

## Modélisation des nappes de l'Albien et du Néocomien du Bassin de Paris

Rapport final BRGM/RP-64873-FR Octobre 2015



Étude réalisée dans le cadre de l'Accord tripartite AESN-BRGM-DRIEE 2012-2018





Direction Régionale et Interdépartementale de l'Environnement et de l'Energie





# Modélisation des nappes de l'Albien et du Néocomien du Bassin de Paris

Rapport final

### BRGM/RP-64873-FR

Octobre 2015

Étude réalisée dans le cadre des opérations de Service Public du BRGM et de l'Accord tripartite AESN-BRGM-DRIEE 2012-2018

J.J. Seguin, C. Castillo et L. Arnaud,

Avec la collaboration de : A. Bel, B. Bourgine, D.Thiery, Ph. Verjus (DRIEE), J.F. Vernoux

Vérificateur :

Nom : Yves Barthélemy

Date : 28/08/2015

Signature :

| Approbateur :       |
|---------------------|
| Nom : Serge Lallier |
| Date : 04/09/2015   |
| Signature :         |
| - Hall              |

Le système de management de la qualité et de l'environnement est certifié par AFNOR selon les normes ISO 9001 et ISO 14001.





Direction Régionale et Interdépartementale de l'Environnement et de l'Energie



Mots-clés : Albien, Néocomien, Modèle hydrodynamique, Modèle thermique, Doublet géothermique.

En bibliographie, ce rapport sera cité de la façon suivante :

Seguin J.J., Castillo C., Arnaud L. (2015) – Modélisation des nappes de l'Albien et du Néocomien Rapport final. BRGM/RP-64873-FR, 271 p., 152 fig., 21 tabl., 8 ann.

© BRGM, 2015, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

## Synthèse

On présente dans ce rapport un nouveau modèle hydrodynamique du système aquifère multicouche de l'Albien-Néocomien. Il fait suite à un modèle construit en 1999-2000 par le Bureau d'Etudes Hydroexpert (actuellement EGIS) pour le compte de l'Agence de l'Eau Seine-Normandie, modèle utilisé et révisé à plusieurs reprises jusqu'en 2006.

Ce nouveau modèle a été réalisé à la demande de la DRIEE d'Ile-de-France (Direction Régionale et Interdépartementale de l'Environnement et de l'Energie) et de l'Agence de l'Eau Seine-Normandie, avec le soutien financier de l'Agence. L'objectif qui lui était assigné est double :

- simuler différents scénarios de prélèvements dans la nappe captive de l'Albien qui constitue, avec la nappe du Néocomien, une ressource stratégique en cas de crise d'approvisionnement en eau potable. Le système captif Albien-Néocomien, classé en ZRE (Zone de Répartition des Eaux), est sensible aux prélèvements opérés : dans la partie centrale de l'Albien (région parisienne), de 1841 (année de la mise en service du forage de Grenelle) à 1970, les niveaux ont baissé d'une centaine de mètres. Depuis 1970, les niveaux ont remonté de 15 à 20 m.
- simuler dans l'Albien le fonctionnement de doublets géothermiques. La mise en place de doublets est en effet une solution intéressante pour améliorer, en cas de crise, l'accès à la ressource, les forages géothermiques étant alors utilisés comme forages de secours. Hors situation de crise, la nappe ne serait pas impactée, en raison du fonctionnement en circuit fermé des doublets (prélèvements puis réinjections).

L'étude réalisée comprend donc deux volets : hydrodynamique et thermique.

#### 1. Hydrodynamique

Le nouveau modèle comprend 6 couches (le modèle géologique existant a donc été revu), dont quatre aquifères :

- le groupement Craie+Cénomanien qui correspond aux formations crayeuses du Crétacé supérieur relayées par les sables du Cénomanien au Sud-Ouest du Bassin de Paris, sables qui alimentent l'Albien par drainance;
- les argiles du Gault, qui correspondent aux formations de l'Albien supérieur ;
- les sables de l'Albien, qui regroupent les trois horizons sableux de l'Albien (sables de Frécambault, sables des Drillons et sables Verts) ainsi que les intercalaires argileux qui les séparent ;
- les argiles de l'Aptien et du Barrémien ;
- les sables du Nécocomien ;
- les calcaires du Tithonien.

Les marnes du Kimméridgien constituent le substratum du nouveau modèle. Le toit du modèle correspond quant à lui à la cote topographique quand les formations affleurent et aux cotes du toit des différentes couches quand elles sont sous recouvrement.

La géométrie du modèle BRGM diffère de celle du modèle Hydroexpert-EGIS par :

- l'adjonction de la couche du Tithonien, formation reconnue comme contribuant à l'alimentation, par drainance ascendante, du Néocomien sus-jacent ;
- l'extension du modèle vers les affleurements du Nord-Est et vers le bassin Loire-Bretagne, jusqu'au sud de la Loire (à la hauteur de Bourges) ;

Le maillage du modèle est homogène, constitué de mailles carrées de 2 km de côté.

Le logiciel de modélisation utilisé est le logiciel MARTHE du BRGM (D.Thiery, 2013, 2015a, 2015b).

#### ♦ <u>Calage</u>

Le calage du modèle a été réalisé en régime transitoire suivant un processus itératif régime permanent  $\leftrightarrow$  régime transitoire.

La période du régime transitoire s'étend de 1841 à 2012, avec un pas de temps annuel, soit 172 pas de calcul. L'année 1840 correspond au régime permanent.

Les prélèvements sont introduits dans le modèle sur la période 1841-2012. Les historiques de débits intégrés dans le modèle hydrodynamique Hydroexpert-EGIS ont été complétés et actualisés. Sur la période 2010-2012, les volumes prélevés dans la nappe de l'Albien sont en moyenne de 17 millions de m<sup>3</sup> par an (17 199 165 m<sup>3</sup>, moyenne sur 2010, 2011, 2012, dont 78% réalisés en région Ile-de-France.

Les chroniques piézométriques utilisées pour le calage proviennent de 24 piézomètres (extraits de la Banque nationale des eaux souterraines ADES), de 2 forages exploités dans le Néocomien (Coudray-Montceaux et Bruyères-le-Châtel), et de 4 forages de l'Albien où les mesures, anciennes, correspondent à des niveaux dynamiques (G. Berger, 1978). Ces points de mesure sont localisés sur l'illustration 1.

Compte tenu des modifications importantes apportées au modèle Hydroexpert-EGIS, les configurations des champs de perméabilité de l'Albien et du Néocomien de ce modèle ont dû être remaniées, ce qui a nécessité un important travail de re-calage (la zonation diffère, mais les ordres de grandeur des perméabilités sont les mêmes, de 5.10<sup>-5</sup> m/s à 10<sup>-4</sup> m/s dans la partie centrale).

A l'échelle du territoire couvert par le réseau de piézomètres, et sur une plage de variation des niveaux de 200 m, le calage obtenu restitue plutôt bien les niveaux mesurés (sur la plupart des piézomètres, les chroniques annuelles ne sont complètes que depuis 1980 ; entre 1930 et 1980 quelques valeurs ponctuelles ont été utilisées). L'analyse des résultats (synthétisés sous la forme de diagrammes de dispersion) montre qu'il n'y a pas de biais systématique sur la période 1980-2010 : ni surestimation, ni sous-estimation. Pour autant que l'on puisse en juger avec le faible nombre de points disponibles, le calage reste donc de qualité constante sur cette période de 30 ans.

#### Évolution vers un régime stationnaire

Après calage, une simulation en régime transitoire a été faite en reconduisant chaque année les prélèvements de l'année 2012. L'évolution vers un régime stationnaire est assez rapide les 10 premières années, plus lente ensuite. Dans la partie centrale du domaine, à forte diffusivité, les niveaux remontent de quelques mètres durant cette première période de 10 ans (exemple aux piézomètres de Paris 13 et d'Achères). A partir de 2022, les niveaux tendent asymptotiquement vers le régime stationnaire. Autour de cette partie centrale, la remontée des niveaux est plus réduite (Crécy-la-Chapelle, La Houssaye-en-Brie), et quasiment réalisée aussi au bout de 10 ans. Au piézomètre de Congy, situé dans un secteur de faible perméabilité, éloigné de la zone centrale à forte concentration de prélèvements, les niveaux n'ont pas encore atteints un palier de stabilisation au bout de 50 ans.

#### Scénarios

Trois scénarios ont été simulés.

• Dans le scénario 1, on augmente les prélèvements dans le système Albien-Néocomien à hauteur de 29 Mm<sup>3</sup>/an en mettant en service 56 forages de secours (prévus par le projet de SDAGE 2016-2021) et 4 forages géothermiques : Tour Cristal et Tour Mirabeau (Paris,15<sup>ième</sup>), Issy-les-Moulineaux et Batignolles (ce dernier non encore en service).

Les volumes prélevés sur les forages existants demeurent inchangés par rapport à la dernière situation connue (année 2012).

La simulation a été faite en régime permanent.



Illustration 1 – Localisation des points de mesure dans l'Albien et le Néocomien

 $\bullet$  Le scénario 2 considère un débit maximisé (le débit maximum possible,  $Q_{\text{max}}$ ) dans les forages existants.

Le point de départ correspond à un régime permanent simulé avec les prélèvements de l'année 2012. La simulation est faite en régime transitoire jusqu'à l'atteinte d'un régime asymptotiquement stationnaire.

Au terme de cette simulation, les niveaux simulés dans les forages ont été comparés à la cote de la pompe installée dans les ouvrages existants.

- Le scénario 3 (scénario de crise) est construit de la façon suivante :
  - départ avec un régime permanent correspondant à une exploitation prévisionnelle de 29 Mm<sup>3</sup>/an (configuration identique à celle du scénario 1) ;
  - simulation "de crise" en régime transitoire pendant 3 mois avec les débits  $Q_{max}$  dans les forages existants et des débits de 150 m<sup>3</sup>/h dans les forages de secours ;
  - retour à la situation initiale (29 Mm<sup>3</sup>/an) jusqu'à l'atteinte du régime permanent initial.
- <u>Résultats</u>

• Dans le cas du scénario 1, et pour l'Albien, les différences de niveaux entre l'état piézométrique permanent à 18 Mm<sup>3</sup> et l'état piézométrique permanent à 29 Mm<sup>3</sup> sont importantes et dépassent 30 m dans la partie centrale, entre Melun au sud et Compiègne au nord, avec une zone autour de Paris où elles sont comprises entre 50 et 53 m (secteurs des forages géothermiques et des piézomètres de Blomet et Paris 13).

L'impact de ce scénario sur le Néocomien est également important : les rabattements, par rapport à l'état piézométrique permanent 2012, sont supérieurs à 30 m à l'intérieur d'une zone délimitée par Corbeil-Essones, Compiègne, Maisons-Laffitte. Dans la partie centrale de cette zone, un peu au nord de Paris, les rabattements sont supérieurs à 35 m (avec un maximum à 38 m au droit du piézomètre d'Aulnay dans l'Albien).

• Dans le cas du scénario 2, et pour l'Albien : au bout de 10 ans, dans une large zone s'étendant de Corbeil-Essonnes au sud à la faille de Bray au nord, les rabattements sont supérieurs à 60 m et dépassent 80 m à Paris (maximum de 83 m au nord du piézomètre de Blomet).

Au bout de 50 ans, à la zone "sup60" s'est substituée une zone où les rabattements dépassent 80 m, la zone "sup60" s'étant quant à elle élargie, atteignant Melun et allant au-delà de la faille de Bray. A Paris, du piézomètre de Blomet jusqu'à celui d'Aulnay, les rabattements dépassent désormais 100 m (maximum de 114 m). L'impact dans les zones d'affleurement reste limité, inférieur à 2 m.

Dans la partie centrale de l'Albien, au bout de 100 ans, les niveaux tendent asymptotiquement vers un régime stationnaire. Plus à l'est (Crécy-la-Chapelle, La Houssaye-en-Brie, La Grande-Paroisse, Montbouy), les niveaux continuent à baisser.

Dans le Néocomien, au bout de 10 ans, les rabattements, dans une large zone autour d'Orsay, s'étendant jusqu'à Aulnay au nord, sont supérieurs à 20 m. A Bruyères-le-Châtel, le rabattement est de 43 m. A Coudray-Montceaux, il est de 34 m.

Au bout de 50 ans, les rabattements dans cette zone Orsay-Aulnay dépassent 60 m. A Bruyères-le-Châtel, le rabattement est de 80 m et à Coudray-Montceaux, il est de 71 m.

Au bout de 10 ans, les limites sud et sud-est du domaine commencent à être impactées : au bout de 50 ans, les rabattements sont compris entre 1 m et 5 m au sud-est, et au sud ils sont supérieurs à 5 m.

• Dans le cas du scénario 3, et pour l'Albien : au bout de 3 mois, les ondes de dépression ne se sont pas propagées sur l'ensemble de l'Albien et les rabattements importants (différence entre l'état piézométrique au bout de 3 mois et l'état piézométrique issu du permanent du scénario 1, point de départ du scénario 3) sont localisés dans les zones de forte concentration de forages et autour de forages isolés. Les rabattements au bout de 3 mois sont supérieurs à 45 m dans le secteur des piézomètres de Paris 13 et Blomet, avec un maximum à 55 m. Dans les zones de moins bonne perméabilité, les rabattements dépassent 80 m sur les forages isolés, en

périphérie de la zone centrale. Ailleurs, sur la plus grande partie du domaine modélisé, les différences de niveaux sont inférieures à 1 m.

La nappe étant très réactive, surtout dans la partie centrale, les niveaux remontent rapidement après l'arrêt des prélèvements de crise et le retour aux prélèvements à 29 Mm<sup>3</sup>. Dans les zones de bonne perméabilité, les niveaux tendent asymptotiquement vers le régime stationnaire au bout de 10 ans. Dans les zones de plus faible perméabilité, ce temps est de l'ordre de 20 ans.

Dans le Néocomien, au bout de 3 mois, les niveaux sont peu affectés, sauf localement au droit des forages implantés dans l'Albien.

#### 2. Thermique

Peu de forages géothermiques sont actuellement opérationnels en Ile de France (XV<sup>ème</sup> arrondissement, Issy-les-Moulineaux), mais plusieurs réalisations sont projetées (dont Clichy-Batignolles et Saclay). Une zone de développement potentiel de la géothermie à l'Albien a été délimitée par la DRIEE Ile-de-France, qui a demandé au BRGM de simuler le fonctionnement du doublet géothermique de Clichy-Batignolles, qui sera prochainement mis en service.

Le principal objectif visé est l'évaluation de la température de l'eau au droit du puits de production au cours de 30 années d'exploitation. La modélisation couplant hydrodynamique et thermique doit aussi permettre d'évaluer l'impact du doublet sur les forages AEP environnants et sur les doublets géothermiques les plus proches (XV<sup>ème</sup> arrondissement), implantés à environ 5.5 km au SSW.

#### • Reconstitution du champ de température

La première étape de la modélisation a consisté à reconstituer le champ des températures dans l'Albien en régime permanent, dans les conditions de l'année 1840. Ce premier travail a été conduit à l'échelle du modèle régional.

Un ensemble de données de température a été constitué à partir de la base de données nationale sur les eaux souterraines ADES, de la synthèse de Lemoine et al. (1939), « *Les forages profonds du Bassin de Paris, la nappe artésienne des sables Verts* », ainsi que des comptes rendus de travaux réalisés pour les doublets géothermiques de la tour Cristal AGF et d'Issy-les-Moulineaux.

Dans la zone d'intérêt géothermique, les températures mesurées varient entre 24.4 et 35.5 °C pour une température moyenne de 28.4 °C (36 forages considérés). Le gradient géothermique moyen, calculé à partir des données compilées, est de l'ordre de 2.7 °C/100 m pour l'aquifère de l'Albien. Malgré une variabilité relativement importante du gradient, il a été décidé de considérer un gradient uniforme sur l'ensemble de la zone modélisée compte tenu des conditions de mesure et des incertitudes associées. Les modélisations thermiques s'appuient donc sur cette valeur moyenne du gradient géothermique.

Au regard des incertitudes liées à la mesure de la température, le calage apparaît de bonne qualité à l'échelle régionale. Le diagramme de dispersion établi souligne la bonne reconstitution des températures de l'Albien en régime permanent.

À l'échelle du modèle régional (parties libres et captives), les températures simulées varient entre 11°C et 38.5°C. Dans la zone de développement potentiel de la géothermie, les températures varient entre 17.3 °C à l'ouest (lorsque les profondeurs deviennent plus faibles) et 37.1 °C à l'est, pour une température simulée moyenne de 30.1 °C.

Concernant le doublet de Clichy-Batignolles, non pris en compte dans l'échantillon des données observées, les températures simulées sont respectivement de 29.6 et 30.6 °C au droit des puits producteur et injecteur (mailles de 2 km). Ce résultat est en adéquation avec la température de 30°C indiquée dans le compte-rendu des travaux de forage.

#### • Élaboration du modèle thermique et simulations en régime transitoire

Les états piézométrique et thermique initiaux sont issus du régime permanent simulé avec les prélèvements de l'année 2012. Préalablement au lancement de simulations en régime transitoire, un modèle local a été extrait du modèle régional, puis un modèle gigogne à mailles de 25 m a été inclus dans le modèle local. Un important travail préliminaire a été mené pour parvenir à une configuration maillée satisfaisante, permettant de préserver à la fois le calage hydrodynamique du modèle régional et la précision des calculs thermiques.

Les simulations ont été réalisées en régime hydraulique stationnaire (il a été vérifié que ce régime stationnaire est atteint très rapidement après la mise en service du doublet à régime d'exploitation constant : après 1 mois dans l'Albien et après deux mois dans les épontes). Pour la partie thermique, le pas de temps adopté est un pas de temps annuel. Au préalable, une simulation au pas de temps mensuel a été réalisée et il a été montré que les résultats étaient identiques à ceux obtenus au pas de temps annuel.

L'élaboration du modèle dédié à la thermique a nécessité plusieurs étapes, avec à chaque fois le souci de valider l'hydrodynamique et la reconstitution du champ des températures. Ces étapes et les simulations correspondantes sont les suivantes :

- Discrétisation verticale de l'Albien et des épontes encadrantes en sous-couches. Plusieurs configurations ont été étudiées, celle retenue comprend 18 couches : subdivision du Gault en 3, de l'Albien en 5 et de l'Aptien Barrémien en 10. Avec cette configuration, les différentes sous-couches présentent une épaisseur du même ordre de grandeur au droit du doublet à modéliser : 11.5 m pour les argiles du Gault et l'Albien, 10.5 m pour l'Aptien-Barrémien. Les paramètres hydrogéologique et thermique restent identiques au sein d'une même couche (aucune hétérogénéité verticale n'est introduite).
- 2) Suppression des couches de la Craie, du Néocomien et du Tithonien. Les charges et les températures, issues de la simulation de l'étape 1, sont imposées à la première sous-couche des argiles du Gault et à la dernière sous-couche de l'Aptien-Barrémien.
- 3) Extraction d'un modèle local selon un parallélépipède (130 km x 100 km) englobant la zone ciblée pour le développement de la géothermie à l'Albien. Les 3 couches sont présentes sans lacune sur le parallélépipède extrait. En complément des conditions imposées sur les épontes, les charges, issues de la simulation de l'étape 2, sont imposées sur les bordures du parallélépipède pour l'Albien (1<sup>ère</sup> sous-couche). Les limites sont suffisamment éloignées du doublet géothermique pour ne pas influencer les calculs.
- 4) intégration d'un maillage gigogne (mailles carrées de 25 m de côté) autour du doublet de Clichy-Batignolles. Le cas échéant, pour la simulation d'un autre doublet géothermique, le travail de modélisation devra être repris à ce stade.

La discrétisation plus fine des couches permet de mieux prendre en compte les échanges thermiques avec les épontes (Lebrun et al., 2011, Rapport BRGM/RP-59591-FR).

#### Scénarios

En accord avec la DRIEE et en conformité avec la demande d'autorisation déposée par le maître d'ouvrage du projet de Clichy-Batignolles, le scénario d'exploitation a été défini comme suit :

- durée d'exploitation de 30 ans (2012-2042) avec les prélèvements de l'année 2012 affectés aux 30 années de la simulation ;
- distance entre points d'impact au réservoir de 650 m (un forage dévié) ;

- puits d'injection implanté à l'amont hydraulique du puits de production (situation non favorable mais correspondant au dimensionnement du dispositif) ;
- exploitation en continu à un débit moyen de 100 m<sup>3</sup>/h. En pompage comme en injection, le débit a été réparti uniformément sur les différentes sous-couches comme les coupes géologique et technique des ouvrages semblent le suggérer ;
- eau réinjectée à une température constante de 10 °C.

Avec le modèle "18 couches", les résultats moyens (sur l'épaisseur totale du réservoir) de la simulation de référence indiquent un temps de percée de 8 ans et une baisse de température de 4.7°C au puits de production après 30 années d'exploitation.

Après 30 ans d'exploitation, la bulle d'eau froide est en grande partie captée par le puits de pompage.

Au droit du puits injecteur, et après 30 ans d'exploitation, la bulle d'eau froide simulée (différence de température supérieure à 0.5 °C) s'étend sur 550 m vers l'est et sur 675 m vers l'ouest.

Par conséquent, aucun impact thermique n'est à attendre au niveau des doublets du 15<sup>ième</sup> arrondissement de Paris, implantés à environ 5.5 km au SSW, et sur les autres forages exploitant la nappe de l'Albien (les plus proches recensés sont situés à 3.5 km à l'est et à 4 km à l'ouest).

À titre prospectif, quatre scénarios alternatifs ont été simulés ; ils visent tous à limiter le recyclage thermique au sein du doublet :

- Scénario A : injection de l'eau refroidie en aval hydraulique du pompage ;
- Scénario B : température de rejet fixée à 15 °C. Cette température est mentionnée dans certains projets (ex. du doublet d'Issy-les-Moulineaux) ;
- Scénario C : fonctionnement du doublet 6 mois par an (à un débit moyen de 100 m<sup>3</sup>/h) ;
- Scénario D : combinaison des scénarios A et C.

L'utilisation du doublet géothermique uniquement en chauffage (scénario C, 6 mois/6 mois) procure les conditions d'exploitation les plus favorables avec un temps de percée thermique évalué à 15.5 ans et une baisse de température finale de 2.0 °C au puits de production.

Pour les scénarios A et B, le gain en termes de temps de percée thermique n'est pas très sensible. En revanche, la baisse de température au puits producteur après 30 ans d'exploitation est amortie de façon significative avec respectivement 3.7 ° C et 3.0 °C pour les scénarios B (Tinjection =  $15^{\circ}$ C) et A (injection à l'aval).

Enfin, pour la combinaison des scénarios A et C (scénario D, fonctionnement 6 mois par an avec injection à l'aval), la percée thermique et la baisse de température sont respectivement estimées à 23.5 ans et à 0.8 °C.

## Sommaire

| 1 | Introd                  | uction                                                                                                                                 | . 17                 |
|---|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|   | 1.1 C                   | ONTEXTE DE L'ÉTUDE                                                                                                                     | . 17                 |
|   | 1.1.1<br>1.1.2          | Les nappes de l'Albien et du Néocomien, deux ressources en eau à préserver .<br>La disposition D7.114 du SDAGE Seine-Normandie         | . 17<br>. 17         |
|   | 1.2 N                   | ÉCESSITÉ D'UN OUTIL DE GESTION                                                                                                         | . 18                 |
|   | 1.2.1<br>1.2.2          | Le modèle Hydroexpert-EGIS<br>Objectifs du deuxième modèle (BRGM)                                                                      | . 18<br>. 18         |
| 2 | Conte                   | xtes géologique et hydrogéologique                                                                                                     | . 21                 |
|   | 2.1 G                   | ÉOLOGIE                                                                                                                                | . 21                 |
|   | 2.1.1<br>2.1.2<br>2.1.3 | Formations du Crétacé inférieur<br>Formations de l'Albien moyen et inférieur (entité 127AA)<br>Formations du Néocomien                 | . 21<br>. 26<br>. 28 |
|   | 2.2 A                   | QUIFÈRES DE L'ALBIEN ET DU NÉOCOMIEN                                                                                                   | . 30                 |
|   | 2.2.1<br>2.2.2          | Aquifère de l'Albien<br>Nappe du Néocomien                                                                                             | . 30<br>. 40         |
|   | 2.3 LE                  | TITHONIEN                                                                                                                              | . 43                 |
|   | 2.3.1<br>2.3.2          | Secteurs aquifères<br>Transmissivités                                                                                                  | . 43<br>. 44         |
|   | 2.4 A                   | IMENTATION DE LA NAPPE DE L'ALBIEN                                                                                                     | . 44                 |
| 3 | Descr                   | iption du modèle hydrodynamique Hydroexpert-EGIS                                                                                       | . 49                 |
|   | 3.1 S <sup>-</sup>      | FRUCTURE ET EMPRISE DU MODÈLE                                                                                                          | . 49                 |
|   | 3.1.1<br>3.1.2          | Les formations prises en compte dans le modèle et leur extension<br>Le maillage du modèle et les conditions aux limites                | . 49<br>. 52         |
|   | 3.2 R                   | ÉSULTATS OBTENUS APRÈS CALAGE                                                                                                          | . 57                 |
|   | 3.2.1<br>3.2.2<br>3.2.3 | Piézométrie et bilans de flux en régime permanent<br>Piézométrie et bilans de flux en régime transitoire<br>Paramètres hydrodynamiques | . 57<br>. 59<br>62   |
| 4 | Descr                   | intion du nouveau modèle hydrodynamique de l'Albien-Néocomien                                                                          | 65                   |
| 7 |                         |                                                                                                                                        | . 00                 |
|   | 4.1 FI                  | NINCIPALES DIFFERENCES FAR RAFFORT AU MODELE HE                                                                                        | . 00                 |
|   | 4.2 0                   | N MODELE A 6 COUCHES                                                                                                                   | . 65                 |
|   | 4.2.1                   | Extension des différentes couches et maillage du modèle                                                                                | . 65<br>. 65         |
|   | 4.3 M                   |                                                                                                                                        | 69                   |
|   | 44 C                    | ONDITIONS AUX LIMITES ET ZONES DE RECHARGE                                                                                             | 76                   |
|   | 4,4.1                   | Charges imposées sur la couche 1 (la Craie)                                                                                            | . 76                 |
|   | 4.4.2<br>4.4.3          | Charges imposées sur les limites latérales<br>Zones de recharge                                                                        | . 80<br>. 81         |

| 5 | Actualis       | ation des données sur la période 2006-2014                                 | 85         |
|---|----------------|----------------------------------------------------------------------------|------------|
|   | 5.1 PRÉ        | LÈVEMENTS                                                                  | 85         |
|   | 5.1.1          | Recensement des forages                                                    | 85         |
|   | 5.1.2          | Volumes prélevés                                                           | 86         |
|   | 5.1.3          | Forages inclus dans le domaine modélisé                                    | 89         |
|   | 5.2 CHF        | RONIQUES PIÉZOMÉTRIQUES                                                    | 93         |
|   | 5.2.1          | Recensement des points de suivi de la piézométrie                          | 93         |
|   | 5.2.2          | Evolution des niveaux piézométriques                                       | 95         |
| 6 | Résulta        | ts de la modélisation                                                      | 103        |
|   | 6.1 RÉG        | BIME PERMANENT                                                             | . 103      |
|   | 6.1.1          | Données de contrôle pour le régime permanent                               | 103        |
|   | 6.1.2          | Piézométrie                                                                | 103        |
|   | 6.1.3          | Champs de perméabilité                                                     | 105        |
|   | 615            | Bilan des nux<br>Recharge et débordements                                  | 113        |
|   |                |                                                                            | 112        |
|   | 6.2 KEG        | Doppéos                                                                    | 112        |
|   | 6.2.2          | Résultats : paramètres hydrodynamiques                                     | 113        |
|   | 6.2.3          | Résultats : piézométrie et flux échangés                                   | 113        |
|   | 6.2.4          | Comparaison des chroniques simulées et observées                           | 116        |
|   | 6.2.5          | Comparaison point par point                                                | 119        |
|   | 6.2.0<br>6.2.7 | Carres piezometrique calculees                                             | 130        |
|   | 6.2.8          | Évolution des flux échangés depuis 1841                                    | 145        |
|   | 6.3 VAR        | IATION DE QUELQUES PARAMÈTRES AUTOUR DES VALEURS DE CALAGE                 | . 149      |
|   | 6.3.1          | Variation du coefficient d'emmagasinement captif de l'Albien               | 149        |
|   | 6.3.2          | Variation du coefficient d'anisotropie dans le Gault et l'Aptien-Barrémien | 150        |
|   | 6.4 TEN        | IPS D'ATTEINTE D'UN RÉGIME STATIONNAIRE                                    | 152        |
|   | 6.4.1          | Évolution du stockage/déstockage                                           | 152        |
| 7 | Exploita       | ition du modèle : scénarios                                                | 157        |
|   | 7.1 PRÉ        | SENTATION DES SCÉNARIOS                                                    | . 157      |
|   | 7.1.1          | Implantation des forages de secours                                        | 157        |
|   | 7.1.2          | Scénario 1 : simulation prévisionnelle à 29 M m <sup>3</sup> /an           | 161        |
|   | 7.1.3          | Scénario 2 : simulation « extrême »                                        | 161        |
|   | 7.1.4          |                                                                            | 101        |
|   | 7.2 RES        | SULTATS DES SCENARIOS                                                      | . 163      |
|   | 7.2.1          | Scénario 1 : simulation prévisionnelle                                     | 163        |
|   | 7.2.2          | Scenario 3 · simulation d'une situation de crise                           | 183        |
| 8 | Simulat        | ions thermiques                                                            | 191        |
| U |                |                                                                            | 101        |
|   | 0.1 ELE        |                                                                            | . 191      |
|   | 8.2 RAF        | PELS THEUKIQUES                                                            | . 191      |
|   | 8.2.1<br>8.2.2 | Gradient et flux geothermiques                                             | 191<br>102 |
|   | 8.2.3          | Paramètres hydrodynamiques et thermiques à considérer                      | 194        |
|   |                |                                                                            |            |

| 10 | Biblio  | graphie                                                           | 213 |
|----|---------|-------------------------------------------------------------------|-----|
| 9  | Conclus | sions                                                             | 211 |
|    | 8.4.6   | Conclusions                                                       | 208 |
|    | 8.4.5   | Études de scénarios d'exploitation alternatifs                    | 207 |
|    | 8.4.4   | Analyse de sensibilité                                            | 204 |
|    | 8.4.3   | Résultats                                                         |     |
|    | 8.4.2   | Simulation de référence                                           |     |
|    | 8.4.1   | Construction du modèle local avec intégration d'un modèle gigogne | 200 |
| 8. | 4 SIM   | ULATION D'UN DOUBLET GÉOTHERMIQUE EN RÉGIME TRANSITOIRE           | 199 |
|    | 8.3.4   | Résultats                                                         | 198 |
|    | 8.3.3   | Conditions aux limites thermiques                                 | 197 |
|    | 8.3.2   | Paramètres intrinsèques des aquifères et des épontes              | 196 |
|    | 8.3.1   | Températures observées et gradient géothermique                   | 194 |
| 8. | .3 REC  | CONSTITUTION DU CHAMP DE TEMPÉRATURE EN RÉGIME PERMANENT          | 194 |

#### Liste des illustrations

| Figure 1 - Périmètre d'application des dispositions spécifiques AEP de l'aquifère de l'Albien-Néocomien<br>et zones d'implantation préférentielles des nouveaux forages de secours | า<br>19            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Figure 2 – Extension des formations du Gault, de l'Albien, de l'Aptien-Barrémien et du Néocomien                                                                                   | 23                 |
| Figure 3 - Extension de l'entité 123 (Cénomanien)                                                                                                                                  | 24                 |
| Figure 4 – Extension de l'entité 131AA (Calcaires du Tithonien)                                                                                                                    | 24                 |
| Figure 5 – Affleurements des entités BDLISA, de la Craie (Entité 121) au Tithonien (Entité 131AA)                                                                                  | 25                 |
| Figure 6 - Schéma des faciès de l'Albien et de l'Aptien suivant une coupe SW-NE                                                                                                    | 27                 |
| Figure 7 - Coupe schématique des passages de faciès du Valanginien, de l'Hauterivien et du Barrémier<br>depuis les affleurements de l'Yonne jusqu'au centre du bassin              | า<br>29            |
| Figure 8 - Coupe schématique des sables du Wealdien                                                                                                                                | 29                 |
| Figure 9 – Albien affleurant et sous couverture                                                                                                                                    | 31                 |
| Figure 10 - Carte piézométrique de l'Albien et directions d'écoulement                                                                                                             | 32                 |
| Figure 12 - Corrélation entre débit spécifique et transmissivité dans l'Albien                                                                                                     | 33                 |
| Figure 11 - Cartes piézométriques avant 1930 (en haut) et en 1999 (en bas) obtenues par krigeage<br>Source : Y. Raoult (1999)                                                      | 34                 |
| Figure 13 - Transmissivités de la nappe de l'Albien (rapport BRGM/RR-39702-FR,1997)                                                                                                | 36                 |
| Figure 14 - Carte des transmissivités de l'Albien, obtenue par krigeage (Y. Raoult, 1999) Les isovaleurs sont graduées en log(transmissivité)                                      | ;<br>37            |
| Figure 15 - Répartition des transmissivités de l'Albien (Hydroexpert- Rapport RPL04M0118b, 2004)                                                                                   | 38                 |
| Figure 16 - Coefficients d'emmagasinement des aquifères de l'Albien et du Néocomien                                                                                                | 39                 |
| Figure 17 - Carte piézométrique du Néocomien et directions d'écoulement                                                                                                            | 41                 |
| Figure 18 - Carte des faciès des dépôts purbéckiens - d'après MEGNIEN, 1980                                                                                                        | 42                 |
| Figure 19 - Superposition des cartes piézométriques de l'Albien et du Néocomien                                                                                                    | 45                 |
| Figure 20 - Zones de l'Albien définies par étude géochimique (Source : Y. Raoult, 1999)                                                                                            | 46                 |
| Figure 21 - Extension de l'Albien et du Néocomien dans le modèle HE                                                                                                                | 50                 |
| Figure 22 - Comparaison de l'emprise des couches « sables de l'Albien » et « Néocomien » du modèle<br>HE avec celle des couches correspondantes du référentiel BDLISA              | <del>;</del><br>51 |
| Figure 23 - Comparaison de l'emprise de la couche Albien du modèle HE avec l'extension de la cartographie piézométrique de 1997                                                    | 52                 |
| Figure 24 - Maillage du modèle Hydroexpert                                                                                                                                         | 53                 |

| Figure 25 - Conditions aux limites de l'Albien (en haut) et du Néocomien (en bas) dans le modèle<br>HE.(Rapport RP00M040, 2000)                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 26 - Carte piézométrique utilisée pour imposer des charges au toit de la couche 1 du modèle HE 56                                                        |
| Figure 27 - Piézométrie simulée de l'Albien (haut) et du Néocomien (bas) en régime permanent naturel après calage                                               |
| Figure 28 – Piézométrie simulée de l'Albien en 2005 (modèle HE) 61                                                                                              |
| Figure 29 - Piézométrie simulée du Néocomien en 2005 (modèle HE) 62                                                                                             |
| Figure 30 - Répartition des transmissivités de l'Albien et du Néocomien (de haut en bas) après calage du modèle HE - (Rapport RPL04M018b, 2004)                 |
| Figure 31 - Répartition de la perméabilité verticale des argiles du Gault et de l'Aptien/Barrémien après calage du modèle HE - (Rapport RPL04M018b, 2004)       |
| Figure 32 - Série lithostratigraphique du Crétacé inférieur du centre du Bassin de Paris et couches modélisées                                                  |
| Figure 33 - Extension de la couche "Albien" du nouveau modèle hydrodynamique                                                                                    |
| Figure 34 - Extension de la couche "Néocomien" du nouveau modèle hydrodynamique 68                                                                              |
| Figure 35 – Carte du toit de l'Albien                                                                                                                           |
| Figure 36 – Carte des épaisseurs de l'Albien                                                                                                                    |
| Figure 37 – Carte du toit du Néocomien 72                                                                                                                       |
| Figure 38 – Carte des épaisseurs du Néocomien 73                                                                                                                |
| Figure 39 - Coupe réalisée dans le modèle géologique (logiciel GDM)74                                                                                           |
| Figure 40 -Vue 3D du modèle géologique (logiciel GDM)75                                                                                                         |
| Figure 41 - Coupe EW du nouveau modèle passant par Paris (logiciel MARTHE) 76                                                                                   |
| Figure 42 - Cartographie de la piézométrie de la Craie (établie par M. Albinet en 1967) 77                                                                      |
| Figure 43 - Piézométrie krigée de la Craie (issue de la carte d'isovaleurs de M. Albinet)                                                                       |
| Figure 44 - Localisation des zones à potentiel imposé sur la couche 1 (en gris). Les secteurs figurés en bleu sont libres de toute condition                    |
| Figure 45 – Localisation des niveaux imposés dans l'Albien 80                                                                                                   |
| Figure 46 – Zones de recharge (et/ou débordements) de l'Albien 81                                                                                               |
| Figure 47 – Zones de recharge/débordement dans le Pays de Bray 82                                                                                               |
| Figure 48 - Distribution spatiale des pluies efficaces : moyennes sur 1981-2010                                                                                 |
| Figure 49 - Évolution des volumes prélevés dans les nappes de l'Albien et du Néocomien sur la période 1841-2012                                                 |
| Figure 50 - Nombre de puits exploitant les nappes de l'Albien et du Néocomien sur la période 1841-2012.                                                         |
| Figure 51 - Prélèvements introduits dans le modèle BRGM pour les nappes de l'Albien et du Néocomien.                                                            |
| Figure 52 - Prélèvements introduits dans le modèle BRGM pour les nappes de l'Albien et du Néocomien (zoom sur la région Ile-de-France)                          |
| Figure 53 - Exemple de chroniques piézométriques longues (a) et influencées (b) de la nappe de l'Albien.                                                        |
| Figure 54 - Localisation des piézomètres à l'Albien-Néocomien                                                                                                   |
| Figure 55 – Piézomètres à l'Albien-Néocomien : distinction captif/libre                                                                                         |
| Figure 56 - Evolution piézométrique de la nappe de l'Albien au piézomètre 01531X0047/F, à L'Isle-Adam dans le Val d'Oise – au nord de Paris                     |
| Figure 57 - Evolution piézométrique de la nappe de l'Albien au piézomètre 01517X0003/F, à Mantes-La-<br>Jolie dans les Yvelines – à l'ouest de Paris            |
| Figure 58 - Evolution piézométrique de la nappe de l'Albien au piézomètre 01837A0096/F2 dans le 13 <sup>ème</sup> arrondissement de Paris – au centre du bassin |

| Figure 59 - Evolution piézométrique de la nappe de l'Albien au piézomètre 02111X0023/CHE101 à La Houssaye-en-Brie – à l'est de Paris                              | . 97       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure 60 – Evolution des niveaux au piézomètre de Rocquencourt                                                                                                   | . 98       |
| Figure 61 – – Evolution des niveaux au piézomètre de Crécy-la-Chapelle                                                                                            | . 98       |
| Figure 62 - Evolution piézométrique de la nappe de l'Albien au piézomètre 04004X0007/F, à Montbourdans le Loiret                                                  | y,<br>. 99 |
| Figure 63 - Evolution piézométrique de la nappe de l'Albien au piézomètre de Bougligny, dans le Loiret                                                            | t 99       |
| Figure 64 - Evolution piézométrique de la nappe de l'Albien au piézomètre de Louze, Haute-Marne.<br>Albien-Néocomien libre entre Seine et Ornain                  | 100        |
| Figure 65 - Evolution piézométrique de la nappe de l'Albien au piézomètre de Morvilliers                                                                          | 100        |
| Figure 66 - Evolution piézométrique de la nappe de l'Albien au piézomètre de Vienne-La-Ville, Marne.<br>Albien-néocomien libre entre Ornain et limite de district | 101        |
| Figure 67 - Evolution piézométrique de la nappe de l'Albien à Vendue-Mignot, Aube                                                                                 | 101        |
| Figure 68 - Piézométrie simulée de l'Albien en régime permanent naturel.                                                                                          | 104        |
| Figure 69 - Piézométrie simulée du Néocomien en régime permanent naturel                                                                                          | 105        |
| Figure 70 – Champ de perméabilté de l'Albien modélisé                                                                                                             | 107        |
| Figure 71 – Champ de perméabilité du Néocomien modélisé                                                                                                           | 108        |
| Figure 72 – Champ de perméabilité de l'Albien du modèle de bassin de l'UPMC                                                                                       | 109        |
| Figure 73 – Zones d'échange de l'Albien avec l'Aptien-Barrémien                                                                                                   | 111        |
| Figure 74 – Zones d'échange de l'Albien avec le Gault                                                                                                             | 112        |
| Figure 75 - Chroniques piézométriques utilisées pour le calage du modèle en régime transitoire (la car<br>inférieure correspond à un zoom sur l'Île-de-France).   | te<br>114  |
| Figure 76 – Localisation des points de mesure des niveaux et des captages recensés                                                                                | 115        |
| Figure 77 – Diagrammes de dispersion pour les années 1982, 1992, 2002 et 2012                                                                                     | 116        |
| Figure 78 – Boxplot sur les écarts de calage                                                                                                                      | 118        |
| Figure 79 – Localisation des piézomètres de la zone centrale                                                                                                      | 120        |
| Figure 80 – Comparaison des niveaux observés et des niveaux simulés : Paris XIII, Rocquencourt, Achères                                                           | 121        |
| Figure 81 - Comparaison des niveaux observés et des niveaux simulés : Blomet, Aulnay-sous-Bois,<br>Orsay                                                          | 122        |
| Figure 82 - Comparaison des niveaux observés et des niveaux simulés : L'Isle-Adam et Mantes-la-Joli                                                               | e<br>123   |
| Figure 83 - Comparaison des niveaux observés et des niveaux simulés : Coudray-Montceaux et<br>Bruyères-le-Châtel (Néocomien)                                      | 124        |
| Figure 84 – Localisation des piézomètres du secteur II (piézomètres situés dans les départements de Seine-et-Marne, du Loiret et de la Marne)                     | la<br>125  |
| Figure 85 – Comparaison des niveaux observés et des niveaux simulés : Crécy-la-Chapelle, La Houssaye-en-Brie, La Grande-Paroisse.                                 | 126        |
| Figure 86 - Comparaison des niveaux observés et des niveaux simulés : Bougligny, Montbouy, La Rougeolerie                                                         | 127        |
| Figure 87 - Comparaison des niveaux observés et des niveaux simulés : Congy (Marne)                                                                               | 128        |
| Figure 88 - Comparaison des niveaux observés et des niveaux simulés : Caudebec et Usine Steiner.                                                                  | 129        |
| Figure 89 – Piézométrie simulée de l'Albien en 1935                                                                                                               | 131        |
| Figure 90 - Piézométrie simulée de l'Albien en 1970                                                                                                               | 132        |
| Figure 91 - Piézométrie simulée de l'Albien en 1995                                                                                                               | 133        |
| Figure 92 - Piézométrie simulée de l'Albien en 2005 et comparaison avec le modèle HE                                                                              | 134        |
| Figure 93 - Piézométrie simulée de l'Albien en 2012.                                                                                                              | 135        |
| Figure 94 - Piézométrie simulée du Néocomien en 1935                                                                                                              | 136        |
| Figure 95 - Piézométrie simulée du Néocomien en 1970.                                                                                                             | 137        |

| Figure 96 - Piézométrie simulée du Néocomien en 1995                                                                                      | 138        |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure 97 - Piézométrie simulée du Néocomien en 2005.                                                                                     | 139        |
| Figure 98 - Piézométrie simulée du Néocomien en 2012                                                                                      | 140        |
| Figure 99 - Zones d'échange de l'Albien avec l'Aptien-Barrémien (état simulé de 2012) et comparaiso avec l'état "naturel" (figure du bas) | n<br>143   |
| Figure 100 - Zones d'échange de l'Albien avec le Gault (état simulé de 2012) et comparaison avec l'é<br>"naturel" (figure du bas)         | tat<br>144 |
| Figure 101 – Evolution du stockage-déstockage dans l'ensemble du système modélisé                                                         | 145        |
| Figure 102 - Zones géographiques issues de la délimitation faite par Y. Raoult (1999) (voir figure 20 d chapitre 2)                       | u<br>145   |
| Figure 103 - Echanges de l'Albien avec le Néocomien et la Craie dans la zone centrale                                                     | 146        |
| Figure 104 – Evolution du stockage-déstockage dans la zone centrale de l'Albien                                                           | 146        |
| Figure 105 - Echanges de l'Albien avec le Néocomien et la Craie dans la zone sud                                                          | 147        |
| Figure 106 - Echanges de l'Albien avec le Néocomien et la Craie dans la zone ouest                                                        | 147        |
| Figure 107 – Echanges de l'Albien avec le Néocomien et la Craie dans la zone sud-ouest                                                    | 148        |
| Figure 108 – Impact sur le calage du coefficient d'emmagasinement captif de l'Albien                                                      | 149        |
| Figure 109 – Impact sur le calage du coefficient d'emmagasinement captif de l'Albien (suite)                                              | 150        |
| Figure 110 – Impact sur le calage du coefficient d'anisotropie de l'Aptien-Barrémien et du Gault                                          | 151        |
| Figure 111 - Impact sur le calage du coefficient d'anisotropie de l'Aptien-Barrémien et du Gault (suite)                                  | 152        |
| Figure 112 - Evolution du stockage-déstockage dans l'Albien                                                                               | 153        |
| Figure 113 – Evolution vers un régime stationnaire des niveaux dans l'Albien                                                              | 154        |
| Figure 114 - Evolution vers un régime stationnaire des niveaux dans l'Albien (suite)                                                      | 155        |
| Figure 115 - Localisation des forages de secours prévus par le SDAGE 2016-2021                                                            | 158        |
| Figure 116 - Localisation des forages de secours prévus par le SDAGE 2016-2021 : zoom sur Paris                                           | 159        |
| Figure 117 – Localisation des forages avec des prélèvements portés à Qmax                                                                 | 162        |
| Figure 118 - Scénario 1 (prélèvements portés à 29 Mm3) : niveaux (m NGF) dans l'Albien calculés er régime permanent.                      | າ<br>163   |
| Figure 119 – Scénario 1 (prélèvements portés à 29 Mm3) : rabattements dans l'Albien calculés en régime permanent                          | 164        |
| Figure 120 - Scénario 1 (prélèvements portés à 29 Mm <sup>3</sup> ) : niveaux dans le Néocomien calculés en régime permanent.             | 165        |
| Figure 121 – Scénario 1 (prélèvements de 29 Mm <sup>3</sup> ) : rabattements dans le Néocomien calculés en régime permanent.              | 166        |
| Figure 122 – Scénario 2 (extrême) : niveaux atteints dans la partie centrale de l'Albien au bout de 10                                    | ans        |
| et 50 ans                                                                                                                                 | 167        |
| Figure 123 – Scénario 2 (extrême) : niveaux dans l'Albien calculés au bout de 10 ans                                                      | 168        |
| Figure 124 - Scénario 2 (extrême) : niveaux dans l'Albien calculés au bout de 50 ans                                                      | 169        |
| Figure 125 - Scénario 2 (extrême) : rabattements dans l'Albien calculés au bout de 10 ans                                                 | 170        |
| Figure 126 - Scénario 2 (extrême) : rabattements dans l'Albien calculés au bout de 50 ans                                                 | 171        |
| Figure 127 – Scénario 2 : évolution de la piézométrie vers un état stationnaire. Exemple sur quelques<br>piézomètres                      | ;<br>172   |
| Figure 128 – Scénario 2 : évolution de la piézométrie vers un état stationnaire. Exemple sur quelques piézomètres (suite)                 | ;<br>173   |
| Figure 129 – Scénario 2 : évolution de la piézométrie vers un état stationnaire. Exemple sur quelques piézomètres (suite)                 | ;<br>174   |
| Figure 130 - Scénario 2 (extrême) : niveaux dans le Néocomien calculés au bout de 10 ans                                                  | 176        |
| Figure 131 - Scénario 2 (extrême) : niveaux dans le Néocomien calculés au bout de 50 ans                                                  | 177        |
| Figure 132 - Scénario 2 (extrême) : rabattements dans le Néocomien calculés au bout de 10 ans                                             | 178        |

| Figure 133 - Scénario 2 (extrême) : rabattements dans le Néocomien calculés au bout de 50 ans                                                                                                                                                             | 179        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure 134 – Scénario 3 : niveaux calculés dans l'Albien au bout de trois mois                                                                                                                                                                            | 184        |
| Figure 135 – Scénario 3 (de crise) : rabattements calculés dans l'Albien                                                                                                                                                                                  | 185        |
| Figure 136 – Scénario 3 : évolution de la piézométrie vers un état stationnaire. Exemple sur quelques piézomètres                                                                                                                                         | s<br>. 186 |
| Figure 137 - Scénario 3. Evolution de la piézométrie vers un état stationnaire. Exemple sur quelques piézomètres (suite)                                                                                                                                  | 187        |
| Figure 138 – Scénario 3 : niveaux dans le Néocomien au bout de 3 mois                                                                                                                                                                                     | 188        |
| Figure 139 – Scénario 3 : rabattements dans le Néocomien au bout de 3 mois                                                                                                                                                                                | 189        |
| Figure 140 – Localisation du doublet de Clichy-Batignolles (IGN©)                                                                                                                                                                                         | 192        |
| Figure 141 – Représentation schématique de la dispersion mécanique en 2D (Bundschuh et al., 2010                                                                                                                                                          | )<br>193   |
| Figure 142 – Température des eaux de l'aquifère albien en fonction de la profondeur des ouvrages                                                                                                                                                          | 195        |
| Figure 143 – Répartition spatiale des gradients géothermiques calculés à l'Albien                                                                                                                                                                         | 195        |
| Figure 144 – Diagramme de dispersion en régime permanent (1840)                                                                                                                                                                                           | 198        |
| Figure 145 – Champ de température simulé à l'Albien en régime permanent (1840).                                                                                                                                                                           | 199        |
| Figure 146 – Évolution de la température simulée au puits de pompage dans l'Albien en fonction des différentes configurations de modèle                                                                                                                   | 202        |
| Figure 147 – Évolution de la bulle d'eau froide au cours du temps pour la sous-couche centrale de l'Albien                                                                                                                                                | 203        |
| Figure 148 – Extension de la bulle d'eau froide au droit du puits injecteur après 30 ans d'exploitation selon une coupe Ouest-Est                                                                                                                         | . 204      |
| Figure 149 – Évolution de la température simulée au puits de pompage pour différentes valeurs de la dispersivité thermique au niveau de la sous-couche centrale de l'Albien (DI = dispersivité longitudinale, Dt = dispersivité transversale horizontale) | ،<br>205 ع |
| Figure 150 – Évolution de la température simulée au puits de pompage pour différentes valeurs de porosité de l'Albien et des épontes (sous-couche centrale du réservoir)                                                                                  | 206        |
| Figure 151 – Évolution de la température simulée au puits de pompage pour différentes valeurs de conductivité thermique (à gauche) et de capacité calorifique (à droite) assignées à l'Albien (sous couche centrale du réservoir)                         | -<br>207   |
| Figure 152 – Évolution de la température simulée au puits de pompage selon différents scénarios d'exploitation (sous-couche centrale du réservoir)                                                                                                        | 208        |
|                                                                                                                                                                                                                                                           |            |

