

DOCUP 2002-2006 Cadre d'intervention C5-03

Projet de recherche : Les mouvements de terrain de grande ampleur dans les cirques et les grandes ravines de La Réunion

Module 1 : Géologie du Piton des Neiges Sous module 1.2 : Chronologie et datation des formations géologiques

Nouvelles datations K-Ar et ¹⁴C dans le massif du Piton des Neiges

dr-hta

h30-b

Rapport

BRGM/RP-56905-FR

Novembre 2008

Nouvelles datations K-Ar et ¹⁴C dans le massif du Piton des Neiges

Rapport

BRGM/RP-56905-FR

Novembre 2008

Étude réalisée dans le cadre des projets de Recherche du BRGM

M. Cruchet , P. Nehlig, N. Arnaud, P. Chevalier, F. Lacquement

Vérificateur :

Nom : Pierre Nehlig

Date : 18/11/08

Signature :

Approbateur :

Nom : J-Louis Nédellec

Date : 20/11/08

Signature :

En l'absence de signature, notamment pour les rapports diffusés en version numérique, l'original signé est disponible aux Archives du BRGM.

Le système de management de la qualité du BRGM est certifié AFAQ ISO 9001:2000.

Mots clés : La Réunion, Datations, Ages, Cirques, Piton des Neiges.

En bibliographie, ce rapport sera cité de la façon suivante :

Cruchet M, Nehlig P., Arnaud N., Chevalier P., Lacquement F. - 2008 – Nouvelles datations K-Ar et ¹⁴C dans le massif du Piton des Neiges – rapport BRGM RP-56905-FR – 22 p. – 5 illustrations – 5 Tableaux - 4 Annexes.

© BRGM, 2008, ce document ne peut être reproduit en totalité ou en partie sans l'autorisation expresse du BRGM.

Synthèse

Dans le cadre de la cartographie géologique des cirques du Piton des Neiges (programme de recherche Mvterre sur l'étude des mouvements de terrain de grande ampleur à La Réunion), des datations ont été réalisées sur des laves et des bois.

Ces travaux de géochronologie qui font l'objet du sous module 1.2 du programme de recherche ont permis de préciser les grandes périodes d'édification du massif du piton des Neiges.

27 laves ont été datées selon la méthode Potassium-Argon par le Laboratoire des Sciences et du Climat et de l'Environnement du CEA-CNRS.

Ces nouvelles datations complètent celles effectuées lors des différents travaux scientifiques depuis les années 70. La compilation effectuée en début de programme en collaboration avec le LSTUR (Laboratoire des Sciences de la Terre de l'Université de La Réunion) avait permis de rassembler 200 datations – BRGM/RP-52681-FR.

L'âge des laves prélevées dans les cirques et dans les remparts entourant ces derniers montre que les cirques <u>actuels</u> se sont pour l'essentiel creusés après la fin de l'édification d'un vaste stratovolcan il y a 210 000 ans environ.

L'érosion du stratovolcan a mis à jour les océanites anciennes qui affleurent au fond des cirques. Les océanites y sont recouvertes par des formations volcaniques récentes qui se sont épanchées depuis le Piton des Neiges *sensu stricto* pendant la période de formation des cirques, depuis 200 000 ans.

Les formations volcaniques récentes ont été soumises à d'importants mouvements gravitaires dont certains sont toujours actifs. Elles sont souvent déformées et mêlées aux brèches provenant de l'érosion des reliefs (remparts et flancs du volcan).

Les travaux de géochronologie associés aux travaux de cartographie permettent de mieux comprendre l'origine des mouvements de grande ampleur dans les cirques et les grandes ravines de la Réunion.

7 datations effectuées sur des bois contenus dans des alluvions et dans des coulées de débris ont donné des âges très récents, entre 1300 ans et 3500 ans, dans les cirques de Salazie et Mafate. Ils confirment la très forte activité érosive dans les cirques au cours des derniers 10 000 ans.

Couplés à la cartographie des formations volcaniques ,ces travaux géochronologiques permettent de préciser les grandes crises morpho-dynamiques qui ont façonné le relief du massif du Piton des Neiges et de comprendre l'origine des mouvements de grande ampleur.

Sommaire

1.	INTRODUCTION	8
2.	DATATIONS K AR	9
	2.1. Datations K-Ar 2003-2004	9
	2.2. Datations K-Ar 2007-2008	9
	2.3. Résultats	14
	2.3.1. Datations des laves du cirque de Salazie	14
	2.3.2. Datations des laves du cirque de Cilaos	16
	2.4. Synthèse sur les résultats des nouvelles datations K/Ar	18
3.	DATATIONS ¹⁴ C	19
4.	BIBLIOGRAPHIE	22

Liste des illustrations

Illustration 1 : Carte de localisation des datations K-Ar1	2
Illustration 2 : Ages des formations géologiques du cirque de Salazie (nouvelles datations en jaune))
1	15
Illustration 3 : Ages des formations géologiques du cirque de Cilaos (nouvelles datations en jaune) 1	17
Illustration 4 : Histogramme des âges des datations K-Ar Mvterre 2004-2008 1	8
Illustration 5 : Localisation des datations ¹⁴ C effectuées dans le cadre du programme Mvterre 2	21

Liste des tableaux

Tableau 1: Liste des échantillons datés par la méthode K- Ar en 20041	0
Tableau 2: Liste des échantillons datés par la méthode K-Ar en 2007 et 2008 1	1
Tableau 3 : Coordonnées (x, y z) des échantillons datés par la méthode K-Ar dans le cadre du programme Myterrre	3
Tableau 4 : Datations radiogéniques au ¹⁴ C sur bois ou débris organiques	20
Tableau 5 : Coordonnées (x, y, z) des datations ¹⁴ C effectuées dans le cadre du programme Myterr 2	e 20

Liste des Annexes

Annexe 1: Rapport CEA 2004

- Annexe 2 : Rapport CEA 2007
- Annexe 3 : Rapport CEA 2008
- Annexe 4 : Résultat des analyses C14

1. Introduction

Dans le cadre de l'intervention C5.03 du DOCUP (soutenir la recherche et le développement sur les phénomènes de risques naturels), le BRGM s'est engagé dans la réalisation d'un programme de recherche sur les mouvements de terrain de grande ampleur dans les cirques et les grandes ravines à La Réunion (programme MVTerre). Le sous-module 1.2 du programme prévoit la réalisation de datations radiogéniques

De nouvelles datations ont été réalisées sur des échantillons prélevés lors de la cartographie des cirques en 2002-2003-2004 puis en 2007-2008.

La compilation de toutes les données bibliographiques existantes sur les datations a fait l'objet d'un premier rapport dans le cadre du projet (rapport BRGM/RP-52681-FR). Ces travaux ont permis de circonscrire les secteurs et/ou les formations géologiques non datés.

Les laves ayant fait l'objet de datations radiogéniques sont localisées soit dans les cirques de Mafate et de Cilaos, soit dans les remparts entourant ces derniers. Quelques échantillons supplémentaires ont été choisis compte tenu de leur intérêt dans la compréhension de l'histoire géologique du massif du Piton des Neiges.

Quelques datations au ¹⁴C ont été réalisées sur des échantillons de bois trouvés dans les formations détritiques des cirques de Salazie et de Mafate.

27 analyses ont été confiées au Laboratoire des Sciences du climat et de l'Environnement (LSCE), Unité Mixte de Recherche CEA – CNRS. Les datations ont été effectuées selon la méthode Potassium-Argon sans traceur (cf. résultats en annexes 1, 2 et 3).

7 datations au ¹⁴C ont été confiées au laboratoire BETANALYTIC INC (cf. résultats en annexe 4).

2. Datations K Ar

2.1. DATATIONS K-AR 2003-2004

17 échantillons ont pu être datés en 2004; 7 en provenance du cirque de Salazie (échantillons PC) et 10 en provenance du cirque de Cilaos (échantillons FL).

Les roches du cirque de Salazie ont été prélevées ;

- dans les berges de la rivière du Mât. Les laves appartiennent à la formation de Mare à Poules d'Eau (réf *PC 1453, PC 1454*);
- sur les plateaux d'Artimor et de Bras Sec, dominant la rivière du Mât (2 échantillons PC 723; PC 739);
- dans le rempart Nord du Cirque de Salazie, dominant Bé Cabot (3 échantillons PC1457, PC1458, PC1459).

Les roches du cirque de Cilaos ont été prélevées :

- dans le cône de scories de Mare Sèche (FL51);
- dans des coulées à Bras Sec et à llet à Cordes, à la base, au milieu et au sommet des ensembles laviques (*FL319 b*, *FL339*, *FL366 a*, FL366 *b* et *FL598 2*);
- dans les intrusions recoupant les brèches (FL353; FL611);
- dans un bloc de faciès lavique « apparemment récent » au sein d'une brèche « apparemment ancienne » (*FL706*);
- dans les premières coulées différenciées reposant sur les coulées d'océanites au pied de la montée du coteau de Kervéguen (*FL396*).

2.2. DATATIONS K-AR 2007-2008

Les datations réalisées en 2007-2008 avaient pour objectif de compléter les informations dans les cirques et sur les hauts des remparts délimitant les cirques et dans les grandes ravines de l'île.

10 nouvelles datations radiogéniques K-Ar ont été effectuées sur :

- 4 échantillons prélevés dans la partie Ouest du cirque de Salazie, cartographiée en 2004 et 2007 (DS-01, DS-02, DS-03, DS-04);
- 3 échantillons prélevés sur les sommets des remparts délimitant le paléo cirque de Bébourg-Bélouve et de Cilaos, au sommet du Mazerin (MA-01) et du piton de l'Entre Deux (DP-02) et sur le plateau de Kervéguen (DP-01);
- 2 échantillons concernent les laves du cœur du cirque de Cilaos, dans les secteurs d'Ilet à Cordes et de Gueule Rouge (DC-01, DC-02);
- 1 dernier échantillon a été prélevé dans une coulée de lave recouvrant les alluvions à l'embouchure de la rivière Saint-Denis (DP-04).

Réf BRGM	Réf. LSCE	Age en Ka	Faciès	Localisation		
		Cir	que de Salazie			
PC 723	723	807 +-46	Basalte légèrement vacuolaire	Artimor		
PC 739	739	156 +-5	Basalte aphyrique très frais	Bras sec		
PC 1453-0	1453	101 +- 5	Basalte à feldspath (roche pintade)	Rivière du Mât		
PC 1454	1454	111 +-6	Basalte à feldspath (roche pintade)	Rivière du Mât		
PC 1457	1457	300 +-5	Basalte aphyrique	Rampart Bé Cabot		
PC 1458	1458	280 +-8	Basalte aphyrique	Rempart Bé Cabot		
PC 1459	1459	224 +-7	Basalte à feldspath (roche pintade)	Rempart Bé Cabot		
		Ci	rque de Cilaos			
FL 51	51	62 +-3	Basalte à plagio dans cône scories	Cilaos - Mare Sèche		
FL 319	319 B	100 +-5	Basalte à feldspath	Ravine Kervéguen		
FL 339	339	96 +-3	Basalte à feldspath	Bras Sec		
FL <u>353</u>	353	354 +-20	Dyke recoupant des brèches B 1	Bras de Benjoin		
FL 3 <u>66</u> A	366 A	69 +-5	Basalte scoriacé aphyrique	Bras de Benjoin		
FL 366 B	366 B	351 +-7	Basalte à plagioclases	Bras de Benjoin		
FL <u>396</u>	396	347 +-7	Basalte à plagioclases	Montée Kervéguen		
FL 598-2	598 -2	272 +-8	Basalte à olivine et plagio	Ravine Bras Sec		
FL 611	611	554 +- 13	Sill fracturé dans brèche B1	Bras de Benjoin		
FL 706	706	9 +-3	Lave claire dans brèche B 1	Bassin des Salazes		

Tableau 1: Liste des échantillons datés par la méthode K- Ar en 2004

Réf. échantillon	Age en Ka	Localisation	Faciès
DS-01	316 +-7	Salazie Ravine Blanche	Dôme coulée
DS-02	357 +-8	Salazie Ravine Blanche	Coulée basaltique
DS-03	97 +-6	Mare à Martin	Elément de brèche monogénique de Grand llet
DS-04	115 +-4	Salazie - Piton Marmite	Coulée différentiée sommitale
DC-01	573 +-17	Crique de Cilaos	Coulée d'Ilet à Cordes
DC-02	1369 +-39	Cirque de Cilaos	Coulée d'océanite du Gros Morne de Gueule Rouge
DP-01	69 +-2	Plateau Kervéguen	Coulée différenciée sommitale
DP-02	213 +-5	Sommet de l'Entre-Deux	Coulée différenciée sommitale
DP-04	194 +-5	Rivière Saint-Denis La Redoute	Coulée de fond de vallée
MA-01	241 +-5	Rempart du Mazerin	Coulée différenciée aphyrique sommitale

Tableau 2: Liste des échantillons datés par la méthode K-Ar en 2007 et 2008

Illustration 1 : Carte de localisation des datations K-Ar

Référence échantillon	X en m	Y en m	Z en m	Ages en ka
PC723	158913,430	59836,992	851	807 +-46
PC739	158301,644	59479,590	743	156 +-5
PC1453/0	160103,367	59730,418	514	101 +- 5
PC1454	159705,756	59656,231	532	111 +-6
PC1457	157522,097	63990,132	1380	300 +-5
PC1458	157562,346	64066,190	1445	280 +-8
PC1459	157723,517	64159,391	1580	224 +-7
FL51	154229,330	47940,050	1145	62 +-3
FL319	155672,577	49508,389	1175	100 +-5
FL339	156264,274	49473,861	1355	96 +-3
FL353	155366,486	49105,027	1095	354 +-20
FL366a	155590,007	49701,983	1162	69 +-5
FL366b	155590,007	49701,983	1162	351 +-7
FL396	157318,012	50235,365	1790	347 +-7
FL598-2	155429,777	48212,403	1145	272 +-8
FL611	154023,463	47391,645	1020	554 +- 13
FL706	152998,566	51596,987	1350	9 +-3
DS-01	154313,401	62459,552	1140	316 +-7
DS-02	154286,367	62304,867	1120	357 +-8
DS-03	156474,076	62358,979	1080	97 +-6
DS_04	152373,870	57882,445	1870	115 +-4
DC-01	150194,493	47048,096	1070	573 +-17
DC-02	153631,981	45570,488	1120	1369 +-39
DP-01	157670,275	50559,140	2230	69 +-2
DP-02	157999,283	48835,165	2295	213 +-5
DP-04	151237,563	76932,643	35	194 +-5
MA-01	163767,792	59834,582	1540	241 +-5

(Coordonnées Piton des Neiges-Gauss Laborde - Réunion IGN)

Tableau 3 : Coordonnées (x, y z) des échantillons datés par la méthode K-Ar dans le cadre du programme Mvterrre

2.3. RESULTATS

Ces nouveaux résultats radiogéniques ont fourni des éléments pertinents pour comprendre la formation des cirques et sont présentés dans les travaux de cartographie des cirques (cf notices des cartes géologiques des cirques).

2.3.1. Datations des laves du cirque de Salazie

Les âges obtenus sur les laves du cirque de Salazie sont reportés sur la carte en illustration 2.

Les coulées de pied du rempart Nord du cirque de Salazie ont des âges supérieurs à 300 000 ans (**300 ka** / PC1457, **316 ka** / DS 01, **357 ka** / DS 02.)

Les coulées de roche pintade armant le sommet du rempart dominant Bé Cabot ont été datées à **224 ka** (PC1459). Leur âge est voisin de celui des coulées armant le sommet de rempart sous la Roche Ecrite.

Les dernières coulées de lave différenciée du sommet du rempart du Mazerin sont datées à 241 000 ans. Ce rempart représente la bordure Est du paléocirque de Salazie.

