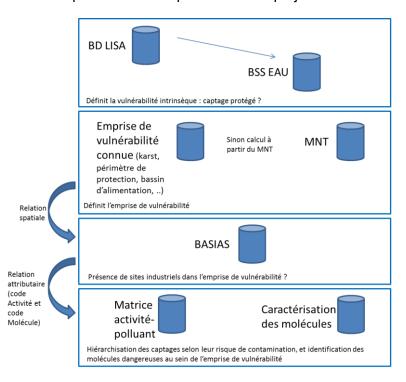
Afin de prendre en compte cela, il est prévu d'intégrer la base S3IC ¹¹de la DREAL lors de la phase 3.

Malgré ces limites, la méthode proposée reste pertinente pour un usage macroscopique et d'évaluation, en première approche, de la vulnérabilité des captages d'eau potable. La démarche engagée, avec la mise en place d'un outil web évolutif, est de mettre en place et de pérenniser une méthode de travail qui permettra aux partenaires de s'inscrire dans un

¹¹ Base de données des Installations classées : http://www.installationsclassees.developpement-durable.gouv.fr

processus d'amélioration continue en capitalisant sur les savoirs de chacun (inventaire, croisement et nettoyage des bases de données, enrichissement et affinage de la matrice activité/polluants, remplacement progressif des périmètres de vulnérabilité théoriques par des bassin hydrogéologiques issus d'études dédiées (PP, BAC...).

5.2. PERSPECTIVES


L'objectif est désormais de travailler à la phase 3. Celle-ci doit permettre d'étendre l'étude à la Nouvelle Aquitaine et surtout de pérenniser la méthodologie et la base de données en la rendant interrogeable via un accès sécurisé du SIGES Aquitaine à l'aide d'un chainage de services web.

Ce sera également l'occasion de porter un nouveau regard sur les différentes étapes de la méthodologie.

Pour cela une première réunion du groupe de travail est d'ores et déjà prévue le 3 juillet 2017. L'application web, basée sur les services web des différents référentiels utilisés (BDLISA, BSSEAU, BASIAS, MNT IGN, Matrice Activités-Polluants), permettra une mise à jour directe de la base de données.

Les spécifications permettront également de définir précisément les contours de l'outil web et du bon enchainement des services web utilisés : le mode d'authentification, les différents écrans, l'imbrication cartographique ou encore le degré d'automatisation de l'outil d'aide à la décision.

L'illustration ci-dessous donne une vue schématique de l'enchainement des bases des données et services web intervenant pour la mise en place de l'outil projeté:

Les spécifications feront intervenir des ingénieurs informatiques du BRGM ainsi que les différents acteurs mobilisés lors des deux premières phases, en particulier les thématiciens référents des différentes bases de données utilisées.

6. Bibliographie

Mazurier C., Ayache B., Allier D., Cabaret O. et Pédron N. (2012) – Croisement des captages suivis dans le cadre du contrôle sanitaire et des sites BASIAS, BASOL et ICSP en Aquitaine. Phase 1. BRGM/RP-61490-FR, 89 p., 55 ill., 10 ann., 1 CD.

Ammon H.U. (1984) – Parameters governing the leaching of chemicals in the soil. Colloques de l'INRA, 31, p. 925-942.

Aubert N., Koch-Mathian J-Y avec la collaboration de Baraton A. (2014) – Élaboration d'une base de données corrélant activités et polluants potentiels. Rapport final. BRGM/RP-64125-FR, 110 p., 3 ill., 21 tabl., 8 ann.

Directive 67/548/CEE du Conseil, du 27 juin 1967, concernant le rapprochement des dispositions législatives, réglementaires et administratives relatives à la classification, l'emballage et l'étiquetage des substances dangereuses. Abrogée par le Règlement (CE) No 1272/2008.

Gustafon D.I. (1989) – Groundwater ubiquity score: a simple method for assessing pesticide leachability. *Environ. Toxic. And chem.*, 8, p. 339-357.

Jury W.A., Focht D.D., Farmer W.J. (1987) – Evaluation of pesticide groundwater pollution potential from standard indices of soil-chemical adsorption and biodegradation. *J. Envrion. Qual.* 16, p. 422-428.

Maton D., avec la collaboration de Amalric L., Ghestem J.-Ph., Guigues N., Roy S. (2000), Synthèse des cas de dénitrification naturelle dans les eaux souterraines en France : intérêt du processus pour restaurer la qualité des eaux. BRGM/RP-50304-FR.

Règlement (CE) No 1272/2008 du Parlement Européen et du Conseil du 16 décembre 2008 relatif à la classification, à l'étiquetage et à l'emballage des substances et des mélanges, modifiant et abrogeant les directives 67/548/CEE et 1999/45/CE et modifiant le règlement (CE) No 1907/2006. https://echa.europa.eu/regulations/clp/legislation

Valeria D., von der Ohe P.C. (2013) – NORMAN Prioritisation framework for emerging substances.

Warren R.L., Weber J.B. (1994) – Evaluating pesticide movement in North Carolina soils. *Soil Science society of North Carolina Proceedings*, 37, p. 23-35.

Worral F. (2002) – Towards a generalised linear model for groundwater pollution by pesticides. BCPC symposium, proceedings 78, p. 19-24.

Annexe 1

Liste des substances sur lesquelles une analyse de risque au captage a été réalisée

Groupe	Ss-Groupe	Molécules	Code CAS	Nombre de codes NAF associés
		Activité Radium 226	13982-63-3	2
		Activité Radium 228	15262-20-1	1
Chiminus	Dadiaastifa isatawaa at turaasuus	Activité radon 222	14859-67-7	1
Chimique	Radioactifs, isotopes et traceurs	Activité Strontium 90	10098-97-2	2
		Activité Thorium-228	14274-82-9	1
		Potassium 40	13966-00-2	1
		Brome	7726-95-6	10
	Autres éléments minéraux	Fluor	7782-41-4	63
		lode	7553-56-2	2
		Cyanures libres	57-12-5	18
Eléments minéraux	Composés cyanurés	Cyanures totaux	57-12-5	86
	Composés soufrés	Fluorure de sulfuryle	2699-79-8	1
	Paramètres azotés	Ammonium	7664-41-7	5
	Tarametres azotes	Anhydride phosphorique	1314-56-3	1
	Paramètres phosphorés		10045-86-0	1
	Alicesia in terms at a see al fatir de	Phosphate ferrique		
	Aluminium et ses dérivés	Aluminium	7429-90-5	101
	Arsenic et ses dérivés	Arsenic	7440-38-2	101
		Antimoine	7440-36-0	25
		Argent	7440-22-4	11
		Baryum	7440-39-3	77
		Béryllium	7440-41-7	6
		Bore	7440-42-8	52
	Autres métaux et métalloïdes	Chlorure de triphénylétain	639-58-7	1
		Cobalt	7440-48-4	36
		Dioctylstannane	15231-44-4	1
		Etain	7440-31-5	54
		Lithium	7439-93-2	9
		Octylstannane	15231-57-9	1
		Palladium	7440-05-3	1
		Rubidium	7440-17-7	1
		Sélénium	7782-49-2	23
		Strontium	7440-24-6	21
		Tellure	13494-80-9	3
		Thallium	7440-28-0	10
Métaux et				
métalloïdes		Thorium	7440-29-1 7440-32-6	1 24
		Titane		24
		Tungstène	7440-33-7	1
		Vanadium	7440-62-2	24
		Zirconium	7440-67-7	2
	Cadmium et ses dérivés	Cadmium	7440-43-9	87
		Chrome	7440-47-3	125
	Chrome et ses dérivés	Chrome hexavalent	18540-29-9	34
		Chrome trivalent	16065-83-1	3
	Cuivre et ses dérivés	Cuivre	7440-50-8	137
		Fer	7439-89-6	159
	Fer et ses dérivés	Fer Ferreux	15438-31-0	8
		Fer ferrique	20074-52-6	20
	Manganèse et ses dérivés	Manganèse	7439-96-5	86
	Mercure et ses dérivés	Mercure	7439-97-6	82
	Molybdène et ses dérivés	Molybdène	7439-98-7	26
	Nickel et ses dérivés	Nickel	7440-02-0	122
	Plomb et ses dérivés	Plomb	7439-92-1	137
	Uranium et ses dérivés	Uranium	7440-61-1	6
	Zinc et ses dérivés	Zinc	7440-66-6	141
Micropolluants	Additifs d'essence (MTBE, ETBE,	Diisopropylether	108-20-3	3
organiques	DIPE)	Ethyl tert-butyl ether	637-92-3	2
	,	Méthyl tert-butyl Ether	1634-04-4	8