#### Liste des tableaux

| Tableau 1 - Superficie des affleurements des formations allant de la Craie au Tithonien                              | 22                    |
|----------------------------------------------------------------------------------------------------------------------|-----------------------|
| Tableau 2 – Bilan des flux en régime permanent dans le modèle HE                                                     | 57                    |
| Tableau 3 - Chroniques piézométriques utilisées dans le modèle HE pour le calage en régin (Rapport RPL04M018b, 2004) | ne transitoire.<br>59 |
| Tableau 4 - Bilan des flux en régime transitoire (année 2003) dans le modèle HE                                      | 60                    |
| Tableau 5 – Maillage du modèle                                                                                       | 68                    |
| Tableau 6- Volumes prélevés au puits d'Andrésy (01528X-0002) sur la période 2000-2012 : des volumes AESN et DRIEE    | comparaison<br>85     |
| Tableau 7 – Volumes prélevés dans l'Albien et le Néocomien en 2010, 2011 et 2012                                     | 86                    |
| Tableau 8 – Forages de prélèvement situés en Île-de-France                                                           | 90                    |
| Tableau 9 - Forages de prélèvement situés hors Île-de-France                                                         | 92                    |
| Tableau 10 – Valeurs des champs de perméabilité                                                                      | 109                   |
| Tableau 11 – Bilan des flux échangés entre couches en régime permanent                                               | 110                   |
| Tableau 12 – Statistiques globales sur les écarts de calage                                                          | 117                   |
|                                                                                                                      |                       |

| Tableau 13 – Flux nets échangés entre les 6 couches du modèle en 2012                                                                               | 141        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Tableau 14 – Bilan des flux dans l'Albien en 2012                                                                                                   | 142        |
| Tableau 15 – Comparaison de la situation 2012 des échanges de flux de l'Albien avec l'état "naturel".                                               | 142        |
| Tableau 16 – Evolution du stockage-déstockage dans l'Albien                                                                                         | 152        |
| Tableau 17 - Coordonnées et code des 57 forages de secours prévus par le SDAGE 2016-2021                                                            | 160        |
| Tableau 18 – Comparaison de la cote des pompes des forages à l'Albien avec les niveaux calculés da les mailles du modèle et les niveaux "corrigés". | ins<br>181 |
| Tableau 19 – Valeurs de conductivité thermique et de capacité calorifique volumique définies dans la littérature                                    | 196        |
| Tableau 20 – Paramètres hydrogéologiques et thermiques du réservoir                                                                                 | 201        |
| Tableau 21 – Temps de percée thermique et températures simulés au puits de production après 30 ar<br>pour différentes conditions d'exploitation     | าร<br>208  |

#### Liste des annexes

| Annexe 1- Comment le niveau piézométrique a été calculé au forage de Grenelle en 1841                    | 217              |
|----------------------------------------------------------------------------------------------------------|------------------|
| Annexe 2 Cartographie des toits et des épaisseurs des 6 couches du modèle                                | 225              |
| Annexe 3 - Liste des piézomètres captant l'Albien                                                        | 239              |
| Annexe 4 – Liste des forages exploitant les nappes de l'Albien et du Néocomien intégrés dans modèle BRGM | <b>le</b><br>243 |
| Annexe 5 - Comparaison des niveaux calculés aux niveaux mesurés dans le secteur des<br>affleurements     | 249              |
| Annexe 6 – Données des scénarios                                                                         | 257              |
| Annexe 7 – Transferts thermiques avec le code de calcul MARTHE (version 7.5)                             | 265              |
| Annexe 8 – Données de température disponibles pour la nappe de l'Albien                                  | 271              |

\* \* \*

## 1 Introduction

#### 1.1 CONTEXTE DE L'ÉTUDE

#### 1.1.1 Les nappes de l'Albien et du Néocomien, deux ressources en eau à préserver

Les nappes, en grande partie captives, de l'Albien et du Néocomien couvrent les deux tiers du bassin de Paris. La profondeur des réservoirs augmente des affleurements vers le centre du bassin : ainsi, la profondeur de l'Albien est maximale en Seine-et-Marne, dans le secteur de Coulommiers, où elle atteint 800 m ; à Paris, au forage de Grenelle, premier forage dans l'Albien captif (mis en service en 1841), le toit de de la formation a été rencontré à 548 m de profondeur.

Ces nappes, au centre du bassin, sont donc bien protégées des pollutions de surface et, par conséquent, sont de très bonne qualité. Elles représentent une réserve stratégique d'eau potable à l'échelle de la région IIe-de-France et du Bassin Seine-Normandie et sont considérées, dans le Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) du Bassin Seine-Normandie, comme une ressource ultime pour l'alimentation en eau potable en cas de crise majeure.

Leurs réserves potentielles sont importantes, mais les nombreux forages réalisés depuis 1841 ont fait chuter la piézométrie d'une centaine de mètres en un siècle dans la région parisienne. Leur exploitation pour l'eau potable est donc actuellement contrôlée et limitée pour préserver la ressource en quantité suffisante en cas de crise, d'où le classement en Zone de Répartition des Eaux (ZRE) de la masse d'eau *Albien-Néocomien captif*.

#### 1.1.2 La disposition D7.114 du SDAGE Seine-Normandie

Cette disposition du projet de SDAGE 2016-2021 du *Bassin de la Seine et des cours d'eau côtiers normands* concerne la masse d'eau souterraine FRHG218 Albien-Néocomien captif. Elle est détaillée comme suit dans le document de projet :

" La masse d'eau de l'ALBIEN-NEOCOMIEN CAPTIF est une ressource stratégique pour l'AEP de secours et est également classée en ZRE.

A l'intérieur du périmètre tel que défini sur la carte 27 (Figure 1), la nappe de l'Albien et la nappe sous-jacente du Néocomien doivent être exploitées de manière à assurer impérativement leur fonction de secours pour l'AEP, ainsi que le besoin pour la sécurité civile. Les prescriptions suivantes sont applicables aux prélèvements :

- Pour permettre une meilleure répartition des forages afin d'assurer la fonction de secours, le volume annuel prélevable dans le système aquifère de l'Albien et du Néocomien est fixé à 29 millions de m<sup>3</sup> compte tenu des rabattements acceptables induits par une augmentation des prélèvements en routine. Ce volume est réparti par département en fonction de la population à secourir en cas de crise, à l'exception du département de la Seine Maritime pour lequel le volume est minoré pour se prémunir des risques d'invasion d'eau salée.
- L'instruction des demandes de nouveaux prélèvements par l'autorité compétente se fait en lien avec les services du préfet coordonnateur de bassin, compte tenu de la nécessité d'une coordination et d'une planification de la ressource en eau au niveau inter-régional.
- Les nouveaux prélèvements ne pourront être accordés que dans la mesure où leur localisation géographique s'inscrit de manière cohérente dans les zones d'implantation préférentielle des nouveaux forages de secours telles que figurées sur la carte 27

(Figure 1 ci-après). En cas de concurrence entre deux projets pour l'implantation d'un forage sur un secteur géographique donné, la priorité est donnée à l'AEP. S'il s'agit de projets industriels, la priorité est donnée à celui qui justifie de la nécessité d'utiliser une eau d'une telle qualité non disponible par ailleurs, à des coûts raisonnables, compte tenu des autres ressources et des technologies existantes de traitement de ces eaux et dont l'implantation satisfait au mieux la fonction de secours.

#### 1.2 NÉCESSITÉ D'UN OUTIL DE GESTION

#### 1.2.1 Le modèle Hydroexpert-EGIS

Pour comprendre le fonctionnement du système Albien-Néocomien et évaluer l'impact sur la ressource des prélèvements opérés en cas de crise, il est vite apparu qu'un modèle hydrodynamique serait d'une aide précieuse.

Une modélisation du système Albien-Néocomien a été réalisée par Hydroexpert (actuellement EGIS) dès 1999 pour le compte de l'Agence de l'Eau Seine-Normandie. Depuis cette date, le modèle a fait l'objet de plusieurs actualisations, la dernière en 2006, et a été utilisé pour simuler plusieurs scénarios d'augmentations de prélèvements.

A la demande de la Direction Régionale et Interdépartementale de l'Environnement et de l'Energie (DRIEE) d'Ile-de-France, une étude de faisabilité du transfert du modèle développé par Hydroexpert (EGIS) vers le code de calcul hydrodynamique MARTHE du BRGM a été réalisée (D. Thiéry, 2012, rapport BRGM RP-61155-FR).

Malgré les différences de conception des deux codes de calcul, le transfert a pu être réalisé sans trop de difficultés.

#### 1.2.2 Objectifs du deuxième modèle (BRGM)

Suite à l'étude de faisabilité il a été décidé d'élaborer, sur la base du modèle Hydroexpert-EGIS (qui sera désigné par "modèle HE" dans la suite de ce rapport), un nouveau modèle, fonctionnant avec le code de calcul MARTHE (un descriptif de MARTHE et des ses principales fonctionnalités est fourni dans le rapport de faisabilité mentionné ci-dessus ; pour plus de détails sur le logiciel, voir les références bibliographiques).

Le modèle, qui devra d'abord être calé à l'aide des données piézométriques actualisées, sera ensuite utilisé pour simuler divers scénarios de prélèvements, dont ceux prévus par le projet de SDAGE 2016-2021 (mise en service de forages de secours).

Par ailleurs, une exploitation à des fins géothermiques de la nappe de l'Albien permettrait, par l'intermédiaire de doublets, d'augmenter l'accès à la ressource sans prélèvement net (fonctionnement en circuit fermé : prélèvement puis réinjection). En situation de crise, les forages de prélèvement pourraient en effet être utilisés comme forages de secours.

Dans une première partie de ce rapport, après un rappel du contexte géologique et hydrogéologique, on décrit le nouveau modèle, les résultats obtenus après calage, puis l'impact sur la ressource de trois scénarios de prélèvements.

Dans une deuxième partie, le modèle est utilisé pour reconstituer le champ de température dans l'Albien, puis pour simuler un doublet géothermique suivant différentes modalités de fonctionnement.

Cette étude a bénéficié du soutien financier de l'Agence de l'Eau Seine-Normandie (Convention d'aide financière n° 1043223, 2013).

 $\bullet \bullet \bullet$ 



Figure 1 - Périmètre d'application des dispositions spécifiques AEP de l'aquifère de l'Albien-Néocomien et zones d'implantation préférentielles des nouveaux forages de secours. (Source : projet de SDAGE 2016 2021 du Bassin de la Seine et des cours d'eau côtiers, Carte 27)

BRGM/RP-64873-FR - Rapport final

## 2 Contextes géologique et hydrogéologique

On rappelle dans ce chapitre les principaux traits de la géologie et de l'hydrogéologie du Crétacé inférieur (145 Ma – 100 Ma), points d'appui de la modélisation des nappes de l'Albien et du Néocomien. Pour une description plus détaillée, les références suivantes peuvent être consultées :

Vernoux J.F., Maget P., Donsimoni M., Blanchin R., Afzali H., Vairon J. (1997) - *Synthèse hydrogéologique du Crétacé inférieur du bassin de Paris*. Rapport final. BRGM/RR-39702-FR

Mégnien C., Mégnien F. (1980) – Synthèse géologique du Bassin de Paris – Mémoire du BRGM n°101.

Raoult Y. (1999) – La nappe de l'Albien dans le bassin de Paris, de nouvelles idées pour de vieilles eaux. Thèse de doctorat de l'université Paris VI.

Dans ce qui suit, on reprend une synthèse faite dans le cadre de la présente étude :

A. Bel, 2013. Synthèse hydrogéologique préalable à la modélisation maillée des nappes de l'Albien/Néocomien. Note technique BRGM, 2013.

#### 2.1 GÉOLOGIE

#### 2.1.1 Formations du Crétacé inférieur

Sur le plan géologique, les aquifères du Crétacé inférieur, aquifères de l'Albien et du Néocomien, sont formés par des bancs de sable plus ou moins continus, séparés par des niveaux argileux. Les formations argilo-sableuses de l'Aptien, globalement moins perméables, s'intercalent entre ces deux aquifères mais ne les isolent pas totalement et les nappes qu'ils renferment constituent, au plan hydrodynamique, un système unique : *l'Albien-Néocomien captif.* 

Le schéma ci-dessous présente la succession litho-stratigraphique synthétique du Crétacé inférieur dans le centre du Bassin parisien.

|                   | Cénomanien  |           |          |                                                                                                                                                         |
|-------------------|-------------|-----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Crétacé inférieur | Albien      |           |          | Marnes de Brienne<br>Argiles de Gault<br>Sables de Frécambault<br>Argiles Tégulines<br>Sables de Drillons<br>Argiles de l'Armance<br>Sables verts (s.s) |
|                   | Aptien      |           |          | Complexe argilo-sableux                                                                                                                                 |
|                   | Barrémien   | léocomien |          | Sables de Perthes                                                                                                                                       |
|                   | Hauterivien |           | Wealdien | Sables de Châteaurenard<br>Sables de Château-Landon<br>Grès du Puiselet                                                                                 |
|                   | Valanginien | 2         |          | Sables de Griselles                                                                                                                                     |
|                   | Tithonien   |           |          |                                                                                                                                                         |

Succession lithostratigraphique synthétique du Crétacé Inférieur du Bassin parisien

Dans le référentiel hydrogéologique BDLISA, les formations du Crétacé inférieur sont regroupées au niveau régional (Niveau 2) sous les appellations suivantes :

- Argiles du Gault, marnes et gaizes du Cénomanien inférieur à moyen et de l'Albien supérieur du Bassin parisien (entité 125AA)
- Sables verts de l'Aptien-Albien du Bassin parisien (entité 127AA)
- Argiles de l'Albien inférieur au Barrémien (Aptien-Barrémien) du Bassin parisien (entité 127AC)
- Sables, grès et calcaires du Crétacé inférieur (Néocomien) dans les bassins Seine-Normandie (majoritairement), nord Loire-Bretagne et sud Artois-Picardie (entité 127AG).

Sous le Crétacé inférieur, on trouve le Tithonien (anciennement appelé Portlandien), constituant l'entité BDLISA 131AA de niveau 2, appelée :

Calcaires du Tithonien du Bassin parisien

Au-dessus des Argiles du Gault, il y a le Cénomanien, représenté dans BDLISA par l'entité 123, de niveau 1, appelée :

Grand système multicouche du Cénomanien à l'Albien supérieur du Bassin parisien

puis la Craie du Séno-Turonien (entité 121, de niveau 1)

Les figures 2 à 4 précisent l'extension de ces entités.

Les superficies des entités et de leurs affleurements sont indiquées dans le tableau 1 :

| Entités          | Superficie des<br>entités (km²) | Superficie des affleurements (km²) | Rapport<br>S_affl. /S_entité (%) |
|------------------|---------------------------------|------------------------------------|----------------------------------|
| Craie            | 98 989                          | 33 080                             | 33.4                             |
| Cénomanien       | 108 963                         | 9 104                              | 8.4                              |
| Gault            | 99 818                          | 3 090                              | 3.1                              |
| Albien           | 86 224                          | 1 842                              | 2.1                              |
| Aptien-Barrémien | 53 641                          | 1 359                              | 2.5                              |
| Néocomien        | 49 235                          | 708                                | 1.4                              |
| Tithonien        | 77 882                          | 3 220                              | 4.1                              |

Tableau 1 - Superficie des affleurements des formations allant de la Craie au Tithonien

La figure 5 montre les affleurements de ces entités, ainsi que ceux de la Craie du Séno-Turonien (entité 121, de niveau 1), située "au dessus" du Cénomanien. Les principales failles y sont aussi reportées.

Les affleurements de l'Albien ne représentent que 2% de sa superficie totale et ceux du Néocomien moins de 2% (1.4%).



Figure 2 – Extension des formations du Gault, de l'Albien, de l'Aptien-Barrémien et du Néocomien



Figure 3 - Extension de l'entité 123 (Cénomanien)



Figure 4 – Extension de l'entité 131AA (Calcaires du Tithonien)



Figure 5 – Affleurements des entités BDLISA, de la Craie (Entité 121) au Tithonien (Entité 131AA)

#### 2.1.2 Formations de l'Albien moyen et inférieur (entité 127AA)

L'Albien moyen et inférieur est constitué de trois unités sableuses principales, qui sont, "de bas en haut" (figure 6) :

les Sables Verts, les Sables des Drillons et les Sables de Frécambault.

Ces trois formations sableuses peuvent se diviser en plusieurs bancs, ou, au contraire, n'en former qu'un seul. On considère que ces trois niveaux sont en continuité hydraulique et constituent un seul et même réservoir.

Sur la bordure armoricaine, ces bancs se biseautent et sont indifférenciés. En allant vers le NE, les niveaux sableux supérieurs disparaissent par variation de faciès, faisant place à l'argile du domaine marin. Seuls subsistent les Sables Verts.

#### Albien moyen

L'Albien moyen comprend les deux niveaux sableux des Sables de Frécambault et des Sables des Drillons. Ces niveaux ont été définis d'une part aux affleurements dans l'Yonne et l'Aube, d'autre part dans les forages d'eau profonds de la région de Paris.

Ces deux formations peuvent être séparées par les Argiles Tégulines qui sont relativement peu épaisses. Les Argiles Tégulines disparaissent sur les bordures du Bassin parisien et principalement au sud, faisant place aux *Sables de la Puisaye* (entité BDLISA 127AA01).

#### • Albien inférieur

Les dépôts de l'Albien inférieur sont en général beaucoup plus réguliers que ceux de l'Albien moyen . Deux entités BDLISA ont été distinguées :

- Argiles de Myennes et de l'Armance de l'Albien inférieur du sud-est du Bassin parisien (127AA03),
- Sables verts de l'Apto-Albien du sud-est du Bassin parisien (127AA05)

Les Sables Verts peuvent se dédoubler, comme au nord de Sens, et l'un des deux niveaux disparaître alternativement, ce qui induit de grandes irrégularités en profondeur et en épaisseur.

Sur les bordures du bassin, à l'exception des lieux de définition des dépôts de l'Albien moyen, les trois niveaux sableux (Frécambault, Drillons, Sables Verts s.s.) ne sont plus différenciables et la documentation pétrolière utilise alors l'appellation unique de "Sables Verts". L'entité BDLISA correspondante est nommée : Sables indifférenciés et argiles de l'Apto-Albien du Bassin parisien, de code 127AA99.

Les Argiles de l'Armance sont des argilites noires légèrement sableuses, avec localement des passées dolomitiques brunes. Les épaisseurs rencontrées sont de l'ordre de 5 à 10 mètres. Les équivalents latéraux de ces argiles et des sables et grès verts sont les Argiles de Myennes.

Les Sables Verts marquent la base de l'Albien. Ils sont très glauconieux et mélangés à des argiles vertes. La base de cette formation est souvent plus argileuse que son sommet. Les intercalations argileuses sont parfois très nombreuses. Leur épaisseur semble diminuer vers le sud-ouest.



Figure 6 - Schéma des faciès de l'Albien et de l'Aptien suivant une coupe SW-NE (d'après MEGNIEN F, avec la collaboration de J. MANIVIT pour le sud du bassin) Extrait de la Synthèse géologique du Bassin de Paris, Mémoire du BRGM n°101, fig 7.2

#### 2.1.3 Formations du Néocomien

Le Néocomien correspond à toute la partie inférieure du Crétacé non différencié, à partir du Barrémien inférieur (figure 7). Deux faciès principaux peuvent y être distingués (figure 8) :

- le faciès continental (faciès Wealdien) : alternance de sables, grès et argiles sableuses avec passées ligniteuses, constituant un aquifère multicouche, d'une épaisseur de 20 à 90 mètres. Sa perméabilité est variable, assez bonne dans les sables, mais les couches sont discontinues ;
- le faciès marin sur le pourtour oriental : marnes, calcaires marneux, calcaires coquilliers, avec une perméabilité assez faible. Il s'agit de faciès imbriqués avec les faciès continentaux, pouvant atteindre une centaine de mètres d'épaisseur. La "série carbonatée" est située dans le quart sud-est du Bassin parisien : ensemble mameux à argileux avec, au Sud de la Brie, des niveaux franchement calcaires.
- Hauterivien/Valanginien

L'Hauterivien comprend plusieurs horizons sableux, notamment dans le Gâtinais-Sénonais, avec, de haut en bas, les Sables de Châteaurenard et de Château-Landon et les Grès de Puiselet.

Ces sables présentent des variations rapides du rapport sable/argile et deviennent de plus en plus argileux vers le nord-est. Ces sables constituent l'entité BDLISA des *Sables et grès de l'Hauterivien du Bassin parisien* (127AG01).

On ne les retrouve pas à l'affleurement dans le Bassin parisien mais seulement sous recouvrement, au sud de l'Ile-de-France ainsi qu'au nord des régions Centre et Bourgogne.

Les niveaux sableux du Néocomien sont beaucoup plus réguliers que ceux de l'Albien et se suivent sur de grandes distances. Cependant, très vite les Sables de Châteaurenard et ceux de Château-Landon sont jointifs, parfois avec les Grès du Puiselet, formant une unité indivisible : les Sables de l'Hauterivien.

Le Valanginien est l'étage de base du Crétacé inférieur dans le Bassin de Paris. Il comprend des dépôts grossièrement détritiques, désignés Sables de Griselles (Valanginien inférieur) dans le Sénonais (sables continentaux blancs, parfois accompagnés de lignite, correspondant à des dépôts de plaine alluviale - faciès wealdien), avec des réseaux fluviatiles en tresses progradantes. Ils comblent les paléo-creux de la surface entaillée du Purbeckien (Tithonien supérieur). Ils sont présents dans tout le bassin, mais ont tendance à se biseauter vers les parties les plus éloignées du centre du bassin. Les Sables de Griselles sont homogènes avec un faible pourcentage d'argile. Latéralement, vers Sens, il existe un niveau sableux très fin, juste au-dessus des Sables de Griselles : les Sables de Triguères.

Ces niveaux sableux évoluent latéralement, vers le Sud de la Brie, vers un faciès carbonaté : les Calcaires à Spatangues (calcaires oolithiques ferrugineux parfois riches en polypiers et plus ou moins marneux), correspondant à l'entité BDLISA *Calcaires du Néocomien de l'Hauterivien-Barrémien (*127AG03). Les formations calcaires de l'Hauterivien-Barrémien (Néocomien) du Bassin parisien correspondent aux Calcaires à Spatangues de l'Hauterivien et aux Calcaires de Bernouil du Valanginien, qui apparaissent tout au long des affleurements de l'est et du sud-est du bassin, donnant une image trompeuse des niveaux plus profonds où le Néocomien est totalement détritique.

En Bourgogne, le Néocomien se rencontre principalement sous un faciès calcaire.



Figure 7 - Coupe schématique des passages de faciès du Valanginien, de l'Hauterivien et du Barrémien depuis les affleurements de l'Yonne jusqu'au centre du bassin Source : Synthèse hydrogéologique du Crétacé inférieur du Bassin de Paris (Mégnien,1980)



le Kent et le bassin de Mons (R. Médioni).



#### Wealdien

Le Wealdien correspond à l'ensemble des formations continentales grossièrement détritiques occupant la partie inférieure du Crétacé inférieur, où les couches de l'Hauterivien et du Valanginien ne sont plus différenciables.

Les formations du Wealdien affleurent dans le Pays de Bray et les Ardennes (nord de l'Aisne). Dans l'Oise, il s'agit de formations sableuses avec lits d'argile qui seraient en continuité hydraulique avec les calcaires du Tithonien (pas de marnes à la base). Dans l'Aisne ce sont des argiles bariolées à intercalations de grès et de sables. L'épaisseur de la formation est de quelques mètres au nord de l'Aisne (Bohain-en-Vermandois) et de l'ordre de 100 m au sud (Château-Thierry).

L'entité BDLISA 127AG05 appelée Sables et argiles du Wealdien (Néocomien), sables blancs, marnes et grès ferrugineux du Valanginien du Bassin parisien correspond aux sables et argiles du Wealdien *s.s.* du nord et de l'ouest du Bassin parisien (indifférenciés), ainsi qu'aux sables blancs, marnes et grès ferrugineux du Valanginien, Sables de Griselles et de Triguères, situés sous les calcaires de l'Hauterivien, au centre et au sud du bassin.

#### 2.2 AQUIFÈRES DE L'ALBIEN ET DU NÉOCOMIEN

Les terrains du Crétacé inférieur renferment un ensemble complexe d'aquifères répartis dans plusieurs niveaux sableux. Les études géologiques ont montré que ces niveaux aquifères sont plus ou moins individualisés selon les secteurs.

• L'aquifère de l'Albien est, par sa puissance, son extension et ses réserves en eau souterraine, le plus important du Crétacé inférieur. Comme mentionné au paragraphe précédent, il est constitué de trois formations sableuses plus ou moins bien séparées par des formations semiperméables : les Sables verts, les Sables des Drillons et les Sables de Frécambault.

L'aquifère de l'Albien est isolé des formations de la Craie par les Argiles du Gault et il est séparé de celui du Néocomien par des formations d'argile à intercalations de grès peu consolidés et par les argiles et marnes de l'Aptien.

• L'aquifère du Néocomien est constitué de séries argilo-sableuses plus ou moins bien individualisées montrant d'importantes variations latérales de faciès. Les faciès calcaires du sud-est ne sont pas considérés comme aquifères. Le Néocomien peut être en communication avec les niveaux sous-jacents du Jurassique supérieur (le Tithonien).

#### 2.2.1 Aquifère de l'Albien

La nappe de l'Albien est captive sur la majeure partie du bassin. Elle est libre au niveau des affleurements de l'Est (Cosne-sur-Loire, Auxerre, St-Dizier, et au-delà vers l'Argonne) et sur le flanc sud de l'anticlinal du Pays de Bray (Figure 9).

Elle devient captive sous les argiles du Gault vers le centre du bassin, jusqu'à de très grandes profondeurs : 600 mètres sous Paris, 800 m à Coulommiers (cf. annexe 2 : carte du toit et des épaisseurs de l'Albien).

Selon l'argilosité des couches, différentes zones de productivité peuvent être identifiées : faciès détritiques plus favorables au centre du bassin, faciès plus argileux en périphérie nord-nord-est et dans le Pays de Bray.

A l'Est de La Puisaye, les sables verts sont peu productifs car les sables sont fins et argileux, donc peu perméables. Dans le Bec de Caux, au sud de la faille Fécamp-Lillebonne, les sables de l'Albien s'enfoncent en profondeur et deviennent argileux.

L'ordre relatif, concept de BDLISA, correspond au nombre de couches moins une situées au-dessus d'un point donné de la formation considérée. L'ordre 1 correspond aux affleurements de la formation (éventuellement sous couverture de formations superficielles). Dans le cas de l'Albien, il peut y avoir jusqu'à 18 formations (ordre relatif 19) situées au-dessus (en Île-de-France, au sud de Paris).

La captivité de la nappe s'est traduite, lors du premier forage à l'Albien en 1841 (forage de Grenelle), par un fort jaillissement, correspondant à un niveau piézométrique calculé de 124-126 m NGF (Lemoine et al., 1939). On trouvera en annexe 1 une discussion sur ces deux valeurs.

Les aquifères de l'Albien et du Néocomien, séparés par les argiles aptiennes, sont néanmoins localement en communication hydraulique.



Figure 9 – Albien affleurant et sous couverture

#### 2.2.1.1 Cartes piézométriques

En 1997, une carte piézométrique de l'Albien a été réalisée à partir de 296 points de mesure, dont la plupart sont des niveaux statiques mesurés dans des forages d'eau (Figure 10). Il s'agit de données non synchrones (voir *Synthèse hydrogéologique du Crétacé inférieur,* rapport BRGM/RR-39702-FR, 1997). Ces données sont récentes pour l'Ile-de-France (ce qui est important car cette zone est influencée par les prélèvements), mais anciennes (remontant jusqu'à 1930) pour le reste de l'aquifère (où les évolutions de la piézométrie sont plus lentes).



Figure 10 - Carte piézométrique de l'Albien et directions d'écoulement Source : rapport BRGM/RR-39702-FR,1997
On peut distinguer quatre bassins souterrains d'importance inégale :

- le bassin principal couvrant toute la partie est du bassin, avec des lignes de courants qui convergent vers Paris à partir des affleurements des bordures est et sud-est ;
- à l'ouest, le bassin de la Basse-Seine, alimenté par les affleurements du Pays de Bray au nord et par la nappe du Cénomanien au sud (dans ce secteur, l'Argile du Gault est peu épaisse);
- au nord-ouest, le bassin de la Somme, alimenté par les affleurements du Pays de Bray, avec des lignes de courant qui se dirigent ensuite vers la Manche ;
- le bassin de la Loire au sud.

Depuis 1841 et le premier forage à l'Albien, il s'est produit une importante modification de la piézométrie en raison de l'exploitation intensive de l'aquifère albien en région parisienne : un cône de dépression piézométrique est en effet apparu au centre du Bassin parisien, avec des minima inférieurs à 20 m NGF (voir chapitre 6).

Le gradient hydraulique, évalué d'après cette carte, est maximum dans le sud-est du bassin : il atteint 4 ‰ dans le Cher. Entre les affleurements de l'est et Paris, il est d'environ 0.8 ‰. Du Pays de Bray vers la Seine, le gradient est de 3 ‰ alors qu'il n'est que de 0.6 ‰ dans la vallée de la Somme.

La carte piézométrique de l'aquifère captif de l'Albien réalisée en 1999 par Raoult (Figure 11) est basée sur 99 mesures de niveau piézométrique statique. On y retrouve les mêmes directions d'écoulement que celles mises en évidence par la carte BRGM de 1997 (296 points de mesure mais les données sont non synchrones, de 1930 à 1997).

#### 2.2.1.2 Transmissivités

• Rapport BRGM/RR-39702-FR (1997). Synthèse hydrogéologique du Crétacé inférieur du Bassin de Paris.

Une carte des transmissivités a été réalisée en utilisant 186 points de mesure de débit spécifique. Ces mesures ont été converties en valeurs de transmissivité à l'aide d'une corrélation établie à partir de 50 points où il y avait à la fois une valeur de transmissivité et une mesure de débit spécifique (figure 12).



Figure 11 - Corrélation entre débit spécifique et transmissivité dans l'Albien Source : rapport BRGM/RR-39702-FR,1997



Figure 12 - Cartes piézométriques avant 1930 (en haut) et en 1999 (en bas) obtenues par krigeage Source : Y. Raoult (1999)

Cette carte (Figure 13) met en évidence une zone centrale, allant de la région d'Orléans jusqu'au nord de Pontoise, avec de fortes valeurs de transmissivité, comprises entre 2.10<sup>-3</sup> m<sup>2</sup>/s et 10<sup>-2</sup> m<sup>2</sup>/s. Les valeurs les plus fortes, supérieures à 5.10<sup>-3</sup> m<sup>2</sup>/s, s'observent en région parisienne. Ces fortes valeurs sont liées aux faciès sableux de l'Albien mais pas nécessairement aux épaisseurs maximum de sables. Par contre, les faibles transmissivités se rencontrent dans les secteurs où l'épaisseur cumulée de sables est faible.

<u>Remarque</u> : les valeurs de transmissivité sont difficilement comparables entre elles pour 2 raisons :

- elles sont issues de différents types de mesures ou d'interprétations : débits spécifiques, tests pétroliers DST (ceux-ci surtout dans le Néocomien), interprétation de pompages d'essai, parfois de trop courte durée ;
- les niveaux testés ne sont pas toujours les mêmes. Un test à l'Albien peut ne concerner que les sables de Frécambault tandis qu'un autre aura été réalisé sur l'ensemble des trois niveaux sableux.

#### Données hydrogéologiques locales

Au nord d'Évry, les fortes transmissivités sont liées à une importante épaisseur de sables (entre 80 et 90 m). A l'inverse, le secteur de la fosse de Coulommiers, dans le nord de la Seine-et-Marne, montre des épaisseurs de sables comprises entre 90 et 110 m et des transmissivités relativement faibles, de  $3.10^{-3}$  à  $5.10^{-4}$  m<sup>2</sup>/s (secteurs où il existe peu de données de transmissivité).

Les zones de faible transmissivité (< 5.10<sup>-4</sup> m<sup>2</sup>/s) correspondent à des zones où l'épaisseur cumulée des sables albiens est inférieure à 30 m. Elles sont situées dans le Cher, l'Eure, l'Aube, et l'extrémité nord-est de la Marne.

En Champagne, de nombreux puits d'eau ont été forés dans les sables de l'Albien inférieur et de l'Aptien supérieur. Une étude de 1987 (*Synthèse hydrogéologique de l'aquifère Albien-Aptien entre Vitry-le-François, St-Dizier et Brienne-le-Château*, rapport BRGM 87 SGN 265 CHA) met en évidence des secteurs où les forages ont fourni de bons débits spécifiques, de 3 à 4 m<sup>2</sup>/h (notamment entre St Dizier et Vitry-le-François).

Mais dans d'autres secteurs, des forages se sont révélés peu productifs, par exemple le forage d'eau de Grandville dans l'Aube, au nord de Troyes (rapport BRGM 79 SGN 521 CHA)

En Puisaye orientale, les sables verts de l'Albien sont peu productifs car les sables sont fins et argileux donc peu perméables. La transmissivité est pratiquement partout inférieure à 10<sup>-3</sup> m<sup>2</sup>/s pour une épaisseur de sable comprise entre 10 et 40 m.

En région Centre, les données proviennent essentiellement des tests pétroliers. Les forages d'eau sont peu nombreux ; ils montrent une productivité variant entre 40 et 100 m<sup>3</sup>/h. Les transmissivités sont supérieures à 10<sup>-3</sup> m<sup>2</sup>/s, sauf dans le Cher à proximité des affleurements.

En Bourgogne, la transmissivité est inférieure à 10<sup>-3</sup> m<sup>2</sup>/s alors que l'épaisseur cumulée de sables est toujours supérieure à 50 m et peut fréquemment atteindre 70 à 80 m. La perméabilité est plus importante dans les Sables de Frécambault que dans les Sables verts qui sont plus argileux. Ainsi, certains forages d'eau dans les Sables verts ont été abandonnés car insuffisamment productifs.

En Haute-Normandie, les données proviennent presque exclusivement de mesures de débit spécifique qui varient de 0.5 m<sup>3</sup>/h/m (1.4 10<sup>-4</sup> m<sup>3</sup>/s/m) à 4 m <sup>3</sup>/h/m (10<sup>-3</sup> m<sup>3</sup>/s/m).

En Picardie, les mesures de transmissivité sont inexistantes et les courbes ont été interpolées à partir de quelques mesures de débit spécifique. La carte montre une transmissivité supérieure à 10<sup>-3</sup> m<sup>2</sup>/s, à l'exception de la zone située autour d'Amiens et de Beauvais (l'interpolation des données surestime la transmissivité car l'épaisseur utile cumulée des sables albiens est pratiquement partout inférieure à 40 m localement).



Figure 13 - Transmissivités de la nappe de l'Albien (rapport BRGM/RR-39702-FR, 1997)

• Thèse de Y. Raoult (1999)

Une carte des transmissivités a été construite par krigeage à partir de 72 mesures de transmissivité déduites d'essais de débit. Les données proviennent de différentes sources dont Vernoux et al. (1997), Lauverjat (1967), Direction des Carburants (1965).

La carte (Figure 14) met en évidence une zone de forte transmissivité, supérieure à  $10^{-3}$  m<sup>2</sup>/s, qui s'étend des affleurements du sud jusqu'à Paris, puis se prolonge dans l'axe de la Seine. A l'est, les transmissivités sont plus faibles, de l'ordre de  $10^{-4}$  m<sup>2</sup>/s (sables beaucoup plus argileux), pouvant être localement inférieures à  $10^{-4}$  m<sup>2</sup>/s.

Les valeurs ponctuelles de transmissivité de l'Albien captif sont comprises entre  $3,2.10^{-5}$  et  $7,2.10^{-3}$  m<sup>2</sup>/s (3 valeurs seulement inférieures à  $10^{-5}$  m<sup>2</sup>/s)



Figure 14 - Carte des transmissivités de l'Albien, obtenue par krigeage (Y. Raoult, 1999) Les isovaleurs sont graduées en log(transmissivité)

# • Études Hydroexpert

La carte de la figure 15 est issue de la modélisation des nappes de l'Albien et du Néocomien réalisée par Hydroexpert (1999, 2000, 2004, 2006). Elle est extraite du rapport RPL04M0118b (*Mise à jour et reprise du calage du modèle*, 2004).

Comme les deux cartes de transmissivité précédentes (sur lesquelles la modélisation s'est s'appuyée), elle met en évidence une zone de forte transmissivité d'orientation Sud-Nord, avec les valeurs les plus fortes dans la région parisienne (8.10<sup>-3</sup> m<sup>2</sup>/s). Les valeurs cartographiées les plus faibles sont inférieures à 10<sup>-3</sup> m<sup>2</sup>/s (plages jaunes sur la Figure 15).



Figure 15 - Répartition des transmissivités de l'Albien (Hydroexpert- Rapport RPL04M0118b, 2004)

#### 2.2.1.3 Coefficients d'emmagasinement

La détermination du coefficient d'emmagasinement nécessite, comme pour la transmissivité, un pompage d'essai de longue durée, mais aussi des mesures de rabattement sur un piézomètre voisin du puits de pompage. En pratique, ces mesures sont rarement réalisées et l'on ne tient compte que du rabattement mesuré sur le puits testé.

Quelques valeurs ont pu être déterminées sur l'aquifère albien en Ile-de-France et dans le département du Loiret. Une seule valeur existe pour l'aquifère du Néocomien ; il s'agit du forage de Bruyères-le-Châtel.

Les valeurs obtenues concernent les parties captives des aquifères (figure 16). Elles sont assez homogènes, de l'ordre de 10<sup>-4</sup> (à l'exception de la valeur obtenue au forage de Bougligny, particulièrement faible : 2.10<sup>-8</sup>, peu fiable).

En nappe libre, le coefficient d'emmagasinement est égal à la porosité efficace de l'aquifère. Pour les sables de l'Albien, il a été estimé à 5 % dans le Sénonais-Gâtinais (rapport BRGM R38523, 1995. Synthèse hydrogéologique du réservoir des sables albiens dans le Sénonais -Gâtinais (89) pour la sécurité des approvisionnements en eau potable publique).



Figure 16 - Coefficients d'emmagasinement des aquifères de l'Albien et du Néocomien Source : rapport BRGM/RR-39702-FR, 1997

# 2.2.2 Nappe du Néocomien

Le Néocomien est théoriquement isolé des formations de l'Albien par les horizons argileux de l'Aptien et du Barrémien. Ces horizons argileux font plus de 100 m d'épaisseur dans le centre du bassin. Mais à l'ouest, au sud-ouest et au nord du bassin, les épaisseurs diminuent : moins de 20 m à l'ouest d'une ligne Beauvais-Mantes-Orléans-Bourges. Par ailleurs, l'Aptien argileux comporte des intercalations sableuses : c'est le cas notamment près de Melun et au sud de la confluence Seine-Yonne. Des échanges de flux existent donc entre l'Albien et le Néocomien.

La formation des sables du Néocomien est aquifère, mais avec des taux d'argile plus ou moins élevés. La nappe est captive, ces sables n'affleurant pas.

La nappe des calcaires de l'Hauterivien, libre au niveau des affleurements sur les bordures est et sud du bassin, devient captive vers le nord sous les argiles barrémiennes.

Dans la synthèse hydrogéologique du Crétacé inférieur du Bassin de Paris, il est indiqué que les faciès calcaires du sud-est du bassin ne sont pas considérés comme aquifères. Toutefois, le calcaire à Spatangues de l'Hauterivien présente une perméabilité de fractures, notamment en Bourgogne. En Lorraine, l'aquifère des calcaires à Spatangues de l'Hauterivien est présent quand la base de l'étage est marneuse (niveau conglomératique ferrugineux de 2 mètres), mais peu important.

#### 2.2.2.1 Piézométrie

La Synthèse hydrogéologique du Crétacé inférieur du Bassin de Paris [BRGM/RR-39702-FR, 1997] présente une carte piézométrique du Néocomien, réalisée à partir de 76 points de mesure seulement, avec des données non synchrones (figure 17).

La mise en exploitation de l'Albien a provoqué une baisse de la piézométrie du Néocomien de 50 mètres en région parisienne (100 mètres pour l'Albien).

Les courbes piézométriques de l'Albien et du Néocomien sont similaires au niveau des affleurements en bordure est et sud-est du bassin, puis se décalent en convergeant vers Paris. Les gradients hydrauliques du Néocomien sont plus faibles que ceux de l'Albien. Entre les affleurements et Paris, le gradient est d'environ 0.4 % [BRGM/RR-39702-FR, 1997].



Figure 17 - Carte piézométrique du Néocomien et directions d'écoulement Source : rapport BRGM/RR-39702-FR, 1997

Les sables du Néocomien peuvent être en communication avec les calcaires du Jurassique sous-jacents. L'écran constitué par les Marnes noires du Berriasien (dernier étage du Crétacé inférieur) est présent uniquement au niveau du seuil de Bourgogne. Néanmoins, dans de nombreux secteurs du bassin, le faciès calcaréo-marneux du Purbeckien (transition entre le Jurassique et le Crétacé) va limiter les échanges (figure 18).