Les formations laviques rencontrées dans le fond du cirque appartiennent aux séries différenciées récentes du massif du Piton des Neiges avec des âges inférieurs à 200 000 ans. Les nouvelles datations confirment les résultats antérieurs.

La formation de Mare à Poule d'Eau constituée de coulées de basalte différencié a été datée à 100 000 ans (97 ka /DS 03 , 101 ka / PC 1453 ; 111 ka / PC 1454).

Les laves entourant le Piton d'Enchaing ont des âges compris entre 138 000 ans et 187 000 ans. La datation à 156 000 ans sur l'échantillon PC 739 confirme les datations plus anciennes.

Les coulées du piton Mamite situé en bordure de la route forestière des Hauts de Mafate sont également très récentes et ont été datées à **115 ka** (DS 04).

Ces laves très récentes côtoient des laves beaucoup plus anciennes. Ainsi, un basalte vacuolaire a été daté à **807 ka** / PC 723. Ces laves anciennes affleurent au pied du rempart de Bélouve.

Aucune lave présentant des âges compris entre 350 000 et 200 000 ans n'a été datée dans le cirque. Ces laves (séries des roches pintades précoces) qui constituent tous les remparts entourant le cirque ont été érodées et évacuées hors du cirque.

Illustration 2 : Ages des formations géologiques du cirque de Salazie (nouvelles datations en jaune)

2.3.2. Datations des laves du cirque de Cilaos

Les âges obtenus sur les laves du cirque de Cilaos sont reportés sur la carte en illustration 3.

Les datations effectuées dans le cadre du programme Mvterre ont permis de préciser l'âge des formations constituant le rempart Est du cirque de Cilaos.

Les coulées au pied de la montée Kervéguen ont été datées à 347 000 ans (échantillon FL 396). Le sommet du rempart est constitué de coulée de laves différenciées très récentes datées à 69 000 ans (échantillon DP 01).

Les coulées différenciées sommitales du rempart du Piton de l'Entre-Deux ont été datées à **213 ka** (échantillon DP 02). Ce rempart constitue le rebord du paléo-cirque de Bebourg Belouve dont l'exutoire se situait vers l'Est. A noter que l'âge des coulées du sommet du piton de l'Entre Deux est quasiment identique à celui des coulées du Grand Bénard (**210 ka et 211 ka**).

La série des laves différenciées constituant les remparts n'a pas recouvert l'ensemble de l'île. Certaines parties de l'île sont restées abritées. Ainsi, la rivière Saint-Denis n'a été atteinte par une coulée récente qu'il y a **194 ka** (échantillon DP 04).

Les formations rencontrées dans le cirque du Cilaos ont des âges plus étalés. Les laves sont anciennes avec des âges supérieurs à 350 000 ans (**1369 ka** / DC 02; **573 ka** / DC 01; **554 ka** /FL 611; **354 Ka** / FL 353; FL **351 ka** / FL 366b).

Des laves récentes de moins de 100 000 ans ont été datées sur les plateaux de Cilaos et de Bras Secs. Ces laves sont à mettre en relation avec celles rencontrées sur le piton des Neiges (62 ka /FL 51 ; 69 ka / 366 a ; 96 ka /FL 339).

Une lave présente un âge intermédiaire de 272 ka (échantillon FL 598-2).

Illustration 3 : Ages des formations géologiques du cirque de Cilaos (nouvelles datations en jaune)

2.4. SYNTHESE SUR LES RESULTATS DES NOUVELLES DATATIONS K/AR

Ces résultats corroborent et complètent les travaux antérieurs conduits sur le massif du Piton des Neiges (Kluska, 1997). Les âges obtenus au niveau des remparts entourant les cirques présentent une grande homogénéité. La fin de l'édification des remparts remonte à **210 000 ans** environ, par la mise en place de coulées de lave différenciée aphyrique dont la Dalle Soudée (Kieffer, 1993)). Le volcan a atteint son dernier stade de croissance à cette période, culminant vers 3400 m d'altitude environ.

Les coulées de lave différenciée des remparts reposent sur les océanites affleurant dans le fond des cirques. Quelques laves anciennes dont l'âge est supérieur à 550 000 ans ont été datées dans le cadre du programme de recherche (illustration 6).

Ces travaux montrent qu'une partie des laves occupant le fond des cirques sont très jeunes. Un grand nombre de datations concernent des laves âgées de moins de 100 000 ans (illustration 6). Ces coulées se sont mises en place dans des dépressions creusées dans le stratovolcan érigé vers 210 000 ans, dans des « protocirques », ancêtres des cirques de Salazie, Cilaos et de Mafate. Un de ces protocirques, celui de la rivière des Marsouins, a été complètement comblé.

Les coulées de lave récentes rencontrées dans le fond des cirques sont généralement désorganisées et allochtones. Leur remaniement s'est fait dans le cadre de déstabilisations en grand du volcan du Piton des Neiges récents qui perdurent jusqu'à aujourd'hui. Ces déstabilisions se sont produites après la mise en place de ces laves, c'est à dire depuis moins de 100 000 ans dans le cas du cirque de Salazie.

3. Datations ¹⁴C

7 datations au ¹⁴C ont permis de dater des sédiments récents des cirques de Salazie et de Mafate.

Les débris de bois proviennent de 5 sites différents

- le plateau de Bois de Pomme dans le cirque de Salazie. L'échantillon MC-01 a été prélevé dans un dépôt de coulées de boue renfermant des débris et des troncs d'arbre sur la bordure Nord du plateau. Le dépôt est intercalé dans les alluvions sablograveleuse du plateau de Bois de Pomme ;
- les alluvions fluvio-lacustres du Bras de Sainte-Suzanne dans le cirque de Mafate, à son embouchure avec le Bras des Merles. 3 échantillons de bois MG02REU01 / MG2REU02 / MGREU03 ont été prélevés dans des argiles silteuses intercalées dans des alluvions sableuses ;
- une coulée de débris dans le lit de la rivière des Galets, à l'aval immédiat de la passerelle reliant les îlets des Lataniers et de Cayenne (échantillon MC 02);
- d'une formation alluviale sur le cours amont de la rivière des Galets, près de la Stèle José Ethève (échantillon F-LM-71);
- du plateau de Plaine aux Sables, dans le cirque de Mafate (échantillon FL-LM-85).

Hormis l'échantillon provenant des sédiments de la Plaine des Sables datés de 3520 ans BP, tous les autres échantillons présentent des âges très récents compris entre 1600 et 1300 années BP. Les âges les plus récents ont été obtenus sur les sédiments lacustres qui se sont déposés dans un lac de barrage sur la rivière des Galets (M. Garcin et Cruchet 2003). Le barrage aurait été formé par un éboulement dans un des remparts de la rivière des Galets vers 1500 ans. Or cette date coïncide avec celle du lahar amont de Cayenne, des alluvions amont de la rivière des Galets recouvertes par les mégablocs de Marla, mais aussi à celui de Bois de Pomme.

La période 1600-1500 ans BP apparaît être une période de grands bouleversements morphologiques (éboulements de très grande ampleur, coulée de débris de grande extension).

Bien que le nombre d'événements datés soit faible, ces premiers résultats semblent indiquer qu'au cours de leur histoire récente, les cirques ont connu **des « crises** » au cours desquelles les processus mophogravitaires ont été plus nombreux.

Numéro échantillon	Localisation de l'échantillon	Faciès	Age en années BP
MG02REU01	Bras de Sainte Suzanne	Argiles limoneuses	1460 +-60
MG02REU05	Bras de Sainte Suzanne Confluence Bras des Merles	Argiles grises	1440 +-40
MG02REU06	Bras de Sainte Suzanne Confluence Bras des Merles	Argiles silteuses	1300 +- 60
MC 01	Bois de Pomme Versant en rive gauche de la ravine Fleurs Jaune (en amont de la prise d'eau)	Coulée de débris	1330 +-60
MC 02	Rivière des Galets Passerelle Cayenne-Lataniers	Coulée de débris dans le lit de la rivière	1600 +-50
FL-LM-71	Rivière des Galets Stèle José Ethève	Alluvions gravelo- sableuses	1530 +- 50
FL-LM-85	La Plaine aux Sables	Alluvions sablo- limoneuses	3520 +-70

Tableau 4 : Datations radiogéniques au ¹⁴C sur bois ou débris organiques

NUMERO	LOCALISATION	X	Y	Z
MG02REU01	Bras Sainte Suzanne	146432,90	64549,23	320 m
MG02REU05	Bras des Merles	146419,90	64539,04	290 m
MG02REU06	Bras de Sainte Suzanne	146873,45	64854,38	290 m
MC 01	Bois de Pomme	161829,85	62584,12	440 m
MC 02	Rivière des Galets	146872,07	60638,57	350 m
FL-LM-71	Stèle José Ethève	150292,11	53968,10	1390 m
FL-LM-85	La Plaine aux Sables	149259,03	54637,69	1385 m

(Coordonnées Piton des Neiges-Gauss Laborde - Réunion IGN)

Tableau 5 : Coordonnées (x, y, z) des datations ¹⁴C effectuées dans le cadre du programme Mvterre

Illustration 5 : Localisation des datations ¹⁴C effectuées dans le cadre du programme Mvterre

4. Bibliographie

Arnaud N., Chevalier P., Nehlig P. (2004) – Compilation des datations géochronologiques des roches magmatiques de La Réunion - État d'avancement. Rapport BRGM/RP-52681-FR, 15 p., 3 fig., 1 tab., 2 ann.

Chevalier P. (2003) – Cartographie géologique au 1/10 000 du Cirque de Salazie - rapport d'avancement. Rapport BRGM/RP-52681-FR, 52 p., 38 fig., 1 tab., 6 ann.

Kieffer G., Gillot P.Y., Cornette Y., Germanaz C., Nativel P., 1993. Une phase éruptive exceptionnelle dans l'histoire récente du Piton des Neiges (île de la Réunion) : l'histoire de la "dalle soudée". C.R.Acad. Sci., Paris, t. 317, Série II, p. 835-842.

Garcin M., Casanova J., Cruchet M. (2003) - Synthèse sur l'évolution paléoclimatologique de l'île de la Réunion et des régions environnantes. Rapport BRGMRP-52674-FR, p., 25 fig.

Garcin M., Poisson B., Cruchet M. (2003) – Evolution paléoclimatologique de l'Ile de la Réunion - Repérage des séquences sédimentaires remarquables dans les cirques - Etude faisabilité de datations par luminescence. Rapport BRGM/RP-52873-FR, 56 p, 54 fig., 1 ann.

Kluska J.M., 1997. Evolution magmatique et morpho-structurale du Piton des Neiges au cours des derniers 500000 ans. Thèse Univ. Paris XI, 125p.

Lacquement F. – Cartographie du Cirque de Cilaos Campagne 2003. BRGM/RP- 52872 – FR

McDougall, I., 1971. The geochronology and evolution of the young volcanic island of Réunion, Indian Ocean. Geochim. Cosmochim. Acta 35, 261–288.

Raïs A., Laj. C., Sumont J., Gillot P.Y., Guillou H., 1996. Geomagnetic field intensity between 70000 and 130000 years BP from a volcanic sequence on La Réunion, Indian Ocean. Earth and Planet. Sci. Letters 140, p. 173-189.

Annexes

Annexe 1: Rapport CEA 2004

Annexe 2 : Rapport CEA 2007

Annexe 3 : Rapport CEA 2008

Annexe 4 : Résultat des analyses ¹⁴C

Annexe 1

Rapport CEA 2004

H. Guillou L.S.C.E Unité Mixte de Recherche CEA - CNRS Bât 12 - Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France FAX : 33 - 1 - 69 82 35 68 TEL: 33 1 69 82 35 56 Gif -sur- Yvette, le 23/09/04

DATATION PAR LA METHODE POTASSIUM - ARGON

SANS TRACEUR

DE ROCHES VOLCANIQUES DE L'ILE DE LA REUNION

Demandeur Pierre NEHLIG - BRGM - OLEANS

I - Procédure analytique

La phase retenue pour les mesures d'argon et de potassium est la mésostase microcristalline, représentative de la fraction cristallisant lors de la mise en place de la lave. Le protocole de préparation des échantillons a pour finalité de préparer des aliquotes homogènes, sur lesquelles seront mesurées séparément les teneurs en potassium et la composition isotopique de l'argon. Les échantillons sont broyés et tamisés à la fraction 0,250 - 0,125 mm, puis lavés dans un bain d'acide acétique dans une cuve à ultras sons, afin d'éliminer les éventuelles phases secondaires d'altération. Les phénocristaux, d'olivine, de feldspaths et de pyroxènes, phases ubiquistes dans les roches de l'île de la Réunion, sont éliminés successivement par tris magnétique et densitométrique (Diiodométhane dilué à l'acétone) car ces phénocristaux, porteurs potentiels d'excès d'argon peuvent entraîner une erreur par excès sur les âges supérieure à l'erreur analytique. Les valeurs de densité sont données dans le tableau 1.

Sample ID	1453	1457	51	739	598/2	611	1458	339	319B	1454	706	366A	353	366B	396	1459	723
Intervalle de	3.06-	2.96-	2.90-	2.96-	2.95-	3.00-	3.03-	2.90-	3.04-	2.98-	2.92-	3.01-	3.10-	3.06-	2.96-	3.10-	3.01-
densité	2.96	2.90	2.85	2.88	2.89	2.93	2.90	2.82	2.93	2.91	2.80	2.90	2.90	2.93	2.88	3.00	2.97

Tableau 1 : Gamme de densité des aliquotes de mésostases analysées.

La composition isotopique et les teneurs en argon sont mesurées suivant la technique sans traceur (unspiked) détaillée dans Charbit et al., 1998.

Charbit S. Guillou H. and Turpin L. 1998 -Cross calibration of K-Ar standard minerals using an unspiked Ar measurements technique. Chemical Geology, 150, 147-159.

II) Résultats.

Les résultats sont donnés dans les pages suivantes et synthétisés dans le tableau 2.

Sample ID	Poids	K*	40Ar*	40 _{Ar} *	40 _{Ar} *	Age $\pm 2\sigma$
Experience n°	fondu	(wt.%)	(%)	(10^{-13})	moy.	ka
	(g)		(70)	mol/g)	pondérée	
1453						
6689	1.27565	1.046 ± 0.010	1.792	1.765		
6705	2.08500	"	2.586	1.855	1.835	101 ± 5
706						
6742	1.47778	1.876 ± 0.019	0.248	0.218		
6758	2.07194		0.390	0.384	0.288	9 ± 3
366 A						
6744	1.51571	1.627 ± 0.016	1.392	1.990		
6759	1.37299		1.167	1.893	1.953	69 ± 5
1457						
6690	1.29390	1.785 ± 0.018	17.231	9.278		
6706	2.09330		18.170	9.318	9.302	300 ± 5
51						
6691	1.49613	1.909 ± 0.019	2.437	2.192		
6707	2.19791		3.854	2.003	2.054	62 ± 3
739						
6694	1.21514	1.420 ± 0.014	3.664	3.732		
6710	2.09232		3.097	3.900	3.850	156 ± 5
598-2						
6708	1.71781	0.731 ± 0.007	6.357	3.610		
6725	2.05051		3.847	3.283	3.447	272 ± 8
611						
6714	1.51395	0.697 ± 0.007	5.321	6.566		
6730	1.73198		3.773	6.866	6.693	554 + 13
1458						
6719	1.54907	1.478 ± 0.015	10.062	6.727		
6735	2.59002		9.082	7.444	7.176	280 ± 8
339						
6720	1.43413	2.017 ± 0.020	2.972	3.302		
6736	2.26221		2.531	3.388	3.350	96 ± 3
353						
6740	1.33333	0.714 ± 0.007	1.253	4.425		
6756	1.15931		1.130	4.237	4.384	354 ± 20
366 B						
6739	1.56820	1.013 ± 0.013	14.912	6.279		
6755	1.84786		3.401	5.813	6.162	351 ± 7
396						
6741	1.43845	1.212 ± 0.012	9.674	7.509		
6757	1.69532		7.287	7.082	7.289	347 ± 7
1459						
6749	1.53405	0.780 ± 0.008	3.944	2.938		
6754	2.18467		4.704	3.085	3.025	224 ± 7
319B						
6721	1.71928	1.187 ± 0.012	2.372	2.040		
6737	1.83376		2.387	2.060	2.052	100 ± 5
1454	na wakazi na za					
6716	1.61409	1.129 ± 0.011	1.926	2.118		
6748	1.57503		2.478	2.233	2.164	111 ± 6
723						
6747	0.63200	0.838 ± 0.008	0.600	12.744		
6769	0.57343		0.512	10.953	11.726	807 ± 46

DENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

POTASSIUM-ARGON AGE DETERMINATION

Sample N°: 6689 & 6705

Your reference: 1453

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue CL Guillemin BP 6009 45060 ORLEANS Cedex 2, France

Sample description & locality: Rivière du mât - Basalte

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in $HC_2H_3O_2$.