Groupe	Ss-Groupe	Molécules	Code CAS	Nombre de codes NAF associés
		1,2-Butanediol	584-03-2	1
		1-Butanol	71-36-3	3
		2-Butanol	78-92-2	3
		2-Ethylhexanol	104-76-7	1
		2-Methyl-1-Butanol	137-32-6	1
		2-Naphtol	135-19-3	1
		2-Pentanol	6032-29-7	1
	Alcools et polyols	Diethylène glycol	111-46-6	1
		Ethanol	64-17-5	3
		Ethylène glycol	107-21-1	1
		Isobutyl alcool	78-83-1	2
		Isopropyl alcool [USAN]	67-63-0	3
		Méthanol	67-56-1	9
		tert-Butyl alcool	75-65-0	3
		2-Heptanone	110-43-0	1
		2-Pentanone	107-87-9	1
		Acétone	67-64-1	12
			108-94-1	12
	Aldéhydes et cétones	Cyclohexanone Formaldehyde	50-00-0	7
	Aldenydes et cetones	•		
		Méthyl éthyl cétone	78-93-3	5
		Méthyl isobutyl cétone	108-10-1	3
		Méthyl-3-penten-3-one	565-62-8	1
		Methylpentenone	141-79-7	1
		2,4 dinonylphénol	137-99-5	1
	Alkylphénols, nonylphénols et	C18-C30 Alkylphenol	68784-24-7	1
	bisphénols A	NONYLPHENOLS	25154-52-3	1
		Phenol, 4-(3-methylbutyl)-	1805-61-4	1
		2-methylpyridine	109-06-8	1
		Aminobromobenzotrifluoride	393-36-2	1
	amines	Diphenylamine	122-39-4	1
		Iminostilbene	256-96-2	1
		Pyridine	110-86-1	1
		2-Chloro-4 méthylaniline	615-65-6	1
		Aniline	62-53-3	4
	Auditor and the state of a	Dichloroaniline-2,4	554-00-7	1
	Anilines et dérivés	Dichloroanilines	27134-27-6	1
		Toluidine	26915-12-8	1
		Trichloroaniline-2,4,6	634-93-5	1
		1,1,1 trichlorotrifluoroéthane	354-58-5	4
		1,1,2-Trichlorofluoroethane	811-95-0	3
		1-Chlorobutane	109-69-3	1
		Bromobenzène	108-86-1	2
		Bromochlorométhane	74-97-5	1
		Dibromodichloromethane	594-18-3	1
		Dibromoéthane-1,2	106-93-4	3
		Dibromométhane	74-95-3	2
		Dichlorobromoéthane	683-53-4	1
		Dichloropropane-1,2	78-87-5	10
	Autres COHV	Dichloropropane-1,3	142-28-9	4
		Dichloropropene-1,1	563-58-6	2
		Dichloropropene-1,2 trans	7069-38-7	1
		Dichloropropène-1,3	542-75-6	2
		· · · · · · · · · · · · · · · · · · ·		
		Dichloropropène-1,3 cis	10061-01-5	1
		Dichloropropène-1,3 trans	10061-02-6	2
		Hexachlorobutadiène	87-68-3	3
		Hexachloroéthane	67-72-1	2
		Trichloropropane-1,2,3	96-18-4	2
		Trichlorotrifluoroethane	354-58-5	1
	BTEX	Benzène	71-43-2	72

Groupe	Ss-Groupe	Molécules	Code CAS	Nombre de codes NAF associés
		Ethylbenzène	100-41-4	6
		Toluène	108-88-3	8
		Xylène-méta	108-38-3	
		Xylène-ortho	95-47-6	5
		Xylène-para	106-42-3	1
		1,2,3,4-Tétrachlorobenzène	634-66-2	
		1,2,3,5 tétrachlorobenzène	634-90-2	
		Chlorobenzène	108-90-7	2
		Chlorotoluène-2	95-49-8	
		Chlorotoluène-4	106-43-4	
		Chlorure de benzyle	100-44-7	
		Dichlorobenzene	25321-22-6	
	Chlorobenzènes et autre mono-	Dichlorobenzène-1,2	541-73-1	1
	aromatiques chlorés	Dichlorobenzène-1,3	95-50-1	
	aromatiques emores	Dichlorobenzène-1,4	106-46-7	1
		Dichlorotoluene	29797-40-8	
		Pentachlorobenzène	608-93-5	
		Tétrachlorobenzène	12408-10-5	
		Tetrachlorobenzène-1,2,4,5	95-94-3	
		Trichlorobenzène-1,2,3	87-61-6	
		Trichlorobenzène-1,2,4	120-82-1	
		· ·		
		Trichlorobenzène-1,3,5	108-70-3	
		Chloro-2 Méthylphénol-5	615-74-7	
		Chloro-4 Méthylphénol-3	59-50-7	
		Chlorophénol-2	95-57-8	
		Chlorophénol-3	108-43-0	
		Chlorophénol-4	106-48-9	
		Dichlorophénol-2,3	576-24-9	
		Dichlorophénol-2,4	120-83-2	
		Dichlorophénol-2,6	87-65-0	
		Dichlorophénol-3,4	95-77-2	
	Chlorophénols	Dichlorophénol-3,5	591-35-5	
		Dichlorophénols	25167-81-1	
		Monochlorophenols totaux	25167-80-0	
		Pentachlorophénol	87-86-5	
		Tétrachlorophénol-2,3,4,6	58-90-2	
		Tétrachlorophénol-2,3,5,6	935-95-5	
		Trichlorophénol-2,4,5	95-95-4	
		Trichlorophénol-2,4,6	88-06-2	
		Trichlorophénol-3,4,5	609-19-8	
		4-Ethyltoluene	622-96-8	
		Benzene, 1-ethyl-2-methyl-	611-14-3	
		Benzenemethanol, alpha,alpha-		
		diphenyl-	76-84-6	
		Biphényle	92-52-4	
		Butylbenzène sec	135-98-8	
		Butylbenzène tert	98-06-6	+
		Cymene	25155-15-1	+
		Ethylmethylbenzene	25550-14-5	
	Dérivés du Benzène	Isobutylbenzène	538-93-2	
	Dérivés du Benzène	•		
	Dérivés du Benzène	Isopropylbenzène	98-82-8	
	Dérivés du Benzène	•	98-82-8 108-67-8	
	Dérivés du Benzène	Isopropylbenzène Mésitylène		
	Dérivés du Benzène	Isopropylbenzène Mésitylène N-butylbenzène	108-67-8 104-51-8	
	Dérivés du Benzène	Isopropylbenzène Mésitylène N-butylbenzène N-propylbenzène	108-67-8 104-51-8 103-65-1	
	Dérivés du Benzène	Isopropylbenzène Mésitylène N-butylbenzène N-propylbenzène P-cymène	108-67-8 104-51-8 103-65-1 99-87-6	
	Dérivés du Benzène	Isopropylbenzène Mésitylène N-butylbenzène N-propylbenzène P-cymène Styrène	108-67-8 104-51-8 103-65-1 99-87-6 100-42-5	
	Dérivés du Benzène	Isopropylbenzène Mésitylène N-butylbenzène N-propylbenzène P-cymène	108-67-8 104-51-8 103-65-1 99-87-6	