Figure 18 - Carte des faciès des dépôts purbéckiens - d'après MEGNIEN, 1980

# 2.2.2.2 Transmissivités (BRGM/RR-39702-FR,1997).

Dans l'ensemble, les transmissivités du Néocomien sont plus faibles que celles de l'Albien, avec des valeurs inférieures à 2.10<sup>-3</sup> m<sup>2</sup>/s, ce qui peut s'expliquer par la faible granulométrie des sables, mise en évidence sur les forages de Paris et Bruyères-le-Châtel. Par ailleurs, ces sables peuvent montrer une cimentation répartie irrégulièrement dans l'espace ce qui augmente d'autant la variabilité de la transmissivité.

Les zones de transmissivité maximum ne correspondent pas aux zones d'épaisseur maximum des sables néocomiens. En particulier, le secteur de la fosse de Coulommiers, dans le nord de la Seine-et-Marne, montre des épaisseurs de sables comprises entre 80 et 100 m alors que les transmissivités sont inférieures à 4.10<sup>-4</sup> m<sup>2</sup>/s.

#### 2.2.2.3 Emmagasinement

Une seule valeur existe pour l'aquifère du Néocomien ; il s'agit du forage de Bruyères-le-Châtel où le coefficient d'emmagasinement a été estimé par effet barométrique entre 1.5 10<sup>-4</sup> et 4.5.10<sup>-5</sup>. (rapport BRGM 81 SGN 733 IDF BRGM, 1981 - *Résultats des pompages d'essai sur le forage géothermique GBCl, Bruyères-le-Châtel*).

# 2.3 LE TITHONIEN

L'hydrogéologie du Tithonien n'est pas connue sur l'ensemble du Bassin parisien. Par contre, sur les bordures du bassin, on dispose de données. Sur ces bordures, l'émersion à la limite Jurassique-Crétacé a eu pour conséquence le développement de phénomènes karstiques.

# 2.3.1 Secteurs aquifères

• En Champagne-Ardenne, la nappe des calcaires du Tithonien est localement en continuité hydraulique avec celle des sables verts de l'Albien (d'une épaisseur limitée de 1 à 8 m). Des structures karstiques se sont développées, confirmées par des traçages, telles que des gouffres et des circulations karstiques (Quatre-Champs, Toges, Ballay).

La nappe des calcaires du Tithonien, sous recouvrement des argiles du Gault, est captive et artésienne mais assez peu productive en l'absence de fracturation (débit inférieurs à 1 m<sup>3</sup>/h dans le secteur de Lançon).

• En Haute-Marne, le Tithonien est particulièrement productif sous recouvrement néocomien, avec des secteurs karstiques. Dans la région de Wassy, le Valanginien repose souvent directement sur l'oolithe vacuolaire du Tithonien supérieur (zone à Cyrena rugosa) par suite de l'érosion ancienne, et les eaux s'infiltrent directement dans le calcaire perméable. Dans la région de Saint-Dizier, si le Valanginien fait défaut, une communication s'établit entre la nappe de l'Hauterivien et celle du Tithonien.

• Dans l'Aube (secteur de Brienne), les calcaires du Tithonien sont généralement aquifères à la faveur des réseaux de fissures. De nombreux forages réalisés sur les plateaux sont restés pratiquement secs. En revanche, on trouve de nombreuses sources au contact avec le substratum marneux du Kimméridgien. Le débit de ces sources est souvent limité, sauf lorsqu'elles se manifestent au contact d'accidents majeurs (faille de Trannes).

• Dans l'Yonne (secteur d'Auxerre), le Tithonien est plutôt productif : près de 50 % des sources du secteur ont un débit supérieur 1000 m³/j (MEGNIEN C., 1964 – *Observations hydrogéologiques sur le Sud-Est du Bassin de Paris* – Mémoire du BRGM n° 25).

Une karstification s'observe sur l'axe Auxerre/Bar-sur-Seine, notamment dans l'Aube et la Haute-Marne (Paloc H., 1988. *Evaluation de la probabilité d'existence d'une karstification active dans le calcaire tithonien sous couverture crétacée au nord-ouest du champ de fractures de Soulaines-Dhuys (Aube)*, rapport BRGM n° 87SGN164 STO).

• En Lorraine, le Tithonien alimente les communes du plateau du Barrois, entre la Meuse et la Seine. La lacune d'érosion anté-crétacée (dans les Ardennes et le Barrois) met en contact direct le Tithonien avec les Sables verts du Crétacé, de faible épaisseur, qu'il alimente [rapport BRGM/RP-57519-FR, 2010].

D'une façon générale, les calcaires du Tithonien à l'affleurement sont aquifères et donnent naissance à des sources, à débits variables, lorsqu'ils sont fracturés ou fissurés.

# • Pays de Bray

La bibliographie antérieure à la thèse de Rose-Marie CHEVRIER indiquait, dans le pays de Bray, la possibilité de rencontrer deux aquifère distincts : dans le Tithonien et dans le Crétacé inférieur. Cette thèse montre que la nature de ces terrains favorise les communications entre les deux nappes : les étages du Tithonien supérieur et du Néocomien ne sont séparés par aucun horizon imperméable. Le Néocomien et l'Albien sont quant à eux séparés par le niveau argileux du Barrémien qui forme écran et permet la mise en charge du Tithonien et du Néocomien sous l'Albien.

Le Barrémien ne présente pas un caractère imperméable constant. De nombreuses lentilles de sable et de grès sont autant de zones permettant la circulation des eaux. En outre, dans le Nord-Ouest du Bray, les argiles barrémiennes atteignent la fin de leur extension ; elles disparaissent quelques kilomètres avant que les sables verts ne disparaissent à leur tour. Dans

cette région, le Barrémien peu épais et très sableux n'offre plus d'obstacle à l'écoulement des eaux du Tithonien et du Néocomien qui peuvent dès lors alimenter la nappe albienne.

Les zones du Crétacé inférieur les mieux alimentées par l'aquifère du Tithonien se situent, pour la plus grande partie d'entre-elles, dans les régions pour lesquelles le Barrémien est, soit inexistant, soit très peu épais (Forges-les-Eaux, Beaubec-la-Rosière, Sommery), ou dans les régions très influencées par le rôle des failles (Saint-Sulpice). Au sud de Gournay, les eaux en charge du Tithonien et du Néocomien percolent au travers des horizons sablo-gréseux du Barrémien.

En conclusion, dans le Pays de Bray, les nappes du Jurassique supérieur et du Crétacé inférieur communiquent entre elles et le Tithonien n'est alimenté que par les précipitations.

# 2.3.2 Transmissivités

La transmissivité est de l'ordre de 3,5.10<sup>-6</sup> m<sup>2</sup>/s et 3,5.10<sup>-7</sup> m<sup>2</sup>/s dans le calcaire affleurant au niveau du stockage profond de déchets radioactifs dans la Meuse (ANDRA), ces valeurs étant à prendre comme des maxima pour la partie profonde du Tithonien. [Juignet, 1999].

# 2.4 ALIMENTATION DE LA NAPPE DE L'ALBIEN

L'alimentation de la nappe de l'Albien reste un sujet controversé. On a longtemps admis que l'alimentation de la nappe captive albienne se faisait à partir des affleurements en particulier ceux situés en bordure est et sud-est du bassin (DHYCA - *Contribution à l'étude hydrogéologique de la nappe albienne dans le Bassin de Paris*, rapport SG-RJM, 1965).

On résume ci-après les résultats de 3 autres études.

1) BRGM, 71 SGN 304 HYD, 1971 - Application des méthodes isotopiques et hydrochimiques à l'étude de la nappe de l'Albien du Bassin de Paris.

Cette étude conclut que l'hypothèse de la DHYCA "doit être rejetée au profit de celle qui admet que cette alimentation est essentiellement réalisée à travers le toit peu perméable du réservoir", depuis la Craie. Cette conclusion repose sur les résultats suivants :

- Il n'y a pas d'augmentation régulière de l'âge de l'eau du sud-est au nord-ouest, le long de l'axe Yonne-Seine ; bien au contraire, ces âges sont les plus anciens de ceux observés dans la nappe ;
- Les âges observés aux affleurements de l'Yonne sont très anciens dans la zone de proche captivité ; s'il existe bien de l'eau récemment entrée dans la partie libre de l'affleurement, elle est drainée par l'Yonne ; localement, cette zone constitue pour la nappe un exutoire et non un impluvium ;
- Dans la région de totale captivité, sud-ouest et ouest, les âges observés dans l'aquifère recouvert par 85 m de terrain, dont 15 m de marne peu perméable, sont parmi les plus récents de la nappe captive.

# 2) BRGM/RR-39702-FR, 1997 - Synthèse hydrogéologique du Crétacé inférieur du bassin de Paris.

Les communications entre la Craie du Crétacé supérieur et les sables de l'Albien dépendent de l'imperméabilité des argiles de l'Albien supérieur et des caractéristiques hydrogéologiques de la Craie. La carte d'épaisseur des Argiles du Gault et des Marnes de Brienne (planche 2 du rapport BRGM/RR-39702-FR) montre de fortes variations de part et d'autre d'une ligne Auxerre-Paris-Dieppe :

- Au sud-est de cette ligne, l'épaisseur des marnes et argiles est inférieure à 40 m et, sur une large bande, inférieure à 25 m, à l'exception de l'extrémité sud-est du bassin. De même, au sud-est d'une ligne allant d'Auxerre à Rouen, l'épaisseur des marnes et

argiles est inférieure à 20 m, ce qui facilite les échanges entre les sables de l'Albien et la Craie et les sables du Crétacé supérieur.

- A l'est, dans le secteur compris entre Troyes et Châlons-en-Champagne, l'épaisseur des marnes et argiles est supérieure à 100 m.

La superposition des cartes piézométriques de l'Albien et du Néocomien fournit des informations sur les possibilités d'échange entre l'Albien et le Néocomien (Figure 19). Dans la partie est du bassin, la différence est assez faible entre les courbes piézométriques du Néocomien et celles de l'Albien.



Figure 19 - Superposition des cartes piézométriques de l'Albien et du Néocomien Source : rapport BRGM/RR-39702-FR,1997

 En Ile-de-France, les courbes divergent et la différence de charge atteint jusqu'à 60 m en région parisienne (secteur où la nappe de l'Albien est fortement déprimée sous l'influence des prélèvements) ; la charge du Néocomien est alors supérieure à celle de l'Albien, ce qui favorise l'alimentation de l'Albien par drainance depuis le Néocomien.  Dans le nord du bassin, la superposition des courbes piézométriques de l'Albien et du Néocomien serait un argument pour une alimentation directe de l'Albien par le Néocomien. La carte d'iso-épaisseur des argiles séparant l'Albien du Néocomien confirme cette hypothèse. En effet, au nord, les argiles disparaissent alors que les épaisseurs cumulées de sables de l'Albien et du Néocomien font encore plusieurs dizaines de mètres. Les aquifères de l'Albien et du Néocomien ne forment plus alors qu'un seul et même ensemble.

3) Raoult (1999) – La nappe de l'Albien dans le bassin de Paris, de nouvelles idées pour de vieilles eaux. Thèse de doctorat de l'université Paris VI.

Selon Raoult, la recharge s'effectue par les affleurements sur deux zones : au Sud, d'une part près de Cosne-sur-Loire et d'autre part au Nord-Ouest du Loing ; le Pays de Bray est également une zone de recharge. Il précise également que " la recharge au niveau des affleurements existe mais est très limitée géographiquement, certains affleurements pouvant être des exutoires de la partie captive. ..."

Il y aurait :

- drainance verticale ascendante importante par l'aquifère du Néocomien sous-jacent, hétérogène spatialement et temporellement (de l'ordre de 24 % des prélèvements dans l'Albien en région parisienne);
- drainance verticale ascendante par l'aquifère du Tithonien sous-jacent, par des niveaux semi-perméables ;

La recharge de la partie captive de la nappe à partir de la Craie est négligeable

La nappe de l'Albien dans la vallée de la Seine présente un hydrodynamisme complexe avec des apports des aquifères du Néocomien et de la Craie (apports principalement ascendants)

Les résultats de l'étude hydrochimique sont résumés par la figure 20.



Figure 20 - Zones de l'Albien définies par étude géochimique (Source : Y. Raoult, 1999)

#### 5) En résumé :

| Recharge              | BRGM, 1971<br>(étude isotopique) | BRGM, 1997<br>(Synthèse de<br>l'Albien) | Etude géochimique<br>et modélisation de<br>Y. Raoult, 1999                                 | Modélisation<br>Hydroexpert 2004<br>(bilan 2003) |
|-----------------------|----------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------|
| Par les affleurements | Faiblement                       |                                         | Dominante dans le<br>bilan<br>Pays de Bray,<br>Secteur de<br>Cosne/Loire,<br>N.O. du Loing | Oui, 42 % des<br>entrées                         |
| Depuis la Craie       | Oui,<br>essentiellement          | Oui                                     | Négligeable dans la partie captive                                                         | Oui, 37 % des<br>entrées                         |
| Depuis le Néocomien   |                                  | Oui                                     | Importante                                                                                 | Oui (8%)                                         |
| Depuis le Tithonien   |                                  |                                         | Oui                                                                                        |                                                  |

<u>Remarque</u> : Il est difficile de tirer des conclusions de ces résultats, car les études dont ils sont issus diffèrent sur de nombreux points : techniques isotopiques/géochimiques pour certaines, modélisations hydrodynamiques pour d'autres, et pour celles-ci les modèles diffèrent en structure, en extension, en données de calage (2 chroniques de mesures seulement pour le calage du modèle de Y. Raoult).

# 3 Description du modèle hydrodynamique Hydroexpert-EGIS

#### <u>Références :</u>

Bonnet M. (1999) – Réalisation d'un modèle de gestion des aquifères de l'Albien et du Néocomien. Rapport de 1<sup>ère</sup> phase n°99 64 005 – Hydroexpert.

Bouet Y, Marti A., Bonnet M. (2000) – Réalisation d'un modèle de gestion des aquifères de l'Albien et du Néocomien .Phase 2. Volume 1 : rapport. RP00M040 – Hydroexpert.

Marti A., (2000) - Réalisation d'un modèle de gestion des aquifères de l'Albien et du Néocomien. Rapport de 3<sup>ième</sup> phase. RP00M093 – Hydroexpert.

Floriat S., Guedon G., (2004) – Reprise du modèle de gestion des aquifères de l'Albien et du Néocomien. Phase 1 : mise à jour et reprise du calage du modèle. RPL04M018b – Hydroexpert.

Floriat S. (2005) – Reprise du modèle de gestion des aquifères de l'Albien et du Néocomien. Phase 2 : simulation des scénarios. RPP05M003b – Hydroexpert.

Floriat S. (2006) – Actualisation du modèle de gestion des aquifères de l'Albien et du Néocomien. Phase 2 : simulation des scénarios. RP06M08a – Hydroexpert.

#### 3.1 STRUCTURE ET EMPRISE DU MODÈLE

#### 3.1.1 Les formations prises en compte dans le modèle et leur extension

Le modèle hydrodynamique développé par Hydroexpert avec le code de calcul TALISMAN se compose de **cinq couches** correspondant aux formations suivantes :

- le Crétacé supérieur : Craie du Séno-Turonien et Cénomanien ;
- les Argiles du Gault, qui correspondent aux formations de l'Albien supérieur ;
- les Sables de l'Albien, qui regroupent les trois horizons sableux de l'Albien (sables de Frécambault, sables de Drillon et sables Verts), ainsi que les intercalaires argileux qui les séparent ;
- les Argiles de l'Aptien et du Barrémien ;
- les Sables du Nécocomien.

Le Tithonien n'est pas pris en compte dans ce modèle car il est supposé ne pas contribuer significativement aux échanges de flux (mais ceux-ci existent néanmoins comme le mentionne le descriptif du Tithonien ci-avant, § 2.3). Il constitue alors le substratum imperméable du modèle.

Le domaine modélisé est défini comme " la zone d'extension de l'aquifère de l'Albien, et plus particulièrement comme la partie de l'aquifère susceptible d'être influencée par les prélèvements en région parisienne et donc de concourir à son alimentation ". Le modèle développé s'étend ainsi sur une superficie de 55 615 km<sup>2</sup> et couvre toute la partie centrale du Bassin Seine-Normandie et le tiers sud du bassin de la Somme. Ses limites (figure 21) sont :

- à l'est : les affleurements des sables de l'Albien en bordure orientale du Bassin parisien.
- au sud : la ligne de crête piézométrique qui sépare, au niveau des aquifères supérieurs, les bassins de la Seine et de la Loire. Pour définir cette limite sud, l'hypothèse a été faite que cette ligne de crête piézométrique se répercute sur les aquifères profonds (hypothèse discutable, non retenue dans le modèle BRGM).

- à l'ouest : la limite d'extension des sables de l'Albien en bordure du Perche.
- au nord-ouest : la Manche.
- au nord : les affleurements des sables albiens du Pays de Bray, prolongés par la ligne de crête qui sépare le bassin de la Somme du bassin de l'Oise.



Figure 21 - Extension de l'Albien et du Néocomien dans le modèle HE

Les limites des cinq couches du modèle HE s'inscrivent dans les limites admises pour la couche Albien (couche 3), sauf vers l'est où les couches de l'Aptien-Barrémien se prolongent jusqu'aux affleurements.

La figure 22 présente les extensions géographiques des sables de l'Albien (entité 127AA) et du Néocomien (entité 127AG) telles que définies dans le Référentiel Hydrogéologique Français BDLISA ainsi que l'emprise des couches correspondantes du modèle HE (numéros 3 et 5, respectivement).



Figure 22 - Comparaison de l'emprise des couches « sables de l'Albien » et « Néocomien » du modèle HE avec celle des couches correspondantes du référentiel BDLISA.

L'extension de la couche du Néocomien (rose clair, au SE) se distingue par transparence (rose foncé) sous la couche des sables de l'Albien (bleu).

La figure 23 présente la carte piézométrique de l'Albien établie en 1997 par le BRGM (rapport RR-39702-FR, Vernoux et al. 1997), ainsi que l'emprise de la couche des sables de l'Albien (numéro 3) telle qu'elle est définie dans le modèle HE pour comparaison.



Figure 23 - Comparaison de l'emprise de la couche Albien du modèle HE avec l'extension de la cartographie piézométrique de 1997 Source de la carte piézométrique : rapport BRGM/RR-39702-FR, 1997

#### 3.1.2 Le maillage du modèle et les conditions aux limites

#### 3.1.2.1. Maillage du modèle

Le maillage du modèle (figure 24) est constitué de mailles carrées de 8.1 km de côté, localement subdivisées en mailles de 2.7, 0.9 ou 0.3 km suivant le principe exposé par le schéma ci-dessous :

| 1 | 2 | 3  |    |    |
|---|---|----|----|----|
| 4 | 5 | 6  |    |    |
|   |   | 91 | 92 | 93 |
| 7 | 8 | 94 | 95 | 96 |
|   |   | 97 | 98 | 99 |

Le modèle comporte 24 833 mailles de calcul au total, environ 5 000 par couche.



Figure 24 - Maillage du modèle Hydroexpert

#### 3.1.2.2. Conditions aux limites

Les conditions aux limites introduites dans le modèle HE sont de trois types :

- à charge imposée au toit de la couche 1 (la Craie compacte), le long de la Manche, au Nord du Pays de Bray pour l'Albien, et sur une large partie des affleurements de l'Albien et du Néocomien ;
- 2. à débit imposé sur quelques mailles situées en limite périphérique des couches de l'Albien et du Néocomien (affleurements de l'Auxerrois notamment) ;
- 3. à flux nul sur les limites latérales partout ailleurs.

Pour l'Albien et le Néocomien, ces conditions sont précisées sur la figure 25.



Figure 25 - Conditions aux limites de l'Albien (en haut) et du Néocomien (en bas) dans le modèle HE(Rapport RP00M040, 2000)
Précisions sur la charge imposée au toit de la couche 1 (la craie compacte)

Dans le modèle HE, la Craie compacte correspond à la craie située, soit sous les horizons superficiels plus fissurés de craie et alluvions partout où la craie est affleurante ou en zone alluviale, soit sous les horizons du Tertiaire, au centre du bassin.

Pour justifier une charge imposée **au toit** de cette couche 1, l'argument est le suivant : "*il est* admis que les argiles du Gault et au-dessus les horizons de craie compacte ne peuvent être un obstacle à des échanges avec la nappe de la Craie circulant dans les horizons superficiels les plus fissurés et que, d'autre part, le niveau piézométrique de cet aquifère, qui est très dépendant de la recharge et de ses contacts avec les rivières, ne peut être influencé par celui de l'Albien" (Réalisation d'un modèle de gestion des aquifères de l'Albien et du Néocomien, rapport Hydroexpert 9964005, 1999).

"Autrement dit, on suppose qu'au-dessus de la couche 1 la piézométrie (celle de la Craie fissurée ou du Tertiaire) est constante, ou en tout cas non influencée par les évolutions du niveau de l'Albien; il a donc été décidé de prendre comme donnée de base la carte piézométrique établie par Albinet en 1967. " (Rapport Hydroexpert RP06M08a, 2006).

Cette carte piézométrique a été complétée "*en prenant comme réseau de points de base ceux considérés pour la piézométrie et comme valeur la piézométrie -40 m en zone de plateau, et piézométrie -20 m au droit des vallées* " (rapport Hydroexpert 9964005, 1999).

La carte finale utilisée pour imposer des charges au toit de la couche 1 dans le modèle HE est présentée figure 26.

#### • Précisions sur les charges et débits imposées aux limites latérales

Au niveau de la Manche, la piézométrie de l'Albien a été imposée à 10 m.

Pour les affleurements, dans un premier temps, une condition de charge a été imposée sur les mailles affleurantes de l'Albien et du Néocomien. La valeur imposée par défaut correspondant à la piézométrie établie par le BRGM en 1997 (RR-39702-FR, Vernoux et al. 1997). Puis, lors de la phase finale du projet, ces conditions de charges ont été revues et remplacées partout où cela était nécessaire par une condition de débit (soit aux endroits où l'influence des pompages se faisait ressentir). Le débit imposé retenu par EGIS étant alors celui qui permettait le meilleur calage en régime permanent avec et sans prélèvement (tout en restant hydrogéologiquement raisonnable). Cette démarche permet de garantir que les débits entrants simulés par le logiciel de modélisation n'augmentent pas de façon irréaliste au cas où une importante baisse des niveaux affectait la zone modélisée.

#### Remarque :

Les débits imposés sur des mailles non affleurantes (cas de la région du Perche), également appelés « recharge », correspondent en fait à des débits d'échanges par les limites du modèle.



Figure 26 - Carte piézométrique utilisée pour imposer des charges au toit de la couche 1 du modèle HE (Rapport Hydroexpert RP00M040, 2000)

# 3.2 RÉSULTATS OBTENUS APRÈS CALAGE

Le modèle initial (2000) a été repris en 2004 et actualisé en 2006. L'actualisation n'ayant pas remis en cause les résultats de 2004 (*" Au regard des mises à jour effectuées et de la comparaison des historiques avec les nouvelles chroniques de niveau, le calage du modèle n'est pas détérioré et ne nécessite donc pas de reprise"* - Hydroexpert, 2006, RP06M08a), ce sont les résultats présentés dans le rapport de 2004 qui sont repris dans ce qui suit.

#### 3.2.1 Piézométrie et bilans de flux en régime permanent

Très peu d'informations sont disponibles pour définir la situation piézométrique naturelle de l'Albien. Raoult a établi une carte en 1999 censée représenter cette situation, mais cette carte est sujette à caution car basée sur très peu de points (26 niveaux statiques). EGIS a ainsi considéré que la seule information fiable sur la piézométrie naturelle de l'Albien est la cote estimée à Paris lors de l'implantation du premier puits à l'Albien en 1841 : le puits Grenelle. L'objectif de cette première phase de calage en permanent a donc été pour EGIS de reproduire un niveau piézométrique de l'ordre de 120 m NGF à Paris, ainsi qu'une dépression piézométrique au droit de la vallée de la Seine à l'Ouest de Paris (trait reconnu de la piézométrie de l'Albien).

La piézométrie obtenue après calage final en régime permanent naturel est présentée par la figure 27 pour l'Albien et le Néocomien.

|                                                                    | ENTREE |        | SORTIE                    |        | TOTAL |        |
|--------------------------------------------------------------------|--------|--------|---------------------------|--------|-------|--------|
|                                                                    | L∕s    | Mm³/an | L/s                       | Mm³/an | L/s   | Mm³/an |
| Affleurement Est (charge imposée)                                  | 57     | 1.80   | -164                      | -5.17  | -107  | -3.37  |
| Affleurement du S-E (débit imposé)                                 | 216    | 6.81   | uga seba <b>0</b> ses ave | 0      | 216   | 6.81   |
| Affleurements Nord du Pays de Bray<br>(charge imposée)             | 38     | 1.20   | -50                       | -1.58  | -12   | -0.38  |
| Affleurements Sud du Pays de Bray<br>(débit imposé et débordement) | 343    | 10.82  | -269                      | -8.48  | 74    | 2.33   |
| Recharge par le Cénomanien du Perche<br>(débit imposé)             | 157    | 4,95   | 0                         | 0      | 157   | 4.95   |
| Manche (charge imposée)                                            | 0      | 0      | -52                       | -1.64  | -52   | -1.64  |
| Echange avec la Craie                                              | 508    | 16.02  | -894                      | -28.19 | -386  | -12.17 |
| Echange avec le Néocomien                                          | 119    | 3.75   | -9                        | -0.28  | 110   | 3,47   |
| TOTAL                                                              | 1438   | 45.35  | -1438                     | -45.35 | 0     | 0      |

L'Albien reçoit 654l/s par recharge sur les affleurements, soit 45% de son bilan total.

Une parte des apports provient des aquifères adjacents par drainance : 119 l/s du Néocomien, 157 l/s du Cénomanien sableux et 508 l/s de la Craie (quand elle se trouve en position piézométrique haute).

Les sorties se font par la Manche et les affleurements en zone basse de l'Est et du Pays de Bray, ainsi que vers la Craie quand elle est en position basse.

Tableau 2 – Bilan des flux en régime permanent dans le modèle HE (Rapport RPL04M018b, 2004)



Figure 27 - Piézométrie simulée de l'Albien (haut) et du Néocomien (bas) en régime permanent naturel après calage (Rapport RPL04M018b, 2004)

# 3.2.2 Piézométrie et bilans de flux en régime transitoire

Les chroniques piézométriques qui ont été utilisées pour le calage en transitoire sont au nombre de 14 (Tableau 3). Certaines de ces chroniques concernent des captages, c'est le cas par exemple des points Orsay, Aulnay-sous-Bois, Achères, Blomet et Coudray-Montceaux.

| Nom de l'ouvrage                 | Département | X (km)  | Y (km)   |
|----------------------------------|-------------|---------|----------|
| Orsay                            | 91          | 588.915 | 2411.306 |
| Aulnay-sous-Bois                 | 93          | 611.287 | 2438.491 |
| Achères                          | 78          | 582.828 | 2440.377 |
| Blomet                           | 75          | 597.899 | 2427.185 |
| L'Isle-Adam                      | 95          | 590.743 | 2456.454 |
| Crécy-la-Chapelle                | 77          | 642.614 | 2429.544 |
| La Houssaye-en-Brie              | 77          | 640.533 | 2418.614 |
| Paris XIII (Sucrerie Say F2)     | 75          | 602.066 | 2426.069 |
| Mantes la Jolie - Gassicourt     | 78          | 553.567 | 2445.338 |
| Rocquencourt                     | 78          | 582.740 | 2425.482 |
| La Grande-Paroisse               | 77          | 643.339 | 2376.428 |
| Montbouy - Château de Salleneuve | 45          | 635.590 | 2320.130 |
| Bougligny                        | 77          | 623.101 | 2354.960 |
| Coudray-Montceaux (Néocomien)    | 91          | 610.564 | 2396.740 |

Tableau 3 - Chroniques piézométriques utilisées dans le modèle HE pour le calage en régime transitoire.(Rapport RPL04M018b, 2004)

# Bilans des flux

|                                                                         | ENTREE         |                       | SORTIE |        | TOTAL |        |
|-------------------------------------------------------------------------|----------------|-----------------------|--------|--------|-------|--------|
|                                                                         | L/s            | Mm³/an                | L/s    | Mm³/an | Ľs    | Mm³⁄an |
| Affleurement Est (charge imposée)                                       | 64             | 2.02                  | -126   | -3.97  | -62   | -1.96  |
| Affleurement du S-E (débit imposé)                                      | 216            | 6,81                  | 0      | 0.00   | 216   | 6.81   |
| Affleurements Nord du Pays de Bray<br>(charge imposée)                  | 66             | 2.08                  | -15    | -0.47  | 51    | 1.61   |
| Affieurements Sud du Pays de Bray<br>(débit imposé et débordement)      | 344            | 10.85                 | -169   | -5.33  | 175   | 5.52   |
| Recharge par le Cénomanien du Perche<br>(débit imposé)                  | 158            | 4.98                  | 0      | 0      | 158   | 4.98   |
| Manche (charge imposée)                                                 |                | 0.00                  | -49    | -1.55  | -49   | -1.55  |
| Echange avec la Craie<br>Dont emmagasinement de la Craie<br>et du Gauit | 602<br>1<br>11 | 18.98<br>0.03<br>0.35 | 0      | 0      | 0     | 0      |
| Echange avec le Néocomien<br>Dont emmagasinement de l'Aptien            | 138<br>1       | 4.35                  | -7     | -0.22  | 131   | 4.13   |
| Prélèvements à l'Albien                                                 |                | 0.00                  | -561   | -17.69 | -561  | -17.69 |
| Emmagasinement Albien                                                   | 36             | 1.14                  | 0      | 0.00   | 36    | 1.14   |
| TOTAL                                                                   | 1637           | 51.62                 | -1637  | -51.62 | 0     | 0      |

Le tableau 4 fournit un bilan des flux calculé en 2003 pour l'Albien.

On constate que les bilans sont peu différents des bilans en régime permanent. Les débits provenant des emmagasinements ne représentent que quelques pour cents des débits circulant, en particulier :

- 2% des flux provenant du Gault et de la Craie sont dus à leur effet capacitif.
- 1% des flux provenant de l'Aptien sont libérés par emmagasinement.
- 2% des flux transitant par l'Albien sont libérés par emmagasinement, soit 6,4 % des prélèvements.

Tableau 4 - Bilan des flux en régime transitoire (année 2003) dans le modèle HE (Rapport RPL04M018b, 2004)

# Cartes piézométriques

Pour l'Albien et le Néocomien, les cartes piézométriques issues de la modélisation pour l'année 2005 sont présentées aux figures 29 et 30.



Figure 28 – Piézométrie simulée de l'Albien en 2005 (modèle HE) Rapport (RP06M08a, 2006)



Figure 29 - Piézométrie simulée du Néocomien en 2005 (modèle HE) Rapport (RP06M08a, 2006)

# 3.2.3 Paramètres hydrodynamiques

# Transmissivités

Les champs de transmissivité de l'Albien et du Néocomien obtenus après calage final sont présentés à la figure 30. Les distributions des transmissivités sont cohérentes avec les cartes établies par interpolation par Vernoux et al. (1997) et Raoult (1999) (cf. figures 13 et 14).

La répartition des perméabilités verticales des couches « semi-perméables » (argiles du Gault et Aptien/Barrémien) obtenue après calage final est présentée à la figure 31.

#### Coefficients d'emmagasinement

Pour les couches Craie compacte, Aptien/Barrémien et Néocomien, les coefficients d'emmagasinement intrinsèques sont identiques, autour de 10<sup>-6</sup> m<sup>-1</sup>.



Figure 30 - Répartition des transmissivités de l'Albien et du Néocomien (de haut en bas) après calage du modèle HE - (Rapport RPL04M018b, 2004)



Figure 31 - Répartition de la perméabilité verticale des argiles du Gault et de l'Aptien/Barrémien (de haut en bas) après calage du modèle HE - (Rapport RPL04M018b, 2004)

# 4 Description du nouveau modèle hydrodynamique de l'Albien-Néocomien

# 4.1 PRINCIPALES DIFFÉRENCES PAR RAPPORT AU MODÈLE HE

Le modèle BRGM se distingue du modèle HE par les principaux points suivants :

- adjonction d'une couche supplémentaire, le Tithonien, formation reconnue comme contribuant à l'alimentation par drainance du Néocomien sus-jacent (voir la synthèse ciavant);
- extension du modèle vers les affleurements du Nord-Est et vers le bassin Loire-Bretagne, jusqu'au sud de la Loire (à la hauteur de Bourges) ;
- suppression de la couche "Craie compacte" ;
- suppression des niveaux imposés dans la partie centrale de la couche Craie (non couverte par la carte piézométrique d'Albinet);
- un maillage régulier avec des mailles de 2 km de côté ;
- 30 points de suivi des niveaux pour le calage (au lieu de 14 pour le modèle HE).

# 4.2 UN MODÈLE À 6 COUCHES

#### 4.2.1 Les différentes couches du modèle

**Six couches, dont quatre aquifères,** sont prises en compte dans le nouveau modèle hydrodynamique de l'Albien/Néocomien (figure 32) :

- le groupement Craie+Cénomanien (par la suite le nom de la couche sera abrégé en "Craie"), qui correspond aux formations crayeuses du Crétacé supérieur relayées par les sables du Cénomanien au Sud-Ouest du Bassin de Paris, sables qui alimentent l'Albien par drainance;
- les argiles du Gault, qui correspondent aux formations de l'Albien supérieur ;
- les sables de l'Albien, qui regroupent les trois horizons sableux de l'Albien (sables de Frécambault, sables des Drillons et sables Verts) ainsi que les intercalaires argileux qui les séparent ;
- les argiles de l'Aptien et du Barrémien ;
- les sables du Nécocomien ;
- les calcaires du Tithonien.

Les marnes du Kimméridgien constituent le substratum du nouveau modèle. Le toit du modèle correspond quant à lui à la cote topographique quand les formations affleurent et aux cotes du toit des différentes couches quand elles sont sous recouvrement.

# 4.2.2 Extension des différentes couches et maillage du modèle

Le modèle s'étend jusqu'à la Manche vers le nord-ouest (limite à flux sortant) et jusqu'aux limites d'extension des entités BDLISA vers le Sud (région Centre) et l'Est et le Nord-Est (départements des Ardennes et de l'Aisne).

Les affleurements sont non seulement des zones d'alimentation (ou de "débordement") mais aussi des zones de mise en charge.

Les figures 33 et 34 présentent l'emprise des couches de l'Albien et du Néocomien.

| CENOMANIEN   | Craie/Sables/Gaizes                                                          | Couche 1 : « Craie et sables du Cénomanien » |  |  |
|--------------|------------------------------------------------------------------------------|----------------------------------------------|--|--|
|              | Marnes de Brienne                                                            | Couche 2 : « Argiles du                      |  |  |
|              | Argiles du Gault                                                             | Gault »                                      |  |  |
| ALBIEN       | Sables de<br>Frécambault                                                     |                                              |  |  |
|              | Argiles Tégulines                                                            | Coucho 3 - « Albion »                        |  |  |
|              | Sables des Drillons                                                          | Couche 5. « Aibleil »                        |  |  |
|              | Argiles de l'Armance                                                         |                                              |  |  |
|              | Sables verts s.s.                                                            |                                              |  |  |
| APTIEN       | Complexe argilo-<br>sableux                                                  |                                              |  |  |
| BARREMIEN    | Argiles plastiques et<br>marnes sableuses,<br>bancs de grès<br>lenticulaires | Couche 4 :<br>« Aptien/Barrémien »           |  |  |
|              | Sables de Perthes                                                            |                                              |  |  |
|              | Argile                                                                       |                                              |  |  |
|              | Sables de<br>Châteaurenard                                                   |                                              |  |  |
|              | Argile                                                                       | Couche 5 :                                   |  |  |
| HAUTERIVIEN  | Sables de Château-<br>Landon                                                 |                                              |  |  |
|              | Argile                                                                       | « Néocomien »                                |  |  |
|              | Grès du Puiselet                                                             |                                              |  |  |
|              | Argile                                                                       |                                              |  |  |
| VALANGINIEN  | Sables de Griselles                                                          |                                              |  |  |
|              | Argile                                                                       |                                              |  |  |
| TITHONIEN    | Calcaire                                                                     | Couche 6 : « Tithonien »                     |  |  |
| KIMMERIDGIEN | Marnes                                                                       | Substratum du modèle<br>révisé               |  |  |

Figure 32 - Série lithostratigraphique du Crétacé inférieur du centre du Bassin de Paris et couches modélisées.

Les couches aquifères sont en bleu et les différences avec le modèle HE sont en rouge.



*Figure 33 - Extension de la couche "Albien" du nouveau modèle hydrodynamique* Le tracé figuré en rouge correspond aux limites de la couche 3 (Albien) du modèle HE



Figure 34 - Extension de la couche "Néocomien" du nouveau modèle hydrodynamique Le tracé figuré en rouge correspond aux limites de la couche 5 (Néocomien) du modèle HE.

Le maillage de ce nouveau modèle est constitué de mailles carrées de 2 km de côté. Il y a 102 058 mailles de calcul au total dont, pour l'Albien, le Néocomien et le Tithonien :

|           | Nombre de mailles | Superficie (km <sup>2</sup> ) |  |  |
|-----------|-------------------|-------------------------------|--|--|
| Albien    | 18 787            | 75 148                        |  |  |
| Néocomien | 13 434            | 53 736                        |  |  |
| Tithonien | 18702             | 74 808                        |  |  |

Tableau 5 – Maillage du modèle
# 4.3 MODÈLE GÉOLOGIQUE

La construction du modèle géologique s'est appuyée :

- sur le modèle géologique réalisé par le BRGM en 1997 et utilisé pour la construction du modèle hydrodynamique HE en 1999,
- sur de nouveaux logs géologiques,
- sur le référentiel hydrogéologique BDLISA qui a fourni l'extension actualisée des couches du modèle,
- sur le modèle géologique tridimensionnel du Tertiaire du Bassin parisien (2010) pour définir le toit de la Craie (amélioré localement du fait de nouveaux sondages non disponibles à l'époque de ce modèle), en l'étendant jusqu'aux nouvelles limites.

1950 sondages ont été recensés dans la nouvelle emprise du modèle, dont 1094 déjà utilisés pour la construction du modèle géologique de 1997 (sur ces 1094 sondages, 80 ont été éliminés, considérés actuellement comme peu fiables).

Pour étendre le modèle jusqu'aux affleurements, 3460 points des cartes géologiques ont été échantillonnés tous les 4 km.

Outre la nouvelle extension des couches, quelques modifications ont été apportées à l'ancien modèle :

- l'approfondissement local des formations au niveau de l'est et du sud du bassin de l'Avre ;
- des corrections du côté du Havre où le modèle initial a été rectifié à l'aide de quelques nouveaux sondages validés.

Pour le Tithonien, 5000 logs validés ont été extraits et une carte des épaisseurs du Tithonien a été construite en sélectionnant tous les forages intersectant entièrement le Tithonien. Il n'y a pas de Tithonien reconnu à l'ouest de la zone modélisée (en particulier dans le secteur du Havre).

L'ensemble de ces informations, anciennes et nouvelles, a été intégré dans le logiciel GDM (BRGM) et une série d'interpolations par krigeage, sur une grille de 2 km  $\times$  2 km, a permis de construire le toit et le mur de chacune des couches du modèle.

Les cartes du toit et des épaisseurs de l'Albien et du Néocomien sont présentées aux figures 35 à 39. Pour les autres couches, ces cartes sont reportées en annexe 2.

La figure 39 présente une coupe transversale dans le modèle géologique et la figure 40 montre une vue 3D de l'ensemble des formations modélisées.



Figure 35 – Carte du toit de l'Albien



Figure 36 – Carte des épaisseurs de l'Albien





Figure 37 – Carte du toit du Néocomien



Figure 38 – Carte des épaisseurs du Néocomien



Distribution de fréquence





Figure 39 - Coupe réalisée dans le modèle géologique (logiciel GDM)



Figure 40 - Vue 3D du modèle géologique (logiciel GDM)

Le modèle géologique a été ensuite transféré dans le logiciel MARTHE. La figure 41 présente une coupe EW passant par Paris réalisée avec le logiciel MARTHE.



Figure 41 - Coupe EW du nouveau modèle passant par Paris (logiciel MARTHE)

## 4.4 CONDITIONS AUX LIMITES ET ZONES DE RECHARGE

Les conditions aux limites introduites dans le nouveau modèle sont de 3 types :

- 1) à charge imposée :
  - sur une partie de la couche 1 (la Craie),
  - le long de la Manche pour toutes les couches aquifères dont c'est en principe l'exutoire,
  - sur quelques mailles de cours d'eau dans les affleurements de l'Albien au SE.
- 2) à flux nul sur les limites latérales partout ailleurs ;
- 3) à "débordement" au niveau des affleurements des formations.

## 4.4.1 Charges imposées sur la couche 1 (la Craie)

Dans le nouveau modèle, la couche n°1 correspond à la craie du Crétacé supérieur dans son ensemble, dont une partie affleure et l'autre est sous recouvrement tertiaire (centre du BP). Les niveaux ont été imposés (Figure 42) :

- sur l'emprise de la carte d'Albinet (1967) ;
- sur une portion de limite au S.O. d'Orléans (voir figure 44). La Craie se prolonge au-delà de cette limite, mais cette zone n'est pas prise en compte dans le modèle ;
- sur les affleurements de la Craie situés dans la zone interne (non représentés sur la carte de M. Albinet), en particulier au niveau de Paris et le long de la Seine en allant vers l'Ouest (mailles appelées "supplémentaires" dans la légende de la figure 42).

La carte piézométrique établie par Albinet en 1967 permet de définir dans la couche n°1 un état piézométrique moyen supposé peu variable au regard de l'étendue de la période de modélisation (1841-2012).



Figure 42 - Cartographie de la piézométrie de la Craie (établie par M. Albinet en 1967).

Sous ArcGis, les isopièzes ont été discrétisées en points à partir desquels une interpolation par krigeage a été effectuée (figure 43) sur une grille correspondant à celle du modèle (2km×2 km).



Figure 43 - Piézométrie krigée de la Craie (issue de la carte d'isovaleurs de M. Albinet).

Les valeurs krigées ont ensuite été introduites dans la couche n°1 du modèle sous MARTHE en tant que niveaux imposés (figure 44).



Figure 44 - Localisation des zones à potentiel imposé sur la couche 1 (en gris). Les secteurs figurés en bleu sont libres de toute condition.

#### 4.4.2 Charges imposées sur les limites latérales

Comme dans le modèle HE, la piézométrie imposée au niveau de la Manche dans l'Albien et le Néocomien est de 10 m. C'est aussi le cas pour le Tithonien.

En outre, dans l'Albien, quelques mailles le long de l'Yonne et de l'Armançon sont à niveau imposé (figure 45).



Figure 45 – Localisation des niveaux imposés dans l'Albien

## 4.4.3 Zones de recharge

A l'exception de la zone où la piézométrie est imposée (en particulier sur une grande partie de la couche "Craie"), les zones de recharge correspondent aux affleurements des formations aquifères.

Dans le cas de l'Albien, 3 zones ont été distinguées dans ces affleurements (figure 46), numérotées 31 (affleurements à l'Est et au Sud), 33 (Pays de Bray), et 34 (petits affleurements en limite ouest, dans la région du Havre et au Sud du Havre).



Figure 46 – Zones de recharge (et/ou débordements) de l'Albien

La figure 47 permet de repérer les affleurements des différentes formations dans le Pays de Bray.



Figure 47 – Zones de recharge/débordement dans le Pays de Bray

Très généralement, la recharge est un paramètre de calage. Les affleurements sont alors partitionnés en différents secteurs correspondant chacun à une zone climatique (définie par une station météorologique par exemple). On introduit alors dans chaque secteur une valeur de recharge *a priori* pour démarrer le processus de calage. Cette valeur *a priori* est issue soit d'une modélisation globale préalable (le modèle global pouvant d'ailleurs être couplé au modèle hydrodynamique comme dans le logiciel MARTHE), soit d'un calcul classique de pluie efficace. Dans ce dernier cas, le processus de calage permettra d'estimer la recharge recherchée.

## Remarque

Très rapidement, les simulations ont montré, lors du calage, que les valeurs de pluie efficace de 150 à 250 mm que l'on pouvait introduire *a priori* dans les zones d'affleurement (figure 48) devaient être fortement réduites, d'un facteur 4 à 5 (cf. chapitre 6).



Figure 48 - Distribution spatiale des pluies efficaces : moyennes sur 1981-2010 ( données de la chaîne SIM)

# 5 Actualisation des données sur la période 2006-2014

## 5.1 PRÉLÈVEMENTS

## 5.1.1 Recensement des forages

Les prélèvements sont introduits dans le modèle sur la période 1841-2012. Les historiques de débit disponibles dans le modèle hydrodynamique développé par EGIS ont été complétés et actualisés. Les nouvelles données proviennent de :

- l'Agence de l'Eau Seine-Normandie (AESN),
- la DRIEE lle-de-France pour les prélèvements en lle-de-France,
- l'Agence de l'Eau Loire-Bretagne pour les puits situés en région Centre et à l'extérieur de l'emprise du Bassin Seine-Normandie.

Un important travail de géo-référencement et de tri a dû être mené sur les données fournies par l'AESN préalablement à leur introduction dans le modèle (une partie de ces données ne concerne pas les nappes de l'Albien et du Néocomien mais la nappe de la Craie et les alluvions des cours d'eau, plus largement exploitées).

Lors de cette phase préliminaire, des différences de volumes annuels extraits ont été constatées entre les données de l'Agence et celles de la DRIEE (ex. du puits d'Andrésy : 01528X-0002, tableau 6). Dans ces cas, les volumes DRIEE ont été privilégiés car ils s'avèrent plus cohérents avec les valeurs déjà renseignées par EGIS sur la période 1841-2005.

| Année de prélèvement | Volume AESN (m3) | Volume DRIEE (m3) |
|----------------------|------------------|-------------------|
| 2000                 | 1 209 909        | 475 227           |
| 2001                 | 1 209 187        | 602 358           |
| 2002                 | 1 365 251        | 609 862           |
| 2003                 | 1 441 187        | 639 772           |
| 2004                 | 1 477 848        | 739 183           |
| 2005                 | 1 490 914        | 732 839           |
| 2006                 | 1 248 974        | 607 994           |
| 2007                 | 1 223 485        | 661 994           |
| 2008                 | 385 752          | 695 757           |
| 2009                 | 715 351          | 837 179           |
| 2010                 | 673 495          |                   |
| 2011                 | 709 249          |                   |
| 2012                 |                  | 711 955           |

Tableau 6- Volumes prélevés au puits d'Andrésy (01528X-0002) sur la période 2000-2012 : comparaison des volumes AESN et DRIEE.