 40 Ar/ 40 K = 5.878 10⁻⁶ Age = 101 ± 5 ka

Argon Analyses:

⁴⁰Ar*% 1.792 2.586 ⁴⁰Ar* (10⁻¹³moles/g) 1.765 1.855 Weighted Mean (10⁻¹³moles/g) 1.835

Potassium Analysis: K%: 1.046

Constants used:

 $\begin{array}{l} \lambda_{\beta} = 4.962 \ 10^{-10} / a \\ \lambda_{\varepsilon} = 0.572 \ 10^{-10} / a \\ \lambda_{\varepsilon'} = 0.0088 \ 10^{-10} / a \end{array}$

 40 K/K = 1.167 10⁻⁴ g/g

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[\frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

Note: 40 Ar* refers to radiogenic 40 Ar. ka refers to thousand of years. Error on the age is at 2σ level.

CENTRE NATIONAL DE LA RECHERONE SCIENTIFIQUE

POTASSIUM-ARGON AGE DETERMINATION

Sample N°: 6742 & 6758

Your reference: 706

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

Sample description & locality: Bassin des Salazes - Bras rouge- Trachyandésite.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in $HC_2H_3O_2$.

⁴⁰ Ar/ ⁴⁰ K = 5.149 10 ⁻⁷	Age = 9 ± 3 ka
, م » حصد جد م » ف م حض به ف م » حص م » » « « « « « « « « « « « « « « « « «	

Argon Analyses:

⁴⁰Ar*% 0.248 0.390

⁴⁰Ar* (10⁻¹³moles/g) 0.218 0.384 Weighted Mean (10⁻¹³moles/g) 0.288

Potassium Analysis: K%: 1.876

Constants used:

$$\begin{split} \lambda_{\beta} &= 4.962 \ 10^{-10} / a \\ \lambda_{\varepsilon} &= 0.572 \ 10^{-10} / a \\ \lambda_{\varepsilon'} &= 0.0088 \ 10^{-10} / a \end{split}$$

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[\frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

Note: 40 Ar* refers to radiogenic 40 Ar. ka refers to thousand of years. Error on the age is at 2σ level.

4

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFICIDE

POTASSIUM-ARGON AGE DETERMINATION

Sample N°: 6744 & 6759

Your reference: 366 A

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

Sample description & locality: Bras de Bejoiun - Basalte.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in $HC_2H_3O_2$.

 40 Ar/ 40 K = 4.021 10⁻⁶ Age = 69 ± 5 ka

Argon Analyses: ⁴⁰Ar*%

1.392

⁴⁰Ar* (10⁻¹³moles/g) 1.990 1.893 Weighted Mean (10⁻¹³moles/g) 1.953

Potassium Analysis: K%: 1.627

Constants used:

 $\begin{array}{l} \lambda_{\beta} = 4.962 \ 10^{\cdot 10} / a \\ \lambda_{\varepsilon} = 0.572 \ 10^{\cdot 10} / a \\ \lambda_{\varepsilon'} = 0.0088 \ 10^{\cdot 10} / a \end{array}$

 40 K/K = 1.167 10⁻⁴ g/g

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[\frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

Note: 40 Ar* refers to radiogenic 40 Ar. ka refers to thousand of years. Error on the age is at 2σ level.

SUTRE NATIONAL DE LA REGHERCHE SCIENTIFICIOE

Sample N°: 6690 & 6706

Your reference: 1457

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue CL Guillemin BP 6009 45060 ORLEANS Cedex 2, France

Sample description & locality: Bé Cabot trail – Trachyandésite.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in $HC_2H_3O_2$.

⁴⁰ Ar/ ⁴⁰ K = 1.746 10 ⁻⁵	Age = 300 ± 5 ka

Argon Analyses:

⁴⁰Ar*% 17.231 18.170 ⁴⁰Ar* (10⁻¹³moles/g) 9.278 9.318 Weighted Mean (10⁻¹³moles/g) 9.302

Potassium Analysis: K%: 1.785

Constants used:

 $\begin{array}{l} \lambda_{\beta} = 4.962 \; 10^{-10} / a \\ \lambda_{\epsilon} = 0.572 \; 10^{-10} / a \\ \lambda_{\epsilon'} = 0.0088 \; 10^{-10} / a \end{array}$

 40 K/K = 1.167 10⁻⁴ g/g

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[\frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

Note: ⁴⁰Ar* refers to radiogenic ⁴⁰Ar. ka refers to thousand of years. Error on the age is at 2 σ level.

CENTRE NATIONAL DE LA PEGHERCHE SCIENTIFICOE

POTASSIUM-ARGON AGE DETERMINATION

Sample N°: 6691 & 6707

Your reference: 51

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue CL Guillemin BP 6009 45060 ORLEANS Cedex 2, France

Sample description & locality: Cilaos - Basalte.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in $HC_2H_3O_2$.