Groupe	Ss-Groupe	Molécules	Code CAS	Nombre de codes NAF associés
		1,2,3,4,6,7,8,9-		
	Dioxines et Furanes (PCDD,	Octachlorodibenzodioxine	3268-87-9	1
	PCDF)	Dibenzofuran	132-64-9	1
		Tetrahydrofurane	109-99-9	3
		2-Hydroxy-5-méthylanisol	93-51-6	1
		3,4-Dichlorobenzotrifluoride	328-84-7	1
		Acetate de butyle	123-86-4	1
		Acetate de methyl	79-20-9	1
		Acétate d'éthyl	141-78-6	2
		Acetophenone	98-86-2	1
		Acide acétique	64-19-7	3
		Acide methane sulfonique	75-75-2	2
		Acide monochloroacétique	79-11-8	2
	Divers (autres organiques)	Acide nitrilotriacétique	139-13-9	1
	o. o (a.a.a. a. a. gaqaaa)	Acide thioglycolique	68-11-1	2
		Chlorophylle c	11003-45-5	1
		Creosote	8001-58-9	1
		Dimethyl-1,1 hydrazine	57-14-7	1
				4
		Dioxane-1,4	123-91-1	
		Dipropylene glycol	25265-71-8	1
		Ether ethylique	60-29-7	2
		Methyl-3 butanone-2	563-80-4	1
		Tetraglyme	143-24-8	1
	Fréons	Fréon 11	75-69-4	9
	Treons	Fréon 113	76-13-1	13
		Acénaphtène	83-32-9	61
		Acenaphthène D10	15067-26-2	1
		Acénaphtylène	208-96-8	43
		Anthracène	120-12-7	53
		Benzo(a)anthracène	56-55-3	52
		Benzo(a)fluoranthene	203-33-8	2
		Benzo(a)pyrène	50-32-8	60
		Benzo(b)fluoranthène	205-99-2	57
		Benzo(e)pyrène	192-97-2	1
		Benzo(g,h,i)pérylène	191-24-2	51
		Benzo(k)fluoranthène	207-08-9	50
	HAP (Hydrocarbures,	Chloronaphtalène-1	90-13-1	4
	aromatiques, polycyclique,	·		+
	pyrolytique et dérivés)	Chrysène	218-01-9	50
		Dibenzo(a,h)anthracène	53-70-3	31
		Fluoranthène	206-44-0	70
		Fluoranthene, 1-methyl-	25889-60-5	1
		Fluorène	86-73-7	69
		Indéno(1,2,3-cd)pyrène	193-39-5	47
		Méthyl-2-Fluoranthène	33543-31-6	4
		Méthyl-2-Naphtalène	91-57-6	5
		Naphtalène	91-20-3	81
		Pérylène	198-55-0	1
		Phénanthrène	85-01-8	73
		Pyrène	129-00-0	63
		Butane	106-97-8	1
		Equivalent Essence	8006-61-9	3
		Equivalent Gazole	64741-44-2	3
		Equivalent huiles minerales	8012-95-1	9
		Ethane	74-84-0	4
	Hydrocarbures et indices liés	Ethene	74-85-1	3
		Heptane	142-82-5	3
				1
		Indane	496-11-7	
		Indene	95-13-6	1
		Isobutane	75-28-5	1

Groupe	Ss-Groupe	Molécules	Code CAS	Nombre de codes NAF associés
		Methane	74-82-8	7
		n-Hexane	110-54-3	5
		Octane	111-65-9	2
		Propane	74-98-6	1
	Organochlorés	Epichlorohydrine	106-89-8	1
	Organophosphorés	Phosphate de tributyle	126-73-8	1
	Paramètres azotés	Hydrazine	302-01-2	1
	. drametres agotes	Arochlore 1254	11097-69-1	2
		Arochlore 1260	11096-82-5	4
		PCB 101	37680-73-2	13
				1.
		PCB 105 PCB 118	32598-14-4	
			31508-00-6	1
		PCB 128	38380-07-3	_
		PCB 138	35065-28-2	13
	РСВ	PCB 153	35065-27-1	11
		PCB 156	38380-08-4	1
		PCB 170	35065-30-6	1
		PCB 180	35065-29-3	10
		PCB 28	7012-37-5	8
		PCB 35	37680-69-6	-
		PCB 37	38444-90-5	1
		PCB 52	35693-99-3	11
		Tetrachorobiphenyle	26914-33-0	1
		2,3,5-Triméthylphénol	697-82-5	3
		2,6 diméthylphénol	576-26-1	
		2-Éthylphenol	90-00-6	
			95-65-8	
		3,4-Dimethylphenol		
		3,5-Diméthylphénol	108-68-9	
		3-Ethylphenol	620-17-7	3
		4-Ethylphenol	123-07-9	3
		Cresol	1319-77-3	3
		Diméthylphénol-2,4	105-67-9	10
	phénol, crésol et dérivés	Diméthylphénol-2,5	95-87-4	į
	priction, dresor et derives	Ethylphenol	25429-37-2	3
		Méthylphénol-2	95-48-7	10
		Méthylphénol-3	108-39-4	
		Méthylphénol-4	106-44-5	
		Naphtol-1	90-15-3	
		Orthophénylphénol	90-43-7	:
		Phénol	108-95-2	10
		Somme de Méthylphénol-3 et de		
		Méthylphénol-4.	65794-96-9	
		Thymol	89-83-8	
		Di(2-ethylhexyl)phthalate	117-81-7	
		Diéthyl phtalate	84-66-2	
	Phtalates	Diisobutyl phthalate	84-69-5	
	Filialates			
		Ethyl hexyl phthalate	117-81-7	
		n-Butyl Phtalate	84-74-2	
		Chloroéthane	75-00-3	_
		Chloroforme	67-66-3	7
		Chlorométhane	74-87-3	
		Chlorure de vinyle	75-01-4	7
		Dichloroethane	1300-21-6	
	Solvants chlorés	Dichloroéthane-1,1	75-34-3	7
		Dichloroéthane-1,2	107-06-2	3
		Dichloroéthène-1,1	75-35-4	7
		Dichloroéthène-1,2	540-59-0	2
		Dichloroéthylène-1,2 cis	156-59-2	9
	İ	Dichloroéthylène-1,2 trans	156-60-5	6

Groupe	Ss-Groupe	Molécules	Code CAS	Nombre de codes NAF associés
		Dichlorométhane	75-09-2	53
		Pentachloroethane	76-01-7	2
		Tétrachloréthène	127-18-4	98
		Tétrachloroéthane-1,1,1,2	630-20-6	4
		Tétrachloroéthane-1,1,2,2	79-34-5	8
		Tétrachlorure de carbone	56-23-5	52
		Trichloroethane	25323-89-1	3
		Trichloroéthane-1,1,1	71-55-6	91
		Trichloroéthane-1,1,2	79-00-5	28
		Trichloroéthylène	79-01-6	107
		2-hydroxy atrazine	2163-68-0	107
	Triazines et métabolites	Amétryne	834-12-8	1
	Triazines et metabolites			
		Azaconazole	60207-31-0	1
		Bromoforme	75-25-2	11
	Trihalométhanes (THM)	Dibromomonochlorométhane	124-48-1	11
		Dichloromonobromométhane	75-27-4	8
	Urées et métabolites	Urée	57-13-6	1
Pharmaceutiques et	Anti-épileptiques	Carbamazepine	298-46-4	1
hormones	Autres Pharmaceutiques et			
normones	hormones	Pyrazole	288-13-1	1
	Acaricides	Vamidothion	2275-23-2	2
		2,4,5-T	93-76-5	1
		2,4-DB	94-82-6	1
		Aclonifène	74070-46-5	2
		Alachlore	15972-60-8	1
		Aminotriazole	61-82-5	1
		Atrazine déisopropyl	1007-28-9	3
		Atrazine deisopropyi Atrazine déséthyl	6190-65-4	10
		Benfluraline	1861-40-1	1
				_
		Bromacil	314-40-9	4
		Bromoxynil	1689-84-5	1
		Chlorothalonil	1897-45-6	1
		Clomazone	81777-89-1	1
	Autres Phytosanitaires	Cyperméthrine	52315-07-8	2
		Diflufenicanil	83164-33-4	1
		Diméthomorphe	110488-70-5	1
		Dinoterbe	1420-07-1	1
		Ethofumésate	26225-79-6	1
		Fenothrine	26002-80-2	33
Phytosanitaires		Fenpropathrine	39515-41-8	1
		Fipronil	120068-37-3	2
		Glyphosate	1071-83-6	3
		loxynil	1689-83-4	18
		Iprodione	36734-19-7	1
		Métalaxyl	57837-19-1	1
		Oxyde de biphenyle	101-84-8	2
			10605-21-7	3
	Fongicides	Carbendazime	107534-96-3	
		Tébuconazole	10/534-96-3	4
		1-(3,4-dichlorophenyl)-3-methyl-	2567.62.2	
		uree	3567-62-2	1
		2,4-D	94-75-7	2
		2,4-MCPA	94-74-6	1
		Atrazine	1912-24-9	13
	Herbicides	Bentazone	25057-89-0	2
		Chlorbufame	1967-16-4	1
		Chloroxuron	1982-47-4	1
		Chlorprophame	101-21-3	1
		Chlortoluron	15545-48-9	2
		Cyanazine	21725-46-2	2