Sur la période 2008-2011, 79% des forages de l'AESN sont attribués à la masse d'eau « Albien-Néocomien captif-HG218 » ; l'information associée a permis de rattacher la plupart des points de prélèvements dans ces nappes captives à un indice BSS et ainsi de les géoréférencer.

Par contre, dans la partie libre des nappes (correspondant aux masses d'eau HG214 à HG217, *Albien-Néocomien libre*), l'attribution des prélèvements à l'Albien et au Néocomien reste incertaine. De nombreux points attribués à l'Albien captent en fait les alluvions des cours d'eau ou la Craie.

Un travail de vérification systématique doit être entrepris, en exploitant par exemple les données sur les teneurs en ammonium et en fer généralement beaucoup plus élevées dans l'Albien-Néocomien que dans la craie). Les volumes prélevés (2008 à 2011) sur les points recensés n'ont donc pas été pris en compte dans le modèle. Une introduction dans le modèle des points les moins douteux a montré qu'il n'y avait pas d'impact sur la partie captive des nappes. Dans la partie libre, les débordements, de façon logique, diminuent (des précisions sont fournies au chapitre 6, § 6.2.7).

Les forages introduits dans le modèle sont au nombre de 91, 55 en Île-de-France et 36 hors de l'Île-de-France (leur liste est fournie en annexe), mais seulement deux concernent le Néocomien : il s'agit des captages de Bruyères-le-Châtel (02571X-0027) et Coudray-Montceaux (02574X-0108). Parmi ces forages, 19 n'étaient pas considérés dans le modèle EGIS, car situés pour la plupart à l'extérieur de l'emprise du modèle développé à l'époque.

Deux de ces forages sont actuellement des forages géothermiques (AGF B20 Mirabeau, 0183-6A-0572/B20 et AGF B16 Cristal, 0183-6A-0571/B16, fonctionnant en doublet, donc sans prélèvement net).

## 5.1.2 Volumes prélevés

L'évolution des volumes d'eau prélevés dans les nappes de l'Albien et du Néocomien sur la période 1841-2012 est représentée sur la figure 49 : il y a eu une forte évolution depuis 1841 (date de mise en service du forage de Grenelle : 0183-6B-0047). De nombreux forages ont été réalisés dans les années 1930 (figure 50) avant que des mesures ne soient prises pour limiter les prélèvements et protéger la ressource (décret-loi de 1935).

Les volumes prélevés dans la nappe de l'Albien sont en moyenne sur la période 2010-2012 de **17 millions de m<sup>3</sup> par an** (17 199 165 m<sup>3</sup>, moyenne sur 2010, 2011, 2012, tableau 7 cidessous), dont 78% proviennent de la région Ile-de-France.

|      | AI       | bien       | Néocomien | Total IDF<br>(Albien + Néocomien) | Total Albien<br>Néocomien |
|------|----------|------------|-----------|-----------------------------------|---------------------------|
|      | en IDF   | 13 171 374 | 1 199 998 | 14 371 371                        |                           |
| 2010 | hors IDF | 3 961 802  |           |                                   | 18 333 173                |
|      | Total    | 17 133 176 |           |                                   |                           |
|      | en IDF   | 13 410 646 | 924 983   | 14 335 629                        |                           |
| 2011 | hors IDF | 3 473 727  |           |                                   | 17 809 356                |
|      | Total    | 16 884 373 |           |                                   |                           |
|      | en IDF   | 13 709 072 | 911 240   | 14 620 312                        |                           |
| 2012 | hors IDF | 3 870 874  |           |                                   | 18 491 186                |
|      | Total    | 17 579 946 |           |                                   |                           |

Tableau 7 – Volumes prélevés dans l'Albien et le Néocomien en 2010, 2011 et 2012

Contrairement à l'Albien, le Néocomien n'est exploité que depuis une trentaine d'années. Deux puits exploitent actuellement cette nappe: Bruyères-le-Châtel et Coudray-Montceaux. Les volumes prélevés sont actuellement de l'ordre de **1 Mm<sup>3</sup> par an** (1 012 000 m<sup>3</sup>, moyenne sur 2010, 2011, 2012, tableau 7). La localisation des points de prélèvements introduits dans le modèle BRGM est précisée par les figures 51 et 52.



Figure 49 - Évolution des volumes prélevés dans les nappes de l'Albien et du Néocomien sur la période 1841-2012.



Figure 50 - Nombre de puits exploitant les nappes de l'Albien et du Néocomien sur la période 1841-2012.

N.B. : Seuls les puits en activité (volume non nul) sont comptabilisés sur cette figure, soit une soixantaine de puits exploitant l'Albien depuis 2001.



Figure 51 - Prélèvements introduits dans le modèle BRGM pour les nappes de l'Albien et du Néocomien.



Figure 52 - Prélèvements introduits dans le modèle BRGM pour les nappes de l'Albien et du Néocomien (zoom sur la région Ile-de-France).

## Quelques dates dans l'histoire de l'exploitation de l'Albien

On trouvera dans l'ouvrage suivant un historique très détaillé sur le puits artésien de Grenelle ainsi que de nombreux commentaires techniques :

Lemoine P., Humery R., Soyer R. (1939) – *Les forages profonds du Bassin de Paris, la nappe artésienne des sables Verts.* Mémoire du Muséum National d'Histoire naturelle, Nouvelle série, Tome XI, 700 p.

## • 26 février 1841, le forage de Grenelle est atteint et l'eau jaillit.

Ci-dessous, un passage (en italique) sur l'évolution du débit du puits depuis le jaillissement de l'eau (pages 142,143,144) :

"Dans les 24 heures qui suivirent le jaillissement et malgré la grande masse de sable entraînée, le puits de Grenelle débita 4 000 m<sup>3</sup> par 24 heures, régime qu'il conserva quelque temps". Mais, après l'accident survenu au tubage, le débit commença à décroître. Le puits entraînait toujours des matières en suspension qu'on ne réussit à éliminer que bien plus tard."

Ce n'est que 3 ans plus tard que les problèmes de turbidité furent réglés (février 1844). "Par la suite, le débit était régularisé et l'eau parfaitement limpide, sauf quelques remontées accidentelles de sable, de pyrite et d'argile."

## Septembre 1861, mise en service du puits de Passy – 1910, fin de l'artésianisme.

"...Le débit du puits de Grenelle varia peu jusqu'en 1861, 900 à 1000 m<sup>3</sup> par 24 heures. Le 24 septembre 1861, le puits de Passy fut mis en service. Le débit du puits de Grenelle fut influencé 24 heures après et il ne cessa de décroître ensuite... Il fut encore influencé par le percement du puits de la place Hébert, et en décembre 1887, deux mois après le percement de ce dernier il était tombé à 250 m<sup>3</sup>. Il augmenta cependant un peu, et de 1898 à 1903, il fournit encore 410 m<sup>3</sup> par 24 heures. Le jaillissement cessa vers 1910...".

## • 1935 : Décret-loi réglementant l'exploitation de l'Albien

Extait du site : http://drieeif-eaux-souterraines.brgm.fr/Nappe\_Albien.htm?from=c

"En 1930, les volumes annuels prélevés atteignirent 34 millions de m3 dans la nappe de l'Albien et la baisse du niveau de la nappe (74 mètres entre 1861 et 1934) fut telle que certains puits devinrent inexploitables. Dans la région parisienne, la surface piézométrique a montré une grande zone déprimée due à la surexploitation. En 1935, l'exploitation a été limitée en lle-de-France par un décret soumettant à autorisation préalable tous les forages de plus de 80 mètres de profondeur. Les volumes extraits chutent alors rapidement, mais la stabilisation des niveaux est lente à s'établir et la baisse, bien que ralentie, se poursuit. En 1979, les eaux de l'Albien ont été réservées pour l'utilisation en eau potable et le volume (annuel) de prélèvement est limité à 18 Mm3 en Ile-de-France. Le SDAGE Seine–Normandie, approuvé en 1996, a réaffirmé l'importance stratégique de l'Albien et du Néocomien comme ressource en eau potable de secours ultime. Des difficultés d'application du SDAGE dans sa version de 1996 ont nécessité sa révision."

## 5.1.3 Forages inclus dans le domaine modélisé

Les forages introduits dans le modèle sont listés dans les tableaux 8 et 9. Les forages y sont classés par ordre alphabétique sur leur désignation et par département. L'implantation dans le maillage y est indiquée (numéros de ligne et de colonne, surlignées en jaune quand plusieurs points sont dans la même maille.)

Au total, il y a 55 points de prélèvements en IDF (49 mailles) et 36 points hors IDF (35 mailles), soit un total de 91 points (dans 84 mailles).

En 2012, les prélèvements recensés concernent 63 forages : 30 en IDF et 33 hors IDF.

| X_L2e_m | Y_L2e_m  | Désignation_du_forage                                                                                                                                                  |    | Colonne | Ligne |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------|-------|
| 595.973 | 2427.865 | AGF B16 Tour Cristal                                                                                                                                                   |    | 82      | 78    |
| 595.656 | 2427.462 | AGF B20 Tour Mirabeau                                                                                                                                                  |    | 82      | 78    |
| 597.920 | 2426.200 | GRENELLE                                                                                                                                                               |    | 83      | 78    |
| 598.166 | 2427.482 | HENRI QUEUILLE - SAGEP                                                                                                                                                 | 75 | 84      | 78    |
| 601.200 | 2425.500 | La Butte aux Cailles Place Paul Verlaine : Paul Verlaine -<br>SAGEP depuis 2001<br>+ un autre puits BUTTE-AUX-CAILLES exploité depuis<br>1905-2000 sur la même cellule |    | 85      | 79    |
| 601.184 | 2425.477 | PAUL VERLAINE – SAGEP                                                                                                                                                  | 75 | 85      | 79    |
| 603.922 | 2430.096 | MENILMONTANT - SAGEP                                                                                                                                                   | 75 | 86      | 76    |
| 595.507 | 2429.666 | Passy /Fontaine Lamartine - SAGEP                                                                                                                                      | 75 | 82      | 77    |
| 595.697 | 2429.186 | RADIO FRANCE                                                                                                                                                           | 75 | 82      | 77    |
| 602.180 | 2426.100 | SAY I (raff.)                                                                                                                                                          | 75 | 86      | 78    |
| 601.831 | 2432.691 | SQUARE DE LA MADONNE - SAGEP                                                                                                                                           | 75 | 85      | 75    |
| 605.620 | 2425.600 | VINCENNES                                                                                                                                                              | 75 | 87      | 79    |
| 623.101 | 2354.960 | BOUGLIGNY - Syndicat plateau Gâtinais                                                                                                                                  | 77 | 96      | 114   |
| 640.512 | 2418.585 | LA HOUSSAYE-EN-BRIE                                                                                                                                                    | 77 | 105     | 82    |
| 582.828 | 2440.377 | ACHERES – SNCF                                                                                                                                                         |    | 76      | 71    |
| 580.486 | 2443.669 | ANDRESY – SIDEC                                                                                                                                                        |    | 75      | 70    |
| 564.100 | 2436.150 | AULNAY - SUR - MAULDRE                                                                                                                                                 |    | 67      | 73    |
| 566.330 | 2426.960 | BEYNES - B13 bis + B13 (débits négligeables)                                                                                                                           | 78 | 68      | 78    |
| 566.360 | 2427.420 | BEYNES - B31                                                                                                                                                           | 78 | 68      | 78    |
| 564.750 | 2427.980 | BEYNES - B34                                                                                                                                                           |    | 67      | 78    |
| 544.439 | 2448.787 | BONNIERES SUR SEINE                                                                                                                                                    | 78 | 57      | 67    |
| 584.331 | 2430.421 | BOUGIVAL - SIGSEVESC                                                                                                                                                   | 78 | 77      | 76    |
| 578.340 | 2438.870 | CARRIERES - SOUS - POISSY                                                                                                                                              | 78 | 74      | 72    |
| 583.004 | 2433.497 | LE PECQ / SAINT GERMAIN - LE                                                                                                                                           | 78 | 76      | 75    |
| 586.600 | 2438.500 | MAISONS-LAFFITTE - F3 + F4                                                                                                                                             | 78 | 78      | 72    |
| 553.570 | 2445.340 | MANTES LA JOLIE - Gassicourt                                                                                                                                           | 78 | 61      | 69    |
| 576.535 | 2436.638 | POISSY                                                                                                                                                                 | 78 | 73      | 73    |
| 540.620 | 2450.390 | PORT-VILLIEZ                                                                                                                                                           | 78 | 55      | 66    |
| 548.790 | 2445.000 | ROSNY SUR SEINE - Château de Sully                                                                                                                                     | 78 | 59      | 69    |
| 570.252 | 2396.340 | SAINT ARNOULT                                                                                                                                                          | 78 | 70      | 93    |
| 543.330 | 2443.660 | SAINT ILLIERS - SI 31                                                                                                                                                  | 78 | 56      | 70    |
| 542.490 | 2442.980 | SAINT ILLIERS - SI 33                                                                                                                                                  | 78 | 56      | 70    |
| 576.300 | 2414.880 | SAINT-LAMBERT-DES-BOIS - source du Val St Lambert                                                                                                                      | 78 | 73      | 84    |
| 575.723 | 2441.832 | TRIEL-SUR-SEINE - F3                                                                                                                                                   | 78 | 72      | 71    |
| 597.339 | 2399.461 | BRETIGNY-SUR-ORGE - Blanchisserie                                                                                                                                      | 91 | 83      | 92    |

Tableau 8 – Forages de prélèvement situés en Île-de-France et mailles du modèle correspondantes

| X_L2e_m Y_L2e_m Désignation_du_forage Dépt Colonne Ligr | gne |
|---------------------------------------------------------|-----|
|---------------------------------------------------------|-----|

| 590.146 | 2399.621 | BRUYERES-LE-CHATEL - CEA (Néocomien) |    | 80 | 92 |
|---------|----------|--------------------------------------|----|----|----|
| 610.564 | 2396.740 | COUDRAY-MONTCEAUX - Altis(Néocomien) |    | 90 | 93 |
| 607.953 | 2402.022 | EVRY S.N.E.C.M.A.                    | 91 | 88 | 90 |
| 588.915 | 2411.306 | ORSAY                                | 91 | 79 | 86 |
| 603.962 | 2408.505 | VIRY-CHATILLON                       | 91 | 86 | 87 |
| 598.740 | 2422.550 | BAGNEUX                              | 92 | 84 | 80 |
| 597.198 | 2438.351 | GENNEVILLIERS – Blanchisserie        | 92 | 83 | 72 |
| 594.775 | 2425.380 | ISSY LES MOULINEAUX - F1             | 92 | 82 | 79 |
| 594.200 | 2432.200 | NEUILLY-SUR-SEINE B1+ B2 – SEDIF     | 92 | 82 | 75 |
| 599.330 | 2437.311 | Villeneuve-la-Garenne F3             |    | 84 | 73 |
| 611.287 | 2438.491 | AULNAY-SOUS-BOIS – SEDIF             |    | 90 | 72 |
| 607.100 | 2433.320 | BOBIGNY/Pantin – SNCF                | 93 | 88 | 75 |
| 599.770 | 2438.880 | EPINAY-SUR-SEINE                     | 93 | 84 | 72 |
| 601.211 | 2434.549 | LA PLAINE SAINT DENIS – SNCF         | 93 | 85 | 74 |
| 614.410 | 2427.250 | NOISY-LE-GRAND                       | 93 | 92 | 78 |
| 604.513 | 2433.218 | PANTIN - Blanchisserie MAJ. ELIS 2   | 93 | 87 | 75 |
| 604.923 | 2433.268 | PANTIN SEDIF                         | 93 | 87 | 75 |
| 611.690 | 2431.620 | VILLEMOMBLE                          | 93 | 90 | 76 |
| 603.340 | 2423.940 | DUMESNIL 2                           | 94 | 86 | 80 |
| 558.630 | 2454.430 | AINCOURT                             | 95 | 64 | 64 |

Tableau 8 (suite) – Forages de prélèvement situés en Île-de-France (Albien et Néocomien) et mailles dumodèle correspondantes

| X_L2e_m | Y_L2e_m  | Désignation_du_forage                      | Dépt | Colonne | Ligne |
|---------|----------|--------------------------------------------|------|---------|-------|
| 606.931 | 2275.681 | AUBIGNY-SUR-NERE - Le Kiosque              | 18   | 88      | 154   |
| 622.250 | 2277.125 | BARLIEU - LES ARDILLERS                    | 18   | 96      | 153   |
| 593.575 | 2285.425 | BRINON-SUR-SAULDRE                         |      | 81      | 149   |
| 565.987 | 2243.283 | GENOUILLY - Les sceps                      | 18   | 67      | 170   |
| 565.987 | 2243.283 | GENOUILLY - Saint Sylvain                  | 18   | 67      | 170   |
| 523.925 | 2482.031 | PONT-SAINT-PIERRE - Pierval                | 27   | 46      | 50    |
| 535.318 | 2456.839 | SAINT MARCEL - La Plaine St Just F1        | 27   | 52      | 63    |
| 535.690 | 2455.460 | SAINT MARCEL - Le Virolet-Grégoire F2 + F3 | 27   | 52      | 64    |
| 536.158 | 2456.437 | USINE STEINER - SAINT-MARCEL               | 27   | 53      | 63    |
| 538.200 | 2455.700 | VERNON - L.R.B.A. F1 + F2 + F3 + F4        | 27   | 54      | 64    |
| 564.573 | 2251.913 | MENNETOU-SUR-CHER - Villefranche           | 41   | 67      | 166   |
| 648.490 | 2349.009 | BAZOCHES-SUR-LE-BETZ - EURL Villegardin    | 45   | 109     | 117   |
| 637.786 | 2286.545 | BONNY-SUR-LOIRE                            | 45   | 103     | 148   |
| 632.875 | 2292.025 | BRIARE - Lieu dit: LA ROUGEOLLERIE         | 45   | 101     | 145   |
| 637.500 | 2314.160 | CHATILLON - COLIGNY                        | 45   | 103     | 134   |
| 639.370 | 2308.290 | DAMMARIE-SUR-LOING - Irrigation M. Dufus   | 45   | 104     | 137   |
| 633.070 | 2350.040 | DORDIVES                                   | 45   | 101     | 116   |
| 644.445 | 2285.790 | FAVERELLES - Foizeau                       | 45   | 107     | 149   |
| 637.000 | 2319.060 | MONTBOUY - Bel Air Syndicat Nivelle        | 45   | 103     | 132   |
| 635.590 | 2320.125 | MONTBOUY - Château de Salleneuve           | 45   | 102     | 131   |
| 642.250 | 2331.270 | SAINT FIRMIN                               | 45   | 106     | 126   |
| 645.100 | 2316.950 | SAINT MAURICE-SUR-AVEYRON - syndicat       | 45   | 107     | 133   |
| 625.510 | 2292.586 | Saint-Brisson-sur-Loire                    | 45   | 97      | 145   |
| 594.950 | 2317.750 | Saint-Martin-d'Abbat                       | 45   | 82      | 133   |
| 505.842 | 2475.258 | SAINT PIERRE LES ELBEUF - IFRACHEM         | 76   | 37      | 54    |
| 686.800 | 2336.100 | BUSSY-EN-OTHE                              | 89   | 128     | 123   |
| 701.825 | 2343.000 | CHAILLEY (DUC)                             | 89   | 135     | 120   |
| 690.690 | 2329.550 | CHENY - La Fertrive                        | 89   | 130     | 127   |
| 687.450 | 2322.900 | CHICHERY LA VILLE                          | 89   | 128     | 130   |
| 667.500 | 2307.420 | DRACY - Fontaine Minard                    | 89   | 118     | 138   |
| 668.090 | 2305.150 | DRACY - Puits des Fouets                   | 89   | 119     | 139   |
| 685.500 | 2327.910 | EPINEAU LES VOVES F1+ F2                   | 89   | 127     | 128   |
| 688.180 | 2331.400 | MIGENNES - Route de Brion                  | 89   | 129     | 126   |
| 686.380 | 2331.140 | MIGENNES - Terre Brûlée/ Croix Pardieu     | 89   | 128     | 126   |
| 692.600 | 2330.515 | ORMOY                                      | 89   | 131     | 126   |
| 677.533 | 2328.618 | PAROY SUR THOLON                           | 89   | 123     | 127   |

Tableau 9 - Forages de prélèvement situés hors Île-de-France et mailles du modèle correspondantes

## 5.2 CHRONIQUES PIÉZOMÉTRIQUES

#### 5.2.1 Recensement des points de suivi de la piézométrie

Les chroniques piézométriques utilisées pour le calage proviennent de 24 piézomètres (extraits de la Banque nationale des eaux souterraines ADES), de 2 forages exploités dans le Néocomien (Coudray-Montceaux et Bruyères–le-Châtel), et de 4 forages de l'Albien où les mesures, anciennes, correspondent à des niveaux dynamiques (G. Berger, 1978). Ces points de mesure sont localisés sur l'illustration 1.

Sur les 24 piézomètres, la plupart (15/24) concernent l'Albien captif et disposent de chroniques relativement longues (entre 15 et 45 ans), par exemple le piézomètre Paris XIII (figure 53a).

Quelques chroniques sont manifestement directement influencées. C'est le cas par exemple du piézomètre de l'usine Steiner - 01511X0188/F (f53b) où il y a un prélèvement de l'ordre de 75 000 m<sup>3</sup>/an.

Les points de suivi ne sont pas répartis de manière homogène sur l'ensemble du Bassin de Paris (figure 54).

La liste des piézomètres est fournie en annexe 3.



Figure 53 - Exemple de chroniques piézométriques longues (a) et influencées (b) de la nappe de l'Albien.



Figure 54 - Localisation des piézomètres à l'Albien-Néocomien.



Figure 55 – Piézomètres à l'Albien-Néocomien : distinction captif/libre

## 5.2.2 Évolution des niveaux piézométriques

On présente dans ce paragraphe quelques exemples commentés de chroniques piézométriques de l'Albien captif et de l'Albien libre.

BRGM/RP-64873-FR - Rapport final

## 5.2.2.1 Albien captif

• Dans la partie centrale de la nappe, en lle-de-France : Paris 13, Isle-Adam, Mantes-la-Jolie, Houssaye-en-Brie, Rocquencourt, les niveaux piézométriques sont compris entre 16 et 56 m NGF sur la période de mesure.

Les piézomètres sont artésiens à l'Isle-Adam (figure 56) et Mantes-La-Jolie (figure 57). La remontée des niveaux est plus tardive à Mantes-la-Jolie (2002) qu'à l'Isle-Adam (1997).



Figure 56 - Evolution piézométrique de la nappe de l'Albien au piézomètre 01531X0047/F, à L'Isle-Adam dans le Val d'Oise – au nord de Paris



Figure 57 - Evolution piézométrique de la nappe de l'Albien au piézomètre 01517X0003/F, à Mantes-La-Jolie dans les Yvelines – à l'ouest de Paris

Les 2 chroniques qui suivent (figures 58 et 59) présentent des allures similaires, avec une baisse des niveaux qui s'amorce en 1985, se prolonge jusqu'en 1993 à Paris XIII et jusqu'en 2000 à la Houssaye-en-Brie, baisse suivie d'une remontée de 15 m à Paris XIII, de 7 m à la Houssaye.



Figure 58 - Evolution piézométrique de la nappe de l'Albien au piézomètre 01837A0096/F2 dans le 13<sup>ème</sup> arrondissement de Paris – au centre du bassin



Figure 59 - Evolution piézométrique de la nappe de l'Albien au piézomètre 02111X0023/CHE101 à La Houssaye-en-Brie – à l'est de Paris

A Rocquencourt, la chronique montre une baisse brutale du niveau piézométrique de 10 m entre le 7 et le 8 février 1999. Elle a été confirmée par des mesures à la sonde, mais reste inexpliquée (le puits n'est pas exploité, même de manière ponctuelle).



Figure 60 – Evolution des niveaux au piézomètre de Rocquencourt

A Crécy-la-Chapelle, la chute du niveau piézométrique de 12 m en 1998 a été provoquée par un prélèvement dans l'ouvrage. Depuis, le niveau piézométrique a retrouvé son niveau initial, ce qui a nécessité plus de 2 ans (figure 61).



Figure 61 – – Evolution des niveaux au piézomètre de Crécy-la-Chapelle

• Dans la partie sud de la nappe (piézomètres de Montbouy, Bougligny et La Grande-Paroisse), l'aquifère est moins profond.

Au piézomètre de Montbouy (figure 62), après une baisse de 6 m depuis le début des mesures (1994) jusqu'en 2004, les niveaux se stabilisent sur la période qui suit, de 2005 à 2014. La chronique présente des cycles saisonniers bien marqués et réguliers, de 2 m d'amplitude. Il s'agit du piézomètre le plus proche de la limite d'extension de la masse d'eau, en bordure sud.



Figure 62 - Evolution piézométrique de la nappe de l'Albien au piézomètre 04004X0007/F, à Montbouy, dans le Loiret

Au piézomètre de Bougligny (figure 63), les niveaux baissent depuis le début des mesures (1990) mais la chronique est manifestement directement influencée par des prélèvements.



Figure 63 - Evolution piézométrique de la nappe de l'Albien au piézomètre de Bougligny, dans le Loiret

## 5.2.2.2 Albien libre





Figure 64 - Evolution piézométrique de la nappe de l'Albien au piézomètre de Louze, Haute-Marne. Albien-Néocomien libre entre Seine et Ornain.

Les niveaux ont baissé de 2 m de 1986 à 2004. La sécheresse de 2005-2006 s'est traduite par des niveaux inférieurs à la cote 124 m. Après une remontée amorcée en 2008, les niveaux se stabilisent sur la période 2008-2013. Les battements annuels correspondent à des cycles saisonniers réguliers ; ils sont inférieurs à 2 m les années les plus humides, et inférieurs à 1 m les années les plus sèches.

• Piézomètre de Morvilliers (figure 65)



Figure 65 - Evolution piézométrique de la nappe de l'Albien au piézomètre de Morvilliers

Les niveaux piézométriques à Morvilliers, globalement stables de 1985 à 2004, baissent depuis 2005.

## • Piézomètre de Vienne-La-Ville (figure 66)

Les niveaux piézométriques sont quasiment les mêmes d'une année à l'autre : les fluctuations piézométriques suivent des cycles saisonniers réguliers, les battements annuels sont limités à 2-3 m en année sèche (1971-73, 1976, 1985-86, 1989-92, 1996-97, 2004-2006) et atteignent 4 m en année humide (1977-84, 1988, 1994-95, 1999-2001, 2008 et 2012).



Figure 66 - Evolution piézométrique de la nappe de l'Albien au piézomètre de Vienne-La-Ville, Marne. Albien-néocomien libre entre Ornain et limite de district

#### • <u>Piézomètre de Vendue-Mignot (figure 67)</u>

La chronique est stationnaire depuis 1998 avec de très faibles fluctuations de niveau, de l'ordre de 50 cm en moyenne.



Figure 67 - Evolution piézométrique de la nappe de l'Albien à Vendue-Mignot, Aube

# 6 Résultats de la modélisation

Le calage du modèle a été réalisé en régime transitoire suivant un processus itératif régime permanent  $\leftrightarrow$  régime transitoire.

La période en transitoire s'étend de 1841 à 2012, avec un pas de temps annuel, soit 172 pas de calcul. Le pas 0 correspond au régime permanent (année 1840).

Les paramètres de départ du calage ont été les champs de perméabilité et les coefficients d'emmagasinement du modèle HE, introduits dans le modèle BRGM.

Compte tenu des modifications importantes apportées au modèle HE :

- adjonction du Tithonien,
- suppression des niveaux imposés dans la partie centrale de la couche Craie,
- disparition de la couche "Craie compacte",
- extension de la couche Albien vers les affleurements du Nord-Est et vers le Sud,

les configurations des champs de perméabilité de l'Albien et du Néocomien du modèle HE ont dû être remaniées, ce qui a nécessité un important travail de re-calage (la zonation diffère, mais les ordres de grandeur des perméabilités sont les mêmes).

Le logiciel de modélisation utilisé est le logiciel MARTHE du BRGM (D.Thiery, 1990, 1995, 2004, 2007, 2010, 2013).

## 6.1 RÉGIME PERMANENT

La situation prise comme référence pour le régime permanent est celle qui régnait en 1841, année de mise en service du forage de Grenelle.

#### 6.1.1 Données de contrôle pour le régime permanent

Pour l'Albien en conditions naturelles, une seule valeur est disponible, celle qui a été **calculée** en 1841 au forage de Grenelle, 124 mou 126 m selon le mode de calcul (voir annexe 1). Une carte piézométrique destinée à représenter au mieux cet état a été dressée par Raoult en 1999 (figure 11, § 2.2.1.1) à partir de 26 niveaux statiques antérieurs à 1930 (date à partir de laquelle les prélèvements à l'Albien se sont accentués).

Cette carte ne peut néanmoins pas être prise en compte pour une comparaison avec une carte calculée compte tenu du peu de données sur laquelle elle est basée et donc des incertitudes de tracé des isopièzes.

De ce fait, dans cette phase d'initialisation du régime transitoire, on s'est attaché à reproduire une cote piézométrique de l'ordre de 120 m NGF à Paris, et à restituer au mieux les schémas d'écoulement et les axes de drainage mis en évidence par les études précédentes.

#### 6.1.2 Piézométrie

Les figures 68 et 69 présentent les piézométries simulées de l'Albien et du Néocomien en régime permanent naturel (sans prélèvement).

Si l'on compare la carte de l'Albien à celle du modèle HE (figures 4 du rapport de 2004), on retrouve (sans surprise) les principales directions d'écoulements :

- depuis les zones de recharge : affleurements de l'Est, Sud-Ouest d'Auxerre (secteur de Cosne-sur-Loire), sud d'Evreux, Pays de Bray,
- jusqu'à la Manche (isopièze 10 m)

L'isopièze 100 m du modèle BRGM s'étend jusqu'à Compiègne au Sud et Laon à l'Est.

Dans la partie centrale, les niveaux du modèle BRGM sont un peu inférieurs à ceux du modèle HE, en particulier l'isopièze 120 m du modèle HE est au-delà de Corbeil-Essones vers le nord, celle du BRGM passe quant à elle un peu au sud de Corbeil-Essones.



Figure 68 - Piézométrie simulée de l'Albien en régime permanent naturel.

Au droit des forages suivants captant l'Albien, les niveaux dans l'Albien sont :

| Paris XIII | Blomet | Rocquencourt | Orsay  | Aulnay |
|------------|--------|--------------|--------|--------|
| 117.06     | 116.87 | 116.15       | 118.46 | 116.54 |

L'espace compris entre les courbes 100 m et 120 m représente 20 % de l'Albien modélisé et l'espace 120-140 m représente 24.5 %.

Dans la partie centrale, entre les isopièzes 120 m et 100 m, les gradients sont faibles, entre 0.03 et 0.04% (0.035 % entre la Seine et l'Oise, direction Compiègne).


Figure 69 - Piézométrie simulée du Néocomien en régime permanent naturel.

| Coudray-Montceau | Bruyères-le-Châtel |  |  |  |
|------------------|--------------------|--|--|--|
| 127.33           | 124.50             |  |  |  |

Au droit des forages suivants captant l'Albien, les niveaux dans le Néocomien sont :

| Paris XIII | Blomet        | Rocquencourt | Orsay | Aulnay |
|------------|---------------|--------------|-------|--------|
| 119.87     | 119.87 119.03 |              | 121.7 | 116.67 |

### 6.1.3 Champs de perméabilité

Les champs de perméabilité sont obtenus à l'issue du processus de calage en régime transitoire. Comme ils s'appliquent aussi au régime permanent, ils sont décrits dans cette section.

### 6.1.3.1 <u>Albien</u> (figure 70)

Les valeurs les plus fortes, 5.10<sup>-5</sup> m/s et 8.10<sup>-5</sup> m/s (quelques mailles à 10<sup>-4</sup> m/s), s'observent au centre du bassin, formant un "chenal" sud-Nord de la Loire à l'Oise, à l'est de la faille de Sennely et jusqu'à la faille de Bray.

Dans le modèle HE, le chenal existe aussi; la zonation en perméabilités est un peu différente, mais les valeurs sont aussi comprises entre 5.10<sup>-5</sup> m/s et 10<sup>-4</sup> m/s (transcription en perméabilités des valeurs de transmissivité du modèle HE après passage dans le logiciel MARTHE, voir aussi la carte des transmissivités de la figure 15).

Les valeurs les plus faibles,  $10^{-6}$  m/s et 2.10<sup>-6</sup> m/s se situent :

- d'une part à l'Est, formant un quadrilatère défini par Montargis, Melun, Châlons-en-Champagne, Troyes (2.10<sup>-6</sup> m/s dans le modèle HE)
- d'autre part au Nord d'une ligne Beauvais-Compiègne : 2.10<sup>-6</sup> m/s (10 fois plus fortes dans le modèle HE).

### 6.1.3.2 <u>Néocomien</u> (figure 71)

Les valeurs sont plus faibles que dans l'Albien. Dans la partie centrale, elles vont de 10<sup>-5</sup> m/s à 2.10<sup>-5</sup> m/s (autour de Paris pour cette valeur).

Les valeurs les plus faibles, 10<sup>-6</sup> m/s et 2.10<sup>-6</sup> m/s, se rencontrent au nord d'une ligne passant par la faille du Pays de Bray.

#### 6.1.3.3 Autres couches

#### • Le Gault

Sur la plus grande partie de cette couche, la perméabilité est de 10<sup>-9</sup> m/s. Sur le flanc Sud de la faille du Pays de Bray, elle est comprise entre 10<sup>-7</sup> m/s et 5.10<sup>-7</sup> m/s. Dans le secteur des Sables du Cénomanien (Sud-Ouest), elle est de 10<sup>-8</sup> m/s. Dans la vallée de la Seine, de Mantes-la-Jolie jusqu'au Havre, elle est de 10<sup>-7</sup> m/s.

#### • L'Aptien-Barrémien

Sur la quasi-totalité de cette couche, la perméabilité est de  $10^{-9}$  m/s. Au Sud-Est, de part et d'autre de la Loire, elle est de  $10^{-8}$  m/s.

#### • Le Tithonien

Dans toute la partie centrale, la perméabilité est de 5.10<sup>-9</sup> m/s. Au niveau des affleurements, elle est de 10<sup>-5</sup> m/s et 2.10<sup>-9</sup> m/s.

#### 6.1.3.4 Anisotropie verticale

Sur les couches du Tithonien, du Néocomien, de l'Aptien-Barrémien, du Gault, un facteur d'anisotropie verticale de 1/100 a été introduit.

Sur la couche de la Craie, l'anisotropie est de 0.1.

Pour l'Albien, il n'y a pas d'anisotropie.



Figure 70 – Champ de perméabilté de l'Albien modélisé



Pour comparaison, ci-contre une carte du champ de perméabilité issu du *modèle de bassin* décrit dans l'article de Contoux et al. (2013).

Des précisions sur ce modèle sont données ci-après, au § 6.1.3.5

On notera la similitude de la zonation et des valeurs.



Figure 71 – Champ de perméabilité du Néocomien modélisé

## 6.1.3.5 Comparaison avec le modèle de bassin de l'Université Pierre et Marie Curie

Il est décrit dans l'article de Contoux C., et al. (2013). *How basin model results enable the study of multi-layer aquifer response to pumping : the Paris Basin*, France. Hydrogeology Journal (2013) 21: 545–557

Bien que l'échelle de travail ne soit pas la même (échelle du Bassin de Paris et 20 formations géologiques prises en compte, du Tertiaire au Trias) et que les principes de construction de ce modèle soient différents (approche génétique et reconstitution des champs de paramètres hydrodynamiques sous contraintes de l'histoire géologique du bassin), on retrouve dans le modèle UPMC les mêmes valeurs de perméabilité, comme le montre le tableau 10 ci-dessous extrait du tableau 1 de l'article de Contoux et al. jusqu'au Portlandien (le Tithonien).

| Table 1 Set of hydrodynamic parameters ( $K_h$ , $K_v$ and $S_s$ ) for the 20 layers of the Paris Basin 3D model Bray fault parameterisation) |                             |                         |       |       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|-------|-------|--|--|
| Layer                                                                                                                                         | <i>K</i> <sub>h</sub> (m/s) | $K_{\rm h}~({\rm m/s})$ |       |       |  |  |
|                                                                                                                                               | Min                         | Max                     | Min   | Max   |  |  |
| Tertiary                                                                                                                                      | 2E-08                       | 3E-04                   | 1E-09 | 2E-08 |  |  |
| Chalk                                                                                                                                         | 2E-07                       | 3E-05                   | 1E-08 | 1E-08 |  |  |
| Gault                                                                                                                                         | 1E-09                       | 1E-09                   | 1E-11 | 1E-11 |  |  |
| Albian                                                                                                                                        | 4E-07                       | 5E-04                   | 5E-11 | 2E-08 |  |  |
| Aptian                                                                                                                                        | 1E-09                       | 1E-09                   | 2E-11 | 2E-11 |  |  |
| Neocomian                                                                                                                                     | 4E-07                       | 3E-04                   | 4E-11 | 2E-08 |  |  |
| Portlandian                                                                                                                                   | 1E-09                       | 3E-05                   | 8E-11 | 1E-08 |  |  |

Tableau 10 – Valeurs des champs de perméabilité

On retrouve dans le champ de perméabilité de l'Albien issu de ce modèle (figure 72) les grandes zones du champ de perméabilité du modèle BRGM.



Figure 72 – Champ de perméabilité de l'Albien du modèle de bassin de l'UPMC

# 6.1.4 Bilan des flux

Le bilan global du système (de la Craie au Tithonien) s'établit comme suit, en million de m<sup>3</sup>/an (valeurs arrondies) :

- Débits Entrant /Charges Imposées. = 1.035 10<sup>8</sup>
- Débits Sortant /Charges Imposées. = -1.435 10<sup>8</sup>
- Débit de Recharge =  $3.395 \, 10^8$
- Débit de Débordement =  $-2.994 \ 10^8$

(Bilan équilibré, égal à 0).

La recharge nette est donc de 40.1  $10^6$  m<sup>3</sup>/an.

Les flux **nets** échangés entre les différentes couches sont donnés par le tableau ci-dessous (issu des "sorties" du logiciel MARTHE ; les valeurs sont arrondies, ce qui peut expliquer des écarts d'un tableau à l'autre.

| Couc | 1       | 2       | 3       | 4       | 5       | 6       | Recharg | Total   |                  |
|------|---------|---------|---------|---------|---------|---------|---------|---------|------------------|
|      |         |         | ======= |         |         |         |         |         |                  |
| 1    | ×       | -1.35E6 | -7.77E6 | -210421 | -932899 | 958620  | 1.49E8  | 1.4E8   | Craie            |
| 2    | 1349179 | ×       | -1.4E6  | 413.58  | -19852  | 13019   | 1919982 | 1862295 | Gault            |
| 3    | 7768198 | 1400447 | ×       | 4401933 | 783117  | 5427606 | 4.4E7   | 6.38E7  | Albien           |
| 4    | 210421  | -413.6  | -4.4E6  | *       | 4202426 | 702587  | 1399987 | 2113074 | Aptien Barrémien |
| 5    | 932899  | 19852   | -783117 | -4.2E6  | *       | 2.29E7  | 3.56E7  | 5.45E7  | Neocomien        |
| 6    | -958620 | -13019  | -5.43E6 | -702587 | -2.29E7 | ×       | 1.07E8  | 7.73E7  | Tithonien        |

Tableau 11 – Bilan des flux échangés entre couches en régime permanent

Décodage du tableau : exemple de l'Albien (couche 3).

On se positionne sur la ligne Albien. Les flux sont positifs si la couche reçoit. Tous les flux échangés avec les couches 1, 2 4, 5 et 6 étant positifs, l'Albien est récepteur net. La somme de ces flux échangés est :

F3 =7 768 198 + 1 400 447+ 4 401 933 + 783 117 + 5 427 606 = 19 781 301 m<sup>3</sup>/an

Plus précisément, pour l'Albien le bilan est le suivant (valeurs arrondies) :

|                                            | Apports<br>(m³/an) | Exports<br>(m³/an) | Flux nets<br>(m <sup>3</sup> /an) |  |
|--------------------------------------------|--------------------|--------------------|-----------------------------------|--|
| Entrées par les limites à potentiel imposé | 2 935 000          |                    | 6 540 000                         |  |
| Sorties par les limites à potentiel imposé |                    | - 9 475 000        | -0 540 000                        |  |
| Echanges avec le "haut"                    | + 77 260 000       | - 68 090 000       | 9 170 000                         |  |
| Echanges avec le "bas"                     | + 30 510 000       | - 19 900 000       | 10 610 000                        |  |
| Recharge                                   | 44 040 000         |                    |                                   |  |
| Débordements                               |                    | - 57 280 000       | -13 240 000                       |  |

La somme des échanges "haut-bas" est de 19 779 000 (19 781 301 issu du tableau 11).

Les figures 73 et 74 précisent la spatialisation des échanges verticaux relatifs à l'Albien.



Figure 73 – Zones d'échange de l'Albien avec l'Aptien-Barrémien

En bleu, ce qui entre venant de l'Aptien-Barrémien (Néocomien) : + 30 510 000 m<sup>3</sup>/an En gris, ce qui part de l'Albien vers l'Aptien-Barrémien : -19 900 000 m<sup>3</sup>/an soit un flux d'apport net venant du "bas" de 10 610 000 m<sup>3</sup>/an



Figure 74 – Zones d'échange de l'Albien avec le Gault

En bleu, ce qui entre venant du Gault (et de la Craie quand il y a contact) : + 77 260 000 m<sup>3</sup>/an En gris, ce qui part de l'Albien vers le Gault (et la Craie quand il y a contact): - 68 090 000 m<sup>3</sup>/an Soit un flux d'apport net venant du "haut" de 9 170 000 m<sup>3</sup>/an

# 6.1.5 Recharge et débordements

Les valeurs de recharge affectées aux différentes zones d'affleurement sont de 20, 30 et 50 mm (cette dernière valeur pour le Pays de Bray). Elles sont éloignées des valeurs que l'on pourrait déduire des pluies efficaces (voir § 4.3.3) et restent sans doute encore supérieures en certains endroits aux valeurs d'alimentation réelles (en témoigne la valeur du " débordement" global qui, pour l'Albien, est supérieur à la recharge globale).

# 6.2 RÉGIME TRANSITOIRE

Le calage du modèle en régime transitoire a été effectué sur la période 1841-2012 (172 ans) avec un pas de temps de calcul de 1 an.

### 6.2.1 Données

#### Chroniques piézométriques

30 chroniques piézométriques (figure 75) ont été utilisées pour réaliser le calage du modèle en transitoire (16 de plus que le modèle HE).

6 de ces historiques sont issus de captages, dont ceux du Néocomien à Bruyères-le-Châtel et Coudray-Montceaux (notés *Néo* sur la figure 68). Les mesures faites sur les 4 autres forages de l'Albien correspondent à des niveaux dynamiques et sont issus de la synthèse BRGM de 1978 (Berger, 1978).

Les 24 autres historiques proviennent de la banque ADES et ont été présentés au § 5.2.

#### **Prélèvements**

Les captages et les volumes prélevés introduits dans le modèle sont présentés au § 5.1. Les forages se répartissent sur 89 mailles de calcul. Les captages sont reportés sur la figure 76 avec les points de mesure de la piézométrie utilisés pour le calage.

### <u>Recharge</u>

Compte tenu de l'échelle de temps et de la difficulté de moduler la recharge en fonction des précipitations, les valeurs de recharge sont maintenues constantes dans le temps et correspondent à celles du régime permanent (§ 6.1.5 ci-dessus). Après de nombreux essais, lors du calage, les valeurs retenues en définitive permettant d'obtenir des débordements non excessifs. La prise en compte des prélèvements dans les zones de recharge (non introduits, cf. chapitre § 5.1.1) conduirait encore à réduire ces "débordements" (voir chapitre 6, § 6.2.7), les ramenant à des valeurs plausibles.

### 6.2.2 Résultats : paramètres hydrodynamiques

Les champs de perméabilité obtenus ont été décrits dans la section consacrée au régime permanent (§ 6.1.3). Les coefficients d'emmagasinement spécifique sont de 2.10<sup>-6</sup> m<sup>-1</sup> dans l'Albien et de 10<sup>-6</sup> m<sup>-1</sup> dans les autres couches.

### 6.2.3 Résultats : piézométrie et flux échangés

Pour les niveaux piézométriques, les résultats obtenus après calage sont présentés :

- globalement, sous forme de diagramme de dispersion ;
- spatialement, sous forme de cartes ;
- point par point, sous forme de graphiques d'évolution où sont superposées chroniques de mesures et chroniques calculées.

Pour les flux, les résultats sont présentés :

- globalement, sous forme de bilans, indiquant notamment les échanges de flux entre les différentes couches du modèle,
- sous forme de graphiques, présentant l'évolution des flux dans différentes zones du modèle.



Figure 75 - Chroniques piézométriques utilisées pour le calage du modèle en régime transitoire (la carte inférieure correspond à un zoom sur l'Île-de-France).



Figure 76 – Localisation des points de mesure des niveaux et des captages recensés

# 6.2.4 Comparaison des chroniques simulées et observées

# 6.2.4.1 Diagrammes de dispersion

Dans ces diagrammes construits dans un repère X,Y, on reporte sur l'axe des X les valeurs mesurées et sur l'axe des Y les valeurs calculées, ceci à une date donnée. Ces diagrammes permettent de juger globalement de la qualité d'un calage : dans un calage idéal, les points s'alignent sur une diagonale.

4 diagrammes ont été construits (figure 77), correspondant aux années 2012 (20 points), 2002 (15 points), 1992 (11 points) et 1982 (9 points seulement).