40 Ar/ 40 K = 3.605 10 ⁻⁶	$Age = 62 \pm 3 \text{ ka}$
	~~~~~

Argon Analyses: ⁴⁰Ar*%

2.437 3.854 ⁴⁰Ar* (10⁻¹³moles/g) 2.192 2.003 Weighted Mean (10⁻¹³moles/g) 2.054

Potassium Analysis: K%: 1.909

#### Constants used:

$$\begin{split} \lambda_{\beta} &= 4.962 \ 10^{-10}/a \\ \lambda_{\epsilon} &= 0.572 \ 10^{-10}/a \\ \lambda_{\epsilon'} &= 0.0088 \ 10^{-10}/a \end{split}$$

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

Note:  40 Ar* refers to radiogenic  40 Ar. ka refers to thousand of years. Error on the age is at  $2\sigma$  level.







DE LA REGNERCHE SCIENTIFICHE

POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 6694 & 6710

Your reference: 739

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue CL Guillemin BP 6009 45060 ORLEANS Cedex 2, France

Sample description & locality: Bras sec, Mr Plante - Trachyandésite.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

40 Ar/ 40 K = 9.083 10 ⁻⁶	Age = 156 ± 5 ka

Argon Analyses: ⁴⁰Ar*% 3.664 3.097

⁴⁰Ar* (10⁻¹³moles/g) 3.732 3.900

Weighted Mean (10⁻¹³moles/g) 3.850

Potassium Analysis: K%: 1.420

Constants used:

$$\begin{split} \lambda_{\beta} &= 4.962 \ 10^{-10} / a \\ \lambda_{\varepsilon} &= 0.572 \ 10^{-10} / a \\ \lambda_{\varepsilon'} &= 0.0088 \ 10^{-10} / a \end{split}$$

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

Note:  40 Ar* refers to radiogenic  40 Ar. ka refers to thousand of years. Error on the age is at  $2\sigma$  level.







DE LA REGHERCHE SGIENTIFIQUE

POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 6708 & 6725

### Your reference: 598-2

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue CL Guillemin BP 6009 45060 ORLEANS Cedex 2, France

### Sample description & locality: Ravine Bras sec - Basalte.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 1.580 10 ⁻⁵	Age = $272 \pm 8$ ka

Argon Analyses: ⁴⁰Ar*%

*°Ar*% 6.357 3.847 ⁴⁰Ar* (10⁻¹³moles/g) 3.610 3.283 Weighted Mean (10⁻¹³moles/g) 3.447

Potassium Analysis: K%: 0.731

### Constants used:

$$\begin{split} \lambda_{\beta} &= 4.962 \ 10^{-10} / a \\ \lambda_{\epsilon} &= 0.572 \ 10^{-10} / a \\ \lambda_{\epsilon'} &= 0.0088 \ 10^{-10} / a \end{split}$$

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

Note:  40 Ar* refers to radiogenic  40 Ar. ka refers to thousand of years. Error on the age is at  $2\sigma$  level.







OENTRE NATIONAL DE LA REGHEROHE SCIENTREMUE

### Sample N°: 6714 & 6730

### Your reference: 611

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

### Sample description & locality: Ravine Bras de Bejouin - Basalte.

6.866

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

40 Ar/ 40 K = 3.217 10 ⁻⁵		Age = 554 ± 13 ka	
Argon Analyses: ⁴⁰ Ar*% 5.321	⁴⁰ Ar* (10 ⁻¹³ moles/g) 6.566	Weighted Mean (10 ⁻¹³ moles/g) 6.693	

Potassium Analysis: K%: 0.697

Constants used:

3.773

$$\begin{split} \lambda_{\beta} &= 4.962 \ 10^{-10} / a \\ \lambda_{\varepsilon} &= 0.572 \ 10^{-10} / a \\ \lambda_{\varepsilon'} &= 0.0088 \ 10^{-10} / a \end{split}$$

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

Note:  40 Ar* refers to radiogenic  40 Ar. ka refers to thousand of years. Error on the age is at  $2\sigma$  level.


COMPANYARIAT & CENERICIE - ATOMICHE

Laboratoire des Sciences du Climat et de l'Environnement





CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Sample N°: 6719 & 6735

Your reference: 1458

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

Sample description & locality: Bé Cabot trail - Trachyte?.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

 40 Ar/ 40 K = 1.627 10⁻⁵ Age = 280 ± 8 ka

Argon Analyses: ⁴⁰Ar*% 10.062 9.082

⁴⁰Ar* (10⁻¹³moles/g) 6.727 7.444 Weighted Mean (10⁻¹³moles/g) 7.176

Potassium Analysis: K%: 1.478

Constants used:

 $\lambda_{\beta} = 4.962 \ 10^{-10}/a$   $\lambda_{\epsilon} = 0.572 \ 10^{-10}/a$   $\lambda_{\epsilon'} = 0.0088 \ 10^{-10}/a$  40 K/K = 1.167 \ 10^{-4} \ q/q

 $AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$ 



COMMISSAEUM A LENERGIE - ATOMIQUE

Laboratoire des Sciences du Climat et de l'Environnement





CENTRE NATIONAL DE LA REGNERCHE SCIENTIFICHE

# Sample N°: 6720 & 6736

### Your reference: 339

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

### Sample description & locality: Bras sec - Trachyandésite

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 5.565 10 ⁻⁶	$Age = 96 \pm 3 \text{ ka}$

Argon Analyses: ⁴⁰Ar*%

⁴⁰Ar*% 2.972 2.531 ⁴⁰Ar* (10⁻¹³moles/g) 3.302 3.388 Weighted Mean (10⁻¹³moles/g) 3.350

Potassium Analysis: K%: 2.017

Constants used:

 $\begin{array}{l} \lambda_{\beta} = 4.962 \; 10^{\text{-10}} / a \\ \lambda_{\varepsilon} = 0.572 \; 10^{\text{-10}} / a \\ \lambda_{\varepsilon'} = 0.0088 \; 10^{\text{-10}} / a \end{array}$ 

 40 K/K = 1.167 10⁻⁴ g/g

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$







DENTRE NATIONAL DE LA REGREBORE SCIENTIFIQUE

POTASSIUM-ARGON AGE DETERMINATIO

### Sample N°: 6740 & 6756

## Your reference: 353

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

### Sample description & locality: Bras de Benjoin-Basalte.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 2.057 10 ⁻⁵	Age = 354 ± 20 ka

Argon Analyses: ⁴⁰Ar*%

[°]Ar^% 1.253 1.130 ⁴⁰Ar* (10⁻¹³moles/g) 4.425 4.237 Weighted Mean (10⁻¹³moles/g) 4.384

Potassium Analysis: K%: 0.714

Constants used:

$$\begin{split} \lambda_{\beta} &= 4.962 \ 10^{-10} / a \\ \lambda_{\varepsilon} &= 0.572 \ 10^{-10} / a \\ \lambda_{\varepsilon'} &= 0.0088 \ 10^{-10} / a \end{split}$$

 $AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$ 







CENTRE NATIONAL DE LA RECHERQUI SCIENTIFIQUE

POTASSIUM-ARGON AGE DETERMINATION

### Sample N°: 6739 & 6755

### Your reference: 366-B

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

### Sample description & locality: Bras de Benjoin-Basalte.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 2.038 10 ⁻⁵	Age = 351 ± 7 ka

Argon Analyses: ⁴⁰Ar*% 14.912

3.401

⁴⁰Ar* (10⁻¹³moles/g) 6.279 5.813 Weighted Mean (10⁻¹³moles/g) 6.162

Potassium Analysis: K%: 1.013

Constants used:

$$\begin{split} \lambda_{\beta} &= 4.962 \ 10^{-10} / a \\ \lambda_{\varepsilon} &= 0.572 \ 10^{-10} / a \\ \lambda_{\varepsilon'} &= 0.0088 \ 10^{-10} / a \end{split}$$

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$







CENTRE NATIONAL DE LA REGRERCHE SCIENTIFIQUE

#### Sample N°: 6741 & 6757

#### Your reference: 396

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

Sample description & locality: Montée du coteau des Kerveguen – Basalte.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 2.015 10 ⁻⁵	Age = $347 \pm 7$ ka
	***************************************

Argon Analyses: ⁴⁰Ar*%

**Ar*% 9.674 7.287 ⁴⁰Ar* (10⁻¹³moles/g) 7.509 7.082 Weighted Mean (10⁻¹³moles/g) 7.289

Potassium Analysis: K%: 1.212

Constants used:

$$\begin{split} \lambda_{\beta} &= 4.962 \ 10^{-10} / a \\ \lambda_{\varepsilon} &= 0.572 \ 10^{-10} / a \\ \lambda_{\varepsilon'} &= 0.0088 \ 10^{-10} / a \end{split}$$

 40 K/K = 1.167 10⁻⁴ g/g

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$







CENTRE NATIONAL DE LA RECHERCHE SGIENTIFIQUE

#### Sample N°: 6749 & 6754

### Your reference: 1459

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

### Sample description & locality: Bé Cabot trail- Basalte.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 1.299 10 ⁻⁵	Age = 224 ± 7 ka

Argon Analyses: ⁴⁰Ar*%

3.944 4.704 ⁴⁰Ar* (10⁻¹³moles/g) 2.939 3.085 Weighted Mean (10⁻¹³moles/g) 3.025

Potassium Analysis: K%: 0.780

Constants used:

$$\begin{split} \lambda_{\beta} &= 4.962 \ 10^{-10} / a \\ \lambda_{\varepsilon} &= 0.572 \ 10^{-10} / a \\ \lambda_{\varepsilon'} &= 0.0088 \ 10^{-10} / a \end{split}$$

⁴⁰K/K = 1.167 10⁻⁴ g/g

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$







DENTRE NATIONAL DE LA REGHERONE SCIENTIFIQUE

#### Sample N°: 6721 & 6737

### Your reference: 319B

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

#### Sample description & locality: Ravine Kerveguen - Trachyandésite

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 5.791 10 ⁻⁶	Age = $100 \pm 5$ ka

Argon Analyses:

⁴⁰Ar*% 2.372 2.387 ⁴⁰Ar* (10⁻¹³moles/g) 2.040 2.060 Weighted Mean (10⁻¹³moles/g) 2.052

Potassium Analysis: K%: 1.187

Constants used:

 $\begin{array}{l} \lambda_{\beta} = 4.962 \ 10^{-10} / a \\ \lambda_{\epsilon} = 0.572 \ 10^{-10} / a \\ \lambda_{\epsilon'} = 0.0088 \ 10^{-10} / a \end{array}$ 

 40 K/K = 1.167 10⁻⁴ g/g

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$







CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

PUTASSIUM-ARGUN AGE DETERMINAT

### Sample N°: 6716 & 6748

### Your reference: 1454

Submitted by: NEHLIG Pierre B.R.G.M. 3, avenue C. Guillemin BP 6009 45060 ORLEANS Cedex 2, France

### Sample description & locality: Rivière du Mât - Trachyandésite

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 6.421 10 ⁻⁶	Age = $111 \pm 6$ ka
***************************************	***************************************

Argon Analyses: ⁴⁰Ar*%

1.926

2.478

⁴⁰Ar* (10⁻¹³moles/g) 2.118 2.233

Weighted Mean (10⁻¹³moles/g) 2.164

Potassium Analysis: K%: 1.129

### Constants used:

 $\begin{array}{l} \lambda_{\beta} = 4.962 \ 10^{-10} / a \\ \lambda_{\epsilon} = 0.572 \ 10^{-10} / a \\ \lambda_{\epsilon'} = 0.0088 \ 10^{-10} / a \end{array}$ 

⁴⁰K/K = 1.167 10⁻⁴ g/g

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

Annexe 2

Rapport CEA 2007

^



H. Guillou L.S.C.E Unité Mixte de Recherche CEA - CNRS Bât 12 - Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France FAX : 33 - 1 - 69 82 35 68 TEL: 33 1 69 82 35 56 Gif -sur- Yvette, le 19/12/07

# DATATION PAR LA METHODE POTASSIUM - ARGON

## SANS TRACEUR

# DE ROCHES VOLCANIQUES DE L'ILE DE LA REUNION

Demandeurs Jacques Eric/ Jean Louis Nédélec - BRGM - Réunion



#### I - Procédure analytique

La phase retenue pour les mesures d'argon et de potassium est la mésostase microcristalline, représentative de la fraction cristallisant lors de la mise en place de la lave. Le protocole de préparation des échantillons a pour finalité de préparer des aliquotes homogènes, sur lesquelles seront mesurées séparément les teneurs en potassium et la composition isotopique de l'argon. Les échantillons sont broyés et tamisés à la fraction 0,250 – 0,125 mm, puis lavés dans un bain d'acide acétique dans une cuve à ultras sons, afin d'éliminer les éventuelles phases secondaires d'altération. Les phénocristaux, d'olivine, de feldspaths et de pyroxènes, phases ubiquistes dans les roches de l'île de la Réunion, sont éliminés successivement par tris magnétique et densitométrique (Diiodométhane dilué à l'acétone) car ces phénocristaux, porteurs potentiels d'excès d'argon peuvent entraîner une erreur par excès sur les âges supérieure à l'erreur analytique. Les valeurs de densité sont données dans le tableau 1.

Sample ID	DS-01	DS-02	DS-03	DS-04	DP-01	DP-02	DC-01	DP-04
Intervalle	2.84 - 2.77	2.86-2.76	2.98 - 2.88	2.89 - 2.85	2.81 - 2.72	2.89-2.74	3.04 - 2.95	2.89 - 2.74
de densité								

Tableau 1 : Gamme de densité des aliquotes de mésostases analysées.

La composition isotopique et les teneurs en argon sont mesurées suivant la technique sans traceur (unspiked) détaillée dans Charbit et al., 1998.

Charbit S. Guillou H. and Turpin L. 1998 -Cross calibration of K-Ar standard minerals using an unspiked Ar measurements technique. Chemical Geology, 150, 147-159.



#### II) Résultats.

Les résultats sont donnés dans les pages suivantes et synthétisés dans le tableau 2.

Sample ID	Poids	K*	40 _{Ar} *	⁴⁰ Ar*	40 _{Ar} *	Age $\pm 2\sigma$
Experience n°	fondu	(wt.%)	(%)	$(10^{-13})$	moy. Pondérée	ka
	(g)			mol/g)	± 1σ	
DS-01						
7515	1.02219	1.918 ± 0.019	8.643	10.174		
7531	2.12051		13.374	10.620	$10.510 \pm 0.054$	$316 \pm 7$
DS-02						
7516	1.02219	$1.702 \pm 0.017$	4.058	10.482		
7545	1.45299	""	5.691	10.567	10.550 ± 0.057	$357 \pm 8$
DS-03						
7517	1.00800	1.478 ± 0.015	2.411	2.405		
7533	1.98134	и 9 **********	2.682	2.566	$2.489 \pm 0.071$	97 ± 6
DS-04						
7522	1.21765	1.536 ± 0.015	3.286	2.866		
7538	2.07635		3.331	3.150	$3.066 \pm 0.045$	$115 \pm 4$
DP-01						
7523	0.99935	$2.150 \pm 0.022$	3.588	2.602		
7539	2.12455	" "	5.050	2.575	$2.579 \pm 0.036$	69 ± 2
DP-02						
7528	1.03416	$2.009 \pm 0.020$	12.213	7.359		
7544	1.98108	a	6.886	7.422	7.408 ± 0.044	$213 \pm 5$
DC-01						
7518	1.15884	$0.623 \pm 0.006$	2.673	5.935		
7534	1.70788		3.466	6.365	6.187 ± 0.071	573 ± 17
DP-04						
7553	2.69193	1.851 ± 0.019	8.118	6.304		
7569	2.51872		8.594	6.216	6.239 ± 0.035	194 ± 5



Annexe 1 : Feuilles de résultats



### POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 7515 & 7531

Your reference: DS-01

Submitted by: Jacques Eric / jean-Louis Nédélec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906 97478 Saint Denis cedex

### Sample description & locality: Salazie - Ravine Blanche.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 1.836 10 ⁻⁵		Age = 316 ± 7 ka		
<u>Argon Analyses:</u> ⁴⁰ Ar*% 8.643 13.374	⁴⁰ Ar* (10 ⁻¹² moles/g) 1.017 1.062	Weighted Mean (10 ⁻¹² moles/g) 1.051		
<u>Potassium Analysis:</u> K%: 1.918				
Constants used:				
$\lambda_{\beta} = 4.962 \ 10^{-10}/a$ $\lambda_{\varepsilon} = 0.572 \ 10^{-10}/a$ $\lambda_{\varepsilon'} = 0.0088 \ 10^{-10}/a$				
⁴⁰ K/K = 1.167 10 ⁻⁴ g/g	$AGE = \frac{1}{\lambda_{\beta}}$	$\frac{1}{1 + (\lambda_{\varepsilon} + \dot{\lambda_{\varepsilon}})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda_{\varepsilon}})}{(\lambda_{\varepsilon} + \dot{\lambda_{\varepsilon}})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$		



### POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 7516 & 7545

Your reference: DS-02

Submitted by: Jacques Eric / jean-Louis Nédélec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906 97478 Saint Denis cedex

#### Sample description & locality: Salazie - Ravine Blanche.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

40 Ar/ 40 K = 2.077 10 ⁻⁵		Age = 357 ± 8 ka		
-				
<u>Argon Analyses:</u> ⁴⁰ Ar*% 4.058 5.691	⁴⁰ Ar* (10 ⁻¹² moles/g) 1.048 1.057	Weighted Mean (10 ⁻¹² moles/g) 1.055		
Potassium Analysis: K%: 1.702				
Constants used:				
$\lambda_{\beta} = 4.962 \ 10^{-10}/a$ $\lambda_{\epsilon} = 0.572 \ 10^{-10}/a$ $\lambda_{\epsilon^{*}} = 0.0088 \ 10^{-10}/a$				
⁴⁰ K/K = 1.167 10 ⁻⁴ g/g	$AGE = \frac{1}{\lambda_{\beta}} + \frac{1}{\lambda_{\beta}}$	$\frac{1}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$		



### POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 7517 & 7533

Your reference: DS-03

Submitted by: Jacques Eric / jean-Louis Nédélec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906

#### Sample description & locality: Salazie - Grand llet.

97478 Saint Denis cedex

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 5.642 10 ⁻⁶		Age = 97 ± 6 ka
-		
<u>Argon Analyses:</u> ⁴⁰ Ar*% 2.411 2.682	⁴⁰ Ar* (10 ⁻¹³ moles/g) 2.405 2.566	Weighted Mean (10 ⁻¹³ moles/g) 2.489
<u>Potassium Analysis:</u> K%: 1.478		
Constants used:		
$\lambda_{\beta} = 4.962 \ 10^{-10}/a$ $\lambda_{\varepsilon} = 0.572 \ 10^{-10}/a$ $\lambda_{\varepsilon'} = 0.0088 \ 10^{-10}/a$		
⁴⁰ K/K = 1.167 10 ⁻⁴ g/g	$AGE = \frac{1}{\lambda_{\beta}} + \frac{1}{\lambda_{$	$\frac{1}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\dot{\lambda}_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$



### POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 7522 & 7538

Your reference: DS-04

Submitted by: Jacques Eric / jean-Louis Nédélec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906 97478 Saint Denis cedex