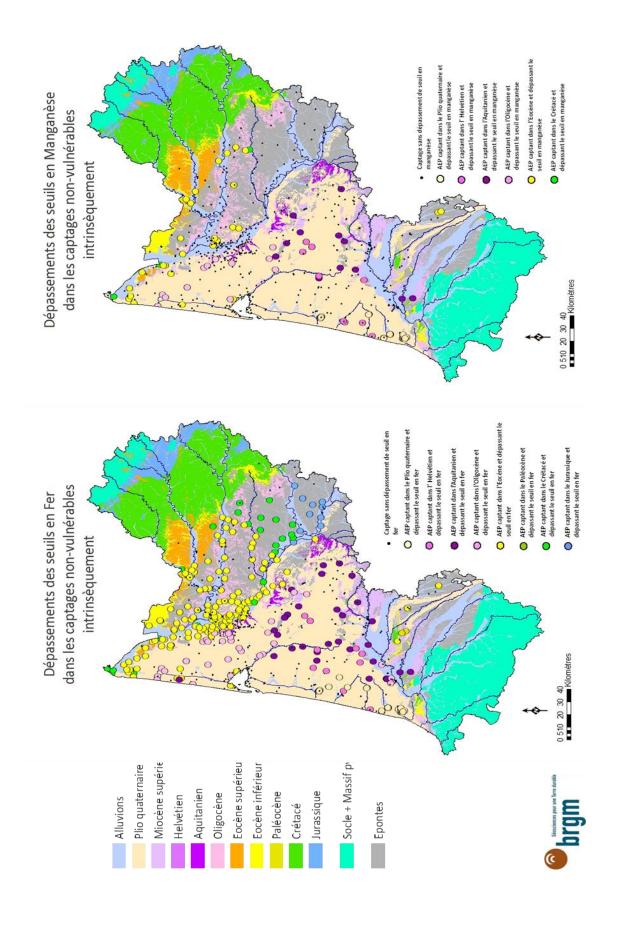
Groupe	Ss-Groupe	Molécules	Code CAS	Nombre de codes NAF associés
		Déisopropyl-déséthyl-atrazine	3397-62-4	2
		Dichlorprop	120-36-5	2
		Diméfuron	34205-21-5	2
		Diuron	330-54-1	5
		Hexazinone	51235-04-2	1
		Isoproturon	34123-59-6	4
		Linuron	330-55-2	2
		Mécoprop	93-65-2	2
		Méthabenzthiazuron	18691-97-9	1
		Métobromuron	3060-89-7	1
		Métoxuron	19937-59-8	1
		Monolinuron	1746-81-2	1
		Néburon	555-37-3	2
		Propazine	139-40-2	1
		Prophame	122-42-9	1
		Propiconazole	60207-90-1	5
		Simazine	122-34-9	10
		Terbuthylazine désethyl	30125-63-4	1
		Trifluraline	1582-09-8	1
		Perméthrine cis	61949-76-6	1
	Insecticides	Tébuthiuron	34014-18-1	1
		Thiodicarbe	59669-26-0	16
		Aldrine	309-00-2	2
		Chlordane	57-74-9	1
		DDD 24'	53-19-0	1
		DDD 44'	72-54-8	1
		DDE 24'	3424-82-6	2
		DDE 44'	72-55-9	1
		DDT 24'	789-02-6	1
		DDT 44'	50-29-3	1
		Dieldrine	60-57-1	2
		Endosulfan alpha	959-98-8	2
	Common alda e (a	Endosulfan bêta	33213-65-9	2
	Organochlorés	Endrine	72-20-8	1
		Heptachlore	76-44-8	2
		Hexachlorobenzène	118-74-1	2
		Hexachlorocyclohexane alpha	319-84-6	4
		Hexachlorocyclohexane bêta	319-85-7	8
		Hexachlorocyclohexane delta	319-86-8	5
		Hexachlorocyclohexane epsilon	6108-10-7	3
		Hexachlorocyclohexane gamma	58-89-9	7
		Métolachlore	51218-45-2	2
		Oxadiazon	19666-30-9	2
		Perméthrine		2
			52645-53-1	+
	Organophosphorés	Azinphos méthyl	86-50-0	1
	<u> </u>	Isofenphos	25311-71-1	1
	Rodenticides	Diphacinone	82-66-6	1

Annexe 2

Indicateur de Pression Industrielle

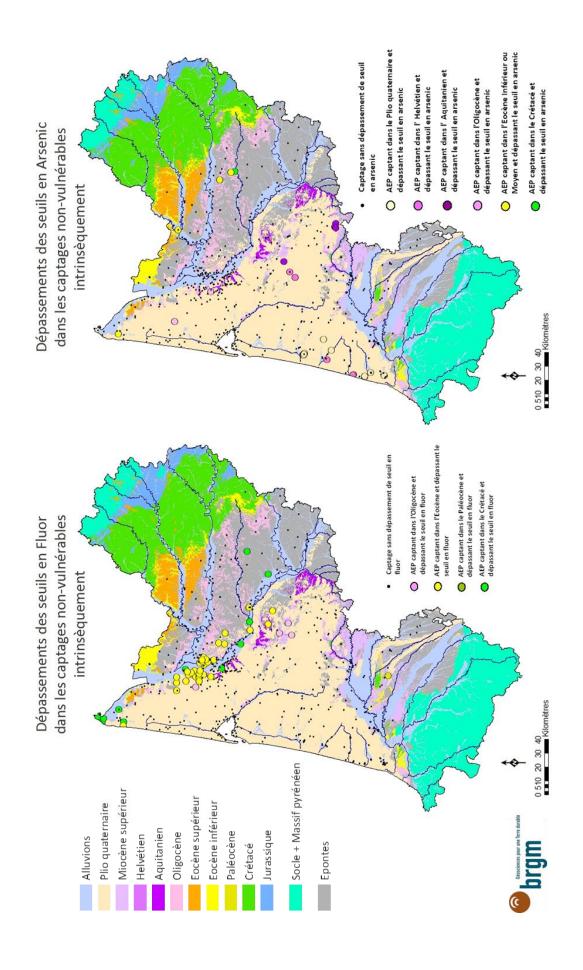
BSS	Département	Commune	Type de périmètre de vulnérabilité	Nb Site Industriel dans	Indicateur de Pression
	·		<i>"</i> ·	périmètre de vulnérabilité	Industrielle
09771X0021	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	2977	29752,41052
08536X0133	Lot et Garonne	MARMANDE	Bassin versant ayant pour exutoire l'ouvrage	16771	26758,81655
08536X0002	Lot et Garonne	MARMANDE	Bassin versant ayant pour exutoire l'ouvrage	16771	23356,90961
09771X0123	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	2990	17101,32007
08086X0025	Dordogne	SARLAT-LA-CANEDA	Bassin versant ayant pour exutoire l'ouvrage	50	15496,01781
08521X0200	Gironde	CADILLAC	Bassin versant ayant pour exutoire l'ouvrage	17449	13269,17549
08272X0294	Gironde	GRADIGNAN	Bassin versant ayant pour exutoire l'ouvrage	42	10673,13136
09234X0007	Landes	MEZOS	Bassin versant ayant pour exutoire l'ouvrage	15	9597,407264
08086X0022	Dordogne	SARLAT-LA-CANEDA	Bassin d'alimentation karstique	60	9567,918117
10293X0035	Pyrénées Atlantique	TARSACQ	Bassin versant ayant pour exutoire l'ouvrage	1441	9153,345059
08086X0027	Dordogne	SARLAT-LA-CANEDA	Bassin versant ayant pour exutoire l'ouvrage	50	7702,170041
10292X0024	Pyrénées Atlantique	BESINGRAND	Bassin versant ayant pour exutoire l'ouvrage	1448	7340,27773
10305X0015	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	538	7283,858992
10305X0016	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	532	6716,186368
10031X0005	Landes	SAINT-CRICQ-DU-GAVE	Bassin versant ayant pour exutoire l'ouvrage	2089	6714,086371
10031X0008	Landes	SAINT-CRICQ-DU-GAVE	Bassin versant ayant pour exutoire l'ouvrage	2089	6494,990185
10305X0017	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	519	6431,066376
10031X0014	Landes	SAINT-CRICQ-DU-GAVE	Bassin versant ayant pour exutoire l'ouvrage	2089	6049,884666
10031X0024	Landes	SAINT-CRICQ-DU-GAVE	Bassin versant ayant pour exutoire l'ouvrage	2089	6049,884666
10031X0016	Landes	CAUNEILLE	Bassin versant ayant pour exutoire l'ouvrage	2103	5936,505092
10305X0011	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	538	5889,74741
10305X0013	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	538	5889,74741
07595X0022	Dordogne	BOULAZAC	Bassin versant ayant pour exutoire l'ouvrage	401	5828,177561
07583X0004	Dordogne	LISLE	Aire d'Alimentation de Captage	5	5524,462947
10031X0012	Landes	CAUNEILLE	Bassin versant ayant pour exutoire l'ouvrage	2103	5458,278237
10031X0029	Landes	CAUNEILLE	Bassin versant ayant pour exutoire l'ouvrage	2103	5458,278237
09506X0007	Landes	PRECHACQ-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	2635	5082,873976
09506X0053	Landes	PRECHACQ-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	2635	5082,873976
09506X0055	Landes	PRECHACQ-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	2635	5082,873976
10301X0006	Pyrénées Atlantique	PAU	Bassin versant ayant pour exutoire l'ouvrage	16	4933,341873
09237X0001	Landes	LINXE	Bassin versant ayant pour exutoire l'ouvrage	5	4789,152896
10305X0074		MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	514	4537,294199
09018X0012	Lot et Garonne	LAVARDAC	Bassin versant ayant pour exutoire l'ouvrage	630	4162,432095
09018X0017	Lot et Garonne	LAVARDAC	Bassin versant ayant pour exutoire l'ouvrage	630	4162,432095
09018X0018	Lot et Garonne	LAVARDAC	Bassin versant ayant pour exutoire l'ouvrage	630	4162,432095
09513X0048	Landes	MONT-DE-MARSAN	Bassin versant ayant pour exutoire l'ouvrage	203	4147,726301
08272X0058	Gironde	GRADIGNAN	Bassin versant ayant pour exutoire l'ouvrage	46	4126,584081
	Pyrénées Atlantique	MAZERES-LEZONS	Bassin versant ayant pour exutoire l'ouvrage	519	3818,617438
08322X0015		CENAC-ET-SAINT-JULIEN	Bassin d'alimentation karstique	5	3794,858705
09237X0002	Landes	LINXE	Bassin versant ayant pour exutoire l'ouvrage	6	3776,968515
08272X0489	Gironde	GRADIGNAN	Bassin versant ayant pour exutoire l'ouvrage	42	3752,744541
09771X0193	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	12	3687,287845
09771X0200	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	12	3687,287845
10306X0250	Pyrénées Atlantique	BAUDREIX	Bassin versant ayant pour exutoire l'ouvrage	409	3551,572681
09518X0021	Landes	GRENADE-SUR-L'ADOUR	Bassin versant ayant pour exutoire l'ouvrage	1409	3544,586824
08087X0021	Dordogne	GROLEJAC	Bassin versant ayant pour exutoire l'ouvrage	1489	3495,952649
08077X0054		SIORAC-EN-PERIGORD	Bassin versant ayant pour exutoire l'ouvrage	1759	3490,426663
09792X0207		AIRE-SUR-L'ADOUR	Bassin versant ayant pour exutoire l'ouvrage	1205	3487,863981
09792X0207		AIRE-SUR-L'ADOUR	Bassin versant ayant pour exutoire l'ouvrage	1205	3487,863981
08035X0337	Gironde	MERIGNAC	Bassin versant ayant pour exutoire l'ouvrage	25	3276,544485
	Pyrénées Atlantique	SAUVETERRE-DE-BEARN	Bassin versant ayant pour exutoire l'ouvrage	3	3188,155369
08272X0285	Gironde	GRADIGNAN	Bassin versant ayant pour exutoire l'ouvrage	41	3145,083187
09792X0220		AIRE-SUR-L'ADOUR	Bassin versant ayant pour exutoire l'ouvrage	1205	3142,315562
07578X0007		VILLETOUREIX	Bassin versant ayant pour exutoire l'ouvrage	280	3117,973659
07578X0007		VILLETOUREIX	Bassin versant ayant pour exutoire l'ouvrage	280	3117,973659
08077X0021	-	COUX-ET-BIGAROQUE	Bassin versant ayant pour exutoire l'ouvrage	1761	3084,742786
08077X0021		LE BUISSON-DE-CADOUIN	Bassin versant ayant pour exutoire l'ouvrage	1766	3035,606681
08062X0004		MAURENS	Bassin d'alimentation karstique	10	2956,320774
		PAU	Bassin versant ayant pour exutoire l'ouvrage	10	2943,67114
07583X0006		LISLE	Aire d'Alimentation de Captage	5	2943,67114
08504X0004		LE BARP	Bassin versant ayant pour exutoire l'ouvrage	7	2938,983018
0030470004	ononiue	LL DAINF	passin versant ayant pour exutorie i ouvrage		4730,703010