Figure 77 – Diagrammes de dispersion pour les années 1982, 1992, 2002 et 2012

Sur le diagramme de l'année 1982, le point qui s'écarte de la droite de régression correspond au piézomètre de Mantes-la-Jolie, où il y a un décalage de 1 pas de temps sur la remontée des niveaux du début des années 1980 (figure 82). A l'échelle du territoire couvert par le réseau de piézomètres, et sur une plage de variation de 200 m, les 4 diagrammes ci-dessus montrent que, sur une période de 20 ans, le calage obtenu restitue plutôt bien les niveaux mesurés.

Des 4 droites de régression, de pente quasiment égales à 1 (néanmoins une ordonnée à l'origine de 1.7 m en 2012 et 1992), on peut inférer qu'il n'y a pas de biais systématique sur cette période : globalement, ni surestimation, ni sous-estimation.

Pour autant que l'on puisse en juger avec le faible nombre de points en 1982 et 1992, le calage reste donc de qualité constante sur les 20 ans d'analyse.

Cette approche globale est complétée par une analyse plus détaillée dans ce qui suit : éléments de statistiques (§ 6.2.1.2) et comparaison des chroniques simulées et observées (§ 6.1.2.3).

## 6.2.4.2 Statistiques globales

Le tableau 12 et la figure 78 résument l'analyse statistique. Les écarts calculés correspondent aux différences "valeur simulée – valeur calculée"

|                                      | 2012       | 2002        | 1992        | 1982        |
|--------------------------------------|------------|-------------|-------------|-------------|
| Nombre de points                     | 20         | 15          | 11          | 9           |
| Moyenne des valeurs mesurées (m)     | 95.57      | 86.37       | 70.11       | 65.19       |
| Moyenne des valeurs calculées (m)    | 96.99      | 87.39       | 70.89       | 68.02       |
| Ecart-type des valeurs mesurées (m)  | 50.44      | 46.31       | 43.19       | 40.49       |
| Ecart-type des valeurs calculées (m) | 50.46      | 46.42       | 44.17       | 42.29       |
| Moyenne des écarts (m)               | 1.51       | 1.02        | 1.68        | 0.18        |
| Ecart-type des écarts (m)            | 1.87       | 1.61        | 1.24        | 0.90        |
| Ecart minimum (m)                    | 0.1 (en +) | 0.13 (en +) | 0.07 (en -) | 0.12 (en +) |
| Ecart maximum (m)                    | 5.66       | 3.35        | 3.69        | 1.05        |

Tableau 12 - Statistiques globales sur les écarts de calage

Les écarts les plus importants, supérieurs à 3 m, s'observent sur les piézomètres suivants :

En 2012 :

- L'Isle-Adam : 5.66 m
- Montbouy : 4.52 m
- Ligny-le-Châtel : 3.50 m
- La Grande-Paroisse : 3.19 m
- Louze : 3.17 m

En 2002 :

- Montbouy : 3.05 m
- La Grande-Paroisse : 4.01 m
- Louze : 3.07 m

### Commentaires sur les écarts constatés

A L'Isle-Adam, les niveaux bas entre 1990 et 2000 sont bien reproduits (figure 82) ; par contre la courbe de remontée simulée, de 2000 à 2012, diverge régulièrement de la courbe des valeurs mesurées, l'écart atteignant 5.66 m en 2012. Il n'a pas été possible de trouver une configuration de paramètres permettant de reproduire les mesures, toute tentative de baisse des niveaux sur ce piézomètre avait pour conséquence une baisse des niveaux à Paris.



Figure 78 – Boxplot sur les écarts de calage

Au piézomètre de La Grande-Paroisse (figure 85), les niveaux simulés s'ajustent très bien sur les niveaux de 1970 à 1990 ; à partir de 1990, les niveaux baissent jusqu'en 2004 (baisse de 5 m), puis remontent pour atteindre sur la période 2007-2011 des valeurs identiques à celles de la période 1970-1990. Sur cette période 2007-2011, les niveaux simulés s'ajustent de nouveau très bien sur la chronique de mesures. Celle-ci baisse de nouveau brusquement de 3 m à partir de 2011. Ces deux baisses, 5 m et 3 m, restent à expliquer.

<u>Remarque</u> : le piézomètre de La Grande-Paroisse a été réaménagé en 2012 pour permettre une mesure correcte du niveau de la nappe artésienne, à l'aide d'un manomètre numérique. Ces mesures restent toutefois approximatives et un manomètre plus précis est prévu.

A Montbouy (figure 86), des prélèvements sont effectués depuis 1991 sur le forage 0404X0132. Le modèle simule des niveaux plus hauts que ceux enregistrés sur le piézomètre 04004X0007de Montbouy-Salleneuve.

A Louze (annexe 5), les niveaux simulés sont constants, maintenus par les niveaux dans la Craie. La chronique des mesures est influencée par des prélèvements non intégrés dans le modèle car non connus.

A Ligny-le-Châtel (annexe 5), comme à Louze, les niveaux simulés sont constants. La chronique des mesures est influencée par des prélèvements non intégrés dans le modèle car non connus.

# 6.2.5 Comparaison point par point

Les graphiques comparant les niveaux de nappe simulés par le modèle à ceux observés aux points d'observation (et captages) sont regroupés en 4 secteurs :

I] zone centrale à forte perméabilité, correspondant à l'ouest de l'Île de France avec 8 piézomètres à l'Albien :

Paris XIII, Blomet, Rocquencourt, Achères, Aulnay, Orsay, Mantes-la-Jolie, Isle-Adam

- et 2 piézomètres au Néocomien : Coudray-Monceaux et Bruyères-le-Châtel
- 2] zone de plus faible perméabilité, à l'est de la précédente, avec 7 piézomètres : Crécy-la-Chapelle, La Houssay-en-Brie, La Grande-Paroisse, Bougligny, Montbouy, La Rougeollerie (tous les 6 en Seine-et-Marne) et Congy (dans la Marne)
- 3] zone ouest, avec 2 piézomètres : Caudebec et St-Marcel (Usine Steiner)
- 4] zone des affleurements à l'Est du domaine avec 10 piézomètres ; du nord au sud : Rougeries, Vienne-la-Ville, Neuville-aux-Bois, Louze, Morvilliers, Vendue-Mignot, Ligny-le-Châtel, Neuilly, Parly, St Maurice-le-Vieil, Arquian.

Les graphiques de comparaison portant sur les piézomètres des 3 premiers secteurs sont présentés aux figures 80 à 88. Les graphiques de comparaison portant sur les points de suivi du secteur 4, au niveau des affleurements, sont reportés en annexe 5.

Comme déjà mentionné au chapitre 5, le piézomètre de Rocquencourt (01828X0006/F) fournit depuis le 08/02/1999 des mesures inférieures de 10 m aux mesures antérieures. Ce décrochement est probablement dû à une correction des niveaux mesurés effectuée à partir du 08/02/1999, mais non répercutée sur les données antérieures. La comparaison est faite sur la chronique corrigée des 10 m (figure 80, niveaux corrigés en vert).

<u>Remarque</u> : le tubage de l'ouvrage est actuellement (2015) très endommagé.

A Achères, Blomet, Aulnay, Orsay, ce sont les niveaux dynamiques qui sont utilisés pour les comparaisons, mesures relevées dans le rapport BRGM 78-SGN697-BDP (G. Berger, 1978).



Points d'observation Orsay Captage Piézomètre 3.5

Légende:

Rocquencoutt

Figure 79 – Localisation des piézomètres de la zone centrale



Figure 80 – Comparaison des niveaux observés et des niveaux simulés : Paris XIII, Rocquencourt, Achères



Figure 81 - Comparaison des niveaux observés et des niveaux simulés : Blomet, Aulnay-sous-Bois, Orsay



Figure 82 - Comparaison des niveaux observés et des niveaux simulés : L'Isle-Adam et Mantes-la-Jolie

## **Néocomien**



Figure 83 - Comparaison des niveaux observés et des niveaux simulés : Coudray-Montceaux et Bruyères-le-Châtel (Néocomien)



Figure 84 – Localisation des piézomètres du secteur II (piézomètres situés dans les départements de la Seine-et-Marne, du Loiret et de la Marne)



Figure 85 – Comparaison des niveaux observés et des niveaux simulés : Crécy-la-Chapelle, La Houssaye-en-Brie, La Grande-Paroisse.



Figure 86 - Comparaison des niveaux observés et des niveaux simulés : Bougligny, Montbouy, La Rougeolerie



Figure 87 - Comparaison des niveaux observés et des niveaux simulés : Congy (Marne)



Figure 88 - Comparaison des niveaux observés et des niveaux simulés : Caudebec et Usine Steiner.

# 6.2.6 Cartes piézométrique calculées

## 6.2.6.1 Cartes piézométriques de l'Albien

Les cartes piézométries de l'Albien et du Néocomien simulées pour les années 1935, 2005 et 2012 sont présentées aux figures 89 à 93.

Sur cette période, l'essentiel des écoulements converge vers la région parisienne : les forages constituent l'exutoire principal de l'Albien.

En 1935, un cône de dépression de forme ellipsoïdale s'est formé dans la région parisienne. A l'intérieur de la zone cernée par l'isopièze 40 m, le niveau le plus bas est de 28 m.

En 1970, les niveaux dans la partie centrale sont au plus bas, inférieurs à 10 m entre Maisons-Lafitte et Aulnay ; la valeur minimale est de 6 m. L'isopièze fermée 20 m, qui n'existait pas en 1935, cerne une zone de 1200 km<sup>2</sup>.

En 1995, l'isopièze fermée +20 m n'englobe plus qu'une zone de 570 km<sup>2</sup>, centrée sur Maisons-Lafitte. Par contre, l'isopièze 40 m s'est élargie. Le niveau le plus bas est de 3 m, à Maisons-Laffite.

En 2005, les niveaux ont remonté et l'isopièze 20 m ne délimite plus qu'une petite zone de 50 km<sup>2</sup> autour de Maison-Laffite, à l'intérieur de laquelle le niveau le plus bas est de 12 m.

En 2012, la dépression piézométrique s'est résorbée en partie : l'isopièze 20 m a disparu et le niveau le plus bas est de 21 m à Maison-Laffite.

Dans les zones d'affleurements, les niveaux ont un peu baissé.

### 6.2.6.2 Cartes piézométriques du Néocomien

Les cartes piézométriques du Néocomien simulées pour les années 1935, 1965, 1995, 2005 et 2012 sont présentées aux figures 94 à 98.

En 1935, une dépression piézométrique comprise entre 80 et 90 m (130 km<sup>2</sup>) apparaît, centrée sur Aulnay.

En 1970, les niveaux continuent à baisser. Ils sont au plus bas, toujours dans le secteur d'Aulnay, où ils sont compris entre 50 et 60 m (100 km<sup>2</sup>).

En 1995, les niveaux dans le secteur d'Aulnay sont à peu près les mêmes qu'en 1970, compris entre 50 et 60 m, mais l'isopièze fermée 60 m cerne une zone plus grande, de 250 km<sup>2</sup>. Apparition d'une petite dépression autour de Bruyères-le-Châtel, où les niveaux sont de l'ordre de 50 m (les prélèvements ont débuté en 1980).

En 2005, l'isopièze + 60 m englobe une large zone et s'étend jusqu'à Bruyères-le-Châtel où les niveaux sont inférieurs à 50 m.

En 2012, l'isopièze + 60 m s'est scindée en deux : autour de Bruyères-le-Châtel d'une part (où les niveaux sont de l'ordre de 50 m), dans le secteur d'Aulnay d'autre part, où les niveaux restent supérieurs à 50 m.

### 6.2.6.3 Cartes piézométriques de la Craie

La piézométrie de la carte de M. Albinet (1967) ayant été imposée sur toute la partie de la couche Craie où la nappe est libre, seuls les niveaux de la partie centrale, sous couverture du tertiaire, ont été calculés. La carte " 2012" est reportée en annexe 5.



Figure 89 – Piézométrie simulée de l'Albien en 1935



Figure 90 - Piézométrie simulée de l'Albien en 1970



Figure 91 - Piézométrie simulée de l'Albien en 1995



Figure 92 - Piézométrie simulée de l'Albien en 2005 et comparaison avec le modèle HE



Figure 93 - Piézométrie simulée de l'Albien en 2012.



Figure 94 - Piézométrie simulée du Néocomien en 1935



Figure 95 - Piézométrie simulée du Néocomien en 1970.



Figure 96 - Piézométrie simulée du Néocomien en 1995.



Figure 97 - Piézométrie simulée du Néocomien en 2005.



Figure 98 - Piézométrie simulée du Néocomien en 2012
#### 6.2.6.4 Conclusions

Dans l'Albien, dans le quadrilatère délimité par les piézomètres d'Achères, Roquencourt, Paris XIII et Aulnay, incluant Maisons-Laffitte, les niveaux ont baissé de 100 à 110 m en 155 ans (1840-1995).

Dans le Néocomien, sur la même période, les niveaux ont baissé d'une soixantaine de mètres dans le secteur d'Aulnay et de 75 m environ dans le secteur de Bruyères-le-Châtel.

Ces observations montrent bien, comme cela a déjà été souligné dans d'autres études, l'interdépendance des nappes de l'Albien et du Néocomien, celle-ci ayant été largement impactée par les prélèvements opérés dans l'Albien depuis 1841.

#### 6.2.7 Bilans des flux

En 2012, dans l'ensemble du système (de la Craie au Tithonien), on a, en millions de m<sup>3</sup>/an (valeurs arrondies) :

- des prélèvements dans l'Albien et Néocomien de 18,491 Mm<sup>3</sup>,
- une recharge nette de 43,64 Mm<sup>3</sup>,
- un déstockage de 2,178 Mm<sup>3</sup>.

Les flux **nets** échangés entre les différentes couches sont donnés par le tableau ci-dessous (issu des "sorties" du logiciel MARTHE) :

| Couc | 1       | 2       | 3       | 4       | 5       | 6       | Recharg | Total   | _                |
|------|---------|---------|---------|---------|---------|---------|---------|---------|------------------|
|      | ======  |         |         |         |         |         |         |         |                  |
| 1    | *       | -1.56E7 | -8.87E6 | -215213 | -968238 | 945275  | 1.49E8  | 1.24E8  | Craie            |
| 2    | 1.56E7  | *       | -1.57E7 | -124.3  | -19875  | 6237.5  | 1919982 | 1824417 | Gault            |
| 3    | 8870196 | 1.57E7  | ×       | 5190251 | 434237  | 5353307 | 4.4E7   | 7.96E7  | Albien           |
| 4    | 215213  | 124.29  | -5.19E6 | *       | 4823968 | 673556  | 1399987 | 1922597 | Aptien Barrémien |
| 5    | 968238  | 19875   | -434237 | -4.82E6 | ×       | 2.33E7  | 3.56E7  | 5.47E7  | Neocomien        |
| 6    | -945275 | -6237   | -5.35E6 | -673556 | -2.33E7 | *       | 1.07E8  | 7.7E7   | Tithonien        |

Tableau 13 – Flux nets échangés entre les 6 couches du modèle en 2012

Décodage du tableau : exemple de l'Albien (couche 3).

On se positionne sur la ligne Albien. Les flux sont positifs si la couche reçoit. Tous les flux échangés avec les couches 1, 2 4, 5 et 6 étant positifs, l'Albien est récepteur net. La somme de ces flux échangés est :

F3t =8 870 196 + **15 700 000** + 5 190 251 + 434 237 + 5 353 307 = 35 547 991 m<sup>3</sup>/an

A comparer avec les flux du régime permanent :

F3p =7 768 198 + **1 400 447** + 4 401 933 + 783 117 + 5 427 606 = 19 781 301 m<sup>3</sup>/an

Il y a donc une très forte sollicitation des couches supérieures (la Craie, via le Gault).

<u>Remarque</u> : le test effectué en introduisant dans le modèle des prélèvements effectués au niveau des affleurements de l'Albien, en limite est, sur la période 2008-2012 (cf. § 5.1.1), montre qu'il n'y a pas d'effet sur la partie captive de la nappe. En 2012, les supplémentaires de 3 744 750 m3, entraînent **localement** :

- une baisse des débordements (comme attendue) : 32% du volume supplémentaire,
- un apport supplémentaire venant de la craie : 44 %
- un apport supplémentaire venant du Néocomien : 5 %
- une hausse du déstockage : 19 %

|                                            | Apports<br>(m³/an) | Exports<br>(m³/an) | Flux nets<br>(m³/an) |  |
|--------------------------------------------|--------------------|--------------------|----------------------|--|
| Entrées par les limites à potentiel imposé | 2 936 000          |                    | - 6 507 000          |  |
| Sorties par les limites à potentiel imposé |                    | - 9 443 000        |                      |  |
| Echanges avec le "haut"                    | + 83 880 000       | - 59 280 000       | + 24 600 000         |  |
| Echanges avec le "bas"                     | + 31 360 000       | - 20 380 000       | + 10 980 000         |  |
| Recharge                                   | 44 040 000         |                    | 11 490 000           |  |
| Débordements                               |                    | - 55 520 000       | -11 480 000          |  |
| Prélèvements                               |                    | -17 580 000        | -17 580 000          |  |
|                                            | Stockage           | Déstockage         | Net                  |  |
|                                            | 412 500            | -384 900           | + 27 600             |  |

Plus précisément, pour l'Albien, le bilan est le suivant (équilibré aux arrondis près) :

Tableau 14 – Bilan des flux dans l'Albien en 2012

Les figures 99 et 100 précisent la spatialisation des échanges verticaux de l'Albien avec les couches sus- et sous-jacentes.

La comparaison de l'état 2012 avec l'état "naturel" montre des modifications notables de la distribution spatiale des flux alimentant l'Albien :

- élargissement de la zone d'apport du Néocomien (via l'Aptien-Barrémien) dans la région parisienne, avec une augmentation des apports de 850 000 m<sup>3</sup>/an.
- et surtout, forte extension (38 852 km<sup>2</sup> contre 20150 km<sup>2</sup> en état naturel) de la zone d'apport de la Craie (via le Gault) avec une augmentation des apports de 6 600 000 m<sup>3</sup>/an.

|                                        | Apports<br>(m³/an) | Exports<br>(m³/an) | Flux nets<br>(m³/an) |
|----------------------------------------|--------------------|--------------------|----------------------|
| Echanges avec le "haut" : état 2012    | + 83 880 000       | - 59 280 000       | + 24 600 000         |
| Echanges avec le "bas" : état 2012     | + 31 360 000       | - 20 380 000       | + 10 980 000         |
|                                        |                    |                    |                      |
| Echanges avec le "haut" : état naturel | + 77 260 000       | - 68 090 000       | 9 170 000            |

+ 30 510 000

- 19 900 000

Tableau 15 – Comparaison de la situation 2012 des échanges de flux de l'Albien avec l'état "naturel"

#### <u>Remarque</u>

Echanges avec le "bas" : état naturel

L'apport par la Craie (83 880 000 m<sup>3</sup>/an) équivaut à une **lame d'eau de 2 mm/an** sur la zone d'apport de 38 850 km<sup>2</sup>.

10 610 000



Figure 99 - Zones d'échange de l'Albien avec l'Aptien-Barrémien (état simulé de 2012) et comparaison avec l'état "naturel" (figure du bas).



Figure 100 - Zones d'échange de l'Albien avec le Gault (état simulé de 2012) et comparaison avec l'état "naturel" (figure du bas).

#### 6.2.8 Évolution des flux échangés depuis 1841

6.2.8.1 Déstockage dans l'ensemble du système (du Tithonien à la Craie)

La figure 101 présente le déstockage global (différence entre déstockage et stockage).



Figure 101 – Evolution du stockage-déstockage dans l'ensemble du système modélisé

Après un important déstockage entre 1930 et 1940 (18 Mm<sup>3</sup> en 1936, volume équivalent aux prélèvements actuels dans l'Albien et Néocomien), le déstockage diminue assez régulièrement et n'est plus, en 2012, que de 2 Mm<sup>3</sup>.

#### 6.2.8.2 Evolution des flux de l'Albien transitant dans quelques zones

A titre indicatif, on reprend quelques-unes des zones géographiques définies par Y. Raoult à partir d'analyses géochimiques et isotopiques.



Figure 102 - Zones géographiques issues de la délimitation faite par Y. Raoult (1999) (voir figure 20 du chapitre 2).

# • Zone centrale (région parisienne)

Cette zone est qualifiée de "*Zone d'apport du Néocomien sous-jacent*" par Y. Raoult La figure 103 retrace les échanges de l'Albien avec le Néocomien et la Craie.



Figure 103 - Echanges de l'Albien avec le Néocomien et la Craie dans la zone centrale

La contribution maximale du Néocomien est de 1 500 000 m<sup>3</sup> en 1937, environ 3 fois plus que celle de la Craie, maximale aussi à la même date. En 2012, il n'y a pratiquement plus d'apport de la Craie, le Néocomien, quant à lui, alimente encore cette zone centrale (500 000 m<sup>3</sup> en 2012).

Durant toute la période 1841-2012, il n'y a quasiment pas de drainance de l'Albien vers le Néocomien et la drainance ascendante vers la Craie s'annule à partir de 1932.

La figure 104 présent l'évolution du stockage-déstockage dans cette zone centrale.



Figure 104 – Evolution du stockage-déstockage dans la zone centrale de l'Albien

En 1861, on observe un important déstockage (2 Mm<sup>3</sup>), mais de brève durée (mise en service du puits de Passy, avec 6 000 000 de m<sup>3</sup> débités dans l'année). Viennent ensuite les années 1930 où le déstockage atteint de nouveau un maximum de 2 Mm<sup>3</sup> en 1931. A partir de 1990, on observe une tendance au stockage (mais qui s'annule en 2012).

# • Zone sud (Chartres, Pithiviers, Montargis)

Cette zone est qualifiée de "zone sans apport significatif sus- et sous-jacent" par Y. Raoult.

La Craie et le Néocomien alimentent néanmoins l'Albien avec des volumes annuels compris entre 1 et 2 Mm<sup>3</sup> (figure 105), ce qui est effectivement faible en rapportant ce volume à la superficie de la zone (7700 km<sup>2</sup>), plus grande que celle de la zone centrale. En lame d'eau annuelle, ces 1 à 2 Mm<sup>3</sup> représentent 0.13 à 0.26 mm. Dans cette zone, il existe aussi une drainance ascendante de l'Albien vers la Craie (de l'ordre de 550 000 m<sup>3</sup> sur les 10 dernières années, soit une lame d'eau de 0.07 mm). Il n'y a pas pratiquement pas de drainance de l'Albien vers le Néocomien.



Figure 105 - Echanges de l'Albien avec le Néocomien et la Craie dans la zone sud

• Zone ouest (entre Evreux et Rouen)

Cette zone est qualifiée de "zone d'apport sus- et sous-jacent" par Y. Raoult.

La figure 106 montre effectivement une forte alimentation par la Craie, jusqu'à 6 Mm<sup>3</sup> annuels mais une alimentation plus réduite venant du Néocomien, de l'ordre de 1 Mm<sup>3</sup>. Comme pour la zone sud, il n'y a pas pratiquement pas de drainance de l'Albien vers le Néocomien.



Figure 106 - Echanges de l'Albien avec le Néocomien et la Craie dans la zone ouest

• Zone sud-ouest (Sables du Cénomanien)

Cette zone est appelée "zone de recharge par les Sables cénomaniens sus-jacents" par Y. Raoult.

L'apport de la Craie est effectivement important, près de 5 Mm<sup>3</sup> à partir de 1970 (figure 107) et sans contribution de l'Albien à la Craie à partir de cette date (courbe verte).

Comme pour la zone sud, il n'y a pas pratiquement pas de drainance de l'Albien vers le Néocomien.



Figure 107 – Echanges de l'Albien avec le Néocomien et la Craie dans la zone sud-ouest

\* \* \*

# 6.3 VARIATION DE QUELQUES PARAMÈTRES AUTOUR DES VALEURS DE CALAGE

Le nombre de combinaisons possibles entre paramètres (perméabilité, coefficients d'emmagasinement, recharge), zones de paramètres et amplitudes des variations appliquées à ces paramètres est considérable. Dans la phase de calage, de nombreuses combinaisons ont été testées.

On se limitera donc ici à faire varier globalement le coefficient d'emmagasinement de l'Albien et les coefficients d'anisotropie du Gault et de l'Aptien-Barrémien, paramètres dont l'impact sur les niveaux de l'Albien est apparu important au cours du calage.

#### 6.3.1 Variation du coefficient d'emmagasinement captif de l'Albien

L'influence du coefficient d'emmagasinement captif dans l'Albien ne se manifeste que lors d'une modification globale de la valeur (sur toute l'étendue de la couche). Deux simulations ont été faites : l'une avec une valeur de 4.10<sup>-6</sup> (coefficient du calage multiplié par 2), l'autre avec une valeur de 10<sup>-6</sup> (coefficient du calage divisé par 2).

Ces modifications conduisent à des résultats qui diffèrent suivant les zones : pour une même valeur, par rapport à la valeur optimale du calage, la reconstitution des niveaux aux piézomètres est parfois améliorée, parfois dégradée, comme le montrent les graphiques de la figure 108.

La courbe SIM1 correspond à  $S=10^{-6}$ , la courbe SIM2 à  $S=4.10^{-6}$ .

Au piézomètre d' Orsay, il y a une amélioration avec S=10<sup>-6</sup> et une dégradation avec S=4.10<sup>-6</sup>.

Au piézomètre d'Achères, c'est l'inverse : amélioration avec 4.10<sup>-6</sup> et dégradation avec 10<sup>-6</sup>.



Figure 108 – Impact sur le calage du coefficient d'emmagasinement captif de l'Albien

Pour une majorité de piézomètres, la chronique de calage (référence) se situe entre les 2 chroniques SIM1 et SIM2. Exemple aux piézomètres de Rocquencourt, Crécy-la-Chapelle, La Houssaye-en-Brie (figure 109).



Figure 109 – Impact sur le calage du coefficient d'emmagasinement captif de l'Albien (suite)

<u>Remarque</u> : les modifications locales de la valeur de S (4.10<sup>-6</sup> dans telle zone, 10<sup>-6</sup> dans telle autre) n'ont pas d'impact sur le calage.

# 6.3.2 Variation du coefficient d'anisotropie dans le Gault et l'Aptien-Barrémien

Deux simulations ont été faites : l'une (SIM1) avec une valeur d'anisotropie de 0.05 dans l'Aptien-Barrémien (au lieu de 0.01), l'autre (SIM2) avec une valeur de 0.05 dans le Gault (au lieu de 0.01). L'influence de l'anisotropie est très sensible dans la partie centrale du domaine, mais plus limitée dans la zone des faibles perméabilités. De façon très générale, il y a dégradation du calage (figure 110).



Figure 110 – Impact sur le calage du coefficient d'anisotropie de l'Aptien-Barrémien et du Gault

Au piézomètre d'Orsay (figure 111), il y a amélioration du calage sur la période des mesures (mais il n'y a pas de mesures récentes).



Figure 111 - Impact sur le calage du coefficient d'anisotropie de l'Aptien-Barrémien et du Gault (suite)

# 6.4 TEMPS D'ATTEINTE D'UN RÉGIME STATIONNAIRE

A partir de l'année 2012, une simulation avec 50 pas de temps annuels supplémentaires été effectuée pour déterminer le temps au bout duquel un régime (pseudo) stationnaire peut s'établir dans l'Albien, les prélèvements de l'année 2012 étant maintenus constants sur toute la période.

#### 6.4.1 Évolution du stockage/déstockage

Le maximum de déstockage dans l'Albien, 7 250 000 m<sup>3</sup>, a été atteint en 1935 (tableau 16), le stockage étant quant à lui quasiment nul. Avec les mesures réglementant l'exploitation de l'Albien (décret-loi de 1935), le déstockage diminue ensuite assez "rapidement" jusqu'en 1975 (figure 112 ci-après), puis plus lentement jusqu'en 2005.

Sur les 50 ans de simulation à partir de 2012, en maintenant constant les prélèvements de 2012, la baisse du déstockage se poursuit et, au bout de 50 ans, le déstockage n'est plus que de 80 000 m<sup>3</sup> (soit 0.1 % de celui de 1935). Dans cette phase d'évolution vers un régime stationnaire, corrélativement, le stockage diminue lui aussi, passant de 410 000 m<sup>3</sup> en 2012 à 3800 m<sup>3</sup> 50 ans plus tard.

|      | Déstockage (m <sup>3</sup> /an) | Stockage (m <sup>3</sup> /an) |
|------|---------------------------------|-------------------------------|
| 1925 | 1 986 000                       | 1 704                         |
| 1935 | 7 254 000                       | 58                            |
| 1955 | 1 253 000                       | 6 420                         |
| 1975 | 597 100                         | 1 436 000                     |
| 2005 | 551 200                         | 1 010 000                     |
| 2012 | 384 900                         | 412 500                       |
| 2022 | 190 900                         | 126 300                       |
| 2032 | 146 500                         | 57 210                        |
| 2042 | 116 200                         | 27 020                        |
| 2052 | 94 920                          | 11 690                        |
| 2062 | 80 000                          | 3 800                         |

Tableau 16 – Evolution du stockage-déstockage dans l'Albien



Cette évolution vers un régime stationnaire est assez rapide les 10 premières années, plus lente ensuite, comme le montrent aussi les graphiques d'évolution des niveaux sur quelques piézomètres (figures 113 et 114).

Dans la partie centrale du domaine, à forte diffusivité, les niveaux remontent de quelques mètres durant cette première période de 10 ans (exemple aux piézomètres de Paris 13 et d'Achères). A partir de 2022, les niveaux tendent asymptotiquement vers le régime stationnaire.

Autour de cette partie centrale, la remontée des niveaux est plus réduite (Crécy-la-Chapelle, La Houssaye-en-Brie), et quasiment réalisée aussi au bout de 10 ans.

Au piézomètre de Congy, situé dans un secteur de faible perméabilité éloigné de la zone centrale à forte concentration de prélèvements, les niveaux n'ont pas encore atteints un palier de stabilisation au bout de 50 ans (figure 114).



Figure 113 – Evolution vers un régime stationnaire des niveaux dans l'Albien



Figure 114 - Evolution vers un régime stationnaire des niveaux dans l'Albien (suite)

# 7 Exploitation du modèle : scénarios

# 7.1 PRÉSENTATION DES SCÉNARIOS

Les scénarios simulés sont basés sur la disposition D7.114 du projet de SDAGE 2016-2021 présenté dans l'introduction de ce rapport et dont on reprend ci-dessous les éléments quantitatifs.

"...Pour permettre une meilleure répartition des forages sur le bassin, le volume prélevable dans le système aquifère de l'Albien est fixé à 29 Mm<sup>3</sup>/an. L'Albien est actuellement exploité à hauteur de 17.6 Mm<sup>3</sup>/an, dont 13.4 Mm<sup>3</sup>/an en IIe-de-France (données de l'année 2011). Il est ainsi prévu à l'avenir d'augmenter les prélèvements en routine à l'Albien de 11.4 Mm<sup>3</sup>/an (par rapport au volume de 2011). Ce volume prélevé supplémentaire, nécessaire pour atteindre un volume de 29 Mm<sup>3</sup>/an sur le bassin, sera réparti uniformément sur les forages de secours créés en vue d'une situation de crise.

Les forages de secours seront implantés par département en fonction de la population à secourir en cas de crise (un forage pour 180 000 habitants). Les nouveaux prélèvements ne pourront ainsi être accordés que dans la mesure où leur localisation géographique s'inscrit de manière cohérente dans les zones d'implantation préférentielle des nouveaux forages de secours.

Les forages de secours devront être opérationnels à tout moment pour faire face à une situation de crise, pendant une durée de 3 mois, au débit de 150 m<sup>3</sup>/h ou à défaut de pouvoir atteindre ce débit, au débit maximal exploitable connu lors des pompages d'essai..."

#### 7.1.1 Implantation des forages de secours

A partir des secteurs géographiques délimités par le projet de SDAGE (carte 57 du projet de SDAGE, insérée dans la partie introductive de ce rapport), les calculs pour les scénarios ont été faits en considérant que les coordonnées des forages de secours sont les coordonnées des centroïdes de ces secteurs.

Sur les 57 secteurs géographiques délimités, 36 sont situés en Ile-de-France et 21 hors de l'Ilede-France (figures 115 et 116). Les 57 forages correspondants sont listés dans le tableau 17 ciaprès avec leurs coordonnées et un code composé du numéro du département et du numéro d'ordre du forage dans le département (ex : 75-3).

A ces forages de secours s'ajoutent les quatre forages géothermiques situés en lle-de-France :

- AGF B20 Mirabeau (0183-6A-0572/B20)
- AGF B16 Cristal (0183-6A-0571/B16)
- Issy-les-Moulineaux ILM1
- Paris Batignolles GPAR-1.



Figure 115 - Localisation des forages de secours prévus par le SDAGE 2016-2021

Les 4 forages géothermiques de secours sont aussi reportés

Les coordonnées du centroïde du secteur situé dans le Pays de Bray étant hors de ce secteur, le forage correspondant, cerclé en noir sur la figure, sera déplacé comme l'indique la flèche sur la figure. Ses coordonnées (en Lambert II métrique) seront alors  $X = 570\ 000$ , Y=2475000.



Figure 116 - Localisation des forages de secours prévus par le SDAGE 2016-2021 : zoom sur Paris Les 4 forages géothermiques de secours sont aussi reportés

| XLII (m) | YLII (m) | Région | Code | XLII (m) | YLII (m) | Région   | Code |
|----------|----------|--------|------|----------|----------|----------|------|
| 600716   | 2428929  | IDF    | 75-1 | 675977   | 2468237  | Hors_IDF | 02-1 |
| 599258   | 2425643  | IDF    | 75-2 | 686010   | 2503917  | Hors_IDF | 02-2 |
| 602428   | 2429227  | IDF    | 75-3 | 716434   | 2381268  | Hors_IDF | 10-1 |
| 603538   | 2432076  | IDF    | 75-4 | 507025   | 2441409  | Hors_IDF | 27-1 |
| 627957   | 2365691  | IDF    | 77-1 | 474228   | 2467650  | Hors_IDF | 27-2 |
| 655246   | 2435228  | IDF    | 77-2 | 524948   | 2411395  | Hors_IDF | 28-1 |
| 624545   | 2423681  | IDF    | 77-3 | 547520   | 2384473  | Hors_IDF | 28-2 |
| 626703   | 2432908  | IDF    | 77-4 | 595716   | 2351493  | Hors_IDF | 45-1 |
| 635945   | 2405220  | IDF    | 77-5 | 724174   | 2471203  | Hors_IDF | 51-1 |
| 664965   | 2397178  | IDF    | 77-6 | 706017   | 2424448  | Hors_IDF | 51-2 |
| 618769   | 2390254  | IDF    | 77-7 | 750375   | 2435304  | Hors_IDF | 51-3 |
| 631005   | 2446005  | IDF    | 77-8 | 575988   | 2489951  | Hors_IDF | 60-1 |
| 600271   | 2410607  | IDF    | 91-1 | 639972   | 2498988  | Hors_IDF | 60-2 |
| 591724   | 2412885  | IDF    | 91-2 | 607580   | 2493463  | Hors_IDF | 60-3 |
| 594877   | 2421407  | IDF    | 92-1 | 625629   | 2467392  | Hors_IDF | 60-4 |
| 597483   | 2419583  | IDF    | 92-2 | 519657   | 2537265  | Hors_IDF | 76-1 |
| 589544   | 2431002  | IDF    | 92-3 | 461299   | 2514666  | Hors_IDF | 76-2 |
| 590016   | 2424875  | IDF    | 92-4 | 522719   | 2500616  | Hors_IDF | 76-3 |
| 593597   | 2425845  | IDF    | 92-5 | 505235   | 2498446  | Hors_IDF | 76-4 |
| 615842   | 2429347  | IDF    | 93-1 | 488620   | 2508295  | Hors_IDF | 76-5 |
| 615668   | 2439176  | IDF    | 93-2 | 672291   | 2354600  | Hors_IDF | 89-1 |
| 610940   | 2432507  | IDF    | 93-3 |          |          |          |      |
| 603652   | 2437687  | IDF    | 93-4 |          |          |          |      |
| 605746   | 2423382  | IDF    | 94-1 |          |          |          |      |
| 614343   | 2417135  | IDF    | 94-2 |          |          |          |      |
| 608738   | 2417893  | IDF    | 94-3 |          |          |          |      |
| 603746   | 2417659  | IDF    | 94-4 |          |          |          |      |
| 600760   | 2421051  | IDF    | 94-5 |          |          |          |      |
| 615248   | 2422697  | IDF    | 94-6 |          |          |          |      |
| 610204   | 2427431  | IDF    | 94-7 |          |          |          |      |
| 590413   | 2441294  | IDF    | 95-1 |          |          |          |      |
| 570104   | 2457402  | IDF    | 95-2 |          |          |          |      |
| 606515   | 2452452  | IDF    | 95-3 |          |          |          |      |
| 591685   | 2453839  | IDF    | 95-4 |          |          |          |      |
| 606212   | 2443176  | IDF    | 95-5 |          |          |          |      |
| 595821   | 2444069  | IDF    | 95-6 |          |          |          |      |

Tableau 17 - Coordonnées et code des 57 forages de secours prévus par le SDAGE 2016-2021

# <u>Remarque</u>

 Le forage de code 60-1 est déplacé au point de coordonnées X=570000, Y=2475000
Le forage de code 92-5 ne sera pas retenu car un forage géothermique est présent dans le même polygone (cf. figure 116 ci-avant).

3) Les forages géothermiques ne figurent pas dans ce tableau.

# 7.1.2 Scénario 1 : simulation prévisionnelle à 29 M m<sup>3</sup>/an

Dans ce scénario, on augmente les prélèvements dans le système Albien-Néocomien à hauteur de 29 Mm<sup>3</sup>/an.

Les prélèvements en 2010, 2011 et 2012 étant à peu près identiques :

18 333 173 m<sup>3</sup> (2010), 17 809 356 m<sup>3</sup> (2011), 18 491 186 m<sup>3</sup> (2012)

et le nombre de forages étant le même, on peut considérer l'année 2012 comme point de départ de la simulation, soit une augmentation des prélèvements à simuler de :

 $V_{plus} = 29\;000\;000 - 18\;491\;000 = 10\;509\;000\;m^3\,.$ 

Pour les 4 forages géothermiques les débits considérés sont :

- AGF1 et AGF2, 50 m<sup>3</sup>/h chacun (les 2 forages sont très proches),
- Issy-les-Moulineaux et Batignolles, 100 m<sup>3</sup>/h chacun,

soit un prélèvement annuel total  $V_{FG} = 2.628\ 000\ m^3/an$ 

La différence V<sub>plus</sub> - V<sub>FG</sub> = 7 881 000 m<sup>3</sup>/an est à répartir sur les 56 forages de secours (cf. remarque 2 du tableau 16 au § 7.1.1), soit un prélèvement annuel par forage de : 140 732 m<sup>3</sup>/an = 16 m<sup>3</sup>/h.

Les volumes prélevés sur les forages existants demeurent inchangés par rapport à la dernière situation connue (année 2012).

Remarque : les prélèvements sur les puits Beynes B13 ne sont pas connus.

La simulation se fait en régime permanent.

#### 7.1.3 Scénario 2 : simulation « extrême »

La simulation extrême correspond :

- à un départ avec un régime permanent simulé avec les prélèvements de l'année 2012 ;
- à une simulation en régime transitoire avec un débit maximisé (Q<sub>max</sub>) dans les forages existants.

La localisation de ces forages et l'importance des prélèvements (en  $Mm^3/an$ ) sont précisés par la figure 117. Leur liste avec les débits  $Q_{max}$  en  $m^3/h$  est fournie en annexe 6.

Lorsque le débit  $Q_{max}$  n'était pas connu, il a été fixé à 50 m<sup>3</sup>/h.

Au terme de cette simulation, les niveaux simulés dans les forages sont comparés à la cote de la pompe installée dans les ouvrages existants.

<u>Remarque</u> : pour tous les captages situés hors de l'IIe-de-France, le niveau des pompes n'est pas connu.

# 7.1.4 Scénario 3 : simulation de crise

La simulation de crise est construite de la façon suivante :

- départ avec un régime permanent correspondant à une exploitation prévisionnelle de 29 Mm<sup>3</sup>/an (configuration identique à celle du scénario 1) ;
- simulation "de crise" en régime transitoire pendant 3 mois avec les débits Qmax dans les forages existants et des débits de 150 m<sup>3</sup>/h dans les forages de secours ;
- retour à la situation initiale (29 Mm<sup>3</sup>/an) jusqu'à l'atteinte du régime permanent initial.



Figure 117 – Localisation des forages avec des prélèvements portés à Qmax

2 forages dans le Néocomien sont aussi reportés, Bruyères-le-Châtel et Coudray-Monceau, notés N1 et N2 sur la figure.

# 7.2 RÉSULTATS DES SCÉNARIOS

#### 7.2.1 Scénario 1 : simulation prévisionnelle

Les résultats obtenus pour l'Albien et le Néocomien sont présentés sous forme de cartes :

- carte des niveaux, calculés avec des prélèvements s'élevant à 29 Mm<sup>3</sup>,
- carte des différences de niveau entre l'état piézométrique calculé en régime permanent avec des prélèvements à 18 Mm<sup>3</sup> et l'état piézométrique calculé en régime permanent avec des prélèvements à 29 Mm<sup>3</sup>.

#### 7.2.1.1. Albien

Dans une zone d'une cinquantaine de km, s'étendant du piézomètre d'Orsay au sud au piézomètre de l'Isle-Adam au nord, les niveaux sont inférieurs à 0 (figure 118). Au cœur de cette zone (où sont situés les piézomètres de Paris 13, d'Achères, de Rocquencourt et d'Aulnay), ils sont inférieurs à -20 m, avec un minimum à -28 m.



Figure 118 - Scénario 1 (prélèvements portés à 29 Mm3) : niveaux (m NGF) dans l'Albien calculés en régime permanent.

La carte des différences de niveaux entre les deux états piézométriques (figure 119) précise l'impact de ce scénario sur les niveaux. Les différences sont importantes et dépassent 30 m dans la partie centrale, entre Melun au sud et Compiègne au nord, avec une zone autour de Paris où elles sont comprises entre 50 et 52 m (secteurs des forages géothermiques et des piézomètres de Blomet et Paris 13).

La zone des affleurements à l'est et au sud-est, n'est pas sensiblement affectée (rabattements de quelques cm à 1 m), les niveaux étant soutenus par les flux de recharge.



"rabattements" dans l'Albien calculés en régime permanent

(Différence entre l'état piézométrique permanent à 18 Mm<sup>3</sup> et l'état piézométrique permanent à 29 Mm<sup>3</sup>)

#### 7.2.1.2. <u>Néocomien</u>

L'impact de ce scénario sur le Néocomien est important : les niveaux, à l'intérieur d'une zone délimitée par Corbeil-Essonnes, Compiègne, Maisons-Laffitte, sont inférieurs à 40 m (figure 120). Les rabattements par rapport à l'état piézométrique permanent 2012 (calculé avec les prélèvements de 2012), sont supérieurs à 30 m (figure 121).

Dans la partie centrale de cette zone, un peu au nord de Paris, les niveaux sont inférieurs à 20 m (avec un minimum à 14 m) et les rabattements supérieurs à 35 m (avec un maximum à 38 m au droit du piézomètre d'Aulnay dans l'Albien).



Figure 120 - Scénario 1 (prélèvements portés à 29 Mm<sup>3</sup>) : niveaux dans le Néocomien calculés en régime permanent.



Figure 121 – Scénario 1 (prélèvements de 29 Mm<sup>3</sup>) : rabattements dans le Néocomien calculés en régime permanent.

(Différence entre l'état piézométrique permanent à 18 Mm<sup>3</sup> et l'état piézométrique permanent à 29 Mm<sup>3</sup>)

#### 7.2.2 Scénario 2 (extrême) : débits maximisés sur les forages en fonctionnement.

Dans les forages existants (63 en fonctionnement en 2012, dont 30 en Île-de-France), les débits sont portés à leur valeur maximale  $Q_{max}$  (les valeurs utilisées par EGIS ont été reprises, cf. annexe 6). Lorsqu'ils ne sont pas connus, ils ont été fixés à 50 m<sup>3</sup>/h. Le volume annuel correspondant est :

V<sub>max</sub> = 56 318 040 m<sup>3</sup>/an

La durée de la simulation a été fixée à 100 ans (pour tendre vers un régime stationnaire), avec un pas de temps annuel. L'état piézométrique initial est le régime permanent simulé avec les prélèvements de l'année 2012.

#### 7.2.2.1 Albien

• Au bout de 10 ans (figures 122 et 123), les niveaux sont compris entre -40 m et -60 m dans une zone englobant les piézomètres de Paris 13, Blomet, Achères. Ils atteignent -56 m à Maisons-Laffite et à Villeneuve-la-Garenne, -57 m à La-Plaine-St-Denis et -60 m à Neuilly (le minimum).

**Remarque** : ces niveaux sont les niveaux calculés dans les mailles contenant les forages avec prélèvements de Maisons-Laffitte, Villeneuve la Garenne, ....

• Au bout de 50 ans (figures 122 et 124), cette zone s'est élargie, atteignant Corbeil-Essones au sud et le piézomètre de l'Isle-Adam au nord. Aux piézomètres Paris 13, Blomet, Achères, Roquencourt, Aulnay, les niveaux sont désormais inférieurs à -60 m et inférieurs à -80 m dans la zone des forages de Maisons-Laffite (-84 m), Villeneuve-la-Garenne (-84 m), La-Plaine-St-Denis (-87 m), Pantin (-83 m) et Neuilly (-88 m, le minimum).



Figure 122 – Scénario 2 (extrême) : niveaux atteints dans la partie centrale de l'Albien au bout de 10 ans et 50 ans



Figure 123 – Scénario 2 (extrême) : niveaux dans l'Albien calculés au bout de 10 ans



Figure 124 - Scénario 2 (extrême) : niveaux dans l'Albien calculés au bout de 50 ans

• Rabattements

Les rabattements calculés au bout de 10 ans et 50 ans (différences entre les états piézométriques 10 ans et 50 ans et l'état piézométrique permanent issu du scénario 1) sont présentés par les cartes des figures 125 et 126.



Figure 125 - Scénario 2 (extrême) : rabattements dans l'Albien calculés au bout de 10 ans (Différence entre l'état piézométrique 10 ans du scénario 2 et l'état piézométrique permanent issu du scénario 1, point de départ du scénario 2)

Au bout de 10 ans, dans une large zone s'étendant de Corbeil-Essonnes au sud à la faille de Bray au nord, les rabattements sont supérieurs à 60 m et dépassent 80 m (maximum de 83 m) à Paris (au nord du piézomètre de Blomet).