### Sample description & locality: Salazie.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 6.689 10 ⁻⁶		Age = 115 ± 4 ka	
-			
<u>Argon Analyses:</u> ⁴⁰ Ar*% 3.286 3.331	⁴⁰ Ar* (10 ⁻¹³ moles/g) 2.866 3.150	Weighted Mean (10 ⁻¹³ moles/g) 3.066	
<u>Potassium Analysis:</u> K%: 1.536			
Constants used:			
$\lambda_{\beta} = 4.962 \ 10^{-10}/a$ $\lambda_{\epsilon} = 0.572 \ 10^{-10}/a$ $\lambda_{\epsilon^{*}} = 0.0088 \ 10^{-10}/a$			
⁴⁰ K/K = 1.167 10 ⁻⁴ g/g	$AGE = \frac{1}{\lambda_{\beta}}$	$\frac{1}{1 + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$	



#### POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 7523 & 7539

Your reference: DP-01

Submitted by: Jacques Eric / jean-Louis Nédélec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906 97478 Saint Denis cedex

### Sample description & locality: Plateau Kerveguen.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 4.018 10 ⁻⁶		Age = $69 \pm 2$ ka	
-			
<u>Argon Analyses:</u> ⁴⁰ Ar*% 3.588 5.050	⁴⁰ Ar* (10 ⁻¹³ moles/g) 2.602 2.575	Weighted Mean (10 ⁻¹³ moles/g) 2.579	
<u>Potassium Analysis:</u> K%: 2.150			
Constants used:			
$\lambda_{\beta} = 4.962 \ 10^{-10}/a$ $\lambda_{\epsilon} = 0.572 \ 10^{-10}/a$ $\lambda_{\epsilon'} = 0.0088 \ 10^{-10}/a$			
⁴⁰ K/K = 1.167 10 ⁻⁴ g/g	$AGE = \frac{1}{\lambda_{\beta}}$	$\frac{1}{1+(\lambda_{\varepsilon}+\dot{\lambda_{\varepsilon}})}\ln\left[\frac{\lambda_{\beta}+(\dot{\lambda_{\varepsilon}}+\dot{\lambda_{\varepsilon}})}{(\lambda_{\varepsilon}+\dot{\lambda_{\varepsilon}})}\times\frac{{}^{40}Ar^{*}}{{}^{40}K}+1\right]$	



### POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 7528 & 7544

Your reference: DP-02

Submitted by: Jacque

Jacques Eric / jean-Louis Nédélec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906 97478 Saint Denis cedex

### Sample description & locality: Sommet de l'Entre Deux.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 1.235 10 ⁻⁵		Age = $213 \pm 5$ ka		
-				
<u>Argon Analyses:</u> ⁴⁰ Ar*% 12.213 6.886	⁴⁰ Ar* (10 ⁻¹³ moles/g) 7.359 7.422	Weighted Mean (10 ⁻¹³ moles/g) 7.408		
Potassium Analysis: K%: 2.009				
Constants used:				
$λ_β = 4.962 \ 10^{-10}/a$ $λ_ε = 0.572 \ 10^{-10}/a$ $λ_ε^{-10} = 0.0088 \ 10^{-10}/a$				
⁴⁰ K/K = 1.167 10 ⁻⁴ g/g	$AGE = \frac{1}{\lambda_{\beta}}$	$\frac{1}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$		



#### POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 7518 & 7534

Your reference: DC-01

Submitted by: Jacques Eric / jean-Louis Nédélec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906 97478 Saint Denis cedex

Sample description & locality: Cilaos - Ilet à Cordes.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 3.327 10 ⁻⁵		Age = 573 ± 17 ka		
-				
<u>Argon Analyses:</u> ⁴⁰ Ar*% 2.673 3.466	⁴⁰ Ar* (10 ⁻¹³ moles/g) 5.935 6.365	Weighted Mean (10 ⁻¹³ moles/g) 6.187		
<u>Potassium Analysis:</u> K%: 0.623				
Constants used:				
$\lambda_{\beta} = 4.962 \ 10^{-10}/a$ $\lambda_{\epsilon} = 0.572 \ 10^{-10}/a$ $\lambda_{\epsilon'} = 0.0088 \ 10^{-10}/a$				
⁴⁰ K/K = 1.167 10 ⁻⁴ g/g	$AGE = \frac{1}{\lambda_{\beta}}$	$\frac{1}{+(\lambda_{\varepsilon}+\dot{\lambda}_{\varepsilon})}\ln\left[\frac{\lambda_{\beta}+(\lambda_{\varepsilon}+\dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon}+\dot{\lambda}_{\varepsilon})}\times\frac{{}^{40}Ar^{*}}{{}^{40}K}+1\right]$		



POTASSIUM-ARGON AGE DETERMINATION

#### Sample N°: 7553 & 7569

Your reference: DP-04

Submitted by: Jacques Eric / jean-Louis Nédélec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906 97478 Saint Denis cedex

Sample description & locality: Rivière Saint Denis.

Materiel analyzed: groundmass, 0.250 - 0.125 mm fraction size, ultrasonically washed in  $HC_2H_3O_2$ .

⁴⁰ Ar/ ⁴⁰ K = 1.1293 10 ⁻⁵		Age = 194 ± 5 ka	
-			
<u>Argon Analyses:</u> ⁴⁰ Ar*% 8.118 8.594	⁴⁰ Ar* (10 ⁻¹³ moles/g) 6.304 6.216	Weighted Mean (10 ⁻¹³ moles/g) 6.239	
<u>Potassium Analysis:</u> K%: 1.851			
Constants used:			
$\begin{array}{l} \lambda_{\beta} = 4.962 \ 10^{-10} / a \\ \lambda_{\epsilon} = 0.572 \ 10^{-10} / a \\ \lambda_{\epsilon^{*}} = 0.0088 \ 10^{-10} / a \end{array}$			
⁴⁰ K/K = 1.167 10 ⁻⁴ g/g	$AGE = \frac{1}{\lambda_{\beta}}$	$\frac{1}{1+(\lambda_{\varepsilon}+\dot{\lambda_{\varepsilon}})}\ln\left[\frac{\lambda_{\beta}+(\lambda_{\varepsilon}+\dot{\lambda_{\varepsilon}})}{(\lambda_{\varepsilon}+\dot{\lambda_{\varepsilon}})}\times\frac{{}^{40}Ar^{*}}{{}^{40}K}+1\right]$	



Annexe 2 : Article Charbit et al., 1998



Chemical Geology 150 (1998) 147-159



## Cross calibration of K-Ar standard minerals using an unspiked Ar measurement technique

S. Charbit *, H. Guillou, L. Turpin

Laboratoire des sciences du climat et de l'environnement, UMR CEA-CNRS 1572, Avenue de la Terrasse. 91198 Gif-sur-Yvette Cedex.

France

Received 17 December 1996; accepted 24 April 1998

#### Abstract

We have developed an analytical procedure to intercalibrate the  40 Ar content of  40 Ar/ 39 Ar and  40 K/ 40 Ar standard minerals. This procedure is based on an unspiked volumetric standardisation method developed for K-Ar dating. Argon extracted from independent aliquots of minerals are compared to atmospheric argon doses taken repeatedly from a finite reservoir, leading to a progressive depletion of this reservoir through time. Depletion lines relative to each standard, giving Ar amount versus number of doses, are then fitted by a least mean squares regression; confidence intervals are determined on a common basis for all standards by using the jacknife method. The procedure has been applied to four standards, namely MMhb-1, LP-6, HD-B1, and GL-O. For MMhb-1, LP-6 and HD-B1, the results were compared to their most widely used  40 Ar * per gram published values. Concerning HD-B1, a recent published  40 Ar * per gram content, called HD-B1_{new}, was also considered. It appears that intercalibrated ⁴⁰Ar * per gram contents of MMhb-1, LP-6 and HD-B1_{old} are self-consistent to within less than 0.06% and fully concordant with the most generally accepted values, HD-B1_{new} is compatible within confidence intervals, but GL-O presents a discrepancy greater than 1%. This lead us to propose to adjust its recommended  40 Ar * per gram content from (6.68 ± 0.06)  $\cdot$  10¹⁴ to (6.585 ± 0.016)  $\cdot$  10¹⁴. Using the published K content of 6.56 wt.% for GL-O, this would shift the age of GL-O from its recommended value  $(95.0 \pm 1.1 \text{ Ma})$  to  $93.6 \pm 0.9 \text{ Ma}$ . Conversely, considering GL-O true would result in shifting the Ar content of MMhb-1, LP-6, HD-B1 by  $\approx 1\%$ . The procedure may be applied to the assessment of confidence intervals of Ar content of standard minerals in a statistically better way than from interlaboratory variance. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: K-Ar dating; Unspiked technique; Standard minerals; Intercalibration; Statistical treatment; Jacknife method

#### 1. Introduction

All dating methods using radioactive geochronometers rely upon consensus about best estimate of physical quantities such as decay constants (Steiger and Jäger, 1977) and normalization ratios used for the instrumental bias correction occurring during the isotopic analysis of Sr and Nd. In addition, some others need the requirement of interlaboratory agreement on standard reference material, for example U and Pb isotope standards or K-Ar standard minerals.

Concerning the K-Ar dating of volcanic rocks, two major changes came about during the last two

^{*}Corresponding author. Fax: +33 1 69 823568; e-mail: sylvie.charbit@lsce.cnrs-gif.fr

^{0009-2541/98/\$ -} see front matter © 1998 Elsevier Science B.V. All rights reserved. PII: \$0009-2541(98)00049-7

decades. The first one has been the development of ⁴⁰Ar/³⁹Ar dating method and the improvements in the instrumental performances, allowing high precision relative determinations. However, in order to calculate an age, this technique must rely on the processing of standard minerals used as neutron fluence monitors. These monitors must have known ages, which raises the problem of the accuracy and precision of the age of the standards, which remains the main limiting factor. As pointed out by Lanphere et al. (1990), due to the last improvements in the analytical technique, the confidence intervals of individual determinations (intralaboratory repeated analysis) becomes better than the interlaboratory accuracy of mineral standards. The second was the emergence of astronomically-derived climatic chronology in deep sea cores, (Hays et al., 1976; Martinson et al., 1987; Hilgen, 1991a,b; Imbrie et al., 1992, 1993), which provides a geochronological time scale independent of isotopic dating methods. The astronomical time scale is based on the assumption that the variations in the Earth's orbital components are responsible for the variations of the insolation and climate without any phase lag. Paleoclimatic indicators preserved in sediments, such as  $\delta^{18}O$  of biogenic carbonates or color variations are then filtered by frequency analysis and are assigned a chronology with theoretical precision and accuracy to better than 1% (Johnson, 1982; Ruddiman et al., 1986; Martinson et al., 1987; Raymo et al., 1989; Bassinot et al., 1994). Provided that this assumption is true it is possible to assign a specific age to the geomagnetic polarity events recorded in marine sediments by referring to the  $\delta^{18}$ O chronology. An astronomical polarity time scale (APTS) has been thus established, and now extends back to upper Miocene (see Hilgen et al., 1995). This time scale can be compared to the geomagnetic polarity time scale (GPTS) established from  ${}^{40}Ar/{}^{39}Ar$  or K-Ar dating measurements of magnetic reversals recorded in volcanic rocks.

 40 Ar/ 39 Ar ages of several magnetic reversals, in good agreement with the APTS have been published during the last 6 years (Baksi et al., 1992; Spell and McDougall, 1992; Tauxe et al., 1992; Izett and Obradovitch, 1994; Turrin et al., 1994; Singer and Pringle, 1996). One of the most widely used primary K-Ar or  40 Ar/ 39 Ar standards is the hornblende MMhb-1 (Alexander et al., 1978). Its most widely

used published age,  $520.4 \pm 1.7$  Ma (Samson and Alexander, 1987), results directly from the weighted mean values of K and radiogenic ⁴⁰Ar concentrations obtained from the individual results of 18 different laboratories. However, a second value (513.9 Ma) has since been published (Lanphere et al., 1990; Dalrymple et al., 1993) which is about 1.26% younger than the weighted mean age of 520.4 Ma. Sanidine or biotite from the Fish Canyon Tuff (FCT-3) (Steven et al., 1967) is increasingly used as a monitor, generally calibrated against MMhb-1. Its original published K-Ar age was  $27.9 \pm 0.6$  Ma (Cebula et al., 1986), referring to 519.5 Ma (Alexander et al., 1978) for the age of MMhb-1, but a slightly lower value of 27.84 Ma has been determined at the Berkeley Geochronology Center, relative to the updated value of 520.4 Ma (Samson and Alexander, 1987), compatible with the previous determination. However, Lanphere et al. (1990) obtained a plateau age for FCT-3 biotite of  $27.55 \pm 0.12$  Ma relative to 513.9 Ma (Lanphere et al., 1990; Dalrymple et al., 1993), while a weighted mean of  $27.99 \pm 0.02$  determined against 520.4 Ma (Samson and Alexander, 1987) was reported by Hall and Farrell (1995). Despite such a disagreement, all the FCT-3 values have provided ages for the Brunhes-Matuyama boundary which are in good agreement within the error bars with the APTS (Shackleton et al., 1990; Bassinot et al., 1994): see for example Spell and McDougall (1992), Izett and Obradovitch (1994) and Hall and Farrell (1995) who used 27.9 Ma, 27.55 Ma and 27.99 Ma for the Fish Canyon Tuff, respectively. In contrast to what has been done in the ¹⁴C community (International Study Group, 1982), no interlaboratory comparison of several mineral standards based on a common protocol and with careful analysis of variance has been undertaken as yet, and the question still remains about the confidence intervals of the APTS/GPTS relative calibration.

The volumetric unspiked method of Ar quantification (Cassignol and Gillot, 1982), offers in turn the opportunity to directly compare the Ar content of several standards, provided that they are quantitatively outgassed in a induction furnace apparatus. The present study reports the results of a cross calibration of four international standards, namely the hornblende MMhb-1 (Alexander et al., 1978), two biotites LP-6 (Engells and Ingamells, 1970; Ingamells and Engels, 1976) and HD-B1 (Fuhrmann et al., 1987), and the glauconite GL-O (Odin et al., 1982). Furthermore, in order to improve the precision of the isotopic ages, either for the standards or for the ordinary samples, we have performed a careful evaluation of the potential errors related either to the analytical data treatment or to the experimental technique itself.

#### 2. Analytical techniques

The intercalibration described in the present study has been set up for Ar determinations only. As a consequence, K contents were not reexamined (except for GL-O for which one determination has been performed: see below) and published K contents (Table 1) will be used throughout the age calculations.

#### 2.1. Sample preparation

About 100 mg (MMhb-1, LP-6 and GL-O) to 300 mg (HD-B1) were weighted in a molybdenum crucible, then inserted in a quartz fusion vessel. The fusion of the samples was carried out with a high frequency furnace. Argon was then purified by single use Ti-sponges, a cryogenic active charcoal trap and SAES Zr-Al getter pumps.

#### 2.2. Mass spectrometry

The instrument used for argon measurements has been previously described in detail (Cassignol and Gillot, 1982). After extraction and purification steps, glass bulbs enclosing the Ar sample are transferred

Table 1 Published K values used in the present study. Errors are given at log level

Standard mineral	K values (%)	References
MMhb-1	$1.555 \pm 0.002$	Samson and Alexander, 1987
LP-6	$8.37 \pm 0.05$	Odin et al., 1982
HD-Bl _{old}	$7.987 \pm 0.025$	Fuhrmann et al., 1987
HD-Bl _{new}	$7.956 \pm 0.051$	Hess and Lippolt, 1994
GL-O	$6.56 \pm 0.06$	Odin et al., 1982

to the mass spectrometer (MS) line where a high vacuum is obtained by a cryogenic trap and a turbomolecular pump and completed by SAES Zr-Al getters, ensuring a permanent purification of the line by trapping the residual active gases. Traces of helium are eliminated by cryogenic trapping of Ar and differential pumping. Ar is then released at room temperature, and after a quick cryogenic pumping of the mass spectrometer, it is then introduced in the MS cell in a semi-static mode (i.e., a SAES Zr-Al getter is still in action in the cell during the isotopic analysis). The high purity of Ar associated with the low ionization energy (neither electron acceleration or trapping is necessary) prevents the peak from drifting and maintains the fractionation effects at a reproducible level, with a good linearity in the response.