BSS	Département	Commune	Type de périmètre de vulnérabilité	Nb Site Industriel dans périmètre de vulnérabilité	Indicateur de Pression Industrielle
10271X0021	Pyrénées Atlantique	CAMBO-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	108	2905,380849
	Dordogne	SAGELAT	Bassin d'alimentation karstique	19	2868,601119
08077X0030	Dordogne	LE BUGUE	Bassin versant ayant pour exutoire l'ouvrage	1077	2814,714094
09023X0010	Lot et Garonne	LE PASSAGE	Bassin versant ayant pour exutoire l'ouvrage	9	2813,128058
07576X0018	Dordogne	SAINT-AULAYE	Bassin versant ayant pour exutoire l'ouvrage	468	2737,53502
08086X0030	Dordogne	DOMME	Bassin versant ayant pour exutoire l'ouvrage	1504	2657,45707
10305X0081	Pyrénées Atlantique	MEILLON	Bassin versant ayant pour exutoire l'ouvrage	443	2527,532555
08762X0003	Gironde	BERNOS-BEAULAC	Bassin versant ayant pour exutoire l'ouvrage	34	2513,837006
10295X0005	Pyrénées Atlantique	AREN	Bassin versant ayant pour exutoire l'ouvrage	340	2494,125876
10305X0080	Pyrénées Atlantique	MEILLON	Bassin versant ayant pour exutoire l'ouvrage	442	2470,974729
10301X0008	Pyrénées Atlantique	PAU	Bassin versant ayant pour exutoire l'ouvrage	9	2460,433083
07586X0006	Dordogne	TOCANE-SAINT-APRE	Bassin versant ayant pour exutoire l'ouvrage	257	2434,400827
10014X0036	Pyrénées Atlantique	ANGLET	Bassin versant ayant pour exutoire l'ouvrage	9	2358,612204
10305X0075	Pyrénées Atlantique	UZOS	Bassin versant ayant pour exutoire l'ouvrage	449	2316,791535
08042X0034	Gironde	LES BILLAUX	Bassin versant ayant pour exutoire l'ouvrage	1458	2306,542504
10295X0010	Pyrénées Atlantique	PRECHACQ-NAVARRENX	Bassin versant ayant pour exutoire l'ouvrage	355	2297,259047
09758X0011	Landes	LABENNE	Bassin versant ayant pour exutoire l'ouvrage	53	2297,08215
09771X0089	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	10	2270,294712
07844X0003	Dordogne	PAZAYAC	Bassin versant ayant pour exutoire l'ouvrage	1	2258,064516
09765X0160	Landes	LABENNE	Bassin versant ayant pour exutoire l'ouvrage	50	2212,001222
09771X0007	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	5	2189,366841
09771X0191	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	5	2189,366841
07357X0002	Dordogne	THIVIERS	Bassin d'alimentation karstique	3	2182,856776
10271X0006	Pyrénées Atlantique	CAMBO-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	109	2116,05119
10271X0014	Pyrénées Atlantique	CAMBO-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	109	2116,05119
10301X0015	Pyrénées Atlantique	PAU	Bassin versant ayant pour exutoire l'ouvrage	10	2079,351682
09016X0001	Lot et Garonne	DURANCE	Bassin versant ayant pour exutoire l'ouvrage	1	2056,737589
10014X0019	Pyrénées Atlantique	ANGLET	Bassin versant ayant pour exutoire l'ouvrage	12	2053,956835
10513X0003	Pyrénées Atlantique	OGEU-LES-BAINS	Périmètre de Protection Eloigné	5	2041,587492
10271X0024	Pyrénées Atlantique	LARRESSORE	Bassin versant ayant pour exutoire l'ouvrage	144	2032,117739
10295X0011	Pyrénées Atlantique	PRECHACQ-JOSBAIG	Bassin versant ayant pour exutoire l'ouvrage	341	2030,748423
10035X0013	Pyrénées Atlantique	AUTERRIVE	Bassin versant ayant pour exutoire l'ouvrage	590	1965,850303
10513X0002	Pyrénées Atlantique	OGEU-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	6	1963,002699
07586X0004	Dordogne	MONTAGRIER	Bassin versant ayant pour exutoire l'ouvrage	259	1960,360689
10035X0001	Pyrénées Atlantique	CASTAGNEDE	Bassin versant ayant pour exutoire l'ouvrage	584	1952,649567
10036X0055	Pyrénées Atlantique	AUTERRIVE	Bassin versant ayant pour exutoire l'ouvrage	589	1939,136725
07576X0012	Dordogne	SAINT-AULAYE	Bassin versant ayant pour exutoire l'ouvrage	470	1916,655265
08311X0001	Dordogne	BAYAC	Bassin d'alimentation karstique	2	1905,551345
07576X0026	Dordogne	SAINT-AULAYE	Bassin versant ayant pour exutoire l'ouvrage	467	1886,290629
10014X0017	Pyrénées Atlantique	ANGLET	Bassin versant ayant pour exutoire l'ouvrage	5	1807,051641
07578X0039	Dordogne	VILLETOUREIX	Bassin d'alimentation karstique	5	1802,309743
08058X0009	Dordogne	GARDONNE	Bassin versant ayant pour exutoire l'ouvrage	3	1527,99614
09006X0070	Landes	BOURRIOT-BERGONCE	Bassin versant ayant pour exutoire l'ouvrage	7	1483,240334
10511X0008	Pyrénées Atlantique	FEAS	Bassin versant ayant pour exutoire l'ouvrage	1	1477,272727
	Gironde	CANEJAN	Bassin versant ayant pour exutoire l'ouvrage	30	1471,802231
08076X0015	•	TREMOLAT	Bassin d'alimentation karstique	5	1433,146994
09771X0015	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	3	1385,387488
	Lot et Garonne	AURIAC-SUR-DROPT	Bassin versant ayant pour exutoire l'ouvrage	157	1359,65829
07597X0007		LE CHANGE	Bassin versant ayant pour exutoire l'ouvrage	146	1215,503283
08322X0011		DAGLAN	Bassin versant ayant pour exutoire l'ouvrage	93	1211,300032
08763X0017		BAZAS	Bassin versant ayant pour exutoire l'ouvrage	36	1193,682316
07578X0040	-	VILLETOUREIX	Bassin d'alimentation karstique	4	1183,622492
	/	ANGLET	Bassin versant ayant pour exutoire l'ouvrage	6	1165,569773
07588X0009	Dordogne	PERIGUEUX	Bassin d'alimentation karstique	20	1161,44148
09771X0009	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	11	1145,556007
10694X0007	Pyrénées Atlantique	LARUNS	Bassin versant ayant pour exutoire l'ouvrage	29	1105,346227
10694X0055		LARUNS	Bassin versant ayant pour exutoire l'ouvrage	29	1105,346227
09771X0006	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	4	1074,561404
		ANGLET	Bassin versant ayant pour exutoire l'ouvrage	5	1074,112297
08035X0008	Gironde	SAINT-MEDARD-EN-JALLES	Bassin versant ayant pour exutoire l'ouvrage	16	1053,473793
07828X0040	Dordogne	VERGT	Bassin d'alimentation karstique	19	1028,364273