Au bout de 50 ans, à la zone "sup60" s'est substituée une zone où les rabattements dépassent 80 m, la zone "sup60" s'étant quant à elle élargie, atteignant Melun et allant au-delà de la faille de Bray. A Paris, du piézomètre de Blomet jusqu'à celui d'Aulnay, les rabattements dépassent désormais 100 m (maximum de 114 m). L'impact dans les zones d'affleurement reste limité, inférieur à 2 m.



Figure 126 - Scénario 2 (extrême) : rabattements dans l'Albien calculés au bout de 50 ans (Différence entre l'état piézométrique 50 ans du scénario 2 et l'état piézométrique permanent issu du scénario 1, point de départ du scénario 2)

• Evolution des niveaux vers un régime stationnaire

Dans la partie centrale de l'Albien, au bout de 100 ans, les niveaux tendent asymptotiquement vers un régime stationnaire (figures 127 et 128). Plus à l'est (Crécy-la-Chapelle, La Houssayeen-Brie, La Grande-Paroisse, Montbouy), les niveaux continuent à baisser (figure 129).



Figure 127 – Scénario 2 : évolution de la piézométrie vers un état stationnaire. Exemple sur quelques piézomètres



Figure 128 – Scénario 2 : évolution de la piézométrie vers un état stationnaire. Exemple sur quelques piézomètres (suite)



Figure 129 – Scénario 2 : évolution de la piézométrie vers un état stationnaire. Exemple sur quelques piézomètres (suite)

#### 7.2.2.2. <u>Néocomien</u>

• Au bout de 10 ans (figure 130), les niveaux sont inférieurs à 40 m dans une zone centrée sur Orsay. Le niveau le plus bas, 9 m, est atteint dans la maille contenant le forage de Bruyères-le-Châtel.

• Au bout de 50 ans, cette zone délimitée par l'isopièze 40 m s'est élargie, atteignant Compiègne au nord et Melun au sud-est (figure 131). Dans la zone centrée sur Orsay, les niveaux sont désormais inférieurs à 0, avec un minimum de -28 m atteint à Bruyères-le-Châtel. A Coudray-Montceaux, le niveau atteint est de -10 m.

Les cartes des différences de niveaux entre les états piézométrique 10 ans / 50 ans et l'état piézométrique permanent à 29 Mm<sup>3</sup>, point de départ du scénario 2, montrent l'importance des rabattements dans le Néocomien (figures 132 et 133) :

- au bout de 10 ans, les rabattements dans une large zone autour d'Orsay, s'étendant jusqu'à Aulnay au nord, sont supérieurs à 20 m. A Bruyères-le-Châtel, le rabattement est de 43 m. A Coudray-Montceaux, il est de 34 m.
- au bout de 50 ans, les rabattements dans cette zone Orsay-Aulnay dépassent 60 m. A Bruyères-le-Châtel, le rabattement est de 80 m et à Coudray-Montceaux, il est de 71 m (hormis ces deux forages, dans cette zone, les rabattements sont compris entre 60 m et 70 m comme l'indique la légende de la figure 133).

Au bout de 10 ans, les limites sud et sud-est du domaine commencent à être impactées : au bout de 50 ans, les rabattements sont compris entre 1 m et 5 m au sud-est, et au sud ils sont supérieurs à 5 m (figure 133).



Figure 130 - Scénario 2 (extrême) : niveaux dans le Néocomien calculés au bout de 10 ans


Figure 131 - Scénario 2 (extrême) : niveaux dans le Néocomien calculés au bout de 50 ans







Figure 133 - Scénario 2 (extrême) : rabattements dans le Néocomien calculés au bout de 50 ans (Différence entre l'état piézométrique 50 ans du scénario 2 et l'état piézométrique permanent issu du scénario 1, point de départ du scénario 2)



#### 7.2.2.3. Cotes des pompes par rapport aux niveaux calculés

Dans un modèle maillé, conséquence de la discrétisation, un débit introduit dans une maille est un débit considéré dans les calculs comme réparti uniformément sur toute la surface de la maille. Le niveau calculé dans la maille est donc un niveau dont l'effet sur la nappe correspond à ce mode de répartition et non pas au niveau qui serait celui observé (théoriquement) au forage de pompage (hors pertes de charge).

Si l'on souhaite connaître (approximativement) le niveau au forage, le résultat du modèle peut être "corrigé" en utilisant la formule suivante (intégrée dans le logiciel MARTHE) qui fournit le rabattement supplémentaire à prendre en compte :

$$H_{\text{maille}} - H_{\text{forage}} = \frac{Q}{2\pi T} \left( \text{Log} \frac{\Delta x}{r_{\text{p}}} - \frac{\pi}{2} \right)$$
 (J.P. Sauty, 1973)

H<sub>maille</sub> (m) est le niveau moyen dans la maille contenant le forage, calculé par le modèle ;

Hf<sub>orage</sub> (m) est le niveau au forage ;

Q (m<sup>3</sup>/s) est le débit de pompage ;

T (m<sup>2</sup>/s) est la transmissivité ;

 $\Delta x$  (m) est le côté de la maille (la démonstration de la formule est faite avec des mailles carrées) ;

r<sub>p</sub> (m) est le rayon du forage.

#### Exemple :

Perméabilité de  $10^{-4}$  m/s, épaisseur de 50 m, débit de 50 m<sup>3</sup>/s, rayon du forage de 20 m, mailles de 2 km de côté (taille des mailles du modèle Albien).

Le rabattement supplémentaire est de 3.4 m. Avec une perméabilité de 10<sup>-5</sup> m/s il serait de 34 m et avec une perméabilité de 5.10<sup>-6</sup> m/s il serait de 68 m.

Le rabattement supplémentaire étant inversement proportionnel à la transmissivité, il peut y avoir une incertitude sur la valeur calculée si les forages sont situés dans des zones éloignées des piézomètres utilisés pour le calage.

Dans l'Albien, les cotes des pompes (elles ne sont connues que pour les forages situés en llede-France) ont été comparées, d'une part aux niveaux moyens calculés dans les mailles du modèle, et d'autre part aux niveaux "corrigés" à l'aide de la formule ci-dessus (tableau 18).

Sans les corrections, sur 31 pompes (dont 2 dans le Néocomien), 21 sont dénoyées au bout de 10 ans et 28 au bout de 50 ans.

Avec les corrections, 24 sont dénoyées au bout de 10 ans (3 de plus) et 30 au bout de 50 ans (seule la pompe du forage de St-Lambert–des-Bois -78- ne l'est pas).

Le forage de Bonnières-sur-Seine est situé dans une maille où la perméabilité est de  $5.10^{-6}$  m/s. Les rabattements calculés après correction sont supérieurs à 200 m : le débit pompé est de 150 m<sup>3</sup>/h, ce qui n'est pas compatible avec cette valeur de perméabilité, qui est peut-être sousestimée ; ou bien le débit Q<sub>max</sub> est surévalué et excède la capacité productive du secteur.

| Désignation du forage   | Dépt. | Z pompe<br>(m NGF) | Niveau à<br>10 ans | Niveau à<br>50 ans | Niveau<br>"corrigé"<br>à 10 ans | Niveau<br>"corrigé"<br>à 50 ans |
|-------------------------|-------|--------------------|--------------------|--------------------|---------------------------------|---------------------------------|
| ACHERES – SNCF          | 78    | 2.3                | -48.3              | -74.6              | -54.2                           | -80.5                           |
| AGF B20 Mirabeau        | 75    | -51.5              | -51.6              | -80.5              | -57.4                           | -86.3                           |
| AGF_B16 Crystal         | 75    | -49                | -50.5              | -79.4              | -54.5                           | -83.4                           |
| ANDRESY – SIDEC         | 78    | 6                  | -42.3              | -67.6              | -51.0                           | -76.3                           |
| AULNAY-SOUS-BOIS        | 93    | -8.5               | -38.4              | -68.3              | -43.1                           | -73.0                           |
| BATIGNOLLES             | 75    |                    | -56.6              | -85.3              | -56.6                           | -85.3                           |
| BONNIERES SUR SEINE     | 78    | -72                | -20.0              | -23.9              | -224.6                          | -228.5                          |
| BOUGLIGNY               | 77    | 63.8               | 51.7               | 31.2               | 37.0                            | 16.5                            |
| BRETIGNY-SUR-ORGE       | 91    | 19                 | -5.0               | -34.8              | -8.1                            | -37.8                           |
| EVRY S.N.E.C.M.A.       | 91    | -23                | -12.2              | -42.6              | -15.8                           | -46.2                           |
| GENNEVILLIERS           | 92    | -32                | -51.6              | -79.8              | -55.1                           | -83.3                           |
| HENRI QUEUILLE          | 75    | -58.09             | -50.7              | -79.8              | -54.8                           | -83.9                           |
| ISSY-LES-MOULINEAUX     | 92    |                    | -42.3              | -71.3              | -42.3                           | -71.3                           |
| LA PLAINE SAINT DENIS   | 93    | -31.2              | -57.3              | -86.3              | -69.7                           | -98.6                           |
| LE PECQ / SAINT GERMAIN | 78    | 7.3                | -46.6              | -73.8              | -54.2                           | -81.5                           |
| MAISONS-LAFFITTE        | 78    | -34.2              | -54.2              | -81.2              | -73.8                           | -100.8                          |
| MENILMONTANT            | 75    | -62                | -50.1              | -79.6              | -53.3                           | -82.8                           |
| NEUILLY-SUR-SEINE       | 92    | -36                | -56.5              | -84.9              | -64.3                           | -92.7                           |
| ORSAY                   | 91    | 6.35               | -20.9              | -50.0              | -27.7                           | -56.8                           |
| PANTIN - Blanchisserie  | 93    | -33.69             | -53.2              | -82.6              | -66.5                           | -95.9                           |
| PANTIN SEDIF            | 93    | -2.49              | -52.8              | -82.3              | -69.2                           | -98.7                           |
| PASSY                   | 75    | -45.5              | -56.0              | -84.7              | -69.2                           | -97.9                           |
| PAUL VERLAINE           | 75    | -54                | -46.9              | -76.3              | -53.3                           | -82.7                           |
| POISSY                  | 78    | 10                 | -43.5              | -69.3              | -52.6                           | -78.4                           |
| RADIO-France            | 75    | -54.1              | -55.7              | -84.5              | -71.3                           | -100.1                          |
| SAINT-LAMBERT-DES-BOIS  | 78    | -77.7              | -15.9              | -44.0              | -17.8                           | -46.0                           |
| SQUARE DE LA MADONNE    | 75    | -64                | -56.2              | -85.4              | -62.6                           | -91.7                           |
| TRIEL-SUR-SEINE         | 78    | -7                 | -40.8              | -65.5              | -49.1                           | -73.8                           |
| VILLENEUVE LA GARENNE   | 92    | -90                | -54.2              | -82.7              | -62.6                           | -91.1                           |
| BRUYERES-LE-CHATEL      | 91    | -6                 | 17.7               | -19.2              | -10.4                           | -47.2                           |
| COUDRAY-MONTCEAUX       | 91    | 1                  | 30.4               | -6.0               | -4.1                            | -40.5                           |

Tableau 18 – Comparaison de la cote des pompes des forages à l'Albien avec les niveaux calculés dans les mailles du modèle et les niveaux "corrigés". En jaune, les pompes non dénoyées

#### <u>Remarque</u>

La formule ci-dessus permettant de calculer le niveau qui serait celui observé dans le forage (**hors perte de charge**) à partir du niveau moyen calculé par le modèle dans la maille du forage, a été établie en régime permanent (utilisation de la formule de Dupuit) et pour un milieu homogène (au moins dans la zone d'influence du forage). Elle fonctionne bien en régime transitoire, comme le montre le graphique ci-dessous obtenu à partir des données suivantes :

Nappe captive, de 50 m d'épaisseur, de perméabilité  $2.10^{-5}$  m/s, débit de pompage de 100 m<sup>3</sup>/h. La taille de maille du modèle utilisé est de 100 m×100 m dans un domaine de 20 km × 20 km. La durée de simulation est de 40 jours.



Avec ces données, la formule de J.P. Sauty fournit une correction de 20.54 m (rayon du puits =0.2 m). La formule de Theis donne 20.42 m, soit une valeur quasiment identique (sachant que le régime d'écoulement n'est pas encore stabilisé).

Avec des mailles de 2km, cas de l'Albien, la correction serait de 33.79 m.

A t=24h, la correction reste encore applicable, le niveau calculé par la formule de Theis étant une de 21.30 m, soit une différence inférieure à 1 m.

Ce qui peut conduire à des incertitudes sur le niveau calculé dans le forage (pour des temps courts), c'est donc surtout le fait que la perméabilité Kf au voisinage du forage pourrait être significativement différente (et non connue) de la perméabilité moyenne Km de la maille (surtout pour des mailles de  $2 \text{ km} \times 2 \text{ km}$ ).

Dans l'état actuel des connaissances, les valeurs fournies dans le rapport ne peuvent donc être qu'indicatives.

#### 7.2.3. Scénario 3 : simulation d'une situation de crise

La situation dure 3 mois. Dans les 60 forages de secours, les débits sont portés à 150 m<sup>3</sup>/h, ce qui conduit à un volume mensuel égal à 150 m<sup>3</sup>/h  $\times$ (24 $\times$ 365/12) $\times$ 60, soit :

 $V_{secours} = 6 570 000 \text{ m}^3/\text{mois}$ 

Dans les forages existants (63, en fonctionnement en 2012, dont 30 en Île-de-France), les débits sont portés à leur valeur maximale  $Q_{max}$  (cf. annexe 6), soit un volume mensuel :

V<sub>max</sub> = 4 693 170 m<sup>3</sup>/mois

Au total, les prélèvements mensuels sont donc :

V<sub>crise</sub> = 11 263 170 m<sup>3</sup>/mois

La simulation est faite avec 3 pas de temps mensuel, 1 pas de temps trimestriel, 1 pas de temps semestriel et 49 pas de temps annuels, soit une durée totale de 50 ans.

#### 7.2.3.1 Albien

#### • Cartographie des niveaux et des rabattements

Les niveaux obtenus au bout de 3 mois sont très bas dans la zone centrale (figure 134), inférieurs à -60 m dans le secteur des piézomètres de Paris 13 et de Blomet (-20 m dans le cas du scénario 1). Dans ce secteur, le niveau le plus bas est de -78 m.

Entre -40 m et -50 m, autour de cette zone, on trouve les piézomètres d'Aulnay et d'Achères, où les niveaux sont de – 50 m.

Mais les niveaux les plus bas s'observent ponctuellement, dans certains forages de secours ou forages existants, avec des valeurs inférieures à -90 m, atteignant -123 m au forage de l'usine Steiner (figure 134, bas).

Les différences de niveaux entre cet état piézométrique et l'état piézométrique issu du scénario 1 (exploitation prévisionnelle à 29 Mm<sup>3</sup>) ont été calculées et cartographiées (figure 135).

Au bout de 3 mois, les ondes de dépression ne se sont pas propagées sur l'ensemble de l'Albien et les rabattements importants sont localisés dans les zones de forte concentration de forages et autour de forages isolés (dans ce dernier cas sous forme d'auréoles, figure 135).

De ce fait, les différences de niveaux sont inférieures à 1 m sur la majorité du domaine (les plages grises sur la carte de la figure 122 correspondent à des "artefacts" numériques résultant du calcul des différences, les valeurs étant de l'ordre de -10<sup>-4</sup>).

Les rabattements sont supérieurs à 45 m dans le secteur des piézomètres de Paris 13 et Blomet, avec un maximum à 55 m. Dans les zones de moins bonne perméabilité, les rabattements dépassent 80 m sur les forages isolés, en périphérie de la zone centrale (forages cerclés de rouge sur la figure 135).

#### • Evolution des niveaux vers un régime stationnaire

La nappe étant très réactive, surtout dans la partie centrale, les niveaux remontent rapidement après l'arrêt des prélèvements de crise et le retour aux prélèvements à 29 Mm<sup>3</sup>. Dans les zones de bonne perméabilité, les niveaux tendent asymptotiquement vers le régime stationnaire au bout de 10 ans. Dans les zones de plus faible perméabilité, ce temps est de l'ordre de 20 ans (figures 136 et 137).



Figure 134 – Scénario 3 : niveaux calculés dans l'Albien au bout de trois mois.



Figure 135 – Scénario 3 (de crise) : rabattements calculés dans l'Albien

(Différence entre l'état piézométrique issu du scénario 3, au bout de 3 mois, et l'état piézométrique issu du permanent du scénario 1, point de départ du scénario 3)



Figure 136 – Scénario 3 : évolution de la piézométrie vers un état stationnaire. Exemple sur quelques piézomètres



Figure 137 - Scénario 3. Evolution de la piézométrie vers un état stationnaire. Exemple sur quelques piézomètres (suite)

#### 7.2.3.2. Néocomien

Au bout de 3 mois, les niveaux dans le Néocomien sont peu affectés, sauf localement au droit des forages implantés dans l'Albien (figures 138 et 139).



Figure 138 – Scénario 3 : niveaux dans le Néocomien au bout de 3 mois



Figure 139 – Scénario 3 : rabattements dans le Néocomien au bout de 3 mois

## 8 Simulations thermiques

#### 8.1 ÉLÉMENTS DE CONTEXTE

Au centre du Bassin parisien, les eaux de la nappe de l'Albien ont une température supérieure à 25 °C, atteignant 36 °C pour les plus grandes profondeurs de l'aquifère. Elles offrent ainsi une ressource géothermique basse énergie de premier plan.

Pour ne pas impacter la nappe de l'Albien d'un point de vue quantitatif, l'exploitation de la ressource se fait obligatoirement par l'intermédiaire d'un doublet de forages, c'est-à-dire un puits de pompage et un puits d'injection de l'eau refroidie après extraction de ses calories. Les puits de production et d'injection doivent être suffisamment éloignés afin que le recyclage de l'eau refroidie ne soit pas trop rapide et ne provoque pas une baisse de la température de l'eau produite (percée thermique).

Peu de forages géothermiques à l'Albien sont actuellement opérationnels en IIe-de-France (Tour Mirabeau, Tour Cristal à Paris, dans le 15<sup>ème</sup> arrondissement, Issy-les-Moulineaux), mais plusieurs réalisations sont projetées : prochainement Clichy-Batignolles, puis Saclay, à l'étude (figure 140). Une zone de développement potentiel de la géothermie à l'Albien a été délimitée par la DRIEE IIe-de-France (figure 143 ci-après).

La DRIEE a demandé au BRGM de simuler le fonctionnement du doublet géothermique de Clichy-Batignolles, qui sera prochainement mis en service.

Le principal objectif visé est l'évaluation de la température de l'eau au droit du puits de production au cours de 30 années d'exploitation. La modélisation couplant hydrodynamique et thermique doit aussi permettre d'évaluer l'impact du doublet sur les forages AEP environnants et sur les doublets géothermiques les plus proches (XV<sup>ème</sup> arrondissement), implantés à environ 5.5 km au SSW (figure 140).

D'un point de vue opérationnel, la méthodologie de modélisation ici mise en œuvre a été conçue dans le but de permettre la simulation d'autres doublets géothermiques avec un minimum d'ajustements (§ 8.4.1).

#### 8.2 RAPPELS THÉORIQUES

#### 8.2.1 Gradient et flux géothermiques

Au cœur du Bassin parisien, les températures de l'aquifère albien sont contrôlées par le flux de chaleur provenant des profondeurs de la Terre.

Le gradient géothermique correspond à l'augmentation de la température avec la profondeur. En Europe, le gradient géothermique moyen est de l'ordre de 3°C tous les 100 mètres.

Le flux géothermique, exprimé en W/m<sup>2</sup>, résulte du transfert de cette énergie géothermique depuis les profondeurs vers la surface. C'est le produit du gradient géothermique et de la conductivité thermique des roches traversées (§ 8.2.2).



Figure 140 – Localisation du doublet de Clichy-Batignolles (IGN©)

#### 8.2.2 Transport d'énergie

En raison de vitesses d'écoulement relativement lentes au sein des aquifères, l'équilibre thermique entre l'eau souterraine et la roche encaissante est atteint de façon quasi-instantanée (Houpeurt et al., 1965). On ne considère donc qu'une seule température dans le milieu poreux.

Cette hypothèse faite, le transport d'énergie dans un aquifère est régi par deux mécanismes principaux :

- la **conduction thermique** : transfert thermique moléculaire par échange d'énergie cinétique sous l'effet d'un gradient thermique sans déplacement appréciable de "particules". Ce transfert, décrit par la loi de Fourier (1822), a lieu même en l'absence de circulation de fluide :

$$\vec{\Psi}cond = -\bar{\bar{\lambda}}.\vec{grad}\theta$$

avec  $\vec{\Psi} cond$  : flux conductif de chaleur [M.T<sup>-3</sup>]

 $\overline{\lambda}$ : tenseur de conductivité thermique du milieu [M.L.T<sup>-3</sup>.K<sup>-1</sup>] = aptitude d'un matériau à transférer la chaleur par conduction en présence d'un gradient de température

 $\theta$  : température (°K)

Dans un milieu isotrope, le tenseur  $\overline{\lambda}$  se réduit à un scalaire  $\lambda$ .

- la **convection thermique** : transfert de la chaleur contenue dans l'eau interstitielle en mouvement (milieu saturé) :

$$\vec{\Psi}conv = \rho_f C_f \cdot \frac{\vec{v}}{\omega} \cdot \theta$$

avec  $\vec{\Psi}conv$  : flux convectif [M.T<sup>-3</sup>]

 $\rho_f$ : masse volumique du fluide [M.L.<sup>-3</sup>]

 $C_f$ : capacité calorifique massique du fluide [L<sup>2</sup>.T<sup>2</sup>.K<sup>-1</sup>] = quantité d'énergie à apporter par unité de masse d'un matériau pour élever sa température d'1°C

 $\vec{U}$ : vitesse de Darcy du fluide [L.T<sup>-1</sup>]

*w* porosité concernée par les transferts thermiques[-], fraction de la porosité totale.

On admet que la conductivité thermique ( $\lambda_A$ ) est une moyenne pondérée entre la conductivité thermique du minéral de la matrice poreuse ( $\lambda_M$ ) et la conductivité thermique de l'eau ( $\lambda_W$ ) :

$$\lambda_A = \omega . \lambda_W + (1 - \omega) . \lambda_M$$

avec  $\omega$ , la teneur en eau et (1- $\omega$ ), le volume relatif de la matrice.

On pondère aussi la capacité calorifique de la matrice et celle de l'eau.

De façon analogue à la dispersivité cinématique intervenant dans le transport d'un soluté, il existe une dispersivité thermique, liée à l'hétérogénéité du milieu et contribuant à "disperser" les calories en augmentant la zone des échanges thermiques (figure 141).



Figure 141 – Représentation schématique de la dispersion mécanique en 2D (Bundschuh et al., 2010)

D'après les expériences de terrain comparant transferts thermique et chimique sur des distances de l'ordre de la dizaine à la centaine de mètres, les valeurs de la dispersivité cinématique et de la dispersivité thermique apparaissent proches (Sauty, 1981).

Par rapport à la direction de la vitesse, on distingue la dispersion longitudinale, dans le sens de l'écoulement, et la dispersion transversale dans les deux directions orthogonales à la vitesse (composantes horizontale et verticale).

Dans le cas d'un doublet géothermique, le mode de transfert prédominant est la convection, dite alors forcée, en raison du gradient hydraulique artificiel créé entre le pompage et l'injection.

Pour plus de précisions, on trouvera en Annexe 7 un extrait de la notice de MARTHE (Thiéry, 2015b) décrivant le transport d'énergie tel qu'il est pris en compte dans le logiciel MARTHE.

#### 8.2.3 Paramètres hydrodynamiques et thermiques à considérer

En résumé, les paramètres hydrogéologiques nécessaires à la simulation conjointe des écoulements et de la propagation du front thermique sont les suivants : les niveaux piézométriques, la perméabilité intrinsèque, la porosité et le coefficient d'emmagasinement.

Du point de vue des propriétés thermiques, la température initiale du réservoir et des épontes, la conductivité thermique des roches et du fluide, la capacité calorifique des roches et du fluide ainsi que la dispersivité thermique du milieu doivent être considérées.

Dans le cas de l'Albien, les effets de la température sur la viscosité et la densité de l'eau sont négligés (hypothèses pessimistes du point de vue de l'étude du recyclage thermique).

#### 8.3 RECONSTITUTION DU CHAMP DE TEMPÉRATURE EN RÉGIME PERMANENT

La première étape de la modélisation a consisté à reconstituer le champ des températures au sein de l'aquifère albien en régime permanent, dans les conditions de l'année 1840. Ce premier travail a été conduit à l'échelle du modèle régional.

Les valeurs des différents paramètres hydrogéologiques, issues du calage du modèle hydrodynamique, ont bien sûr été conservées.

#### 8.3.1 Températures observées et gradient géothermique

Un ensemble de données de température a été constitué à partir de la base de données nationale sur les eaux souterraines ADES (<u>www.ades.eaufrance.fr</u>), de la synthèse de Lemoine et al. (1939), « Les forages profonds du Bassin de Paris, la nappe artésienne des sables Verts », ainsi que des comptes rendus de travaux réalisés pour les doublets géothermiques de la tour AGF et d'Issy-les-Moulineaux.

Après analyse des coupes technique et géologique des ouvrages, plusieurs points indiqués à l'Albien dans ADES ont été écartés de l'échantillon final car plusieurs aquifères sont en réalité captés (Craie cénomanienne, sables néocomiens). Les valeurs jugées peu fiables comparativement à la série chronologique disponible (analyse des écarts), ont été aussi exclues de l'analyse.

À deux exceptions près, les forages mentionnés dans le document de 1939 (cité ci-dessus) sont recensés dans la Banque du Sous-Sol (BSS) et ont donc pu être localisés avec précision. La consultation de la BSS n'a pas permis de collecter des données de température supplémentaires.

La liste des ouvrages finalement retenus est reportée en Annexe 8, avec pour chacun la température moyenne de l'eau contenue dans les sables albiens.

# Dans la zone d'intérêt géothermique, les températures mesurées varient entre 24.4 °C et 35.5 °C pour une température moyenne de 28.4 °C (36 forages considérés).

Pour chaque forage, le gradient géothermique a été calculé à partir de la profondeur des ouvrages et de la température moyenne de l'eau. La corrélation entre température et profondeur est globalement bonne, les principaux écarts sont constatés pour les grandes profondeurs (Figure 142). Ces derniers peuvent notamment s'expliquer par des conditions de mesure pouvant différer d'un point à l'autre : mesure en condition artésienne, mesure en pompage et en tête, mesure en fond, etc. La méthode de mesure n'est que très rarement précisée.

Des valeurs anomales du gradient géothermique (< 2 °C et > 3.5°C) ressortent du jeu de données exploité, mais elles n'ont pas été exclues faute d'explication à ce stade (Figure 143).

En définitive, le gradient géothermique moyen, calculé à partir des données ainsi compilées, est de l'ordre de 2.7°C/100m pour la nappe de l'Albien (cf. régression linéaire, Figure 142). Malgré une variabilité relativement importante du gradient géothermique, il a été décidé de considérer un gradient uniforme sur l'ensemble de la zone modélisée compte tenu des conditions de mesure et des incertitudes associées. Les modélisations thermiques s'appuient donc sur cette valeur moyenne du gradient géothermique (§ 8.3.3).



Figure 142 – Température des eaux de l'aquifère albien en fonction de la profondeur des ouvrages



Figure 143 – Répartition spatiale des gradients géothermiques calculés à l'Albien

#### 8.3.2 Paramètres intrinsèques des aquifères et des épontes

Comme évoqué précédemment, la modélisation des transferts thermiques nécessite d'introduire des paramètres thermiques et la porosité des formations géologiques (Cf. § 8.2 et Annexe 7).

#### 8.3.2.1. Conductivité thermique et capacité calorifique volumique

Le tableau 19 présente les valeurs de la conductivité thermique et de la capacité calorifique volumique disponibles dans la littérature pour les matériaux géologiques rencontrés dans cette étude.

| Sourco                      | Miliou                | Conductivité thermique | Capacité calorifique |  |
|-----------------------------|-----------------------|------------------------|----------------------|--|
| Source                      | winieu                | (W/m/°C)               | volumique (J/m³/°C)  |  |
|                             | sable humide          | 2.5 à 3.3              | 1.88E+06             |  |
| de Marsily, 2004            | eau                   | 0.61                   | 4.19E+06             |  |
|                             | argile humide         | 1.3 à 1.7              | 2.30E+06             |  |
| Missenard, 1965             | craie de Picardie     | 0.9 à 1.1              | /                    |  |
| De Viries 1062              | sable saturé en eau   | 2.5                    | /                    |  |
| De Vries, 1963              | sable très peu humide | 0.6                    | /                    |  |
|                             | sable fin saturé      | 2.75                   | 1.63E+06             |  |
| Hamdhan and Clarke, 2010    | sable moyen saturé    | 3.34                   | 1.48E+06             |  |
|                             | sable grossier saturé | 3.72                   | 1.48E+06             |  |
| Kappelmayer and Hanel, 1974 | argile humide         | 0.5 à 1.2              | /                    |  |
| Seguin, 2000                | calcaire              | 2.1à3.4                | /                    |  |
| Burger et al. 1085          | argile humide         | 1.2 à 1.5              | /                    |  |
| Burger et ui., 1985         | calcaire              | 2.1 à 3.4              | 1                    |  |

Tableau 19 – Valeurs de conductivité thermique et de capacité calorifique volumiquedéfinies dans la littérature

La conductivité thermique a été considérée homogène pour chacune des couches du modèle (une valeur unique par couche). En cohérence avec les données de la littérature et après quelques ajustements, les valeurs finalement retenues sont les suivantes :

- ✓ 1.5 W/m/°C pour les argiles du Gault et l'Aptien ;
- ✓ 2.5 W/m/°C pour la Craie et les calcaires tithoniens ;
- ✓ 3.0 W/m/°C pour les sables albien et néocomien.

Pour la capacité calorifique volumique des roches, la valeur unique de 2.10<sup>6</sup> J/m<sup>3</sup>/°C a été affecté à toutes les couches du modèle.

Enfin, pour l'eau, les valeurs proposées par défaut dans le logiciel MARTHE ont été utilisées, à savoir une conductivité thermique de 0.6 W/m/°C et une capacité calorifique de 4 185 J/kg/°C.

#### 8.3.2.2. Porosité

La porosité est ici définie comme la fraction des vides occupée par de l'eau en mouvement et de l'eau "immobile" susceptible d'être impliquée dans des échanges thermiques (il ne s'agit donc ni vraiment d'une porosité totale ni vraiment d'une porosité cinématique s.s.).

<u>Remarque</u> : les argiles ont une porosité importante, dont seule une très faible fraction est susceptible de contenir de l'eau "mobile", mais cette mobilité sera très réduite en raison de leur très faible perméabilité. Dans les couches argileuses modélisées, le transfert par convection sera donc négligeable par rapport au phénomène de conduction. La porosité de 40 % affectée à ces couches ne doit donc pas être considérée comme une porosité cinématique mais comme une porosité impliquée dans les échanges thermique par conduction avec la matrice solide.

Les valeurs suivantes ont été retenues :

- ✓ 40 % pour les argiles du Gault et l'Aptien
- ✓ 15 % pour la Craie et les calcaires tithoniens
  ✓ 20 % pour l'Albien et le Néocomien.

#### 8.3.2.3. Dispersivité thermique

La dispersivité longitudinale, mesurée sur le terrain, est de l'ordre du mètre à la centaine de mètres, en fonction du degré d'hétérogénéité de la formation (Lallemand-Barres et al., 1978). La dispersivité transversale est beaucoup plus petite que la dispersivité longitudinale ; Gelhar et al. 1992 recommandent 1/10 de la dispersivité longitudinale pour la composante horizontale et 1/100 pour la composante verticale.

Plusieurs auteurs ont, par ailleurs, mis en évidence une relation entre la dispersivité longitudinale et l'échelle de mesure (longueur du trajet) (Gelhar et al., 1992 ; Schulze-Makuch, 2005). Les lois proposées restent cependant empiriques et la dispersivité longitudinale peut varier de facon significative pour des distances identiques.

Au regard de ces éléments, et en l'absence de données de terrain concernant les sables albiens, les valeurs suivantes ont été fixées : dispersivité longitudinale = 100 m, dispersivité transversale horizontale = 10 m et dispersivité transversale verticale = 1 m. Ces valeurs ont été affectées à toutes les couches du modèle.

#### 8.3.2.4. Analyse de sensibilité :

La sensibilité de la température simulée aux variations de ces paramètres autour des valeurs de calage a été appréhendée en testant d'autres combinaisons de valeurs (paramètre par paramètre). L'analyse de sensibilité sera détaillée dans le chapitre traitant de la modélisation en régime transitoire (§ 8.4.3).

Dans la zone d'intérêt géothermique, la température simulée en régime permanent ne se montre finalement sensible qu'aux variations de la conductivité thermique des roches. Le jeu des valeurs retenues résulte du calage thermique en régime permanent, dans le respect des gammes de valeurs rencontrées dans la littérature (Tableau 19 ci-avant).

#### 8.3.3 Conditions aux limites thermiques

Pour reconstituer le gradient vertical de température au sein du modèle, deux approches ont été testées du point de vue des conditions aux limites. Il s'agit des deux principales configurations habituellement rencontrées dans les modélisations couplant hydrodynamique et thermique :

1) les températures sont imposées sur la première et la dernière couche du modèle (Craie et Tithonien) sur la base du gradient géothermique calculé précédemment (2.7 °C/100m). Pour chaque maille, la température est calculée sous Arcgis© de la facon suivante :

 $\theta = \theta_{air}$  + (cote topographique – cote moyenne de la couche<sup>2</sup>) x gradient

Le champ de température est ensuite importé dans MARTHE.

2) les températures sont imposées sur la couche Craie et un flux de chaleur, correspondant au gradient géothermique de 2.8°C/100m, est imposé à la base du modèle :

 $\Psi = \lambda_{global} * gradient$ , soit un flux thermique de 0.07 W/m<sup>2</sup>.

<sup>&</sup>lt;sup>1</sup> La température moyenne de l'air retenue pour le bassin de Paris est de 11°C (source : Météo-France)

<sup>&</sup>lt;sup>2</sup> Cote moyenne = (cote du toit – cote du mur) / 2

À titre comparatif, le flux de chaleur moyen est de l'ordre de 0.065 W/m<sup>2</sup> pour les continents (Turcotte et Schubert, 2002).

Dans les deux cas, la température des eaux de recharge a été fixée à 11°C.

Le meilleur calage du champ de température a été obtenu dans le premier cas de figure. Les résultats sont discutés dans le paragraphe suivant.

#### 8.3.4 Résultats

Au regard des incertitudes liées à la mesure de la température et discutées précédemment, le calage thermique apparaît de bonne qualité à l'échelle régionale. Avec une droite de régression proche de la droite d'équation y=x, le diagramme de dispersion souligne la bonne reconstitution des températures de l'Albien en régime permanent (figure 144).

La carte des températures restituées par le modèle en régime permanent est présentée à la figure 145.

À l'échelle du modèle régional, les températures simulées varient entre 11 et 38.5 °C. Dans la zone de développement potentiel de la géothermie, les températures varient entre 17.3 °C à l'ouest (lorsque les profondeurs deviennent plus faibles) et 37.1 °C à l'est, pour une température simulée moyenne de 30.1 °C (Figure 145).

Concernant le doublet de Clichy-Batignolles, non pris en compte dans l'échantillon des données observées, les températures simulées sont respectivement de 29.6 et 30.6 °C au droit des puits producteur et injecteur (mailles de 2 km). Ce résultat est en adéquation avec la température de 30°C indiquée dans le compte-rendu des travaux de forage.



Figure 144 – Diagramme de dispersion en régime permanent (1840)



Figure 145 – Champ de température simulé à l'Albien en régime permanent (1840). Le polygone noir correspond à la zone de développement potentiel de la géothermie à l'Abien (source : DRIEE IDF)

#### 8.4 SIMULATION D'UN DOUBLET GÉOTHERMIQUE EN RÉGIME TRANSITOIRE

Les états piézométrique et thermique initiaux sont issus du régime permanent simulé avec les prélèvements de l'année 2012. Préalablement au lancement de simulations en régime transitoire, un modèle local a été extrait du modèle régional, puis un modèle gigogne à mailles de 25 m a été inclus dans le modèle local. Un important travail préliminaire a été mené pour parvenir à une configuration maillée satisfaisante, permettant de préserver à la fois le calage hydrodynamique du modèle régional et la précision des calculs thermiques.

Les simulations ont été réalisées en régime hydraulique stationnaire (il a été vérifié que ce régime stationnaire est atteint très rapidement après la mise en service du doublet à régime d'exploitation constant : après 1 mois dans l'Albien et après deux mois dans les épontes). Pour la partie thermique, le pas de temps adopté est un pas de temps annuel. Au préalable, une simulation au pas de temps mensuel a été réalisée et il a été montré que les résultats étaient identiques à ceux obtenus au pas de temps annuel.

#### 8.4.1 Construction du modèle local avec intégration d'un modèle gigogne

L'élaboration du modèle local s'est faite pas à pas en régime permanent (2012) avec, à chaque étape, le souci de valider l'hydrodynamique et la reconstitution du champ des températures. Les principales étapes de construction sont les suivantes :

- 5) <u>discrétisation verticale de l'Albien et des épontes encadrantes</u> en sous-couches. Plusieurs configurations ont été étudiées :
  - modèle 3 couches : aucune subdivision
  - modèles 7 couches : subdivision de l'Albien en 5 sous-couches
  - modèles 18 couches : subdivision du Gault en 3, de l'Albien en 5 et de l'Aptien Barrémien en 10.

Avec cette dernière configuration, les différentes sous-couches présentent une épaisseur du même ordre de grandeur au droit du doublet à modéliser : 11.5 m pour les argiles du Gault et l'Albien, 10.5 m pour l'Aptien-Barrémien. Les paramètres hydrogéologiques et thermiques restent identiques au sein d'une même couche (aucune hétérogénéité verticale n'est introduite) ;

- <u>suppression des couches de la Craie, du Néocomien et du Tithonien</u>. Les charges et les températures, issues de la modélisation précédente, sont imposées à la première souscouche des argiles du Gault et à la dernière sous-couche de l'Aptien-Barrémien;
- 7) <u>extraction d'un modèle local selon un parallélépipède</u> (130 km x 100 km) englobant la zone ciblée pour le développement de la géothermie à l'Albien. En complément des conditions imposées sur les épontes, les charges issues de la simulation précédente sont imposées sur les bordures du parallélépipède pour l'Albien (1<sup>ère</sup> sous-couche). Les limites sont suffisamment éloignées du doublet géothermique pour ne pas influencer les calculs. Il est enfin important de signaler que les 3 couches sont présentes sans lacune (toutes les couches sont présentes) sur le parallélépipède extrait ;
- 8) <u>intégration d'un maillage gigogne</u> (mailles carrées de 25 m de côté) autour du doublet de Clichy-Batignolles. Le cas échéant, pour la simulation d'un autre doublet géothermique, le travail de modélisation devra être repris à ce stade.

La discrétisation plus fine des couches permet de mieux prendre en compte les échanges thermiques avec les épontes (Lebrun et al., 2011, Rapport BRGM/RP-59591-FR).

#### 8.4.2 Simulation de référence

En accord avec la DRIEE et la demande d'autorisation déposée par le maître d'ouvrage du projet de Clichy-Batignolles, le scénario d'exploitation a été défini comme suit :

- durée d'exploitation de 30 ans (2012-2042) avec les prélèvements de l'année 2012 affectés aux 30 années de la simulation ;
- distance entre points d'impact au réservoir de 650 m (un forage dévié) ;
- puits d'injection implanté à l'amont hydraulique du puits de production (situation non favorable mais correspondant au dimensionnement du dispositif) ;
- exploitation en continu à un débit moyen de 100 m<sup>3</sup>/h. En pompage comme en injection, le débit a été réparti uniformément sur les différentes sous-couches comme les coupes géologique et technique des ouvrages semblent le suggérer ;
- eau réinjectée à une température constante de 10 °C.

Le tableau suivant récapitule les paramètres hydrogéologiques et thermiques affectés ou calculés (venant des calculs en régime permanent) au réservoir dans le modèle numérique.

|                              |                                                                           | Puits de production                 | Puits<br>d'injection |  |
|------------------------------|---------------------------------------------------------------------------|-------------------------------------|----------------------|--|
| es                           | Épaisseur productrice (m)                                                 | 56.7                                | 58.5                 |  |
| Paramètres<br>hydrogéologiqu | Charge hydraulique initiale (m NGF)                                       | 26.7                                | 27.2                 |  |
|                              | Perméabilité (m/s)                                                        | 8.10 <sup>-5</sup>                  |                      |  |
|                              | Coefficient d'emmagasinement (m <sup>-1</sup> )                           | <b>2.10</b> <sup>-6</sup>           |                      |  |
|                              | Porosité (%)                                                              | 20                                  |                      |  |
| Paramètres<br>thermiques     | Température initiale dans le modèle local<br>(°C) (sous-couches extrêmes) | 29.3 à 30.0                         | 29.4 à 30.1          |  |
|                              | Conductivité thermique (W/m/°C)                                           | 3                                   |                      |  |
|                              | Capacité calorifique volumique (J/m³/°C)                                  | 2.10 <sup>6</sup>                   |                      |  |
|                              | Dispersivité thermique (m)                                                | $DI=100 / Dt_{h} = 10 / Dt_{v} = 1$ |                      |  |

Tableau 20 – Paramètres hydrogéologiques et thermiques du réservoir

#### 8.4.3 Résultats

La figure 146 présente l'évolution de la température simulée des eaux de l'Albien au puits de production au cours des 30 années d'exploitation du doublet géothermique (2012-2042), pour les différentes configurations géométriques testées (modèles 3 couches, 7 couches et 18 couches).

Dans le cas des modèles 7 couches et 18 couches, les résultats sont représentés pour les sous-couches 1, 3 et 5 de l'Albien. Sur les trois graphiques de la figure 148, les résultats obtenus pour le modèle 3 couches sont aussi reportés, identiquement.

Le temps de percée thermique est ici défini comme le temps de fonctionnement du doublet pour lequel une baisse de température de 0.5 °C est observée au droit du puits de production.

Le modèle 18 couches fournit les résultats les plus réalistes puisqu'il autorise une évolution de la température dans les épontes et qu'il permet, par une discrétisation verticale plus fine, une meilleure approche du fort gradient thermique généré par la bulle d'eau froide à l'interface réservoir/épontes.

Le modèle non discrétisé apparaît ainsi plus pessimiste : il indique un temps de percée thermique plus court (6 ans contre 8 ans pour les modèles discrétisés) et surtout une température finale plus basse (6.3 °C après 30 années d'exploitation). Dans ce cas de figure, le gradient géothermique à l'interface réservoir / épontes étant sous-estimé, ces dernières voient leur rôle de tampon thermique minoré, et la propagation du front thermique au sein de l'Albien est alors plus rapide.



Figure 146 – Évolution de la température simulée au puits de pompage dans l'Albien en fonction des différentes configurations de modèle

Pour les deux modèles discrétisés, les résultats sont proches en termes de temps de percée thermique et de température finale. Les principales différences sont constatées pour les sous-couches en contact avec les épontes :

 pour le "modèle 7 couches", le front thermique progresse plus vite au sein des souscouches inférieures. Cela est dû à une épaisseur largement supérieure de l'éponte inférieure (111 m pour l'Aptien-Barrémien contre 35 m pour les argiles du Gault). Le rôle de tampon thermique de l'éponte inférieure est donc probablement sous-estimé ;  pour le "modèle 18 couches", l'évolution des températures est davantage symétrique sur la verticale : baisse de température plus prononcée au centre (5.0 °C contre 4.4 et 4.5 °C pour les sous-couches 1 et 5 respectivement). Rappelons que les deux épontes présentent des caractéristiques hydrogéologiques et thermiques identiques. Cette configuration est retenue par la suite comme le modèle de référence.

# En définitive, pour le modèle "18 couches", les résultats moyens (sur l'épaisseur totale du réservoir) de la simulation de référence indiquent un temps de percée de 8 ans et une baisse de température de 4.7°C au puits de production après 30 années d'exploitation.

La figure 147 présente la propagation de la bulle d'eau froide générée par l'injection de l'eau refroidie à différents temps d'exploitation pour le "modèle 18 couches".

Après 30 ans d'exploitation, la bulle d'eau froide est en grande partie captée par le puits de pompage.

Au droit du puits injecteur, et après 30 ans d'exploitation, la bulle d'eau froide simulée (différence de température supérieure à 0.5 °C) s'étend sur 550 m vers l'est et sur 675 m vers l'ouest (figure 148).

**Par conséquent, aucun impact thermique n'est à attendre au niveau des doublets du XVème arrondissement de Paris**, implantés à environ 5.5 km au SSW, et sur les autres forages exploitant la nappe de l'Albien. Pour ces derniers, les plus proches répertoriés sont à 3.5 km à l'est et à 4 km à l'ouest (figure 140, § 8.2.1).



Figure 147 – Évolution de la bulle d'eau froide au cours du temps pour la sous-couche centrale de l'Albien



Figure 148 – Extension de la bulle d'eau froide au droit du puits injecteur après 30 ans d'exploitation selon une coupe Ouest-Est

La discrétisation horizontale est de 25 m. L'injection est uniformément répartie sur les 5 sous-couches de l'Albien.

#### 8.4.4 Analyse de sensibilité

Comme vu précédemment (§ 8.3.2), les paramètres utilisés dans la modélisation ne sont pas tous connus avec précision ; il est donc important d'étudier la sensibilité de la propagation du front thermique à la variation de ces paramètres.

#### 8.4.4.1. Dispersivité thermique

La dispersivité thermique a été fixée de façon empirique. Quatre autres combinaisons de valeurs ont été simulées pour la dispersivité longitudinale et la dispersivité transversale (figure 149). Pour chacune, un rapport de 0.1 a été maintenu entre la composante horizontale et la composante verticale de la dispersivité transversale.