The isotopes ⁴⁰Ar and ³⁶Ar are collected simultaneously on a double Faraday cup detector. Signals are integrated over a 100 s period. Once the measurement of the gas sample is achieved, atmospheric argon is measured at the same pressure as the sample signal, allowing a direct comparison of the two signals, and thus the determination of the relative contribution of radiogenic argon ( 40 Ar * (%)) in the sample. A third measurement of a calibrated amount of atmospheric Ar is then performed in order to allow the determination of the total number of atoms of  40 Ar in the sample (Fig. 1). This calibrated amount is introduced in the same volume as the gas sample, but at a different pressure. Both determinations of atmospheric isotopic ratio (⁴⁰Ar/³⁶Ar) derived from the two atmospheric argon measurements must give the same result, otherwise the sample is rejected. The comparison of isotopic ratios allows first to validate the correction of the atmospheric contamination of the sample, and secondly, to check that the potential fractionation effects are constant.

#### 2.3. Determination of 40 Ar

The determination of the number of atoms of ⁴⁰Ar is achieved by introducing a calibrated amount of argon extracted from a 2-l container filled with atmospheric argon, released in the same volume as the gas sample. Assuming that pure Ar is present in the mass spectrometer (Cassignol and Gillot, 1982), it is possible to derive a simple relation between



Fig. 1. Successive steps involved in the argon analyses. Step 1, introduction (i) of sample Ar and determination of  ${}^{40}\text{Ar}/{}^{36}\text{Ar}$  of the sample,  ${}^{40}\text{Ar}$  signal intensity and volume of measurement; step 2, introduction of atmospheric Ar with identical  ${}^{40}\text{Ar}$  signal intensity, determination of atmospheric  ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ ; step 3, introduction of a calibrated amount of atmospheric Ar in the same volume used for the sample, determination of the number of  ${}^{40}\text{Ar} *$  atoms.

sample and calibrated signals by using the response curve of the instrument (see below).

The calibrated amount consists of a variable number of individual doses taken from the container through an expansion valve. If V and v are the volumes of the container and the expansion valve, respectively, and if  $n_0$  is the initial number of Ar atoms in v, then the number  $n_i$  of atoms in v at the *i*th dose, is given by:

$$n_i = \frac{n_0}{\left(1 + \frac{v}{V}\right)^i} \tag{1}$$

Because of the depletion of the calibrated container, represented by the ratio v/V, the number of argon atoms in one dose decreases through time, and thus, the individual  $n_i$  quantities are not constant from one dose to the other. For this reason, the response is expressed for more convenience against a dimensionless variable called dose-equivalent (DE). The response curve of the mass spectrometer has been found out by introducing successively several argon doses in the cell, and by measuring the corresponding signal S. The stability of the response curve is periodically checked by measuring increasing numbers of DE. The relation between the number of the doses, which are the dose-equivalents, and the intensity of the signal (in volts) is given by:

$$DE = 0.011748 + 0.48230 \times S$$
$$+ 6.4016 \cdot 10^{-4} \times S^{2}$$
(2)

Although this curve is not really linear, the quadratic term is extremely small. Until the calibration signal is approximately identical to the sample signal so as to prevent any deviation from the non-linear case, it becomes possible to deduce the number of ⁴⁰Ar atoms (and thus the number of atoms of radiogenic argon) in the sample from a simple proportionality relation, related to the ratio of the dose-equivalents of the sample (DE_S) and the calibrated doses (DE_{dc}):

$${}^{40}\text{Ar} * = \left(\frac{\text{DE}_{\text{S}}}{\text{DE}_{\text{dc}}}\right) \times {}^{40}\text{Ar} * (\%) \times N_{\text{dc}}$$
(3)

where  $N_{dc} = (n_i + n_{i-1} + n_{i-2} + ...)$  represents the total number of atoms entering into the mass spectrometer and coming from the calibrated container.

In a normal operating mode (that is the measurement of an ordinary sample) the number of atoms contained in one DE is deduced from the same procedure applied to a standard mineral for which the number of  40 Ar * atoms is supposed to be accurately known.

#### 2.4. Intercalibration procedure

The intercalibration procedure described in this section is summarized in Fig. 3.

Re-written in a logarithmic scale Eq. (1) becomes:

$$\log n_i = \log n_0 - i \cdot \log\left(1 + \frac{v}{V}\right) \tag{4}$$

This is the equation of a straight line where the slope

and the y-intercept values are  $-\log(1 + (v/V))$ and Log  $n_0$ , respectively. For each calibrated amount introduced in the mass spectrometer, the determination of these two parameters allows the calculation of the number  $n_i$  (or  $N_{dc}$ ) of atoms, and thus, the number of  ${}^{40}\text{Ar}$  (or  ${}^{40}\text{Ar}*$ ) atoms in the sample. Conversely, by inverting relation (3), it is possible to determine  $N_{dc}$  and  $n_i$  from the published values of the radiogenic argon content of the standard minerals ( ${}^{40}\text{Ar}*$  per gram).

Each of the standards has been repeatedly analyzed (February 1994–December 1995) so that four

Table 2

(a) Number of ⁴⁰Ar atoms contained in the expansion valve volume (v) at the tth dose. These numbers have been determined using the published ⁴⁰Ar * per gram value of HD-B1_{old} (Fuhrmann et al., 1987; column 2), HD-B1_{new} (Hess and Lippolt, 1994; column 3), MMhb-1 (Samson and Alexander, 1987; column 5) and LP-6 (Odin et al., 1982; column 7). Corresponding dose numbers are given, respectively in columns 1, 4 and 6. Associated n-uncertainties are given at 1 $\sigma$  level

Dose number	$n_i (*10^{13})$ HD-B1 _{old}	$n_{t}$ (*10 ¹³ ) HD-B1 _{puw}	Dose number	n _i (* 10 ¹³ ) MMhb-1	Dose number	n _i (* 10 ¹³ ) LP-6
185	$1.78 \pm 0.04$	$1.79 \pm 0.03$	256	$1.729 \pm 0.005$	152	1 797 + 0 009
246	$1.73 \pm 0.04$	$1.74 \pm 0.03$	270	$1.720 \pm 0.005$	251	$1.729 \pm 0.009$
347	1.66 + 0.04	$1.67 \pm 0.03$	299	$1.707 \pm 0.005$	275	$1.718 \pm 0.009$
385	$1.62 \pm 0.04$	$1.63 \pm 0.03$	361	$1.653 \pm 0.005$	352	$1.685 \pm 0.009$
484	$1.58 \pm 0.04$	$1.58 \pm 0.03$	433	$1.612 \pm 0.005$	402	$1.630 \pm 0.008$
529	$1.53 \pm 0.04$	$1.53 \pm 0.03$	551	$1.506 \pm 0.005$	437	$1.591 \pm 0.008$
553	$1.52 \pm 0.04$	$1.53 \pm 0.03$	578	$1.509 \pm 0.005$	497	$1.558 \pm 0.008$
562	$1.50 \pm 0.04$	$1.50 \pm 0.03$	644	$1.437 \pm 0.004$	525	$1.532 \pm 0.008$
652	$1.44 \pm 0.04$	$1.44 \pm 0.02$	703	$1.431 \pm 0.005$	467	$1.496 \pm 0.008$
679	$1.44 \pm 0.04$	$1.45 \pm 0.02$	742	$1.383\pm0.004$	590	$1.497 \pm 0.008$
712	$1.41 \pm 0.04$	$1.42 \pm 0.02$	747	$1.385 \pm 0.004$	664	$1.422 \pm 0.007$
737	$1.40 \pm 0.04$	$1.40 \pm 0.02$	770	$1.369 \pm 0.004$	698	$1.404 \pm 0.007$
756	$1.38 \pm 0.03$	$1.39\pm0.02$			728	$1.393 \pm 0.007$
					761	$1.390 \pm 0.007$

(b) Same as (a) but for published GL-O  40 Ar * per gram content (Odin et al., 1982). Taking logarithms of the  $n_i$  values allows to plot calibration line reported in Fig. 2 (see text)

Dose	$n_{1}(*10^{13})$	Dose	$n_{i}(*10^{13})$	
number	GL-O _{publ}	number	GL-O _{publ}	
8	$1.93 \pm 0.02$	333	$1.69 \pm 0.02$	
38	$1.93 \pm 0.02$	356	$1.68 \pm 0.02$	
46	$1.92\pm0.02$	397	$1.65 \pm 0.02$	
69	$1.90\pm0.02$	428	$1.63 \pm 0.02$	
80	$1.91 \pm 0.02$	482	$1.58 \pm 0.02$	
111	$1.86 \pm 0.02$	520	$1.54 \pm 0.01$	
124	$1.84 \pm 0.02$	558	$1.53 \pm 0.01$	
148	$1.83 \pm 0.02$	583	$1.53 \pm 0.01$	
184	$1.79 \pm 0.02$	648	$1.48 \pm 0.01$	
212	$1.79 \pm 0.02$	675	$1.46 \pm 0.01$	
235	$1.77 \pm 0.02$	708	$1.43 \pm 0.01$	
260	$1.75 \pm 0.02$	752	$1.40 \pm 0.01$	
279	$1.74 \pm 0.02$	765	$1.40 \pm 0.01$	



Fig. 2. Decaying calibration line, relative to GL-O, given on a logarithmic scale.

independent data set (Table 2) have been obtained, leading to four independent calibration lines. Finally 26, 12, 14 and 13 measurements were made for GL-O, MMhb-1, LP-6 and HD-B1, respectively. Measurements for which we have encountered difficulties, such gas leakage or clumsy handling, have been discarded, and the decision whether to keep or reject extreme values has been submitted to the Dixon test (Dixon, 1953).

The free parameters  $(n_0 \text{ and } v/V)$  of the calibration lines have been determined by a least mean square fit (Draper and Smith, 1981) based on the minimization of the sum of the square of the residuals against  $n_0$  and v/V. The expressions of the free parameters deduced from the fit are given in Appendix A.

The slope of any calibration line is a function of the decay of the calibrated container only, which is fixed by the experimental setup; it is thus independent of the standard material used for calibration; consequently all four slopes are identical. We have chosen to force them to the one having the best statistical weight, (i.e., established by the greatest number of independent determinations), which was the slope determined by GL-O only (26 measurements: Fig. 2). Thus possible effects of heterogeneity of any other standard as well as least mean square method artifacts were minimized. The compatibility of the lines had then to be statistically compared on the y-intercept value, which is the only free remaining regression parameter.

The intercalibration procedure described in this section is summarized in Fig. 3.

#### 2.5. Confidence intervals

The confidence intervals on the y-intercept quantities, which are the apparent Log  $n_0$ , were determined as follows. In this study, the error associated



Fig. 3. Synopsis of the calibration procedure. A decaying line was fitted from 26 measurements of GL-O. The slope of this line was then used for the three lines fitted from the other standards. The confidence interval on the y-intercept values were calculated by using the jacknife method.

152

with the ⁴⁰Ar measurement is negligible with respect to all the other potential sources of errors, such as heterogeneity of the standards, or error derived from the analytical data treatment used in the determination of an interlaboratory value. As the uncertainties associated with each published value were not determined on a common basis, we decided not to propagate them in the regression. This is also the reason why a weighted least mean square fit has not been carried out. As a consequence, the only way to derive consistent uncertainties on the regression parameters is to take only into account the dispersion of the central values. This can be done by applying the jacknife method (Caceci, 1989) which provides unweighted uncertainties associated with the regression parameters. It consists in deleting (i.e., 'jacknifing') one data point from the original data set and fitting the 'jacknifed' set. This step is repeated n times (if n is the original number of data points). The jacknife estimate of the standard error of the estimated parameter is given in Appendix B. As a result, 'minimum' and 'maximum' regression parameters correspond to what we call 'minimum' and 'maximum' calibration lines. In a diagram 'Log  $n_i$  versus number of doses', similar to that of Fig. 2, the area delimited by these two lines corresponds to the possible range of variations of  $n_i$ . In data sets in which error is only due to dispersion, this method gives results identical to those provided by York fit (York, 1969).

#### 3. Results and discussion

#### 3.1. Raw data

Converted in number of atoms of radiogenic argon per gram, the most generally recommended values of the standards found in the literature are (9.798  $\pm 0.030$ )  $\cdot 10^{14}$  for MMhb-1 (Samson and Alexander, 1987), (11.580  $\pm 0.006$ )  $\cdot 10^{14}$  for LP-6 (Odin et al., 1982), (6.68  $\pm 0.06$ )  $\cdot 10^{14}$  for GL-O (Odin et al., 1982). Concerning HD-B1, both the value of (2.018  $\pm 0.038$ )  $\cdot 10^{14}$  (Fuhrmann et al., 1987), called HD-B1_{old}, and the value of (2.025  $\pm 0.028$ )  $\cdot 10^{14}$ (Hess and Lippolt, 1994), called HD-B1_{new} have been taken into account.

The comparison of the apparent y-intercept values for the four standards, HD-B1 figuring twice, is represented in Fig. 4 with the confidence intervals determined with the jacknife method (Caceci, 1989). It appears that for MMhb-1, LP-6 and HD-Blold lines, central values of  $Log(n_0)$  are fully compatible within the confidence intervals, whereas,  $Log(n_0)_{GL-O}$  is shifted towards higher values. When HD-B1_{new} is considered instead of HD-B1_{old}, the y-intercept value of HD-B1_{new} deviates from LP-6 and MMhb-1 by  $1.4\sigma$  and  $0.9\sigma$ , respectively. Although this new value does not match any better than HD-B1_{old} with MMhb-1 and LP-6, it is possible to assert that the three standards are still compatible to within less than  $2\sigma$  which is the currently admitted precision level. On the contrary, in spite of a higher value of HD-B1_{new}, the calibration curves resulting from HD-B1_{new} and GL-O data are distant by more than  $4\sigma$  which emphasizes that the two standards still remain inconsistent.

For better illustration, we have also reported in Table 3 results of standard minerals intercalibrated against the others (*complete analytical data are available upon request addressed to the authors*). For these calculations, published K contents and associated uncertainties have been used (Table 1). In contrast, errors related to the evaluation of radio-



Fig. 4. Cross comparison of y-intercept values (Log  $n_0$ ) of the calibration curves obtained for all four standards. Error bars are at the 95% confidence interval level. GL-O is significantly different of the three other standards. As the calibration lines have been calculated using the slope of GL-O line, the discrepancies are due to discrepancies in the published ⁴⁰Ar content of the standards.

#### Table 3

Number of atoms of radiogenic ⁴⁰Ar per gram resulting from the intercalibration procedure (calibration curves relative to the four standards MMhb-1, LP-6, HD-B1 (old and new) and GL-O) and computed ages. Most generally accepted values (Odin et al., 1982; Samson and Alexander, 1987; Fuhrmann et al., 1987; Hess and Lippolt, 1994) are also reported (in bold), as well as the relative discrepancies between these values and our own results (number given in brackets). Errors are given at  $1\sigma$  level

Reference	MMhb-1	LP-6	HD-B1	GL-0
MMhb-1 40 Ar * per gram (10 ¹⁴ )	Publ. value: $9.798 \pm 0.030;$	$11.587 \pm 0.005 \ [0.06\%];$	$2.019 \pm 0.009 [0.03\%];$	6.586±0.024[1.35%];
Age (Ma)	$\textbf{520.4} \pm \textbf{1.7}$	127.9±0.9 [0.08%]	$24.04 \pm 0.13$ [0.04%]	93.7±0.9 [1.43%]
LP-6 40 Ar * per gram (10 ¹⁴ )	$9.792 \pm 0.046$ [0.06%];	Publ. value: $11.580 \pm 0.006;$	$2.017 \pm 0.009 \ [0.02\%];$	$6.581 \pm 0.026$ [1.44%];
Age (Ma)	$520.2 \pm 2.2 \ [0.04\%]$	$127.8 \pm 1.4$	$24.02 \pm 0.13$ [0.04%]	93.6±0.9 [1.52%]
HD-B1 _{ald} 40 Ar * per gram (10 ¹⁴ )	$9.794 \pm 0.038$ [0.04%];	$11.583 \pm 0.004$ [0.03%];	Publ. value: $2.018 \pm 0.038;$	6.584±0.026[1.38%];
Age (Ma)	520.3 ± 1.9 [0.02%]	$127.9 \pm 0.9 \ [0.08\%]$	$\textbf{24.03} \pm \textbf{0.41}$	93.6±0.9 [1.46%]
HD-B1 _{new} 40 Ar * per gram (10 ¹⁴ )	9.828±0.039 [0.3%];	$11.622 \pm 0.004$ [0.4%];	Publ. value: $2.025 \pm 0.028;$	$6.607 \pm 0.021$ [1.04%],
Age (Ma)	521.9±1.9 [0.3%]	128.3±0.9 [0.4%]	$\textbf{24.21} \pm \textbf{0.32}$	94.0±0.9 [1.14%]
$GL-O^{40}Ar * per gram (10^{14})$	$9.931 \pm 0.042$ [1.36%];	$11.745 \pm 0.005 [1.42\%];$	$2.046 \pm 0.009$ [1.40%];	Publ. value: 6.68 $\pm$ 0.06;
Age (Ma)	526.6±2.0[1.19%]	129.6±0.9[1.41%]	24.36±0.13 [1.37%]	$\textbf{95.0} \pm \textbf{1.1}$