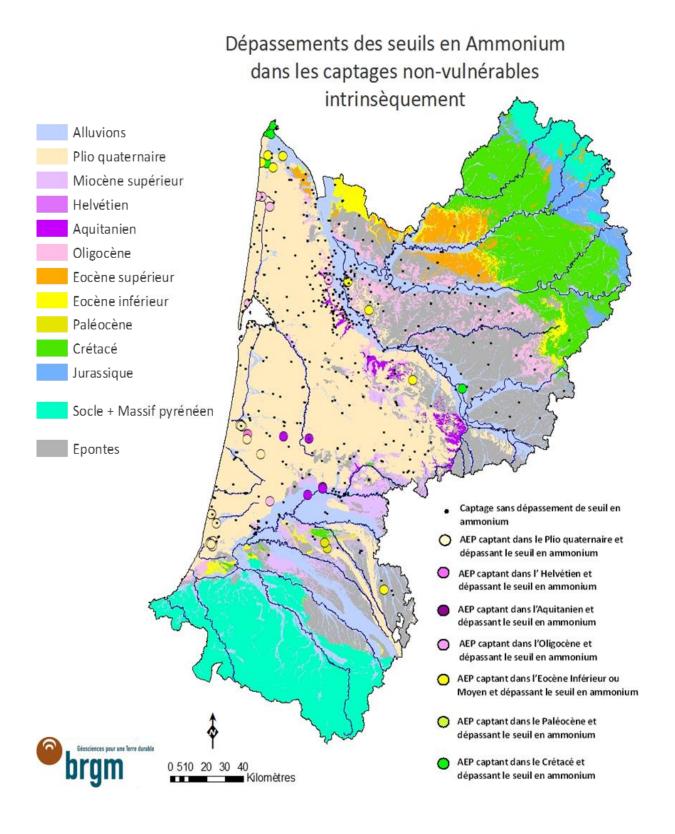

				and first to the second	
BSS	Département	Commune	Type de périmètre de vulnérabilité	Nb Site Industriel dans	Indicateur de Pression
				périmètre de vulnérabilité	Industrielle
08035X0298		LE HAILLAN	Bassin versant ayant pour exutoire l'ouvrage	46	1028,12921
	<i>'</i>	RIVEHAUTE	Bassin versant ayant pour exutoire l'ouvrage	123	1002,88186
	Dordogne	SAINT-LAURENT-SUR-MANOIRE	Bassin d'alimentation karstique	2	1001,792115
-	Dordogne	SAINTE-CROIX-DE-MAREUIL	Bassin d'alimentation karstique	15	992,4043776
-	Pyrénées Atlantique	GOTEIN-LIBARRENX	Bassin versant ayant pour exutoire l'ouvrage	39	923,2718227
	Pyrénées Atlantique	GOTEIN-LIBARRENX	Bassin versant ayant pour exutoire l'ouvrage	39	923,2718227
-	Pyrénées Atlantique	GOTEIN-LIBARRENX	Bassin versant ayant pour exutoire l'ouvrage	39	923,2718227
	Landes	DONZACQ	Bassin versant ayant pour exutoire l'ouvrage	12	890,7997118
-	Pyrénées Atlantique	ASTE-BEON	Bassin versant ayant pour exutoire l'ouvrage	30	863,2527696
-	Landes	NOUSSE	Bassin versant ayant pour exutoire l'ouvrage	141	859,6264409
	Dordogne	AZERAT	Bassin versant ayant pour exutoire l'ouvrage	3	822,5955336
-	Dordogne	SAINT-ANTOINE-CUMOND	Bassin versant ayant pour exutoire l'ouvrage	1	818,7134503
-	Landes	SAINT-LON-LES-MINES	Bassin versant ayant pour exutoire l'ouvrage	2	815,5470132
-	Pyrénées Atlantique	GARINDEIN	Bassin versant ayant pour exutoire l'ouvrage	40	815,0050386
	Dordogne	PROISSANS	Bassin versant ayant pour exutoire l'ouvrage	3	740,5582191
	Pyrénées Atlantique	CAMBO-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	106	703,486483
	Pyrénées Atlantique	BORCE	Bassin versant ayant pour exutoire l'ouvrage	3	701,3574661
	Dordogne	SAINT-ANDRE-D'ALLAS	Bassin d'alimentation karstique	1	613,6363636
-	Dordogne	SIORAC-EN-PERIGORD	Bassin d'alimentation karstique	1	602,9106029
	Dordogne	CERCLES	Bassin d'alimentation karstique	1	602,6785714
	Pyrénées Atlantique	MOUMOUR	Bassin versant ayant pour exutoire l'ouvrage	24	595,3496991
	Dordogne	BEAUMONT-DU-PERIGORD	Bassin versant ayant pour exutoire l'ouvrage	22	584,5230876
-	Dordogne	VAUNAC	Bassin d'alimentation karstique	7	577,6096187
10511X0004	Pyrénées Atlantique	OLORON-SAINTE-MARIE	Bassin versant ayant pour exutoire l'ouvrage	21	575,9145187
	Dordogne	SAINT-CERNIN-DE-L'HERM	Bassin versant ayant pour exutoire l'ouvrage	3	574,015877
-	Dordogne	MANAURIE	Bassin d'alimentation karstique	1	569,7445972
	Landes	DAX	Bassin versant ayant pour exutoire l'ouvrage	3	545,1680672
09493X0118		SAINT-MICHEL-ESCALUS	Bassin versant ayant pour exutoire l'ouvrage	34	540,879597
	Pyrénées Atlantique	OLORON-SAINTE-MARIE	Bassin versant ayant pour exutoire l'ouvrage	21	535,6160179
07821X0002	Dordogne	SAINT-VINCENT-DE-CONNEZAC	Bassin versant ayant pour exutoire l'ouvrage	3	525,0534894
-	Gironde	LE BARP	Bassin versant ayant pour exutoire l'ouvrage	2	524,0200508
-	Landes	ROQUEFORT	Bassin versant ayant pour exutoire l'ouvrage	2	520,5479452
	Dordogne	RAZAC-SUR-L'ISLE	Bassin d'alimentation karstique	8	518,0786193
	Dordogne	MAURENS	Bassin versant ayant pour exutoire l'ouvrage	10	509,8019119
07596X0003	Dordogne	ANTONNE-ET-TRIGONANT	Bassin d'alimentation karstique	2	482,6904091
-	Landes	SOUSTONS	Bassin versant ayant pour exutoire l'ouvrage	2	470,9936818
-	Gironde	PESSAC	Bassin versant ayant pour exutoire l'ouvrage	1	469,7986577
	Gironde	CANEJAN	Bassin versant ayant pour exutoire l'ouvrage	10	466,6817338
-	Dordogne	LIORAC-SUR-LOUYRE	Bassin versant ayant pour exutoire l'ouvrage	7	462,5189363
	Pyrénées Atlantique	LALONGUE	Bassin versant ayant pour exutoire l'ouvrage	11	454,9971146
	Dordogne	VERGT-DE-BIRON	Bassin d'alimentation karstique	3	424,1931428
-	Dordogne	SAINT-PIERRE-DE-COLE	Bassin d'alimentation karstique	1	422,0779221
	Dordogne	LEMBRAS	Bassin versant ayant pour exutoire l'ouvrage	17	417,3854575
	Landes	AUDIGNON	Bassin versant ayant pour exutoire l'ouvrage	16	412,9786021
	Landes	AUDIGNON	Bassin versant ayant pour exutoire l'ouvrage	16	412,9786021
09782X0025		AUDIGNON	Bassin versant ayant pour exutoire l'ouvrage	16 8	412,9786021
07822X0035		SAINT-GERMAIN-DU-SALEMBRE	Bassin versant ayant pour exutoire l'ouvrage		397,2500131
08523X0094		SAINT-PARDON-DE-CONQUES SAINT-MARTIAL-DE-NABIRAT	Bassin versant ayant pour exutoire l'ouvrage	41 3	396,8698587
08323X0003 08066X0017		LEMBRAS	Bassin versant ayant pour exutoire l'ouvrage	17	391,8819415 376,7518476
	Pyrénées Atlantique	GOTEIN-LIBARRENX	Bassin versant ayant pour exutoire l'ouvrage Bassin versant ayant pour exutoire l'ouvrage	24	356,024767
	Pyrénées Atlantique	OGEU-LES-BAINS	Bassin versant ayant pour exutoire i ouvrage Bassin versant ayant pour exutoire l'ouvrage	5	347,0324411
	Pyrénées Atlantique	RONTIGNON	Bassin versant ayant pour exutoire l'ouvrage	3	345,8505284
	Gironde	LESPARRE-MEDOC	Bassin versant ayant pour exutoire l'ouvrage	5	337,2545287
08035X0300	Gironde	EYSINES	Bassin versant ayant pour exutoire l'ouvrage	1	325,5813953
08033X0300 08073X0017		LE BUGUE	Bassin d'alimentation karstique	1	321,7821782
07344X0005		SAINT-MARTIAL-DE-VALETTE	Bassin versant ayant pour exutoire l'ouvrage	1	319,5876289
08028X0005		SAINT-MEDARD-EN-JALLES	Bassin versant ayant pour exutoire l'ouvrage	27	305,3884476
08028X0003		CAPTIEUX	Bassin versant ayant pour exutoire l'ouvrage	1	304,6511628
08753X0010		SAINT-LEGER-DE-BALSON	Bassin versant ayant pour exutoire l'ouvrage	8	298,3433727
	Dordogne	SAINTE-MARIE-DE-CHIGNAC	Bassin d'alimentation karstique	10	294,9795119
3,032,0001	2 or doblic	S TE MARKE DE-CHICKAC	5555 a annientation karstique	10	254,5733113