Le temps de la percée thermique se révèle logiquement sensible aux variations de la dispersivité du réservoir, avec une influence prédominante de la composante longitudinale. Le temps de percée passe de 12.5 ans pour un milieu non dispersif à 7 ans pour une dispersivité longitudinale de 100 m et une transversale de 1 m (figure149).

À dispersivité longitudinale équivalente, plus la dispersivité transversale est élevée plus l'arrivée du front thermique est retardée (dissipation de l'énergie perpendiculairement à l'écoulement).



Figure 149 – Évolution de la température simulée au puits de pompage pour différentes valeurs de la dispersivité thermique au niveau de la sous-couche centrale de l'Albien (DI = dispersivité longitudinale, Dt = dispersivité transversale horizontale)

En revanche, la baisse de température au puits de production après 30 ans d'exploitation s'avère moins sensible, avec une différence maximale de 0.4 °C : la baisse varie entre 4.7 °C ("Dl=100m, Dt=10m") et 5.1 °C ("Dl=100m, Dt=1m").

La sensibilité est, par contre, plus significative sur les 20 premières années d'exploitation du doublet, avec une amplitude maximale de température de 1.4 °C pour les 13<sup>ème</sup> et 14<sup>ème</sup> années.

#### 8.4.4.2. Porosité

En complément du modèle de référence, trois autres combinaisons de porosité ont été étudiées : porosité de l'Albien abaissée de 20 à 10 %, porosité de l'Albien augmentée de 20 à 30 %. À chaque fois, la porosité des autres couches du modèle est restée inchangée.

Comme illustré par la figure 150, la température simulée au droit du puits de production s'avère peu sensible aux variations de la porosité du réservoir : le temps de percée thermique varie de plus ou moins une année tandis que la température après 30 ans d'exploitation varie entre 24.0 et 24.5 °C, soit une baisse comprise entre 4.5 et 5.0 °C.



Figure 150 – Évolution de la température simulée au puits de pompage pour différentes valeurs de porosité de l'Albien et des épontes (sous-couche centrale du réservoir)

Plus la porosité affectée à l'Albien est élevée, plus l'arrivée du front thermique est retardée, tout en rappelant que la sensibilité n'est que peu significative. En effet, l'augmentation de la porosité entraîne à la fois une diminution de la conduction et de la convection thermiques et une diminution de la vitesse réelle :

- la conductivité thermique des sables albien étant 5 fois supérieure à la conductivité thermique de l'eau, une augmentation de la porosité totale génère une diminution de la conductivité thermique équivalente de l'aquifère et donc du flux conductif de chaleur ;
- la vitesse de l'écoulement étant inversement proportionnelle à la porosité cinématique, l'augmentation de cette dernière entraîne la baisse du flux convectif.

#### 8.4.4.3. Paramètres thermiques

Pour la conductivité thermique comme pour la capacité calorifique volumique, deux autres valeurs, cohérentes avec les données de la littérature, ont été testées de façon indépendante pour le réservoir et pour les épontes.

Les résultats de l'analyse de sensibilité, présentés à la figure 151, confirment que le transfert thermique s'opère majoritairement par convection au sein du réservoir.

Les températures simulées au puits producteur se révèlent effectivement très peu sensibles aux variations de la conductivité thermique des sables albien alors qu'au contraire, la sensibilité aux variations de la capacité calorifique est notable.

Par exemple, avec des valeurs variant de  $1.5.10^6$  à  $2.5.10^6$  J/m<sup>3</sup>/°C pour le réservoir, le temps de percée thermique et la température finale au droit du puits producteur augmentent respectivement de 6.5 à 9 ans et de 24.0 (-5.5°C) à 25.5 °C (-4.0°C).

La température finale simulée est par contre sensible aux variations de la conductivité thermique des épontes ; plus cette dernière est élevée, plus la baisse de température finale est faible (échange thermique entre le réservoir et les épontes renforcé). Pour des conductivités thermiques de 1 et 2 W/m/°C, les baisses de température sont respectivement de 4.4 et 5.1 °C.



Figure 151 – Évolution de la température simulée au puits de pompage pour différentes valeurs de conductivité thermique (à gauche) et de capacité calorifique (à droite) assignées à l'Albien (sous-couche centrale du réservoir)

#### 8.4.5 Études de scénarios d'exploitation alternatifs

À titre prospectif, quatre scénarios alternatifs sont proposés; ils visent tous à limiter le recyclage thermique au sein du doublet :

- ✓ Scénario A : injection de l'eau refroidie en aval hydraulique du pompage ;
- Scénario B : température de rejet fixée à 15 °C. Cette température est mentionnée dans certains projets (ex. du doublet d'Issy-les-Moulineaux);
- ✓ Scénario C : fonctionnement du doublet 6 mois par an (à un débit moyen de 100 m<sup>3</sup>/h) ;
- ✓ Scénario D : combinaison des scénarios A et C

Pour chacun des scénarios, l'évolution des températures au puits de production est présentée à la figure 152.

L'utilisation du doublet géothermique uniquement en chauffage (6 mois/6 mois) procure les conditions d'exploitation les plus favorables avec un temps de percée thermique évalué à 15.5 ans et une baisse de température finale de 2.0 °C au puits de production.

Pour les deux autres scénarios, le gain en termes de temps de percée thermique n'est pas très sensible. En revanche, la baisse de température au puits producteur après 30 ans d'exploitation est amortie de façon significative avec respectivement 3.7 ° C et 3.0 °C pour les scénarios B (Tinjection =  $15^{\circ}$ C) et A (injection à l'aval) (tableau 21).

Enfin, pour la combinaison des scénarios A et C (fonctionnement 6 mois par an avec injection à l'aval), la percée thermique et la baisse de température sont respectivement estimées à 23.5 ans et à 0.8 °C.



Figure 152 – Évolution de la température simulée au puits de pompage selon différents scénarios d'exploitation (sous-couche centrale du réservoir)

|                                          | Scénario<br>de<br>référence | Scénario A<br>Injection à<br>l'aval | Scénario B<br>T <sub>injection</sub> = 15°C | Scénario C<br>6 mois | Scénario D<br>(A+C) |
|------------------------------------------|-----------------------------|-------------------------------------|---------------------------------------------|----------------------|---------------------|
| Temps de<br>percée (-0.5 °C)             | 8 ans                       | 10 ans                              | 9 ans                                       | 15.5 ans             | 23.5 ans            |
| Baisse de<br>température<br>après 30 ans | 4.7 °C                      | 3.0 °C                              | 3.7 °C                                      | 2.0 °C               | 0.8 °C              |

 Tableau 21 – Temps de percée thermique et températures simulés au puits de production après 30 ans pour différentes conditions d'exploitation

#### 8.4.6 Conclusions

La discrétisation verticale permet de mieux prendre en compte les échanges entre l'aquifère et les épontes. Avec des sous-couches d'épaisseur équivalente et de l'ordre de 10 m, elle apparaît suffisamment fine pour l'étude du doublet géothermique de Clichy-Batignolles.

Au regard de l'extension simulée de la bulle d'eau froide, aucun impact thermique n'est attendu sur les captages et les doublets géothermiques les plus proches après 30 années d'exploitation.

Pour le scénario d'exploitation de référence, le temps de percée thermique est évalué à 8 ans et la baisse de la température moyenne au puits de production est estimée à 4.7 °C après 30 ans d'exploitation.

Même si la combinaison des paramètres hydrogéologiques et thermiques retenue dans le modèle de référence peut apparaître comme une situation moyenne, les résultats de la simulation doivent être considérés avec précaution face aux incertitudes associées à leur définition. En effet, la température simulée au puits producteur après 30 ans est sensible aux

variations de la capacité calorifique volumique du réservoir et, dans une moindre mesure, aux variations de la dispersivité thermique, de la conductivité thermique des épontes et de la porosité affectée aux sables albiens.

Enfin, il est important de mentionner que d'autres conditions d'exploitation plus favorables sont envisageables, en particulier d'injecter les eaux froides à l'aval hydraulique du puits de production et/ou de ne faire fonctionner le doublet géothermique que pour la production de chauffage. Les baisses de la température simulée au puits producteur après 30 ans d'exploitation sont alors inférieures à 3 °C.

 $\bullet \bullet \bullet$ 

### 9 Conclusions

La construction du nouveau modèle hydrodynamique de l'Albien-Néocomien a permis d'actualiser et de compléter les données des modélisations menées jusqu'en 2006 par Hydroexpert-EGIS et de reconfigurer le modèle utilisé alors. Le modèle BRGM inclut désormais la formation du Tithonien et couvre une superficie plus importante en intégrant des affleurements de l'Albien au nord-est et au sud-est.

La modélisation hydrodynamique confirme l'existence d'une zone de fortes perméabilités (de 5.10<sup>-5</sup> m/s à 10<sup>-4</sup> m/s) dans la partie centrale de l'Albien, en région parisienne. Par contre, en raison du faible nombre de points de mesure disponibles pour le calage (24 piézomètres et six forages), des incertitudes subsistent dans de nombreux secteurs, en particulier le long du littoral de la Manche où la question d'une possible intrusion d'eau salée dans l'Albien pourrait se poser, ce qui nécessiterait d'acquérir si possible des informations et données supplémentaires.Par ailleurs, en quelques points la fiabilité des mesures serait à vérifier (piézomètres de Rocquencourt et de La Grande-Paroisse).

Des 3 scénarios de prélèvements dans l'Albien qui ont été simulés, le scénario 2 (scénario "extrême », avec des débits maximisés dans les forages existants, reconduits chaque année jusqu'à l'atteinte d'un régime stationnaire) est celui qui a le plus d'impact sur les niveaux dans l'Albien : au bout de 10 ans, dans une large zone s'étendant de Corbeil-Essonnes au sud à la faille de Bray au nord, les rabattements sont supérieurs à 60 m et dépassent 80 m à Paris (maximum de 83 m au nord du piézomètre de Blomet). Au bout de 50 ans, à la zone "sup60" s'est substituée une zone où les rabattements dépassent 80 m, la zone "sup60" s'étant quant à elle élargie, atteignant Melun et allant au-delà de la faille de Bray. A Paris, du piézomètre de Blomet jusqu'à celui d'Aulnay, les rabattements dépassent désormais 100 m (maximum de 114 m). L'impact dans les zones d'affleurement reste limité, inférieur à 2 m (zones de recharge par les précipitations).

Sur 31 pompes de forages situées en IIe-de-France (dont 2 dans le Néocomien) et pour lesquelles la cote est connue, 24 sont dénoyées au bout de 10 ans et 30 au bout de 50 ans (seule la pompe du forage de St-Lambert des Bois –département 78- ne l'est pas).

La modélisation thermique a permis de mettre au point, après plusieurs tests, une démarche et une configuration de maillage optimales pour la simulation de doublets géothermiques à l'Albien dans la région parisienne : dans un premier temps, reconstitution du champ de température de l'Albien en utilisant le modèle hydrodynamique régional, puis extraction d'un modèle local (130 km x 100 km) englobant la zone ciblée pour le développement de la géothermie à l'Albien, intégration d'un maillage gigogne (mailles carrées de 25 m de côté) autour du doublet de Clichy-Batignolles. De nouveaux maillages gigognes pourraient être intégrés avec un minimum d'ajustements.

Pour le scénario d'exploitation de référence, le temps de percée thermique est évalué à 8 ans et la baisse de la température moyenne au puits de production est estimée à 4.7 °C après 30 ans d'exploitation. Mais des conditions d'exploitation plus favorables sont envisageables, en particulier injecter les eaux refroidies à l'aval hydraulique du puits de production et/ou ne faire fonctionner le doublet géothermique que pour la production de chauffage. Les simulations faites montrent que les baisses de la température au puits producteur après 30 ans d'exploitation et dans le cas du scénario le plus favorable pourraient alors être inférieures à 1°C avec des temps de percée supérieurs à 20 ans.

 $\bullet \bullet \bullet$
# 10 Bibliographie

Francis AMÉDRO F., Bertrand MATRION B. (2014) L'étage Albien dans sa région-type, l'Aube (France) : une synthèse dans un contexte sédimentaire global. *Carnets de Géologie* [*Notebooks on Geology*], Brest, vol. 14, nº 5, p. 69-128

Bault V., Borde J., Follet R., Laurent A., Tourliere B. (2012) - Atlas hydrogéologique numérique de l'Oise. Phase 3 : Notice. Rapport final. Rapport BRGM/RP-61081-FR. 320 p., 1 carte HT, 11 fiches.

Bel A. (2013) - Synthèse hydrogéologique préalable à la modélisation maillée des nappes de l'Albien/Néocomien. Note technique.

Berger G. (1978) - La nappe de l'Albien en IIe-de-France. Synthèse et actualisation des données : piézométrie, chimie, prélèvements, enquêtes sur les ouvrages. Perspectives d'exploitation. Rapport BRGM/78-SGN-697-BDP. 2 volumes.

BRGM (1971) - Application des méthodes isotopiques et hydrochimiques à l'étude de la nappe de l'Albien du Bassin de Paris. Rapport BRGM/71-SGN-304-HYD.

BRGM (1981) - Résultats des pompages d'essai sur le forage géothermique GBCI (Bruyères-le-Châtel). Rapport 81-SGN-733-IDF.

BRGM (1990) - Forage à l'Albien de Bougligny. Rapports BRGM/89-DDF-104 et 90-IDF.

BRGM (1995) - Synthèse hydrogéologique du réservoir des sables albiens dans le Sénonais - Gâtinais (89) pour la sécurité des approvisionnements en eau potable publique. Rapport BRGM-R38523.

BURGEAP – C.G.E. (1975) – Modèle mathématique pour l'étude de la gestion de la nappe de l'Albien dans la région parisienne. Rapport P.151-E.325.

BURGEAP - CGE (1982) - Usine de Neuilly-sur-Seine : réalisation des forages à l'Albien. Rapport R.500.E.673.

CHEVRIER R.M. (1972) - Géochimie des nappes du pays de Bray - Etudes hydrogéologique et hydrogéochimique des nappes aquifères du Pays de Bray - Contribution à l'étude de l'alimentation de la nappe des sables verts de l'Albien - Laboratoire de géologie appliquée. Conservatoire national des arts et métiers.

Contoux C., Violette S., Vivona R., Goblet P., Patriarche D. (2013) - How basin model results enable the study of multi-layer aquifer response to pumping : the Paris Basin, France. Hydrogeology Journal (2013) 21: 545–557

De la Quérière Ph. (1986) – Capacité de production des aquifères profonds de Haute-Normandie. Rapport BRGM/86-SGN-664-HNO.

DHYCA (1965) - Contribution à l'étude hydrogéologique de la nappe albienne dans le Bassin de Paris. Rapport SG-RJM.

Juignet P. (1974) – Transgression crétacée sur la bordure du Massif armoricain – Aptien, Albien, Cénomanien de Normandie et du Maine – Le stratotype du Cénomanien – Thèse d'Etat, université de Caen.

Lemoine P., Humery R., Soyer R. (1939) – Les forages profonds du Bassin de Paris, la nappe artésienne des Sables Verts. Mémoire du Muséum National d'Histoire naturelle, Nouvelle série, Tome XI, 700 p.

Mégnien C. (1964) – Observations hydrogéologiques sur le Sud-Est du Bassin de Paris – Mémoire du BRGM n° 25.

Mégnien C., Mégnien F. (1980) – Synthèse géologique du Bassin de Paris – Mémoire du BRGM n°101.

Paloc H. (1987) - Evaluation de la probabilité d'existence d'une karstification active dans le calcaire portlandien sous couverture crétacée au Nord-ouest du champ de fractures de Soulaine-Dhuys (Aube). Rapport BRGM/87-SGN-164-STO. 137 p., 9 cartes.

Raoult Y. (1999) – La nappe de l'Albien dans le bassin de Paris, de nouvelles idées pour de vieilles eaux. Thèse de doctorat de l'université Paris VI.

Seguin J.J., Mardhel V. (2012) - Référentiel Hydrogéologique Français BDLISA (version beta). Principes de construction et mise en œuvre. BRGM/RP-61034-FR.

Vernoux J.F., Maget P., Donsimoni M., Blanchin R., Afzali H., Vairon J. (1997) - Synthèse hydrogéologique du Crétacé inférieur du bassin de Paris. Rapport final. BRGM/RR-39702-FR

# Modélisations de l'Albien-Néocomien (Hydroexpert-EGIS)

Bonnet M. (1999) – Réalisation d'un modèle de gestion des aquifères de l'Albien et du Néocomien. Rapport de 1<sup>ère</sup> phase n°99 64 005 – Hydroexpert.

Bouet Y, Marti A., Bonnet M. (2000) – Réalisation d'un modèle de gestion des aquifères de l'Albien et du Néocomien. Phase 2. Volume 1 : rapport. RP00M040 – Hydroexpert.

Marti A., (2000) - Réalisation d'un modèle de gestion des aquifères de l'Albien et du Néocomien. Rapport de 3<sup>ième</sup> phase. RP00M093 – Hydroexpert.

Floriat S., Guedon G., (2004) – Reprise du modèle de gestion des aquifères de l'Albien et du Néocomien. Phase 1 : mise à jour et reprise du calage du modèle. RPL04M018b – Hydroexpert.

Floriat S. (2005) – Reprise du modèle de gestion des aquifères de l'Albien et du Néocomien. Phase 2 : simulation des scénarios. RPP05M003b – Hydroexpert.

Floriat S. (2006) – Actualisation du modèle de gestion des aquifères de l'Albien et du Néocomien. RP06M08a – Hydroexpert.

# Modélisation thermique

Bundschuh J., Suarez Arriaga M.C. (2010) – Introduction to the numerical modeling of groundwater and geothermal systems. Volume 2.

Burger, Recordon, Bovet, Cotton, Saugy (1989) – Thermique des nappes souterraines.

Douez O. (2007) – Réponse d'un système aquifère multicouche aux variations paléoclimatiques et aux sollicitations anthropiques - Approche par modélisation couplée hydrodynamique, thermique et géochimique. Thèse d'État, Université de Bordeaux 3.

G2H Conseils (2013) – Fort d'Issy-les-Moulineaux. Rapport de fin de travaux du forage de production ILM1 et du forage d'injection ILM2.

Gelhar L.W., Welty C. and Rehfeldt K.R. (1992) – A critical review of data on field-scale dispersion in aquifers. Water Resources Res. 28:7, pp 1955-1974.

Hamdhan I.N., Clarke G. (2010) – Determination of Thermal Conductivity of Coarse and Fine Sand Soils. Proceedings World Geothermal Congress 2010.

Houpeurt A., Delouvrier J., Iffly R. (1965) – Fonctionnement d'un doublet hydraulique de refroidissement. La Houille Blanche n°3, pp 239-246.

Kappelmeyer O., Haenel R. (1974) – Geothermics with special reference to application, 238 pp.

Lallemand-Barres A., Peaudecerf A. (1978) – Recherche des relations entre la valeur de la dispersivité macroscopique d'un milieu aquifère, ses autres caractéristiques et les conditions de mesure, Bull. BRGM, Sect. 3, Fr., Set. 2, 4.

Le Brun M., Hamm V., Lopez S., Antics M., Ausseur, Cordier E., Giuglaris E., Goblet P., Lalos P., Ungemach P., Goyénèche O. (2011) – Pratiques de modélisation hydraulique et thermique pour des exploitations géothermiques au Dogger dans la région parisienne. Rapport BRGM/RP-59591-FR.Le Fanic R. (2005) – Hydrogéologie d'un système thermal et modélisation couplée hydrodynamique – thermique en vue de la gestion de la ressource. Application au système de Dax - Saint-Paul-lès-Dax. Thèse d'État, Université de Bordeaux 3.

Missenard (1965) - Conductivité thermique des solides, liquides, gaz et de leurs mélanges.

SAUNIER et associés (2007) – Site Mirabeau. Quai André Citroën – Paris 15<sup>ème</sup>. Doublet géothermique. Dossier d'autorisation d'exploiter.

Sauty J.-P. (1981) – Du comportement thermique des réservoirs aquifères exploités pour le stockage d'eau chaude ou la géothermie basse enthalpie. Thèse d'État, INP de Grenoble.

Schulze-Makuch D. (2005) – Longitudinal Dispersivity data and implications for scaling behavior. Ground Water. VOI. 43, N°3, pp443-456.

Turcotte D.L., Schubert G. (2002) – Geodynamics. Second Edition. Cambridge University Press.

# Logiciel MARTHE

Thiéry, D. (2007) - Modélisation 3D des écoulements à densité variable avec le logiciel MARTHE version 6.9. Rap. BRGM/RP-55871-FR, 88 p., 23 fig.

Thiéry, D. (2010) – Groundwater Flow Modeling in Porous Media Using MARTHE. *in "Modeling Software Volume 5, Chapter 4, pp. 45-60 • Environmental Hydraulics Series"*. Tanguy J.M. (Ed.) – Éditions Wiley/ISTE London. ISBN: 978-1-84821-157-5.

Thiéry D. (2013) - Didacticiel du code de calcul MARTHE v7.4. Votre premier modèle. Rapport BRGM/RP-62798-FR.

Thiéry D. (2015a) – Code de calcul MARTHE - Modélisation 3D des écoulements dans les hydrosystèmes - Notice d'utilisation de la version 7.5. BRGM/RP-64554-FR, 274 p., 145 fig.

Thiéry D. (2015b) – Modélisation 3D du transport de masse et du transfert thermique avec le code de calcul MARTHE – version 7.5. BRGM/RP-64765-FR, 225 p., 110 fig.

\* \* \*

# Annexe 1- Comment le niveau piézométrique a été calculé au forage de Grenelle en 1841



Forage du puits de Grenelle - Extrait de "Les Grands Travaux du Siècle"

(in : LAUVERJAT J., 1967. Contribution à l'étude géologique et hydrogéologique de l'Albien dans le centre du Bassin de Paris. Faculté des Sciences de Paris, Thèse 3<sup>ième</sup> Cycle)

# "....les travaux de forage commencèrent le 24 décembre 1833

Le matériel de sondage employé par Mulot se composait surtout d'une chèvre à quatre pieds, haute d'environ 18 mètres, entourée de parois en planches ; l'appareil moteur comprenait deux treuils munis de deux roues de carriers aux échelons desquelles s'appliquèrent six à douze hommes, jusqu'à la profondeur de 510 mètres. On remplaça ensuite ce système primitif par un cabestan à manège mû par sept chevaux.... Le procédé était le battage à la détente. On utilisait des tiges de fer pleines d'une longueur de huit mètres, vissées ou goupillées, suivant le cas, auxquelles on adaptait, selon la nature du terrain à traverser, des trépans, des tarières ouvertes ou des soupapes à boulets. L'un des treuils servait aux manœuvres et l'autre au battage.

...le 26 février 1841, à 14h30, l'eau jaillit impétueusement, inondant les hommes et le chantier."

# Extrait de (page 135) :

Lemoine P., Humery R., Soyer R. (1939) – *Les forages profonds du Bassin de Paris, la nappe artésienne des sables Verts.* Mémoire du Muséum National d'Histoire naturelle, Nouvelle série, Tome XI, 700 p.

On présente ici la méthode de calcul du niveau piézométrique au forage de Grenelle en 1841. Cette méthode est exposée dans :

**Lemoine P., Humery R., Soyer R.** (1939) – *Les forages profonds du Bassin de Paris, la nappe artésienne des sables Verts.* Mémoire du Muséum National d'Histoire naturelle, Nouvelle série, Tome XI, 700 p.

dont on reprend les passages ci-dessous (en italique).

# 1. Mesures et résultats

Voici un tableau qui résume les observations de Mary et Lefort (in Michal, 1863), …Nous y avons joint les pertes de charge, calculées par la formule de Flamant, ce qui permet, par addition avec les nombres de la 2<sup>ième</sup> colonne, d'inscrire dans la 5<sup>ième</sup> colonne les niveaux d'eau rectifiés (page 145).

| Observation | Altitude (m) | Débit (l/s) | Perte de charge (m) | Altitude<br>rectifiée |
|-------------|--------------|-------------|---------------------|-----------------------|
| 1           | 37.9         | 6.66        | 1.91                | 39.81                 |
| 2           | 40.95        | 6.21        | 1.64                | 42.59                 |
| 3           | 43           | 6.06        | 1.51                | 44.51                 |
| 4           | 50           | 5.66        | 1.31                | 51.31                 |
| 5           | 52.4         | 5.5         | 1.26                | 53.66                 |
| 6           | 53.55        | 5.3         | 1.1                 | 54.65                 |
| 7           | 56.3         | 5.08        | 0.98                | 57.28                 |
| 8           | 62.95        | 4.75        | 0.95                | 63.9                  |
| 9           | 66.4         | 4.46        | 0.82                | 67.22                 |
| 10          | 71           | 4.15        | 0.76                | 71.76                 |

Observations de Mary et de Lefort

Toutes les observations sont des mesures directes à la cuve, mais elles ne sont pas toutes d'égale valeur : seules les observations N°1 et N°10 ont été faites pendant les périodes de calme ; pour les huit autres, on a profité de temps relativement courts, pendant les réparations ou de nouvelles installations.

Telles qu'elles sont dans l'ensemble, les observations vérifient bien la loi de décroissance linéaire du débit avec l'altitude et permettent de déclarer valable le calcul du niveau hydrostatique à cette époque. [cf § 3 et 4 ci-après]

L'importance considérable que l'on doit accorder à ce calcul, nous a incités à le faire selon quatre modes différents ; d'une part en tenant compte des dix observations, selon la méthode des moindres carrés, et d'autre part, en ne tenant compte que des meilleures observations, N°1 et N°10. Ce double calcul a été fait en négligeant ou en ne négligeant pas la perte de charge. On obtient ainsi les quatre résultats suivants :

|                                                  | Par les deux observations<br>N°1 et 10 seules | Par la méthode des moindres<br>carrés sur les dix observations |
|--------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|
| En ne tenant pas compte de<br>la perte de charge | 125 m 47                                      | 127 m 95                                                       |
| En en tenant compte                              | 124 m 33                                      | 125 m 98                                                       |

## Résultats des 4 méthodes de calcul

Cette divergence dans les résultats de quatre calculs fondés sur les mêmes observations, est un exemple des difficultés entraînées par le défaut d'observation directe et nous incite à nous défier des calculs même les plus simples (et surtout des extrapolations) quand ils s'appliquent à des objets naturels. Ainsi, en supposant même que la mesure N°1 soit parfaite, un écart de 1 mètre dans la mesure N° 10 entacherait le calcul du niveau hydrostatique de 2 m. 50 : or l'observation N° 6 s'écarte de plus de 1 mètre de la droite interpolatrice N°1-N°10.

Nous sommes donc conduits à adopter finalement pour le niveau hydrostatique du puits artésien de Grenelle une cote arrondie qu'il est raisonnable de fixer à 126 mètres.

#### Incertitude sur la cote du sol.

En note, au bas de la page 146 : "*Michal adopte la cote* +37.9 *pour le sol de l'abattoir, alors que divers auteurs ont noté la cote* +36.50 (Gerards, 1909). La 1<sup>ère</sup> cote est sans doute non celle du sol, mais celle du robinet à la base de la colonne."

## 2. Reconstitution du calcul par la droite des moindres carrés

On a repris les valeurs du tableau des mesures ci-avant et réalisé la même opération que celle décrite, sans tenir compte des pertes de charge d'une part (figure A1), en en tenant compte d'autre part (figure A2).



Figure A1 – Ajustement d'une droite sur les 10 observations du tableau des observations sans tenir compte des pertes de charge



Figure A2 – Ajustement d'une droite sur les 10 observations du tableau des observations en tenant compte des pertes de charge

La loi de décroissance des débits en fonction de l'altitude Z des points de déversement, citée plus haut, est du type  $Z = -aQ + H_{stat}$  (cf § 3 et 4 ci-après) où H est le niveau hydrostatique à calculer (à l'époque on considérait que le seul exutoire de l'Albien était le forage de Grenelle et que le niveau à calculer était le niveau hydrostatique).

Lorsque Q = 0,  $H_{stat}$  = Z, donné par l'équation de la droite de régression (figures A1 et A2).

Les résultats que l'on obtient diffèrent légèrement de ceux du tableau A1 des résultats (technique d'ajustement sans doute différente de celle alors utilisée) :

|                                                  | Résultats du tableau T1 | Nos résultats,<br>d'après les équations<br>des figures A1 et A2 | Ecarts |
|--------------------------------------------------|-------------------------|-----------------------------------------------------------------|--------|
| En ne tenant pas compte<br>de la perte de charge | 127,95 m                | 127,43 m                                                        | -52 cm |
| En en tenant compte                              | 125,98 m                | 126 ,17 m                                                       | +19 cm |

Tableau A1 – Résultats des 4 méthodes de calcul

# 3. Calculs faits à partir des deux observations N°1 et N°10

Page 98-99 :



Fig. 10. - Définition de la charge hydrostatique, de la perte de charge et de la charge utile.

"... en prenant pour pression la charge utile h, c'est-à-dire la charge hydrostatique H diminuée de la perte de charge J, on peut donc écrire :

$$Q = s\sqrt{2gh} = s\sqrt{2g(H-J)}$$
,

mais, comme selon Darcy,

le débit prend une forme beaucoup plus compliquée, où le débit figure dans les deux termes :

$$Q = s\sqrt{2g(H - jQ)}$$

Cette équation est du second degré en Q ; mais heureusement, elle se simplifie souvent."

## Pages 102-103 :

On démontre en effet que, dans ses limites d'application, l'expression de Q peut se développer en série alternée sous la forme :

$$Q = \frac{H}{j} \left( 1 - \frac{1}{2} \frac{H}{j^2 g s^2} + ... \right)$$

Si donc l'on se limite au premier terme Q=H/j ,on ne commet qu'une erreur relative inférieure à

l'expression  $\frac{\mathbf{n}}{2j^2gs^2}$  qui, dans le cas des puits artésiens, est toujours négligeable....

On peut donc dans le cas des puits artésiens des Sables verts de la région parisienne, se contenter de la formule

$$Q = \frac{H}{j}$$

dans laquelle j est le coefficient de perte de charge.

#### Page 105-106

b) Vérification de la loi du débit

Les mesures effectuées sur les puits artésiens ont démontré l'exactitude de la loi Q=H/j exprimant que le débit varie linéairement comme la charge.

Expériences de Mary et Lefort sur le puits artésien de Grenelle. La figure 18 donne les résultats bruts des mesures, sans tenir compte pour le moment de la correction minime due à la perte de charge par frottement de l'eau contre le tubage.



Fig. 18. – Proportionnalité du débit et de la charge, d'après les mesures de Mary et Lefort, sur le puits artésien de Grenelle. (Trait plein : observations. Trait interrompu : droite moyenne)

Remarque : sur cette figure, il s'agit en fait de la loi de décroissance du débit en fonction de l'altitude du déversement (l'axe des altitudes est inversé).

# Page 107

" c) Calcul du niveau hydrostatique par mesure de débit à divers niveaux

Si  $Q_1$  est le débit à la cote  $Z_1$  et  $Q_2$  le débit à la cote  $Z_2$ , la cote du point de charge est :

$$Z = \left(\frac{Z_1}{Q_1} - \frac{Z_2}{Q_2}\right) / \left(\frac{1}{Q_1} - \frac{1}{Q_2}\right) "$$

Remarque : ce qui est appelé point de charge est le point de cote Z à partir duquel le puits artésien ne jaillit plus. A l'époque, le puits de Grenelle était considéré comme le seul exutoire de la nappe de l'Albien et le point de charge du puits était donc supposé être sur le plan hydrostatique lui-même. La cote Z ci-dessus donnerait donc le niveau hydrostatique.

# 4. Démonstration de la formule ci-dessus et calcul du niveau piézométrique

Ci-dessous, la démonstration (qui n'est pas donnée par Lemoine et al.).

On a donc H = j.Q, H étant la charge au dessus du point de déversement (fig. 10 du §3)

En faisant intervenir la cote z par rapport au plan de référence (0 NGF) de l'un des points d'observation du tableau des mesures du §1, on a :

H + z = jQ + z

H + z est la charge hydraulique par rapport au plan de référence. Elle sera notée Z pour respecter la notation d'origine.

D'où la relation linéaire entre la cote du point de déversement et le débit :

z = -j.Q + Z ou : Z = jQ + z

Pour les mesures au point d'observation N°1 (à la cote  $z_1$ ) en divisant par  $Q_1$ :

$$\frac{Z}{Q_1} = j + \frac{z_1}{Q_1}$$

Pour les mesures au point d'observation N°2 (à la cote  $z_2$ ), en divisant par  $Q_2$ :

$$\frac{Z}{Q_2} = j + \frac{Z_2}{Q_2}$$

D'où, par différence :

$$\mathbf{Z} = \left(\frac{\mathbf{z}_1}{\mathbf{Q}_1} - \frac{\mathbf{z}_2}{\mathbf{Q}_2}\right) / \left(\frac{1}{\mathbf{Q}_1} - \frac{1}{\mathbf{Q}_2}\right)$$

Si l'on utilise les observations N°1 et N° 10, on a, sans tenir compte des pertes de charge :  $Z_1 = 37.9 \text{ m}, Q_1 = 6.66 \text{l/s}$  et  $Z_2 = 71 \text{ m}, Q_2 = 4.15/\text{s}$ 

et l'on obtient :

$$H = \left(\frac{37.9}{6.66} - \frac{71}{4.15}\right) / \left(\frac{1}{6.66} - \frac{1}{4.15}\right) = 125.73 \text{ m contre (125.47 m dans le tableau A1).}$$

En tenant compte des pertes de charge, on trouve 124.59 m (124.33 m dans le tableau A1) Dans les deux cas, l'écart est de 26 cm (en plus).

<u>Remarque</u> : ces deux valeurs, 125.73 et 124.59 sont aussi celles issues de l'ajustement d'une droite sur les 2 points N°1 et N° 10 (logique en raison de la loi linéaire établie).

# Annexe 2 Cartographie des toits et des épaisseurs des 6 couches du modèle



Cartographie du toit de la Craie (limitée à l'emprise du modèle hydrodynamique)

Minimum : -113 m Maximum : 371 m Moyenne : 87 m



Cartographie du toit du Gault (limitée à l'emprise du modèle hydrodynamique)

Minimum : -742 m Maximum : 343 m Moyenne : -196 m



Cartographie du toit de l'Albien

Minimum : -799 m Maximum : 332 m Moyenne : -234 m



Cartographie du toit de l'Aptien-Barrémien (limitée à l'emprise du modèle hydrodynamique)

Minimum : -900 m Maximum : 364 m Moyenne : -361 m



Cartographie du toit du Néocomien (limitée à l'emprise du modèle hydrodynamique)

Minimum : -1028 m Maximum : 315 m Moyenne : -421 m



Cartographie du toit du Tithonien (limitée à l'emprise du modèle hydrodynamique)

Minimum : -1114 m Maximum : 337 m Moyenne : -322 m



Cartographie de l'épaisseur de la Craie

Epaisseur maximale : 740 m Moyenne : 283 m







Cartographie de l'épaisseur du Gault

Epaisseur maximale : 168 m



Moyenne: 43 m





Cartographie de l'épaisseur de l'Albien

Epaisseur maximale : 151 m Moyenne : 46 m

## Distribution de fréquence





Cartographie de l'épaisseur de l'Aptien-Barrémien





Cartographie de l'épaisseur du Néocomien





Cartographie de l'épaisseur du Tithonien

Epaisseur maximale : 319 m

Moyenne : 98 m



## Distribution de fréquence

# Annexe 3 - Liste des piézomètres captant l'Albien

| Code BSS          | Dénomination                                 | MESO  | Région | Dpt | Commune                 | Etat du point<br>d'eau | Nappe captée     |
|-------------------|----------------------------------------------|-------|--------|-----|-------------------------|------------------------|------------------|
| 04022X0058/P      | puits communal (Saint-Maurice-Le-Vieil-89)   | HG217 | BOU    | 89  | Saint-Maurice-Le-Vieil  | Opérationnel           | Albien présumé   |
| 04026X0150/P      | Puits communal - PARLY                       | HG217 | BOU    | 89  | Parly                   | Opérationnel           | Albien présumé   |
| 04336X0007/FORAGE | forage privé (Arquian-58)                    | HG217 | BOU    | 58  | Arquian                 | Opérationnel           | Albien           |
| 03336X0001/S1     | LA VENDUE-MIGNOT                             | HG216 | CHA    | 10  | Vendue-Mignot(La)       | Opérationnel           | Albien présumé   |
| 03686X0038/PUITS  | puits communal (Ligny-Le-Chatel-89)          | HG216 | BOU    | 89  | Ligny-Le-Chatel         | Opérationnel           | Albien présumé   |
| 01347X0002/S1     | VIENNE-LA-VILLE                              | HG214 | CHA    | 51  | Vienne-La-Ville         | Opérationnel           | Albien présumé   |
| 01607X0104/PU     | LA NEUVILLE-AUX-BOIS                         | HG214 | CHA    | 51  | Neuville-Aux-Bois(La)   | Opérationnel           | Albien présumé   |
| 02645X0038/D601   | LOUZE                                        | HG215 | CHA    | 52  | Louze                   | Opérationnel           | Albien           |
| 02994X0092/D07L   | MORVILLIERS                                  | HG215 | CHA    | 10  | Morvilliers             | Opérationnel           | Albien           |
| 00663X0124/F_2008 | PIEZOMETRE DE ROUGERIES - 02                 | HG218 | PIC    | 2   | Rougeries               | Opérationnel           | Albien           |
| 01234X0297/F2     | Forage Recyclerie (Caudebec-les-Elbeuf) - 76 | HG218 | HNO    | 76  | Caudebec-Les-Elbeuf     | Opérationnel           | Albien           |
| 01511X0188/F      | Forage Usine Steiner (Saint-Marcel) - 27     | HG218 | HNO    | 27  | Saint-Marcel            | Opérationnel           | Albien           |
| 01517X0003/F      | MANTES                                       | HG218 | IDF    | 78  | Mantes-La-Jolie         | Opérationnel           | Albien           |
| 01531X0047/F      | L'ISLE ADAM                                  | HG218 | IDF    | 95  | Isle-Adam(L')           | Opérationnel           | Albien           |
| 01828X0006/F      | ARBORETUM DE CHEVRELOUP                      | HG218 | IDF    | 78  | Rocquencourt            | Opérationnel           | Albien           |
| 01837A0096/F2     | PARIS 13                                     | HG218 | IDF    | 75  | Paris-13eArrondissement | Opérationnel           | Albien           |
| 01855X0050/CRY1   | CRECY-LA-CHAPELLE                            | HG218 | IDF    | 77  | Crecy-La-Chapelle       | Obstrué                | Albien           |
| 01877X0078/PN01   | CONGY                                        | HG218 | CHA    | 51  | Congy                   | Opérationnel           | Albien/Néocomien |
| 02211X0023/CHE101 | LA HOUSSAYE-EN-BRIE                          | HG218 | IDF    | 77  | Houssaye-En-Brie(La)    | Opérationnel           | Albien           |
| 02951X0049/S1     | LA GRANDE PAROISSE                           | HG218 | IDF    | 77  | Grande-Paroisse(La)     | Opérationnel           | Albien           |
| 03292X0038/F1     | Bougligny                                    | HG218 | IDF    | 77  | Bougligny               |                        | Albien           |
| 03676X0003/FORAGE | forage communal (Neuilly-89)                 | HG218 | BOU    | 89  | Neuilly                 | Opérationnel           | Albien           |
| 04004X0007/F      | Château Salleneuve                           | HG218 | CEN    | 45  | Montbouy                | Inconnu                | Albien           |
| 04323X0005/F      | La Rougeollerie                              | HG218 | CEN    | 45  | Briare                  | Inconnu                | Albien           |

# Annexe 4 – Liste des forages exploitant les nappes de l'Albien et du Néocomien intégrés dans le modèle BRGM

Les numéros affectés aux captages considérés dans le modèle BRGM sont identiques à ceux utilisés par EGIS en 2006, sauf exception des numéros 201 à 221 qui correspondent à des captages nouvellement pris en compte.