BSS	Département	Commune	Type de périmètre de vulnérabilité	Nb Site Industriel dans	Indicateur de Pression
	·			périmètre de vulnérabilité	Industrielle
10046X0089	Pyrénées Atlantique	ARTIX	Bassin versant ayant pour exutoire l'ouvrage	9	286,9049769
08035X0006	Gironde	SAINT-MEDARD-EN-JALLES	Bassin versant ayant pour exutoire l'ouvrage	30	281,9553314
08035X0279	Gironde	SAINT-MEDARD-EN-JALLES	Bassin versant ayant pour exutoire l'ouvrage	30	281,9553314
08035X0281	Gironde	SAINT-MEDARD-EN-JALLES	Bassin versant ayant pour exutoire l'ouvrage	30	281,9553314
	Lot et Garonne	LAYRAC	Bassin versant ayant pour exutoire l'ouvrage	10	280,2088726
	Pyrénées Atlantique	ORTHEZ	Bassin versant ayant pour exutoire l'ouvrage	1	279,4561934
08035X0286	Gironde	LE TAILLAN-MEDOC	Bassin versant ayant pour exutoire l'ouvrage	30	265,2176119
	Lot et Garonne	CAUDECOSTE	Bassin versant ayant pour exutoire l'ouvrage	4	261,7799472
07593X0004		SAINT-JORY-LAS-BLOUX	Bassin d'alimentation karstique	12	259,292513
	Gironde	SAINT-MEDARD-EN-JALLES	Bassin versant ayant pour exutoire l'ouvrage	28	255,2123483
	Landes	SOORTS-HOSSEGOR	Bassin versant ayant pour exutoire l'ouvrage	1	255,2083333
	Dordogne	PIEGUT-PLUVIERS	Bassin versant ayant pour exutoire l'ouvrage	1	252,8334786
10306X0036	Pyrénées Atlantique	BORDES	Aire d'Alimentation de Captage	2	252,2609481
08271X0009	Gironde	MERIGNAC	Bassin versant ayant pour exutoire l'ouvrage	11	244,7346566
	Dordogne	TOURTOIRAC	Bassin d'alimentation karstique	1	238,6363636
	Gironde	BALIZAC	Bassin versant ayant pour exutoire l'ouvrage	2	237,789544
		ARBUS	Bassin versant ayant pour exutoire l'ouvrage	5	235,4964252
		BORDES	Aire d'Alimentation de Captage	2	220,5797415
	Dordogne	PAUSSAC-ET-SAINT-VIVIEN	Aire d'Alimentation de Captage	2	215,8385093
	Lot et Garonne	LA REUNION	Bassin versant ayant pour exutoire l'ouvrage	15 15	214,8616883
	Lot et Garonne	LA REUNION	Bassin versant ayant pour exutoire l'ouvrage		214,8616883
	Dordogne	SAINTE-MARIE-DE-CHIGNAC	Bassin versant ayant pour exutoire l'ouvrage	9	194,7770885
	Dordogne	SAINTE-MARIE-DE-CHIGNAC	Bassin versant ayant pour exutoire l'ouvrage	-	194,7770885
10303X0001	Pyrénées Atlantique	BEDEILLE	Bassin versant ayant pour exutoire l'ouvrage	2	191,1314985
10306X0035 08528X0067	Pyrénées Atlantique	BORDES	Aire d'Alimentation de Captage	3	187,0002274
09525X00067	Gironde	SAVIGNAC SAINT-GEIN	Bassin versant ayant pour exutoire l'ouvrage Bassin versant ayant pour exutoire l'ouvrage	1	185,7700059 185,067007
09323X0006 08271X0549		CANEJAN		9	184,568154
	Dordogne	MIALET	Bassin versant ayant pour exutoire l'ouvrage	9	184,1730466
	Dordogne	GRIGNOLS	Bassin versant ayant pour exutoire l'ouvrage Bassin versant ayant pour exutoire l'ouvrage	15	181,6295453
07827X0017	Gironde	CASTRES-GIRONDE	Bassin versant ayant pour exutoire l'ouvrage	13	179,0769029
	Landes	BENESSE-MAREMNE	Bassin versant ayant pour exutoire l'ouvrage	2	178,4138386
10306X0034		BORDES	Aire d'Alimentation de Captage	2	171,9557997
	Dordogne	MOLIERES	Bassin versant ayant pour exutoire l'ouvrage	1	171,8009479
	Pyrénées Atlantique	SAINT-ETIENNE-DE-BAIGORRY	Bassin versant ayant pour exutoire l'ouvrage	1	171,7557252
07832X0005	Dordogne	EYLIAC	Bassin d'alimentation karstique	2	165,0152815
08073X0022		MAUZENS-ET-MIREMONT	Bassin versant ayant pour exutoire l'ouvrage	1	162,8298709
	Lot et Garonne	CAUDECOSTE	Bassin versant ayant pour exutoire l'ouvrage	3	160,1450179
07548X0195	Gironde	PAUILLAC	Bassin versant ayant pour exutoire l'ouvrage	1	159,2664093
		MONTAUT	Périmètre de Protection Eloigné	3	152,4024448
08056X0061	Dordogne	MONTPEYROUX	Bassin versant ayant pour exutoire l'ouvrage	8	147,5866484
	Dordogne	COLY	Bassin versant ayant pour exutoire l'ouvrage	9	145,2142816
	Pyrénées Atlantique	LARUNS	Bassin versant ayant pour exutoire l'ouvrage	3	140,9373052
08084X0009	Dordogne	BORREZE	Bassin versant ayant pour exutoire l'ouvrage	5	136,1038463
07343X0007	Dordogne	SAINT-SULPICE-DE-MAREUIL	Bassin versant ayant pour exutoire l'ouvrage	8	129,996612
07583X0013		PAUSSAC-ET-SAINT-VIVIEN	Aire d'Alimentation de Captage	2	129,9337108
09761X0035		SOORTS-HOSSEGOR	Bassin versant ayant pour exutoire l'ouvrage	1	127,0746888
09761X0036	Landes	SOORTS-HOSSEGOR	Bassin versant ayant pour exutoire l'ouvrage	1	127,0746888
07107X0031		JAVERLINAC-ET-LA-CHAPELLE-	Bassin d'alimentation karstique	1	121,4953271
07345X0018	-	CHERVAL	Bassin d'alimentation karstique	3	120,4563269
09258X0033		LUCBARDEZ-ET-BARGUES	Bassin versant ayant pour exutoire l'ouvrage	1	109,223301
08084X0004		SALIGNAC-EYVIGUES	Bassin versant ayant pour exutoire l'ouvrage	4	107,1429146
-	Dordogne	CONDAT-SUR-VEZERE	Bassin versant ayant pour exutoire l'ouvrage	9	101,6206173
	Dordogne	CONDAT-SUR-VEZERE	Bassin versant ayant pour exutoire l'ouvrage	9	101,6206173
08761X0012	-	PRECHAC	Bassin versant ayant pour exutoire l'ouvrage	1	101,5434606
08761X0042		PRECHAC	Bassin versant ayant pour exutoire l'ouvrage	1	101,5434606
09236X0013		VIELLE-SAINT-GIRONS	Bassin versant ayant pour exutoire l'ouvrage	3	95,35807072
09236X0018		VIELLE-SAINT-GIRONS	Bassin versant ayant pour exutoire l'ouvrage	3	95,35807072
-	Lot et Garonne	REAUP-LISSE	Bassin versant ayant pour exutoire l'ouvrage	1	92,44501116
-		BONLOC	Bassin versant ayant pour exutoire l'ouvrage	8	91,13644526
			, ,		,

BSS Département				Nb Site Industriel dans	Indicateur de Pression
		Commune	Type de périmètre de vulnérabilité	périmètre de vulnérabilité	Industrielle
08323X0005	Dordogne	NABIRAT	Bassin versant ayant pour exutoire l'ouvrage	1	88,8252149
09236X0008	Landes	VIELLE-SAINT-GIRONS	Bassin versant ayant pour exutoire l'ouvrage	3	88,1834075
08067X0009	Dordogne	MOULEYDIER	Bassin versant ayant pour exutoire l'ouvrage	1	83,3760903
07847X0008	Dordogne	LA CASSAGNE	Bassin d'alimentation karstique	3	81,05621131
10495X0002	Pyrénées Atlantique	UREPEL	Bassin versant ayant pour exutoire l'ouvrage	1	80,26440038
09024X0002	Lot et Garonne	MADAILLAN	Bassin versant ayant pour exutoire l'ouvrage	3	78,93410802
07598X0009	Dordogne	TOURTOIRAC	Bassin versant ayant pour exutoire l'ouvrage	3	75,33208971
09245X0019	Landes	LESPERON	Bassin versant ayant pour exutoire l'ouvrage	1	75,32281205
08277X0123	Gironde	SAINTE-CROIX-DU-MONT	Bassin versant ayant pour exutoire l'ouvrage	2	74,22863503
08521X0024	Gironde	SAINTE-CROIX-DU-MONT	Bassin versant ayant pour exutoire l'ouvrage	2	74,22863503
07847X0010	Dordogne	LA CASSAGNE	Bassin versant ayant pour exutoire l'ouvrage	4	72,36440058
08325X0004	Dordogne	BESSE	Bassin versant ayant pour exutoire l'ouvrage	1	69,08051453
10023X0029	Pyrénées Atlantique	SAMES	Bassin versant ayant pour exutoire l'ouvrage	1	67,41050674
08067X0010	Dordogne	MOULEYDIER	Bassin versant ayant pour exutoire l'ouvrage	1	67,28778468
07598X0007	Dordogne	TOURTOIRAC	Bassin d'alimentation karstique	1	63,42877854
09768X0039	Landes	SAINT-LON-LES-MINES	Bassin versant ayant pour exutoire l'ouvrage	1	63,07692308
07843X0015	Dordogne	COLY	Bassin d'alimentation karstique	2	61,75298805
10513X0011	Pyrénées Atlantique	OGEU-LES-BAINS	Bassin versant ayant pour exutoire l'ouvrage	2	57,53265564
09767X0037	Landes	ORIST	Bassin versant ayant pour exutoire l'ouvrage	6	56,26098083
08088X0017	Dordogne	CARLUX	Bassin versant ayant pour exutoire l'ouvrage	1	55,26657997
09767X0010	Landes	ORIST	Bassin versant ayant pour exutoire l'ouvrage	6	53,0970262
09767X0033	Landes	ORIST	Bassin versant ayant pour exutoire l'ouvrage	6	50,82590848
09767X0073	Landes	ORIST	Bassin versant ayant pour exutoire l'ouvrage	6	48,55526432
08325X0002	Dordogne	BESSE	Bassin versant ayant pour exutoire l'ouvrage	1	47,69475358
08072X0011	Dordogne	SAINTE-ALVERE	Bassin versant ayant pour exutoire l'ouvrage	1	46,875
10694X0065	Pyrénées Atlantique	LARUNS	Bassin versant ayant pour exutoire l'ouvrage	5	44,36027257
08072X0009	Dordogne	SAINTE-ALVERE	Bassin d'alimentation karstique	1	43,53233831
10701X0206	Pyrénées Atlantique	EAUX-BONNES	Bassin versant ayant pour exutoire l'ouvrage	1	41,20213282
07835X0007	Dordogne	VERGT	Bassin versant ayant pour exutoire l'ouvrage	3	37,56267517
08552X0006	Lot et Garonne	MONTAGNAC-SUR-LEDE	Bassin versant ayant pour exutoire l'ouvrage	2	34,20106316
10694X0026	Pyrénées Atlantique	LARUNS	Bassin versant ayant pour exutoire l'ouvrage	5	32,97604201
10694X0062	Pyrénées Atlantique	LARUNS	Bassin versant ayant pour exutoire l'ouvrage	5	32,97604201
08528X0077	Gironde	SIGALENS	Bassin versant ayant pour exutoire l'ouvrage	4	31,04918098
07835X0011	Dordogne	VERGT	Bassin versant ayant pour exutoire l'ouvrage	1	30,94606543
07343X0009	Dordogne	SAINT-FRONT-SUR-NIZONNE	Bassin d'alimentation karstique	2	27,09342536
08084X0001	Dordogne	BORREZE	Bassin versant ayant pour exutoire l'ouvrage	1	21,68525403
08075X0014	Dordogne	LALINDE	Bassin versant ayant pour exutoire l'ouvrage	1	21,51639344
10263X0014	Pyrénées Atlantique	ASCAIN	Bassin versant ayant pour exutoire l'ouvrage	1	21,34146341
08028X0006	Gironde	SAINT-MEDARD-EN-JALLES	Bassin versant ayant pour exutoire l'ouvrage	2	17,3661131
08028X0345	Gironde	SAINT-MEDARD-EN-JALLES	Bassin versant ayant pour exutoire l'ouvrage	2	17,3661131
09273X0201	Lot et Garonne	REAUP-LISSE	Bassin versant ayant pour exutoire l'ouvrage	3	16,59150605
07841X0011	Dordogne	AURIAC-DU-PERIGORD	Bassin d'alimentation karstique	1	13,64877161
09262X0016	Landes	VIELLE-SOUBIRAN	Bassin versant ayant pour exutoire l'ouvrage	3	12,26868418
08775X0017	Lot et Garonne	PINDERES	Bassin versant ayant pour exutoire l'ouvrage	1	3,141690229
08512X0026	Gironde	CABANAC-ET-VILLAGRAINS	Bassin versant ayant pour exutoire l'ouvrage	1	0


Annexe 3

Dépassements des seuils en Fer et en Manganèse dans les captages classés en non-vulnérables lors de la phase 1


Annexe 4

Dépassements des seuils en Fluor et en Arsenic dans les captages classés en non-vulnérables lors de la phase 1

Annexe 5

Dépassements des seuils en Ammonium dans les captages classés en non-vulnérables lors de la phase 1

Centre scientifique et technique 3, avenue Claude-Guillemin BP 36009

45060 – Orléans Cedex 2 – France Tél. : 02 38 64 34 34 - www.brgm.fr Direction régionale Nouvelle-Aquitaine

Parc Technologique Europarc 24, avenue Léonard de Vinci 33600 – Pessac – France Tél.: 05 57 26 52 70