| Point de<br>prélèvement<br>(numérotation prise<br>en compte dans le<br>modèle) | Indice national<br>minier | Désignation du forage                              | Département | X<br>Lambert<br>2e (m) | Y<br>Lambert<br>2e (m) |
|--------------------------------------------------------------------------------|---------------------------|----------------------------------------------------|-------------|------------------------|------------------------|
| 1                                                                              | 01514X0001                | AINCOURT                                           | 95          | 558630                 | 2454430                |
| 2                                                                              | 01516X0005                | BONNIERES SUR<br>SEINE                             | 78          | 544439                 | 2448787                |
| 3                                                                              | 01516X0031 ?              | SAINT ILLIERS - SI 31                              | 78          | 543330                 | 2443660                |
| 4                                                                              | 01516X0032 ?              | SAINT ILLIERS - SI 33                              | 78          | 542490                 | 2442980                |
| 5                                                                              | 01823X0005                | CARRIERES - SOUS -<br>POISSY                       | 78          | 578340                 | 2438870                |
| 6                                                                              | 01528X0002                | ANDRESY - SIDEC                                    | 78          | 580486                 | 2443669                |
| 7                                                                              | 01528X0013                | ACHERES - SNCF                                     | 78          | 582828                 | 2440377                |
| 8                                                                              | 01832B0026                | EPINAY-SUR-SEINE                                   | 93          | 599770                 | 2438880                |
| 9                                                                              | 01821X0003                | AULNAY - SUR -<br>MAULDRE                          | 78          | 564100                 | 2436150                |
| 10                                                                             | 01834C0077                | BOBIGNY/Pantin -<br>SNCF                           | 93          | 607100                 | 2433320                |
| 11                                                                             | 01825X0036                | BEYNES - B31                                       | 78          | 566360                 | 2427420                |
| 12                                                                             | 01825X0013                | BEYNES - B13 bis +<br>B13 (débits<br>négligeables) | 78          | 566330                 | 2426960                |
| 13                                                                             | 01836D0038                | BAGNEUX                                            | 92          | 598740                 | 2422550                |
| 14                                                                             | 01837B0079                | VINCENNES                                          | 75          | 605620                 | 2425600                |
| 16                                                                             | 02572X0054                | BRETIGNY-SUR-ORGE<br>- Blanchisserie               | 91          | 597339                 | 2399461                |
| 17                                                                             | 03292X0038                | BOUGLIGNY - Syndicat<br>plateau Gâtinais           | 77          | 623101                 | 2354960                |
| 18                                                                             | 01511X0187                | SAINT MARCEL - La<br>Plaine St Just F1             | 27          | 535318                 | 2456839                |
| 10                                                                             | 01511X0190                | SAINT MARCEL - Le                                  | 27          | 535600                 | 2455460                |
| 13                                                                             | 01511X0195                | Grande Garenne F3                                  | 21          | 333030                 | 2400400                |
|                                                                                | 01511X0024                |                                                    |             |                        |                        |
| 20                                                                             | 01511X0025                | VERNON - L.R.B.A.                                  | a-          |                        |                        |
|                                                                                | 01511X0026                | F1 + F2 + F3 + F4                                  |             | 538200                 | 2455700                |
|                                                                                | 01511X0069                |                                                    |             |                        |                        |
| 21                                                                             | 01516X0001                | PORT-VILLIEZ                                       | 78          | 540620                 | 2450390                |

| Point de<br>prélèvement<br>(numérotation<br>prise en<br>compte dans le<br>modèle) | Indice national<br>minier | Désignation du forage                                                                                                                                                      | Départe<br>ment | X<br>Lambert<br>2e (m) | Y<br>Lambert<br>2e (m) |
|-----------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|------------------------|
| 22                                                                                | 01517X0005                | ROSNY SUR SEINE - Château de Sully                                                                                                                                         | 78              | 548790                 | 2445000                |
| 23                                                                                | 01517X0003                | MANTES LA JOLIE - Gassicourt                                                                                                                                               | 78              | 553570                 | 2445340                |
| 24                                                                                | 01824X0031<br>01824X0208  | MAISONS-LAFFITTE - F3 + F4                                                                                                                                                 | 78              | 586600                 | 2438500                |
| 25                                                                                | 0183-2B-0334              | GENNEVILLIERS - Blanchisserie                                                                                                                                              | 92              | 597198                 | 2438351                |
| 26                                                                                | 01823X0021                | POISSY - LE                                                                                                                                                                | 78              | 576535                 | 2436638                |
| 27                                                                                | 01824X0009                | LE PECQ / SAINT GERMAIN - LE                                                                                                                                               | 78              | 583004                 | 2433497                |
| 28                                                                                | 01832C0336<br>01832C0337  | NEUILLY-SUR-SEINE B1 + B2 - SEDIF                                                                                                                                          | 92              | 594200                 | 2432200                |
| 29                                                                                | 01832B0027                | VILLENEUVE-LA-GARENNE F3 - LE                                                                                                                                              | 92              | 599330                 | 2437311                |
| 30                                                                                | ?                         | Square de la Madone - SAGEP                                                                                                                                                | 75              | 601831                 | 2432691                |
| 31                                                                                | 01833D0037                | PANTIN SEDIF                                                                                                                                                               | 93              | 604923                 | 2433268                |
| 32                                                                                | 01836A0032                | Radio France                                                                                                                                                               | 75              | 595697                 | 2429186                |
| 33                                                                                | 01836A0031                | ISSY LES MOULINEAUX - F1                                                                                                                                                   | 92              | 594775                 | 2425380                |
| 34                                                                                | 01836B106?                | Henri Queuille - SAGEP                                                                                                                                                     | 75              | 598166                 | 2427482                |
| 35                                                                                | 01837A0114                | La Butte aux Cailles Place Paul<br>Verlaine : Paul Verlaine - SAGEP<br>depuis 2001<br>+ un autre puits Butte-auXCailles<br>exploité depuis 1905-2000 sur la<br>même maille | 75              | 601200                 | 2425500                |
| 36                                                                                | 01837A0095                | SAY I (raffinerie)                                                                                                                                                         | 75              | 602180                 | 2426100                |
| 37                                                                                | 01836B0047                | GRENELLE                                                                                                                                                                   | 75              | 597920                 | 2426200                |
| 38                                                                                | 02211X0023                | LA HOUSSAYE-EN-BRIE                                                                                                                                                        | 77              | 640512                 | 2418585                |
| 39                                                                                | 02191X0003                | ORSAY                                                                                                                                                                      | 91              | 588915                 | 2411306                |
| 40                                                                                | 03306X0088                | BAZOCHES-SUR-LE-BETZ - EURL<br>Villegardin                                                                                                                                 | 45              | 648490                 | 2349009                |
| 41                                                                                | 03673X0008                | BUSSY-EN-OTHE                                                                                                                                                              | 89              | 686800                 | 2336100                |
| 42                                                                                | 03673X0007                | MIGENNES - Terre Brûlée/ Croix<br>Pardieu                                                                                                                                  | 89              | 686380                 | 2331140                |
| 43                                                                                | 03674X0004                | MIGENNES - Route de Brion                                                                                                                                                  | 89              | 688180                 | 2331400                |

| Point de<br>prélèvement<br>(numérotation<br>prise en compte<br>dans le modèle) | Indice national<br>minier | Désignation du forage                           | Départe<br>ment | X<br>Lambert<br>2e (m) | Y<br>Lambert<br>2e (m) |
|--------------------------------------------------------------------------------|---------------------------|-------------------------------------------------|-----------------|------------------------|------------------------|
| 44                                                                             | 03678X0056                | ORMOY                                           | 89              | 692600                 | 2330515                |
| 45                                                                             | 03678X0030                | CHENY - La Fertrive                             | 89              | 690690                 | 2329550                |
| 46                                                                             | 04004X0007                | MONTBOUY - Château de<br>Salleneuve             | 45              | 635590                 | 2320125                |
| 47                                                                             | 04004X0132                | MONTBOUY - Bel Air Syndicat<br>Nivelle          | 45              | 637000                 | 2319060                |
| 48                                                                             | 04011X0092                | SAINT MAURICE-SUR-AVEYRON -<br>syndicat         | 45              | 645100                 | 2316950                |
| 49                                                                             | 03677X0005                | CHICHERY LA VILLE                               | 89              | 687450                 | 2322900                |
| 50                                                                             | 04004X0147                | CHATILLON - COLIGNY -<br>Communauté de communes | 45              | 637500                 | 2314160                |
| 51                                                                             | 04008X0093                | DAMMARIE-SUR-LOING - Irrigation<br>M. Dufus     | 45              | 639370                 | 2308290                |
| 52                                                                             | 04025X0094                | DRACY - Fontaine Minard                         | 89              | 667500                 | 2307420                |
| 53                                                                             | 04025X0002                | DRACY - Puits des Fouets                        | 89              | 668090                 | 2305150                |
| 54                                                                             | 02571X0027                | BRUYERES-LE-CHATEL - CEA<br>(Néocomien)         | 91              | 590146                 | 2399621                |
| 55                                                                             | 01234X0067                | SAINT PIERRE LES ELBEUF -<br>IFRACHEM           | 76              | 505842                 | 2475258                |
| 56                                                                             | 01527X0131                | TRIEL-SUR-SEINE - F3                            | 78              | 575723                 | 2441832                |
| 57                                                                             | 01834B0017                | AULNAY-SOUS-BOIS - SEDIF                        | 93              | 611287                 | 2438491                |
| 58                                                                             | 01824X0021                | BOUGIVAL - SIGSEVESC                            | 78              | 584331                 | 2430421                |
| 59                                                                             | 01833C0029                | LA PLAINE SAINT DENIS - SNCF                    | 93              | 601211                 | 2434549                |
| 60                                                                             | 01833D0299                | PANTIN - Blanchisserie MAJ. ELIS 2              | 93              | 604513                 | 2433218                |
| 61                                                                             | 01837B029?                | MENILMONTANT - SAGEP                            | 75              | 603922                 | 2430096                |
| 62                                                                             | 01834D0017                | VILLEMOMBLE                                     | 93              | 611690                 | 2431620                |
| 63                                                                             | 01825X0154                | BEYNES - B34                                    | 78              | 564750                 | 2427980                |
| 64                                                                             | 01836A0039                | Passy /Fontaine Lamartine -<br>SAGEP            | 75              | 595507                 | 2429666                |
| 65                                                                             | 01836A0572/B20            | AGF B20 Mirabeau                                | 75              | 595656                 | 2427462                |
| 66                                                                             | 01836A0571/B16            | AGF B16 Cristal                                 | 75              | 595973                 | 2427865                |
| 67                                                                             | ?                         | Paul Verlaine - SAGEP                           | 75              | 601184                 | 2425477                |

| Point de<br>prélèvement<br>(numérotation<br>prise en compte<br>dans le modèle) | Indice national<br>minier   | Désignation du forage                                 | Départe<br>ment | X<br>Lambert<br>2e (m) | Y<br>Lambert<br>2e (m) |
|--------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------|-----------------|------------------------|------------------------|
| 68                                                                             | 01837D0139/F2               | DUMESNIL 2                                            | 94              | 603340                 | 2423940                |
| 69                                                                             | 01845X0013                  | NOISY-LE-GRAND                                        | 93              | 614410                 | 2427250                |
| 70                                                                             | 02197X0073                  | VIRY-CHATILLON - LE                                   | 91              | 603962                 | 2408505                |
| 71                                                                             | 02198X0031                  | EVRY S.N.E.C.M.A.                                     | 91              | 607953                 | 2402022                |
| 73                                                                             | 03297X1129                  | DORDIVES                                              | 45              | 633070                 | 2350040                |
| 74                                                                             | 03677X0056 et<br>03677X0057 | EPINEAU LES VOVES F1 + F2                             | 89              | 685500                 | 2327910                |
| 75                                                                             | 02574X0108                  | COUDRAY-MONTCEAUX Altis<br>(Néocomien)                | 91              | 610564                 | 2396740                |
| 76                                                                             | ?                           | PONT-SAINT-PIERRE Pierval                             | 27              | 523925                 | 2482031                |
| 77                                                                             | 02183X0122                  | SAINT-LAMBERT-DES-BOIS<br>Source du Val Saint Lambert | 78              | 576300                 | 2414880                |
| 78                                                                             | ?                           | SAINT ARNOULT                                         | 78              | 570252                 | 2396340                |
| 79                                                                             | 03661X0213                  | SAINT FIRMIN                                          | 45              | 642250                 | 2331270                |
| 201                                                                            | ?                           | BONNY-SUR-LOIRE                                       | 45              | 637786                 | 2286545                |
| 202                                                                            | 04323X0062/F                | BRIARE - Lieu dit: LA<br>ROUGEOLLERIE                 | 45              | 632875                 | 2292025                |
| 203                                                                            | 03326X1043/F1               | CHAILLEY (DUC)                                        | 89              | 701825                 | 2343000                |
| 204                                                                            | 03676X0014                  | Paroy-sur-Tholon                                      | 89              | 677533                 | 2328618                |
| 205                                                                            | 04322X0136                  | Saint-Brisson-sur-Loire                               | 45              | 625510                 | 2292586                |
| 206                                                                            | 03992X0268/F3               | Saint-Martin-d'Abbat                                  | 45              | 594950                 | 2317750                |
| 207                                                                            | 04335X1017/F                | FAVERELLES - Foizeau                                  | 45              | 644445                 | 2285790                |
| 208                                                                            | ?                           | BARLIEU - LES ARDILLERS                               | 18              | 622250                 | 2277125                |
| 209                                                                            | ?                           | BRINON-SUR-SAULDRE                                    | 18              | 593575                 | 2285425                |
| 210                                                                            | 04624X0001/FAE<br>P2        | AUBIGNY-SUR-NERE - Le<br>Kiosque                      | 18              | 606931                 | 2275681                |
| 212                                                                            | 04916X0001                  | GENOUILLY - Saint Sylvain                             | 18              | 565987                 | 2243283                |
| 213                                                                            | 04915X0009                  | GENOUILLY - Les sceps                                 | 18              | 565987                 | 2243283                |
| 218                                                                            | ?                           | MENNETOU-SUR-CHER<br>Villefranche                     | 41              | 564573                 | 2251913                |
| 221                                                                            | 01511X0188/F                | SAINT-MARCEL – Usine Steiner                          | 27              | 536158                 | 2456437                |
# Annexe 5 - Comparaison des niveaux calculés aux niveaux mesurés dans le secteur des affleurements



Cartes de localisation du secteur des affleurements et des points d'observation utilisés pour le calage du modèle dans cette zone

St-Maurice-le-Vieil

Parly

Neuilly

Arquian

Vendue-Mignot

30

Km

Légende: Points d'observation

Captage

Piézomètre





















<u>Remarque</u> : si l'on prend en compte les prélèvements sur les affleurements (cf § 5.11 et § 6.2.7) lorsque leur affectation à l'Albien sera confirmée, le calage ne pourra que s'améliorer dans ces zones, comme le montrent les 2 graphiques ci-dessous.







### Piézométrie de la couche Craie en 2012

## Annexe 6 – Données des scénarios

| Désignation_du_forage                              | Dépt | N° BSS                       | XL2e<br>km | YL2e<br>km | V _2012<br>m3 | Q_2012<br>(m3/h) | Qmax<br>(m3/h) |
|----------------------------------------------------|------|------------------------------|------------|------------|---------------|------------------|----------------|
| Henri Queuille SAGEP                               | 75   | 0183 6B 1065 ?               | 598.166    | 2427.482   | 1421          | 0.16             | 160.00         |
| MENILMONTANT SAGEP                                 | 75   | 0183 7B 0299 ?               | 603.922    | 2430.096   | 1408          | 0.16             | 160.00         |
| PASSY /Fontaine Lamartine<br>SAGEP                 | 75   | 0183 6A 0039                 | 595.507    | 2429.666   | 2603          | 0.30             | 150.00         |
| Paul Verlaine SAGEP                                | 75   | ?                            | 601.184    | 2425.477   | 14597         | 1.66             | 160.00         |
| Radio France                                       | 75   | 0183 6A 0032                 | 595.697    | 2429.186   | 168442        | 19               | 180.00         |
| Square de la Madone SAGEP                          | 75   | ?                            | 601.831    | 2432.691   | 4813          | 0.55             | 160.00         |
| BOUGLIGNY<br>Syndicat plateau Gâtinais             | 77   | 0329 2X 0038                 | 623.101    | 2354.960   | 156695        | 18               | 100.00         |
| ACHERES SNCF                                       | 78   | 0152 8X 0013                 | 582.828    | 2440.377   | 840466        | 96               | 100.00         |
| ANDRESY SIDEC                                      | 78   | 0152 8X 0002                 | 580.486    | 2443.669   | 711955        | 81               | 110.00         |
| BEYNES B13 bis + B13                               | 78   | 0182 5X 0013                 | 566.330    | 2426.960   | 963           | 0.11             | ?              |
| BONNIERES SUR SEINE                                | 78   | 0151 6X 0005                 | 544.439    | 2448.787   | 279153        | 32               | 150.00         |
| BOUGIVAL SIGSEVESC                                 | 78   | 0182 4X 0021                 | 584.331    | 2430.421   | 195290        | 22               | 20.00          |
| LE PECQ / SAINT GERMAIN                            | 78   | 0182 4X 0009                 | 583.004    | 2433.497   | 957257        | 109              | 120.00         |
| MAISONS LAFFITTE F3<br>+ F4                        | 78   | 0182 4X 0031<br>0182 4X 0208 | 586.600    | 2438.500   | 1904452       | 217              | 350.00         |
| POISSY                                             | 78   | 0182 3X 0021                 | 576.535    | 2436.638   | 216180        | 25               | 100.00         |
| SAINT LAMBERT DES BOIS source du Val Saint Lambert | 78   | 0218 3X 0122                 | 576.300    | 2414.880   | 129502        | 15               | 30.00          |
| TRIEL SUR SEINE F3                                 | 78   | 0152 7X 0131                 | 575.723    | 2441.832   | 721031        | 82               | 120.00         |
| BRETIGNY SUR ORGE<br>Blanchisserie                 | 91   | 0257 2X 0054                 | 597.339    | 2399.461   | 240289        | 27               | 100.00         |
| EVRY S.N.E.C.M.A.                                  | 91   | 0219 8X 0031                 | 607.953    | 2402.022   | 36159         | 4                | 150.00         |
| ORSAY                                              | 91   | 0219 1X 0003                 | 588.915    | 2411.306   | 499090        | 57               | 115.00         |
| VIRY CHATILLON                                     | 91   | 0219 7X 0073                 | 603.962    | 2408.505   | 740020        | 84               | 110.00         |
| GENNEVILLIERS<br>Blanchisserie                     | 92   | 0183 2B 0334                 | 597.198    | 2438.351   | 159126        | 18               | 80.00          |
| NEUILLY SUR SEINE B1<br>+ B2 SEDIF                 | 92   | 0183 2C 0336<br>0183 2C 0337 | 594.200    | 2432.200   | 1954286       | 222              | 340.00         |
| VILLENEUVE LA GARENNE<br>F3                        | 92   | 0183 2B 0027                 | 599.330    | 2437.311   | 1499510       | 171              | 180.00         |
| AULNAY SOUS BOIS SEDIF                             | 93   | 0183 4B 0017                 | 611.287    | 2438.491   | 509863        | 58               | 150.00         |
| LA PLAINE SAINT DENIS<br>SNCF                      | 93   | 0183 3C 0029                 | 601.211    | 2434.549   | 1479401       | 168              | 210.00         |
| PANTIN Blanchisserie MAJ.<br>ELIS 2                | 93   | 0183 3D 0299                 | 604.513    | 2433.218   | 274301        | 31               | 180.00         |
| PANTIN SEDIF                                       | 93   | 0183 3D 0037                 | 604.923    | 2433.268   | 10800         | 1.23             | 100.00         |
| BRUYERES LE CHATEL<br>CEA (Néocomien)              | 91   | 0257 1X 0027                 | 590.146    | 2399.621   | 389365        | 44               | 100.00         |
| COUDRAY MONTCEAUX<br>Altis (Néocomien)             | 91   | 0257 4X 0108                 | 610.564    | 2396.740   | 521875        | 59               | 150.00         |

Débits d'exploitation 2012 et débits maxima sur les captages d'Ile-de-France pour le scénario 2

| Désignation du forage                                           | Dept | N° BSS                                               | XL2e<br>km | YL2e km  | V_2012<br>m3 | Q_2012<br>(m3/h) | Qmax<br>(m3/h) |
|-----------------------------------------------------------------|------|------------------------------------------------------|------------|----------|--------------|------------------|----------------|
| AUBIGNY-SUR-NERE<br>Le Kiosque                                  | 18   | 04624X0001/<br>FAEP2                                 | 606.931    | 2275.681 | 185875       | 21               | ?              |
| BARLIEU - LES ARDILLERS                                         | 18   | ?                                                    | 622.250    | 2277.125 | 56570        | 6                | ?              |
| BRINON-SUR-SAULDRE                                              | 18   | ?                                                    | 593.575    | 2285.425 | 65233        | 7                | ?              |
| GENOUILLY - Les sceps                                           | 18   | ?                                                    | 565.987    | 2243.283 | 28015        | 3                | ?              |
| GENOUILLY - Saint Sylvain                                       | 18   | ?                                                    | 565.987    | 2243.283 | 70859        | 8                | ?              |
| PONT-SAINT-PIERRE - Pierval                                     | 27   | 01007X0115                                           | 523.925    | 2482.031 | 142986       | 16               | 40             |
| SAINT MARCEL<br>La Plaine St Just F1                            | 27   | 01511X0187                                           | 535.318    | 2456.839 | 18649        | 2                | 8              |
| SAINT MARCEL - Le Virolet<br>Grégoire F2<br>+ Grande Garenne F3 | 27   | 01511X0190<br>01511X0195                             | 535.690    | 2455.460 | 408569       | 47               | 90             |
| USINE STEINER - SAINT-<br>MARCEL                                | 27   | 01511X0188/F                                         | 536.158    | 2456.437 | 75000        | 9                | ?              |
| VERNON - L.R.B.A. F1<br>+ F2<br>+ F3<br>+ F4                    | 27   | 01511X0024<br>01511X0025<br>01511X0026<br>01511X0069 | 538.200    | 2455.700 | 103507       | 12               | 245            |
| MENNETOU-SUR-CHER<br>Villefranche                               | 41   | ?                                                    | 564.573    | 2251.913 | 49021        | 6                | ?              |
| BAZOCHES-SUR-LE-BETZ -<br>EURL Villegardin                      | 45   | 03306X0088                                           | 648.490    | 2349.009 | 372548       | 42               | 70             |
| BONNY-SUR-LOIRE                                                 | 45   | ?                                                    | 637.786    | 2286.545 | 240560       | 27               | ?              |
| BRIARE - Lieu dit: LA<br>ROUGEOLLERIE                           | 45   | 04323X0062                                           | 632.875    | 2292.025 | 70439        | 8                | ?              |
| CHATILLON - COLIGNY<br>Communauté de communes                   | 45   | 04004X0147                                           | 637.500    | 2314.160 | 216345       | 25               | 200            |
| DAMMARIE-SUR-LOING<br>Irrigation M. Dufus                       | 45   | 04008X0093                                           | 639.370    | 2308.290 | 30083        | 3                | 70             |
| DORDIVES                                                        | 45   | 03297X1129                                           | 633.070    | 2350.040 | 214388       | 24               | 120            |
| FAVERELLES - Foizeau                                            | 45   | 04335X1017/F                                         | 644.445    | 2285.790 | 80735        | 9                | ?              |
| MONTBOUY - Bel Air Syndicat<br>Nivelle                          | 45   | 04004X0132                                           | 637.000    | 2319.060 | 184841       | 21               | 80             |
| SAINT FIRMIN                                                    | 45   | 03661X0213                                           | 642.250    | 2331.270 | 0            | 0                | 55             |
| SAINT MAURICE-SUR-<br>AVEYRON - syndicat                        | 45   | 04011X0092                                           | 645.100    | 2316.950 | 190456       | 22               | 130            |
| Saint-Brisson-sur-Loire                                         | 45   | ?                                                    | 625.510    | 2292.586 | 151426       | 17               | ?              |
| Saint-Martin-d'Abbat                                            | 45   | 03992X0268/F3                                        | 594.950    | 2317.750 | 37312        | 4                | ?              |
| SAINT PIERRE LES ELBEUF -<br>IFRACHEM                           | 76   | 01234X0067                                           | 505.842    | 2475.258 | 55896        | 6                | 70             |
| BUSSY-EN-OTHE                                                   | 89   | 03673X0008                                           | 686.800    | 2336.100 | 3465         | 0                | 25             |
| CHAILLEY (DUC)                                                  | 89   | 03326X1043/F1                                        | 701.825    | 2343.000 | 12872        | 1                | ?              |
| CHENY - La Fertrive                                             | 89   | 03678X0030                                           | 690.690    | 2329.550 | 125041       | 14               | 12             |
| CHICHERY LA VILLE                                               | 89   | 03677X0005                                           | 687.450    | 2322.900 | 23377        | 3                | 12             |
| DRACY - Fontaine Minard                                         | 89   | 04025X0094                                           | 667.500    | 2307.420 | 331920       | 38               | 120            |
| EPINEAU LES VOVES F1<br>+ F2                                    | 89   | 03677X0056<br>03677X0057                             | 685.500    | 2327.910 | 114826       | 13               | 70             |
| MIGENNES - Route de Brion                                       | 89   | 03674X0004                                           | 688.180    | 2331.400 | 96772        | 11               | 65             |
| MIGENNES - Terre Brûlée/<br>Croix Pardieu                       | 89   | 03673X0007                                           | 686.380    | 2331.140 | 0            | 0                | 32             |
| ORMOY                                                           | 89   | 03678X0056                                           | 692.600    | 2330.515 | 61713        | 7                | 30             |
| Paroy-sur-Tholon                                                | 89   | 03676X0014                                           | 677.533    | 2328.618 | 51576        | 6                | ?              |

Débits d'exploitation 2012 et débits maxima sur les captages hors lle-de-France pour le scénario 2

| Désignation_du_forage                              | Dépt | N° BSS                       | XL2e<br>km | YL2e<br>km | Z<br>(m NGF) | Prof.<br>pompe (m) | Z pompe<br>(m NGF) |
|----------------------------------------------------|------|------------------------------|------------|------------|--------------|--------------------|--------------------|
| Henri Queuille SAGEP                               | 75   | 0183 6B 1065<br>?            | 598.166    | 2427.482   | 35.91        | 94                 | -58.09             |
| MENILMONTANT SAGEP                                 | 75   | 0183 7B 0299<br>?            | 603.922    | 2430.096   | 102          | 164                | -62                |
| PASSY /Fontaine Lamartine<br>SAGEP                 | 75   | 0183 6A 0039                 | 595.507    | 2429.666   | 52.8         | 98.3               | -45.5              |
| Paul Verlaine SAGEP                                | 75   | ?                            | 601.184    | 2425.477   | 58.4         | 112.4              | -54                |
| Radio France                                       | 75   | 0183 6A 0032                 | 595.697    | 2429.186   | 29.8         | 83.9               | -54.1              |
| Square de la Madone SAGEP                          | 75   | ?                            | 601.831    | 2432.691   | 51.6         | 115.6              | -64                |
| BOUGLIGNY<br>Syndicat plateau Gâtinais             | 77   | 0329 2X 0038                 | 623.101    | 2354.960   | 113.8        | 50                 | 63.8               |
| ACHERES SNCF                                       | 78   | 0152 8X 0013                 | 582.828    | 2440.377   | 42.3         | 40                 | 2.3                |
| ANDRESY SIDEC                                      | 78   | 0152 8X 0002                 | 580.486    | 2443.669   | 24           | 18                 | 6                  |
| BEYNES B13 bis + B13                               | 78   | 0182 5X 0013                 | 566.330    | 2426.960   | ?            | ?                  |                    |
| BONNIERES SUR SEINE                                | 78   | 0151 6X 0005                 | 544.439    | 2448.787   | 28           | 100                | -72                |
| BOUGIVAL SIGSEVESC                                 | 78   | 0182 4X 0021                 | 584.331    | 2430.421   | 27.7         | 0                  |                    |
| LE PECQ / SAINT GERMAIN                            | 78   | 0182 4X 0009                 | 583.004    | 2433.497   | 28.3         | 21                 | 7.3                |
| MAISONS LAFFITTE F3<br>+ F4                        | 78   | 0182 4X 0031<br>0182 4X 0208 | 586.600    | 2438.500   | 25.8         | 60                 | -34.2              |
| POISSY                                             | 78   | 0182 3X 0021                 | 576.535    | 2436.638   | 23           | 13                 | 10                 |
| SAINT LAMBERT DES BOIS source du Val Saint Lambert | 78   | 0218 3X 0122                 | 576.300    | 2414.880   | 124.3        | 202                | -77.7              |
| TRIEL SUR SEINE F3                                 | 78   | 0152 7X 0131                 | 575.723    | 2441.832   | 25           | 32                 | -7                 |
| BRETIGNY SUR ORGE<br>Blanchisserie                 | 91   | 0257 2X 0054                 | 597.339    | 2399.461   | 79           | 60                 | 19                 |
| EVRY S.N.E.C.M.A.                                  | 91   | 0219 8X 0031                 | 607.953    | 2402.022   | 81           |                    | -23                |
| ORSAY                                              | 91   | 0219 1X 0003                 | 588.915    | 2411.306   | 57.8         | 51.45              | 6.35               |
| VIRY CHATILLON                                     | 91   | 0219 7X 0073                 | 603.962    | 2408.505   | 34           | 0                  |                    |
| GENNEVILLIERS<br>Blanchisserie                     | 92   | 0183 2B 0334                 | 597.198    | 2438.351   | 28           | 60                 | -32                |
| NEUILLY SUR SEINE B1<br>+ B2 SEDIF                 | 92   | 0183 2C 0336<br>0183 2C 0337 | 594.200    | 2432.200   | 34           | 70                 | -36                |
| VILLENEUVE LA GARENNE<br>F3                        | 92   | 0183 2B 0027                 | 599.330    | 2437.311   | 28.7         |                    | -90                |
| AULNAY SOUS BOIS SEDIF                             | 93   | 0183 4B 0017                 | 611.287    | 2438.491   | 44.5         | 53                 | -8.5               |
| LA PLAINE SAINT DENIS<br>SNCF                      | 93   | 0183 3C 0029                 | 601.211    | 2434.549   | 35.8         | 67                 | -31.2              |
| PANTIN Blanchisserie MAJ.<br>ELIS 2                | 93   | 0183 3D 0299                 | 604.513    | 2433.218   | 52.31        | 86                 | -33.69             |
| PANTIN SEDIF                                       | 93   | 0183 3D 0037                 | 604.923    | 2433.268   | 49           | 51.49              | -2.49              |
| BRUYERES LE CHATEL<br>CEA (Néocomien)              | 91   | 0257 1X 0027                 | 590.146    | 2399.621   | 95           | 101                | -6                 |
| COUDRAY MONTCEAUX<br>Altis (Néocomien)             | 91   | 0257 4X 0108                 | 610.564    | 2396.740   | 85           | 84                 | 1                  |

### Annexe 7 – Transferts thermiques avec le code de calcul MARTHE (version 7.5)

Extrait du rapport BRGM/RP-64765-FR (Thiéry, 2015)

#### 1. Notations pour les transferts thermiques

V = Volume élémentaire de référence  $\omega$  = Porosité volumique [-]  $\theta$  = Teneur en eau volumique ; (en milieu saturé :  $\theta$  =  $\omega$ ) [-] dx, dy, dz = Dimensions du volume de référence [L] Vol = Volume = dx . dy . dz [L<sub>3</sub>] T = Température [°C ou °K]  $\lambda w$  = Conductivité thermique de l'eau ( $\lambda w$  = 0.6 W/m/K) [W/m/K]  $\lambda M$  = Conductivité thermique du minéral de la matrice poreuse [W/m/K]  $\alpha L$ ,  $\alpha \tau$  = Dispersivité thermique longitudinale et transversale [L]  $\rho Cw$  = Capacité thermique volumique de l'eau ( $\rho Cw$  = 4.185 10<sub>6</sub>) [J/m<sub>3</sub>/K]  $\rho C_M$  = Capacité thermique volumique du minéral de la matrice poreuse [J/m<sub>3</sub>/K] ux, uy, uz = Vitesses réelles (ou vitesse de pore) dans les 3 directions [L.T-1]

#### 2. Phénomènes mis en jeu lors des transferts thermiques

Les transferts thermiques (transferts de chaleur) font intervenir les phénomènes suivants :

- Le transfert par convection (ou « advection »).
- Le transfert par conduction thermique.

Pour expliciter ces différents phénomènes on considère le volume de référence *V* ainsi qu'un volume voisin *Vv*. Tous les paramètres de ce volume *Vv* ( $\omega$ ,  $\theta$ , dx, dy, dz, T<sub>v</sub>,  $\lambda_M$ ,  $\alpha_L$ ,  $\alpha_T$ ,  $\rho C_M$ ) peuvent être différents de ceux du volume de référence *V*. En supposant que ce volume voisin *Vv* est situé par exemple à l'est du volume de référence *V*, donc dans la direction ox, on peut définir :

- A = Surface d'échange = pondération des surfaces en vis-à-vis.
  A = dy . dz si les dimensions des 2 volumes sont identiques.
- L = Distance entre les centres des 2 volumes.
  - L = 0.5 . (dx1 + dx2)
- Q = Débit d'échange d'eau.

(positif si le débit entre dans le volume de référence, négatif s'il en sort) [L<sub>3</sub>T<sub>-1</sub>]

Toutes les méthodes de transport de masse du code de calcul MARTHE peuvent être utilisées pour les transferts thermiques :

- Méthode TVD
- Methode DF
- Méthode MOC

Dans un souci de clarté on explicite les différents termes en 1D, avec le schéma de calcul le plus simple : la méthode DF de transport par différences finies, avec le schéma « donnor cell ».

#### 2.1. Le transfert par convection (ou « advection »)

Le flux de chaleur Q<sub>A</sub>, (exprimé en Watt en unité S.I.), apporté par convection, c'est-à-dire par l'énergie thermique apportée ou perdue par le flux d'eau s'écrit :

- $\circ$  Q<sub>A</sub> = Q .  $\rho$ Cw . Tv si Q > 0, c'est-à-dire si le débit vient de Vv vers V.
- $\circ$  QA = Q . pCw. T si Q < 0, c'est-à-dire si le débit sort de V vers Vv.

soit la notation :  $Q_A = Q \cdot \rho CW \cdot TV\epsilon$  [1]

Avec :  $Tv_{\epsilon} = Tv \operatorname{si} Q > 0$  $Tv_{\epsilon} = T \operatorname{si} Q < 0$ 

#### 2.2. Le transfert par conduction thermique

Les transferts par conduction thermique de produisent par le gradient de température. C'est la loi de Fourier (1822). Elle stipule que la densité de flux de chaleur est proportionnelle au gradient de température, soit :

 $q_e = -\lambda \cdot Grad(T) = -\lambda \cdot dT/dx$ 

Avec :  $q_e = Densité de flux de chaleur (W/m^2)$  $\lambda = Conductivité thermique (W/m/K = Watt par mètre et par degré)$ 

La conduction thermique de l'eau et de la matrice poreuse sont différentes. La conductivité  $\lambda_A$  de l'aquifère est une pondération de ces deux conductivités.

Dans MARTHE, on considère classiquement que les pores se comportent comme des tubes, orientés dans le sens de l'écoulement, à l'intérieur de la matrice. Les conductivités  $\lambda_M$  de la matrice et  $\lambda_W$  des pores saturés sont donc en parallèle et s'ajoutent proportionnellement à leurs volumes relatifs :  $\lambda_W$  s'applique à la teneur en eau  $\theta$  (on néglige la conductivité de l'air) et  $\lambda_M$  s'applique à la matrice c'est-à-dire au volume relatif (1 -  $\omega$ ). On en déduit :

$$\lambda_A = \Theta \cdot \lambda_W + (1 - \omega) \cdot \lambda_M$$
 [2]

La conductivité thermique  $\lambda_A$  est donc une moyenne pondérée entre la conductivité thermique du minéral de la matrice poreuse (de l'ordre de 1 à 5 W/m/K) et la conductivité thermique de l'eau (0.598 W/m/K).

La conductivité thermique  $\lambda_A$  est augmentée par le coefficient de dispersion thermique dû à l'hétérogénéité du champ de vitesse : on obtient ainsi un tenseur de conductivité thermique  $\lambda_{AG}$  qui est la « conductivité globale équivalente » de l'aquifère.

Pour simplifier la rédaction, en considérant une vitesse réelle de module *u* uniforme, on peut écrire :

 $\begin{array}{ll} \lambda_L = \lambda_A + \alpha_L \ . \ \rho C_W \ . \ u & (Composante longitudinale) \quad [3] \\ \lambda_T = \lambda_A + \alpha_T \ . \ \rho C_W \ . \ u & (Composante transversale) \quad [4] \end{array}$ 

On remarque que, par cohérence avec la formulation utilisée pour les transferts de masse, dans cette formulation la dispersivité est multipliée par la vitesse de pore (ou vitesse de filtration) *u*, et non pas par la vitesse de Darcy.

<u>Attention :</u> On voit parfois dans la littérature, une autre formulation, avec la vitesse de Darcy au lieu de la vitesse de pore, mais la dispersivité est alors définie différemment.

Pour calculer le flux de chaleur  $Q_c$ , échangé par conduction thermique il est nécessaire de connaitre les composantes de la conductivité thermique  $\lambda_{AG}$  « moyenne » entre le volume  $V_V$  et le volume V.

On obtient ces composantes « moyennes » de la conductivité thermique par la moyenne harmonique des conductivités de chacun des 2 volumes, pondérées par les dy. dz / dx. Ce calcul est identique à la pondération des perméabilités de 2 mailles adjacentes.

Soit une maille voisine située à la distance *L* et à température  $T_L$ : en considérant uniquement la composante longitudinale, dans un but de simplification de la rédaction, le flux de chaleur  $Q_c$ , (exprimé en Watt en unité S.I.), provenant de cette maille à travers la surface d'échange *A* s'écrit :

$$Q_{\rm C} = \lambda_{\rm AG} \cdot A \cdot (T_{\rm V} - T) / L$$
 [5]

#### 2.3. Terme source

Dans le volume de référence V on peut introduire un flux d'énergie thermique  $Q_l$ , positif s'il est injecté, ou négatif s'il est prélevé. On note  $q_e$  ce flux d'énergie thermique par unité de volume d'aquifère.

#### 2.4. Terme de stockage

En régime permanent de transport le terme de stockage est égal à 0.

En régime de transport transitoire, le flux de stockage Qs, (exprimé en Watt en unité S.I.) est la variation de quantité de chaleur divisée par la durée *dt* d'un pas de temps de calcul.

Qs =(E-Ep) / dt Qs=( $\rho C_A \cdot T - \rho C_{Ap} \cdot Tp$ )·Vol / dt [6]

Avec :

 $T_p$  = Température au début du pas de temps.

 $ρC_A = θ . ρC_W + (1 - ω) . ρC_M$ 

= Capacité thermique volumique de l'aquifère en fin de pas de temps  $C_{AB} = A_{B} \circ C_{W} + (1 - c_{W}) \circ C_{M}$ 

 $\rho C_{AP} = \theta_P \cdot \rho C_W + (1 - \omega) \cdot \rho C_M$ 

= Capacité thermique volumique de l'aquifère en début de pas de temps

 $\theta_P$  = Teneur en eau volumique au début du pas de temps

E = Quantité de chaleur dans le volume de référence à la fin du pas de temps

E<sub>p</sub> = Quantité de chaleurdans le volume de référence au début du pas de temps

Si la teneur en eau ne varie pas au cours du pas de temps, la capacité thermique volumique de l'aquifère  $\rho C_A$  ne varie pas et on obtient l'expression plus simple.

$$Qs = \rho C_A \cdot (T - Tp) \cdot Vol/dt$$
 [7]

#### 2.5. Équation de conservation de la chaleur

L'équation de conservation de l'énergie thermique s'écrit :

Flux entrant par Advection + Flux entrant par Conduction + Flux Injecté = Flux de variation de quantité de chaleur :

$$Q_A + Q_C + Q_I = Q_S [8]$$

Soit en faisant la somme des composantes des 6 directions V (Nord, Est, Sud, Ouest, Haut et Bas), et en utilisant le terme de stockage de l'équation [7] :

 $\Sigma_{V}[Q \cdot \rho C_{W} \cdot T_{V\epsilon}] + \Sigma_{V}[\lambda_{AG} \cdot A \cdot (T_{V} - T)dx] + [Q_{I}] = \rho C_{A} \cdot Vol \cdot (T - Tp)dt$  [9]

Plus formellement, en divisant par la section *A* et par *dx*, et en faisant apparaître la vitesse de Darcy q = Q / A, l'équation générale de conservation de la chaleur s'écrit :

 $div[\lambda_{AG} \cdot Grad(T)] - div(\rho C_w \cdot q \cdot T) + q_e = \rho C_A \cdot \partial T / \partial t$ [10]

Soit en 1D dans la direction ox :

 $\partial^{2}(\lambda_{AG} \cdot T)/\partial x^{2} - \partial(\rho C w \cdot q \cdot T)/\partial x + q_{e} = \partial(\rho C_{A} \cdot T)/\partial t$  [11]

Soit plus simplement dans le cas de coefficients uniformes :

 $\lambda_{AG} \cdot \partial^2 T / \partial x^2 - \rho C w \cdot q \cdot \partial T / \partial x + q_e = \rho C_A \cdot \partial T / \partial t$ [12]

#### 2.6. Résolution de l'équation de conservation de la chaleur

Le code de calcul commence par réaliser un calcul d'hydraulique pour déterminer les teneurs en eau  $\theta$ , les vitesses de Darcy q, les vitesses réelles u et les débits d'échanges.

L'équation [9] représente alors un système algébrique linéaire non symétrique dont les seules inconnues sont les températures *T* dans toutes les mailles. Le terme de gauche, comme pour le transport de masse, correspond à une matrice creuse faisant intervenir 19 diagonales en 3D. Ce système est facile à résoudre par une méthode de gradients conjugués non symétriques, par exemple la méthode Orthomin.

Si le calcul hydrodynamique dépend des températures, par exemple si la viscosité et/ou la densité du fluide dépendent de la température, il faudra à chaque pas de temps résoudre itérativement l'équation de l'hydrodynamique (avec les viscosités et densités actualisées) puis résoudre l'équation des transferts thermiques, (avec les vitesses et débits actualisés). Ce calcul de couplage itératif est nécessaire uniquement si les interactions sont fortes, c'est-à-dire s'il y a de fortes variations de température.

#### 2.7. Prise en compte des épontes thermiques

Les épontes thermiques sont des zones dans lesquelles on considère que les écoulements de fluide sont négligeables (par exemple dans de la roche saine non aquifère). Dans le code MARTHE il n'y a pas de traitement particulier des épontes. Il suffit de donner une très faible perméabilité à ces zones. D'un point de vue numérique, on peut également imposer la charge, à une valeur arbitraire, dans ces zones, pour éviter de la calculer et éviter ainsi des éventuelles difficultés numériques si on choisit une perméabilité vraiment très faible.

On verra cependant plus bas qu'il est possible d'utiliser une solution analytique approchée, la solution de Vinsome and Westerveld (1980), dans les épontes thermiques ce qui permet de réduire la dimension du domaine et d'accélérer significativement les calculs.

# Annexe 8 – Données de température disponibles pour la nappe de l'Albien

| Indices BSS       | Désignation            | X_l2e (m) | Y_l2e (m) | Prof. (m/sol) | Nombre<br>de valeurs | Tmoy (°C) | Gradient géothermique<br>(°C / 100m) | Source               |
|-------------------|------------------------|-----------|-----------|---------------|----------------------|-----------|--------------------------------------|----------------------|
| 01514X0001        | La Bucaille            | 558 007   | 2 454 447 | 548.0         | 1                    | 24.0      | 2.4                                  |                      |
| 01516X0005        | Bonnières              | 544 439   | 2 448 787 | 220.0         | 1                    | 19.2      | 3.7                                  |                      |
| 01527X0031        | Triel                  | 575 713   | 2 441 837 | 486.2         | 1                    | 27.0      | 3.3                                  |                      |
| 01528X0002        | Andresy                | 580 486   | 2 443 669 | 542.0         | 1                    | 27.0      | 3.0                                  |                      |
| 01823X0021        | Poissy                 | 576 535   | 2 436 638 | 580.4         | 1                    | 27.0      | 2.8                                  |                      |
| 01824X0005        | Maisons Laffite        | 586 661   | 2 438 511 | 576.0         | 1                    | 26.5      | 2.7                                  |                      |
| 01832B0026        | Epinay                 | 599 780   | 2 438 842 | 819.0         | 1                    | 33.0      | 2.7                                  |                      |
| 01832B0027        | Villeneuvve-la-Garenne | 599 330   | 2 437 311 | 782.1         | 1                    | 28.5      | 2.2                                  |                      |
| 01833D0037        | Pantin CGE             | 604 923   | 2 433 268 | 875.7         | 1                    | 29.7      | 2.1                                  |                      |
| 01833D0121        | Pantin Leduc           | 604 543   | 2 433 193 | 808.8         | 1                    | 28.6      | 2.2                                  |                      |
| 01834B0017        | Aulnay-sous-Bois       | 611 287   | 2 438 491 | 833.5         | 1                    | 35.5      | 2.9                                  |                      |
| 01834D0017        | Villemomble            | 611 787   | 2 431 577 | 849.8         | 1                    | 31.4      | 2.4                                  |                      |
| 01836A0031        | Issy-les-Moulineaux    | 594 692   | 2 425 474 | 497.6         | 1                    | 28.0      | 3.4                                  | Lemoine et al., 1939 |
| 01836A0039        | Passy                  | 595 507   | 2 429 666 | 586.0         | 1                    | 28.0      | 2.9                                  |                      |
| 01836B0047        | Grenelle               | 598 049   | 2 427 615 | 548.0         | 1                    | 27.5      | 3.0                                  |                      |
| 01836B0048        | Blomet                 | 597 899   | 2 427 185 | 534.0         | 1                    | 28.0      | 3.2                                  |                      |
| 01837A0095        | Raffinerie Say         | 602 151   | 2 426 054 | 580.0         | 1                    | 28.0      | 2.9                                  |                      |
| 01837A0114        | Butte aux Cailles      | 601 171   | 2 425 474 | 677.7         | 1                    | 29.1      | 2.7                                  |                      |
| 01837B0079        | Vincennes              | 605 303   | 2 425 614 | 597.0         | 1                    | 27.0      | 2.7                                  |                      |
| 01837C0173        | lvry (Richard)         | 603 242   | 2 423 292 | 744.2         | 1                    | 32.0      | 2.8                                  |                      |
| 01837D0039        | lvry port              | 604 613   | 2 424 433 | 560.2         | 1                    | 28.0      | 3.0                                  |                      |
| 01845X0013        | Noisy-le-Grand         | 614 308   | 2 428 234 | 764.1         | 1                    | 33.0      | 2.9                                  |                      |
| 02191X0003        | Orsay                  | 588 915   | 2 411 306 | 655.8         | 1                    | 31.4      | 3.1                                  |                      |
| 02197X0073        | Viry-Chatillon         | 603 962   | 2 408 505 | 688.9         | 1                    | 28.0      | 2.5                                  |                      |
| 00677X0087/F.AEP  |                        | 732 223   | 2 524 710 | 80.0          | 4                    | 11.5      | 0.6                                  |                      |
| 00756X0046/F      |                        | 465 360   | 2 501 955 | 114.5         | 16                   | 13.9      | 2.5                                  |                      |
| 01007X0115/F      |                        | 523 915   | 2 482 056 | 165.5         | 6                    | 14.5      | 2.1                                  |                      |
| 01511X0024/F      |                        | 538 151   | 2 455 700 | 101.5         | 18                   | 14.2      | 3.1                                  |                      |
| 01511X0187/F      |                        | 535 318   | 2 456 839 | 82.0          | 19                   | 14.0      | 3.7                                  |                      |
| 01511X0190/F      |                        | 535 719   | 2 455 874 | 118.0         | 13                   | 12.0      | 0.8                                  |                      |
| 01511X0195/F3     |                        | 536 209   | 2 456 389 | 132.0         | 3                    | 14.9      | 3.0                                  |                      |
| 01516X0005/F      |                        | 544 439   | 2 448 787 | 220.0         | 7                    | 19.7      | 4.0                                  |                      |
| 01516X0115/F2     |                        | 544 464   | 2 448 778 | 230.0         | 9                    | 19.6      | 3.7                                  |                      |
| 01527X0131/F3     |                        | 575 723   | 2 441 827 | 550.4         | 6                    | 26.6      | 2.8                                  |                      |
| 01528X0002/F      |                        | 580 486   | 2 443 669 | 542.0         | 6                    | 25.5      | 2.7                                  |                      |
| 01528X0013/F      |                        | 582 828   | 2 440 377 | 596.6         | 10                   | 25.3      | 2.4                                  |                      |
| 01823X0021/F1     |                        | 576 535   | 2 436 638 | 580.4         | 5                    | 27.4      | 2.8                                  |                      |
| 01824X0009/F      |                        | 583 004   | 2 433 497 | 471.0         | 9                    | 24.4      | 2.9                                  |                      |
| 01824X0031/F3     |                        | 586 671   | 2 438 561 | 648.2         | 22                   | 26.1      | 2.3                                  |                      |
| 01824X0208/F4     |                        | 586 541   | 2 438 441 | 677.0         | 10                   | 26.2      | 2.3                                  |                      |
| 01832C0336/B1     |                        | 594 236   | 2 432 207 | 642.0         | 24                   | 26.3      | 2.4                                  |                      |
| 01832C0337/B2     |                        | 594 239   | 2 432 197 | 640.0         | 11                   | 26.9      | 2.5                                  | ADES                 |
| 02183X0124/F1     |                        | 576 300   | 2 414 888 |               | 4                    | 29.2      |                                      |                      |
| 02191X0003/F      |                        | 588 915   | 2 411 306 | 655.8         | 29                   | 29.8      | 2.9                                  |                      |
| 02197X0073/F      |                        | 603 962   | 2 408 505 | 688.9         | 18                   | 31.1      | 2.9                                  |                      |
| 02254X0001/FAEP   |                        | 768 517   | 2 419 444 | 180.8         | 32                   | 16.2      | 2.9                                  |                      |
| 02257X0018/F1     |                        | 765 745   | 2 407 302 | 228.5         | 23                   | 16.9      | 2.6                                  |                      |
| 03292X0038/F1     |                        | 623 101   | 2 354 960 | 614.0         | 11                   | 26.2      | 2.5                                  |                      |
| 03297X1129/F      |                        | 633 074   | 2 350 045 | 500.0         | 8                    | 25.2      | 2.8                                  |                      |
| 03673X0007/FORAGE |                        | 686 380   | 2 331 140 | 125.0         | 2                    | 14.6      | 2.9                                  |                      |
| 03674X0004/FORAGE |                        | 688 180   | 2 331 400 | 98.0          | 1                    | 14.0      | 3.1                                  |                      |
| 03676X0014/F.     |                        | 676 820   | 2 328 400 | 170.0         | 1                    | 17.1      | 3.6                                  | 1                    |
| 03678X0030/FORAGE |                        | 690 690   | 2 329 550 | 137.0         | 1                    | 15.4      | 3.2                                  |                      |
| 03954X0064/F2AEP  |                        | 503 893   | 2 311 855 | 272.8         | 21                   | 19.2      | 3.0                                  |                      |
| 03992X0268/F3     |                        | 594 950   | 2 317 750 | 544.0         | 2                    | 25.2      | 2.6                                  | 1                    |
| 04004X0132/F      |                        | 637 000   | 2 319 060 | 481.8         | 12                   | 22.9      | 2.5                                  |                      |
| 04004X0147/FAEP   |                        | 637 500   | 2 314 160 | 400.0         | 22                   | 21.5      | 2.6                                  |                      |
| 04011X0092/FAEP   |                        | 645 100   | 2 316 950 | 362.6         | 7                    | 22.6      | 3.2                                  |                      |
| 04912X0033/FAEP   |                        | 570 549   | 2 250 300 | 91.5          | 11                   | 14.2      | 3.5                                  |                      |
| 01836A0572/B20    | Tour AGF B20           | 595 656   | 2 427 462 | 654.0         | 1                    | 27.0      | 2.4                                  | 0.07                 |
| /                 | Issy-les-Moulineaux    | 594 809   | 2 424 150 | 645.0         | 1                    | 29.2      | 2.8                                  | DOF                  |



Centre scientifique et technique 3, avenue Claude-Guillemin BP 36009 – 45060 Orléans Cedex 2 – France – Tél. : 02 38 64 34 34 www.brgm.fr