genic argon content depend upon the possible range of variations of  $n_i$ , when minimum and maximum regression lines determined with the jacknife method (Caceci, 1989) are considered. In this table we have also recalled the published values (for ⁴⁰Ar * per gram and age) and finally the relative discrepancies between our current results and the recommended ones. Central values of ⁴⁰Ar * per gram are obtained by averaging individual measurements deduced both from experimental data (DE_s, DE_{dc},  40 Ar * (%)) and calibration lines ( $n_i$  and  $N_{dc}$ ). Associated uncertainties are deduced from the averaged minimum and maximum values, corresponding to minimum and maximum regression parameters. These numbers confirm our primary observation: with the exception of GL-O, intercalibrated results are in good agreement and perfectly concord with the recommended values. More precisely, when HD-B1_{old} is considered, the maximum difference between central values, observed for LP-6 calibrated against MMhb-1, is less than 0.06%. This consistency is probably less visible when HD-B1_{new} is taken into account; in this case the discrepancies are between 0.3 and 0.4%, that is roughly 10 times more than with HD B1_{old}. However, a calibration of MMhb-1 and LP-6 with respect to HD-B1_{new} provides results which are still compatible with the recommended values within the errors associated with our determination. In fact, the differences between the central values do not exceed  $1\sigma$  (0.8 and 1.0 $\sigma$ , respectively). On the contrary, when GL-O is used as the standard reference, the other three minerals seem to be older than their published values by more than 1%, whereas intercalibrated results of GL-O are far below the recommended value of  $(6.68 \pm 0.06) \cdot 10^{14}$  atoms of radiogenic ⁴⁰Ar per gram.

#### 3.2. Interpretations and implications

The difference observed between GL-O and the other standards can be due (a) to a bias in the measurements of GL-O in the present study; (b) to an underestimation of the accepted mean values of MMhb-1, LP-6 and HD-B1; (c) to an overestimation of the accepted value of GL-O.

A systematic error in weighting GL-O aliquots, due to water adsorption (Odin et al., 1982), is unlikely to have occurred: a determination of K content we performed has given  $6.55 \pm 0.06$  wt.%, the published value being  $6.56 \pm 0.06$  wt.%, so hypothesis (a) can be ruled out.

Hypothesis (b) could be partly explained by a potential heterogeneity of MMhb-1 and by the nonrandomly distributed mixture of two biotites of ages 121 and 136 Ma for LP-6 (Ingamells, 1974) although heterogeneity usually produces scatter rather than systematic bias. However, in a recent K-Ar and  ${}^{40}\text{Ar}/{}^{39}\text{Ar}$  standards intercalibration study Baksi et al. (1996) show that (1) Effects of heterogeneity of MMhb-1 occur at the 15-40 mg subsample level; (2) Their most probable average value for the  ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ age of MMhb-1 is 516.3 Ma when calibrated against SB-3 (162.9 Ma, Dalrymple et al., 1981). However, according to this study, when hand picking is performed on MMhb-1 splits before measurement, ages are shifted towards higher values; thus, a better agreement is observed with our own results. A possible explanation comes from the fact, that the quantity we use for MMhb-1 is 100 mg at least; consequently, effects of heterogeneity are minimized in our work.

Taking the published K content (Table 1), the age of 516.3 Ma (obtained for unpurified fractions) results in a radiogenic ⁴⁰Ar content of  $(9.701 \pm 0.067)10^{14}$ . If this new value would be considered in our intercalibration study, this would lead to a lower value of the radiogenic ⁴⁰Ar per gram content of GL-O than the present value we propose in this paper. This is one of the reason why hypothesis (b) cannot explain the difference between the published and the intercalibrated GL-O values. As for LP-6, intercalibrated ages from Baksi et al. (1996) range from  $128.0 \pm 0.2$  to  $128.9 \pm 0.6$ , and consequently are concordant with our own results.

The case of HD-B1 is more ambiguous. The first value of HD-B1 provided by Fuhrmann et al. (1987) is perfectly concordant with the most usually recommended results of MMhb-1 and LP-6. The new value has been obtained by averaging individual results of 13 laboratories. This could be a priori more reliable, but some of these laboratories have calibrated HD-B1 against LP-6 and GL-O which the present study shows to be incompatible to a  $4\sigma$  level at least. Hypothesis (b) thus suffers from internal contradictions. Additional arguments can be derived from the intercalibration. In the case that GL-O is true, corre-

sponding results of MMhb-1, LP-6 and HD-B1, coming directly from GL-O curve ( $n_0 = (1.956 \pm 0.004) \cdot 10^{13}$ ) have been already given in the last line of Table 3. The resulting age of MMhb-1 (526.6 ± 2.0) is very far from the most commonly accepted value of 520.4 Ma (Samson and Alexander, 1987), and is distant by  $2\sigma$  from the APTS-derived age of 522.5 Ma given in 1994 by Renne et al. (1994), which is, according to our knowledge, the highest determination which has been given up to now.

Hypothesis (c) is based on the assumption that the argon content of the glauconite GL-O is actually lower than currently accepted in the literature, provided that the most commonly accepted values of MMhb-1 and LP-6, and either HD-B1_{old} or HD-B1_{new} are true. With HD-B1_{old}, rather than HD-B1_{new}, this hypothesis appears to be probably the most reliable because of the perfect consistency between intercalibrated results of MMhb-1, LP-6 and HD-B1 (Table 3). If we accept the most generally recommended values of MMhb-1 and LP-6, there are two implications. First, we have to consider HD-Bl old rather than HD-B1_{new}, because the agreement, and thus, the consistency are undoubtedly better in the former case; secondly, it is necessary to redetermine GL-O with respect to MMhb-1, LP-6 and HD-B1_{old}. This is done by applying the same intercalibration method as previously, but with the three other monitors all combined. This new fit leads to  $(n_0 = 1.929 \pm$  $0.002) \cdot 10^{13}$ ; the corresponding new value of GL-O  $(6.585 \pm 0.016) \cdot 10^{14}$  (GL-O_{new}), obtained by averaging the number of atoms of radiogenic  40 Ar * per gram deduced from each measurement, is approximately 1.4% below the interlaboratory result (6.68 ± 0.06)  $\cdot$  10¹⁴ (Odin et al., 1982). If published K contents are accurate, this smaller radiogenic argon content results in an younger age (93.6 ± 0.9 Ma) to be compared to 95.0 ± 1.1 Ma given in the compilation of Odin et al. (1982) and calculated by averaging all individual ages.

#### 3.3. Estimation of confidence intervals

Given one or the other set of four compatible standards (i.e., using either published ⁴⁰Ar * per gram content of MMhb-1, LP-6, HD-B1_{old} and GL-O_{new}, or published GL-O and intercalibrated values of MMhb-1, LP-6 and HD-B1), it is now possible to derive new errors associated with the standard ⁴⁰Ar * per gram content and established on a common basis. This is done by combining MMhb-1, LP-6, HD B1 and GL-O compatible data, and by constructing a resulting four-standard calibration curve. These uncertainties are determined by using the same processes as those which were used for establishing results of Table 3: using lines corresponding to minimum and maximum values of the parameters of the fit, and derived themselves from the jacknife method (Caceci, 1989), determination of minimum and maximum average ⁴⁰Ar * per gram value from which we can deduce a mean error. Intercalibrated or published standard ⁴⁰Ar * per gram content, as well

Table 4

Central values of  40 Ar* per gram and associated uncertainties (1 $\sigma$  level) deduced either from one or the other set of compatible standard values depending upon whether published GL-O is true or not: in the second column, reported results are deduced from the calibration curve established with published radiogenic argon content of MMhb-1 (Samson and Alexander, 1987), LP 6 (Odin et al., 1982), HD-BI_{old} (Fuhrmann et al., 1987) and GL-O_{new} (this study), whereas, in the third column, calibration line derived from published GL-O value (Odin et al., 1982) and intercalibrated values of MMhb-1, LP-6, and HD-B1 is used. For the new determination of the radiogenic argon content of GL-O, two uncertainties have been reported. The one referenced 4 stds corresponds to the confidence interval deduced from the 4 standards calibration line. The second one, referenced 3 stds, is deduced from MMhb 1, LP-6 and HD-B1_{old} calibration line (see Section 3.2). Published values and uncertainties are recalled in the fourth column

⁴⁰ Ar * per gram ( $\times 10^{14}$ ) (new GL-O)	⁴⁰ Ar * per gram ( $\times 10^{14}$ ) (published GL-O)	⁴⁰ Ar * per gram (×10 ¹⁴ ) (published values)
9.798 ± 0.031	9.931 ± 0.031	$9.798 \pm 0.030$ (Samson and Alexander, 1987)
$11.580 \pm 0.0034$	$11.745 \pm 0.0035$	$11.580 \pm 0.0062$ (Odin et al., 1982)
$2.018 \pm 0.0063$	$2.046 \pm 0.006$	$2.018 \pm 0.038$ (Fuhrmann et al., 1987)
$6.585 \pm 0.015$ (4 stds) $6.585 \pm 0.016$ (3 stds)	6.677 ± 0.016 (4 stds)	$6.68 \pm 0.06$ (Odin et al., 1982)
	⁴⁰ Ar * per gram (×10 ¹⁴ ) (new GL-O) 9.798 $\pm$ 0.031 11.580 $\pm$ 0.0034 2.018 $\pm$ 0.0063 6.585 $\pm$ 0.015 (4 stds) 6.585 $\pm$ 0.016 (3 stds)	40 Ar * per gram (×1014) 40 Ar * per gram (×1014)(new GL-O)(published GL-O)9.798 ± 0.0319.931 ± 0.03111.580 ± 0.003411.745 ± 0.00352.018 ± 0.00632.046 ± 0.0066.585 ± 0.015 (4 stds)6.677 ± 0.016 (4 stds)6.585 ± 0.016 (3 stds) $-6.77 \pm 0.016 (4 stds)$

as associated uncertainties resulting from these calculations are given in Table 4. It appears that this procedure lead to smaller errors than those associated with published values (see Section 3.1 and third column in Table 4), except for MMhb-1, for which the two errors are of the same order of magnitude.

#### 4. Conclusion

The replicate measurements of MMhb-1, LP-6, HD-B1, and GL-O allowed us to establish four calibration lines, relative to each of the standards, using a least mean square fit of volumetric intercalibration results. The results emphasized the incompatibility of published ⁴⁰Ar* per gram data between GL-O on one hand, and MMhb-1, LP-6 and HD-B1 on the other hand. The present study shows the necessity for either a re-evaluation of GL-O at (6.585  $\pm 0.016) \cdot 10^{14}$  with respect to the three other standards, or on the contrary, a new determination of MMhb-1 at  $(9.931 \pm 0.031) \cdot 10^{14}$ , LP-6 at (11.745) $\pm 0.004$ )  $\cdot 10^{14}$  and HD-B1 at  $(2.046 \pm 0.006) \cdot 10^{14}$ . The jacknife method (Caceci, 1989) provides unweighted uncertainties associated with the regression parameters, from which new ⁴⁰Ar * per gram confidence intervals related to standard values can be established.

#### Acknowledgements

This study has been supported by C.E.A. and C.N.R.S. Thanks are due to Y. Cornette (LSCE, Gif-sur-Yvette) for technical support. Kind incitations by A. Cheilletz (CRPG, Nancy), C. Laj (LSCE, Gif-sur-Yvette), M. Lanphere (USGS, Menlo Park), G.S. Odin (University Pierre et Marie Curie, Paris), W. Sharp (BGC, Berkeley) and B. Singer (University of Geneva) to carry on this work were particularly appreciated. Fruitful discussions with G.S. Odin improved the conclusions. We thank also T. L. Spell (Australian National University, Canberra) for helpful review of the manuscript. Contribution CFR no. 2007.

# Appendix A. Determination of the parameters of the fit

The sum of the residuals of the equation of the calibration curve re-written on a logarithmic scale, is:

$$R = \sum_{i} \left( \text{Log } n_i - \text{Log } n_0 + i \cdot \text{Log} \left( 1 + \frac{v}{V} \right) \right)^2$$

The expressions of the free parameters deduced from a conventional least mean square method are:

$$-\operatorname{Log}\left(1+\frac{v}{V}\right)_{\operatorname{GL}-\operatorname{O}} = \frac{\sum_{i} (i-\overline{i})(\operatorname{Log} n_{i}-\overline{\operatorname{Log} n_{i}})}{\sum_{i} (i-\overline{i})^{2}}$$

and

$$\log n_0 = \overline{\log n_i} - \overline{i} \cdot \log\left(1 + \frac{v}{V}\right)$$

where  $\overline{i}$  and  $\overline{\text{Log } n_i}$  are the mean values of i and  $\text{Log } n_i$ , respectively. Therefore:

$$\left(\frac{v}{V}\right)_{\text{GL-O}} = \exp\left[\frac{\sum_{i} (i-\bar{i})(\log n_i - \overline{\log n_i})}{\sum_{i} (i-\bar{i})^2}\right] - 1$$

and

$$n_0 = \exp\left[\overline{\operatorname{Log} n_i} - \operatorname{Log}\left(1 + \frac{v}{V}\right)\overline{i}\right]$$

#### **Appendix B. Error determination**

The mathematical expression providing the age of any sample depends on the number of atoms of  ${}^{40}\text{Ar}*$  and  ${}^{40}\text{K}$ , and on the decay constants ( $\lambda = 5.543 \cdot 10^{-10}$  and  $\lambda_e = 0.581 \cdot 10^{-10}$  (Steiger and Jäger, 1977) of the isotope  ${}^{40}\text{K}$ :

$$t = \frac{1}{\lambda} \ln \left( \frac{\lambda}{\lambda_{e}} \cdot \frac{{}^{40}\text{Ar}*}{{}^{40}\text{K}} + 1 \right)$$

The values of the decay constants are the result of a consensus so that the associated uncertainties can be legitimately discarded. The variance of the age can be approximated by the general equation for the propagation of errors. In the absence of any correlations between the errors of the two variables ( 40 Ar * and  40 K) this expression is re-written as:

$$\sigma_t^2 = \left(\frac{\partial t}{\partial \mathbf{Ar}^*}\right)^2 \times \sigma_{\mathbf{Ar}^*}^2 + \left(\frac{\partial t}{\partial \mathbf{K}}\right)^2 \times \sigma_{\mathbf{K}}^2$$

that is:

$$\sigma_t^2 = \left(\frac{1}{\lambda_e K} \cdot \frac{1}{e^{\lambda t}}\right)^2 \times \sigma_{Ar}^2,$$
$$+ \left(-\frac{1}{\lambda K} \cdot \frac{e^{\lambda t} - 1}{e^{\lambda t}}\right)^2 \times \sigma_K^2$$

where  $\sigma_{Ar*}^2$  and  $\sigma_{K}^2$  are the variance of the number of  ${}^{40}Ar*$  and  ${}^{40}K$  atoms, respectively and  $(\frac{\partial t}{\partial Ar*})(\text{resp.}(\frac{\partial t}{\partial K}))$  is the partial derivative of the age with respect to  ${}^{40}Ar*$  evaluated at the mean of  ${}^{40}Ar*$  (resp.  ${}^{40}K$ ).

In this study published ⁴⁰K determinations and associated uncertainties have been used. For our own ⁴⁰K determinations the confidence interval is maximized to 1%, and thus  $\sigma_{\rm K}^2 = 10^{-4}$ .

The determination of the error associated with the number of atoms of radiogenic argon ⁴⁰Ar * depends on the dispersion of the percentage of radiogenic argon Ar *(%), and also on the number of  40 Ar atoms in the last calibrated dose introduced in the MS line  $(N_{\rm dc})$ . Taking into account the stability of the ⁴⁰Ar signal, the dose-equivalents (see Eq. (2)) are supposed to be determined accurately enough, so that the corresponding uncertainty may be neglected. Assuming that the  40 Ar * (%) values are distributed according to a Gaussian law, the error on  40 Ar * (%) is the standard error of this distribution with a width resulting mainly from the dispersion of the values of the ³⁶Ar signal, whereas the drift on the ⁴⁰Ar equals almost zero throughout the acquisition period. The error related to  $N_{dc}$  is computed by considering the difference between central and minimum (or maximum) values. The minimum (or maximum) value corresponds to the minimum (or maximum) parameters of the calibration curve, given by the jacknife method (Caceci, 1989). The jacknife estimate of the standard error of the parameter p is given by:

$$\sigma_{p} = \left[ \left( \frac{n-1}{n} \right) \sum_{i=1}^{n} \left( \hat{p}_{i} - \hat{p} \right)^{2} \right]^{1/2} \text{ with } \hat{p} = \frac{1}{n} \sum_{i=1}^{n} \hat{p}_{i}$$

where the  $\hat{p}_i$  are the parameters resulting from the jacknifed fit, and n the original number of data points.

Finally the variance of  40 Ar *, also deduced from the equation of the propagation of errors, is, according to Eq. (3) given by:

$$\sigma_{Ar*}^{2} = \left(\frac{DE_{S}}{DE_{dc}}\right)^{2} \left(N_{dc}^{2} \times \sigma_{Ar*(\%)}^{2} + Ar^{*2}(\%) \times \sigma_{N_{dc}}^{2}\right)$$

where  $\sigma_{N_{dc}}^2$  and  $\sigma_{Ar*(\%)}^2$  are computed according to previous outline.

#### References

- Alexander, E.C., Michelson, G.M., Lanphere, M.A., 1978. MMhb-1: a new ⁴⁰Ar/³⁹Ar dating standard. In: Zartman, R.E. (Ed.), Short papers of the fourth ICOG. U.S. Geological Survey Open File Report, 78-701, 6-8.
- Baksi, A.K., Archibald, D.A., Farrar, E., 1996. Intercalibration of ⁴⁰Ar/³⁹Ar dating standards. Chem. Geol. 129, 307–324.
- Baksi, A.K., Hsu, V., McWilliams, M.O., Farra, E., 1992. ⁴⁰Ar/ ³⁹Ar dating of the Brunhes-Matuyama geomagnetic field reversal. Science 256, 356-357.
- Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y., 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126, 91-108.
- Caceci, M.S., 1989. Estimating error limits in parametric curve fitting. Anal. Chem. 61, 2324–2327.
- Cassignol, C., Gillot, P.-Y., 1982. Range and effectiveness of unspiked potassium-argon dating: experimental groundwork and applications. In: Odin, G.S. (Ed.), Numerical Dating in Stratigraphy. Wiley, 1, 159–179.
- Cebula, G.T., Kunk, M.J., Mehnert, H.H., Naeser, C.W., Obradovitch, J.D., Sutter, J.F., 1986. The Fish Canyon tuff, a potential standard for the ⁴⁰Ar-³⁹Ar dating and fission-track methods. Sixth International Conference on Geochronology, Cosmochronology, and Isotope Geology, Cambridge, [abs.] Terra Cognita, 6, 139-140.
- Dalrymple, G.B., Alexander, E.C., Lanphere, M.A., Kraker, G.P., 1981. Irradiation of samples for ⁴⁰Ar/³⁹Ar dating using the Geological Survey TRIGA Reactor. U.S. Geological Survey, Professional Paper, 1176, 55 pp.
- Dalrymple, G.B., Izett, G.A., Snee, L.W., Obradovitch, J.D., 1993. ⁴⁰Ar/³⁹Ar age spectra and total-fusion ages of tektites from Cretaceaous-Tertiary rocks in the Beloc Formation Haiti. U.S.G.S. Bull. 2065, 1–20.

- Dixon, W.J., 1953. Processing data for outliers. Biometrics 9, 74-89.
- Draper, N., Smith, H., 1981. Applied Regression Analysis. Wiley, Chichester, 709 pp.
- Engells, J.C., Ingamells, C.O., 1970. Effect on sample inhomogeneity in K-Ar dating. Geochim. Cosmochim. Acta 34, 1007-1017.
- Fuhrmann, U., Lippolt, H.J., Hess, J.C., 1987. Examination of some proposed K-Ar standards: ⁴⁰Ar/³⁹Ar analyses and conventional K-Ar data. Chem. Geol. (Isotope Geoscience Section) 66, 41-51.
- Hall, C.M., Farrell, J.W., 1995. Laser ⁴⁰Ar/³⁹Ar ages of tephra from Indian Ocean deep-sea sediments: tie points for the astronomical and geomagnetic polarity time scales. Earth Planet. Sci. Lett. 133, 327-338.
- Hays, J.D., Imbrie, J., Shackleton, N.J., 1976. Variations in Earth's orbit: pacemaker of the ice ages. Science 194, 1121-1131.
- Hess, J.C., Lippolt, H.J., 1994. Compilation of K-Ar measurements on HD-B1 standard biotite. In: Odin, G.S. (Ed.), Phanerozoic Time scale. Bull. Liais. Inform. I.U.G.S., Subcom. Geochronol., 12, 19–23.
- Hilgen, F.J., 1991a. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic Polarity Time Scale. Earth Planet. Sci. Lett. 104, 226-244.
- Hilgen, F.J., 1991b. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary. Earth Planet. Sci. Lett. 107, 349–368.
- Hilgen, F.J., Krijgsman, W., Langereis, C.G., Lourens, L.J., Santarelli, A., Zachariasse, W.J., 1995. Extending the astronomical (polarity) time scale into the Miocene. Earth Planet. Sci. Lett. 136, 495-510.
- Imbrie, J., Berger, A., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., Mix, A.C., McIntyre, A., Molfino, B., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Schackleton, N.J., Toggweiler, J.R., 1993. On the structure and origin of major glaciation cycles: 2. The 100,000-year cycle. Paleoceanography 8, 699-735.
- Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Schackleton, N.J., Toggweiler, J.R., 1992. On the structure and origin of major glaciation cycles: 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701–738.
- Ingamells, C.O., 1974. Control of geochemical error through sampling and subsampling diagrams. Geochim. Cosmochim. Acta 38, 1225-1238.
- Ingamells, C.O., Engels, J.C., 1976. Preparation, analysis, and sampling constants for a biotite. U.S. National Bureau of Standards. Special Publication, 422, 403-419
- International Study Group, 1982. An inter-laboratory comparison of radiocarbon measurements in tree rings. Nature 298, 619– 623.

Izett, G.A., Obradovitch, J.D., 1994. ⁴⁰Ar/³⁹Ar age constraints for

the Jaramillo Normal Subchron and the Matuyama-Brunhes boundary. J. Geophys. Res. 99, 2925-2934.

- Johnson, R.G., 1982. Brunhes-Matuyama magnetic reversal dated at 790,000 yr B.P. by marine-astronomical correlations. Quat. Res. 17, 135-147.
- Lanphere, M.A., Dalrymple, G.B., Fleck, R.J., Pringle, M.S., 1990. Intercalibration of mineral standards for K-Ar and ⁴⁰Ar/³⁹Ar age measurements. EOS Trans. AGU 71, 1658.
- Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. Jr., Shackleton, N.J., 1987. Age dating and the orbital theory of the ice ages: development of a high resolution 0 to 300,000 year chronostratigraphy. Quat. Res. 27, 1–29.
- Odin, G.S., et al., 1982. Interlaboratory standards for dating purposes. In: Odin, G.S. (Ed.), Numerical Dating in Stratigraphy. Wiley, 1, 123–150.
- Raymo, M.E., Ruddiman, W.F., Backman, J., Clement, B.M., Martinson, D.G., 1989. Late Pliocene variations in northern hemisphere ice sheets and North Atlantic deep water circulation. Paleoceanography 4, 413–446.
- Renne, P.R., Deino, A.L., Walter, R.C., Turrin, B.D., Swisher, C.C. III, Becker, T.A., Curtis, G.H., Sharp, W.D., Jaouni, A.-R., 1994. Intercalibration of astronomical and radioisotopic time. Geology 22, 783-786.
- Ruddiman, W.F., McIntyre, A., Raymo, M.E., 1986. Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth Planet. Sci. Lett. 80, 117–129.
- Samson, S.D., Alexander, E.C. Jr., 1987. Calibration of the interlaboratory ⁴⁰Ar-³⁹Ar dating standard, MMhb-1. Chem. Geol. (Isotope Geoscience Section) 66, 27-34.
- Shackleton, N.J., Berger, A., Peltier, W.R., 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edimburgh 81, 251– 261.
- Singer, B.S., Pringle, M.S., 1996. Age and duration of the Matuyama-Brunhes geomagnetic polarity reversal from ⁴⁰Ar/³⁹Ar incremental heating analyses of lavas. Earth Planet. Sci. Lett. 139, 47-61.
- Spell, T.L., McDougall, I., 1992. Revisions to the age of the Brunhes-Matuyama boundary and the Pleistocene geomagnetic polarity time scale. Geophys. Res. Lett. 19, 1181-1184.
- Steiger, R.H., Jäger, E., 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362.
- Steven, T.A., Mehnert, H.H., Obradovitch, J.D., 1967. Age of volcanic activity in the San Juan Mountains, CO. U.S. Geological Survey Professional Paper, 575-D, 47-55.
- Tauxe, L., Deino, A.D., Behrensmeyer, A.K., Potts, R., 1992. Pinning down the Brunhes/Matuyama and upper Jaramillo boundaries: a reconciliation of orbital and isotopic time scales. Earth Planet. Sci. Lett. 109, 561–572.
- Turrin, B.D., Turrin, M., Turrin, D.-N.J., Hearn, B.C. Jr., 1994. ⁴⁰Ar/³⁹Ar ages from the rhyolite of Alder Creek, California: age of the Cobb Mountain Normal-Polarity Subchron revisited. Geology 22, 251–254.
- York, D., 1969. Least squares fitting of a straight line with correlated errors. Earth Planet. Sci. Lett. 5, 320-324.

Annexe 3

Rapport CEA 2008


H. Guillou L.S.C.E Unité Mixte de Recherche CEA - CNRS Bât 12 - Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France FAX : 33 - 1 - 69 82 35 68 TEL: 33 1 69 82 35 56 Gif-sur-Yvette, le 24/09/08

# DATATION PAR LA METHODE POTASSIUM - ARGON

# SANS TRACEUR

# DE ROCHES VOLCANIQUES DE L'ILE DE LA REUNION

Demandeurs Jacques Eric/ Jean Louis Nédellec - BRGM - Réunion



#### I - Procédure analytique

La phase retenue pour les mesures d'argon et de potassium est la mésostase microcristalline, représentative de la fraction cristallisant lors de la mise en place de la lave. Le protocole de préparation des échantillons a pour finalité de préparer des aliquotes homogènes, sur lesquelles seront mesurées séparément les teneurs en potassium et la composition isotopique de l'argon. Les échantillons sont broyés et tamisés à la fraction 0,250 – 0,125 mm, puis lavés dans un bain d'acide acétique dans une cuve à ultras sons, afin d'éliminer les éventuelles phases secondaires d'altération. Les phénocristaux, d'olivine, de feldspaths et de pyroxènes, phases ubiquistes dans les roches de l'île de la Réunion, sont éliminés successivement par tris magnétique et densitométrique (Diiodométhane dilué à l'acétone) car ces phénocristaux, porteurs potentiels d'excès d'argon peuvent entraîner une erreur par excès sur les âges supérieure à l'erreur analytique. Les valeurs de densité sont données dans le tableau 1.

C1-2	MAI				
2.95-2.80	2.85-2.78				
	C1-2 2.95 - 2.80				

Tableau 1 : Gamme de densité des aliquotes de mésostases analysées.

La composition isotopique et les teneurs en argon sont mesurées suivant la technique sans traceur (unspiked) détaillée dans Charbit et al., 1998.

Charbit S. Guillou H. and Turpin L. 1998 -Cross calibration of K-Ar standard minerals using an unspiked Ar measurements technique. Chemical Geology, 150, 147-159.



## II) Résultats.

Les résultats sont donnés dans les pages suivantes et synthétisés dans le tableau 2.

a pe Experience n°	Poids fondu (g)	K* (wt.%)	⁴⁰ Ar* (%)	⁴⁰ Ar [*] (10 ⁻¹³ mol/g)	⁴⁰ Ar [*] moy. Pondérée ± 1σ	Age ± 2σ ka
C 2						
7715	0.92653	$0.465 \pm 0.005$	6.308	11.176		
7734	1.42178	66	5.830	10.896	11.043 ± 0.112	$1369 \pm 39$
A						
7730	2.14701	1.860 ± 0.019	10.420	7.989		
7737	1.97632	u	21.806	7.626	$7.772 \pm 0.039$	241 ± 5



Annexe e e r tat



## POTASSIUM-ARGON AGE DETERMINATION

#### a pe 3

orreeren e C 2

Jacques Eric / jean-Louis Nédellec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906 97478 Saint Denis cedex

#### a p e e r pt on o a t #

ater e ana e ron a 0200ra2ton e traon a a e n C₂₃₂

A e 3 ±00 a

-

<u>Argon Analyses:</u> ⁴⁰Ar*% 6.308 5.830

⁴⁰Ar* (10⁻¹²moles/g) 1.118 1.090

Weighted Mean (10⁻¹²moles/g) 1.104

Potassium Analysis: K%: 0.465

#### Constants used:

 $\begin{array}{l} \lambda_{\beta} = 4.962 \ 10^{-10} / a \\ \lambda_{\epsilon} = 0.572 \ 10^{-10} / a \\ \lambda_{\epsilon'} = 0.0088 \ 10^{-10} / a \end{array}$ 

 40 K/K = 1.167 10⁻⁴ g/g

$$AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$$

ote [®]Ar rear to ra o en[®]Ar a rear to t o an o ear Error on t e a e at 2σ e e



# POTASSIUM-ARGON AGE DETERMINATION

#### a pe 30 3

o r re eren e A

Jacques Eric / jean-Louis Nédellec B.R.G.M. Réunion 5, Rue Sainte Anne BP 906 97478 Saint Denis cedex

#### a p e e r pt on o a t #

ater e ana e ron a 0200ra2ton e traon a a e n C₂₃₂

⁰ Ar ⁰	A e 2 ± a

-

<u>Argon Analyses:</u> ⁴⁰Ar*% 10.420 21.806

⁴⁰Ar* (10⁻¹³moles/g) 7.989 7.626 Weighted Mean (10⁻¹³moles/g) 7.772

Potassium Analysis: K%: 1.860

#### Constants used:

 $\begin{array}{l} \lambda_{\beta} = 4.962 \ 10^{-10} / a \\ \lambda_{\epsilon} = 0.572 \ 10^{-10} / a \\ \lambda_{\epsilon^{*}} = 0.0088 \ 10^{-10} / a \end{array}$ 

 40 K/K = 1.167 10⁻⁴ g/g

 $AGE = \frac{1}{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \ln \left[ \frac{\lambda_{\beta} + (\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})}{(\lambda_{\varepsilon} + \dot{\lambda}_{\varepsilon})} \times \frac{{}^{40}Ar^{*}}{{}^{40}K} + 1 \right]$ 

ote ⁰Ar reer to ra o en⁰Ar a reer to t o an o ear Error on t e a e at 2σ e e Annexe 4

Résultat des analyses ¹⁴C



# REUNION

# Radiocarbone

# Echantillons

Nature : bois et sédiments organiques Date de réception :24/09/04

## Analyses

Opérateur(s): sous traitance auprès de BETA ANALYTIC INC. Date de réalisation : octobre – novembre 2004

# Mode d'analyse

## Analyse de l'activité du Carbone 14 par la méthode radiométrique.

L'échantillon broyé subit d'abord une série de nettoyages pour éliminer les différents contaminants. La combustion sous oxygène permet d'obtenir du  $CO_2$ , dont un aliquote est utilisé pour la mesure du rapport isotopique ¹³C/¹²C. Le  $CO_2$  est converti en benzène et l'activité de ¹⁴C est mesurée par comptage  $\beta$  sur un compteur à scintillation liquide.

# La préparation et le comptage sur compteur à scintillation liquide sont réalisés par Beta Analytic Inc.

L'activité du C14 est normalisée par rapport à celle du carbone moderne référence et corrigée des effets isotopiques ; elle est exprimée en % de carbone moderne (pCM). L'âge conventionnel est déterminé à partir de la mesure de l'activité du ¹⁴C normalisée et corrigée. Par convention, la période du ¹⁴C est prise égale à 5568 ans, l'âge conventionnel est exprimé en ans BP (l'année référence est 1950 AD).

## Identification et prétraitement des échantillons

Les échantillons de MC 01 et MC 02 sont des fragments de bois. PC 1728 a été identifié comme du matériel carbonisé. Dans l'échantillon FL-LM-71, une fraction tourbeuse a été séparée pour l'analyse.

MC01, MC 02, PC 1728 et FL-LM-71 ont subi une série de nettoyages (acide/base/acide) pour éliminer les différents contaminants, carbonates et acides organiques.

FL-M-85 ne contient pas de bois ni de matière végétale ; il a été traité comme un sédiment organique. Le nettoyage avant la combustion a consisté en une série de rinçages acides.

L'échantillon FL-M-50 est composé uniquement de sédiment faiblement organique; son analyse a été annulée par décision du demandeur.

Rapport d'essais 04-1-109-D



NB	Réf. Labo	ECHANTILLON	δ ¹³ C vs PDB ‰ (± 0.1)	Activité ¹⁴ C pCM		Activité ¹⁴ C pCM		com ans	Age ¹⁴ ventio ; BP (:	C mnel t 1o)	Age es	timé	en anı (20, 95	nées ( % pro	calend oba)	laires
1	04 S 138	FL-LM-71	-25,8	82,6	±	0,6	1530	±	50	420	-	630	Cal	AD	( 1,00 )	
2	04 S 139	PC 1728	-26,2	< 0,6			> 40810		0	âge supérieur au do		omain	naine de calibratio			
3	04 S 140	MC 01	-25,5	84,7	İ	0,6	1330	±	60	600	-	830	Cal	AD	( 0,98 )	
										840	-	670	Cał	AD	( 0,02 )	
4	04 S 141	MC 02	-26,5	82,0	±	0,5	1600	±	50	340	-	580	Cal	AD	( 1,00 )	
5	04 S 142	FL-M-50	nd		nd		·	nd		1						
6	04 S 143	FL-M-85	-27,0	64,5	±	0,6	3520	*	70	2030	-	1690	Cal	BC	( 1,00 )	

L'estimation statistique de l'âge en années calendaires est faite à partir du programme de calibration de Stuiver *et al.* (1998). Pour les bois, la tourbe et le sédiment organique cette évaluation est faite avec une calibration basée sur les données atmosphériques par décades (de 1998 jusqu'à de 20265 ¹⁴C ans BP).

La période donnée représente la(les) zone(s) d'âge dans laquelle il y a 95% de chance de trouver l'âge. Entre parenthèses figure le poids relatif de chaque zone d'âge pour la statistique donnée.

AD : Anno Domini ; après J.C.

BC : Before Christ ; avant J.C.

#### Références

Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G.S., Hughen K.A., Kromer B., McCormac G., van der Picht J., et Spurk M. (1998)- INTCAL98 radiocarbon age calibration 24000-0 CAL BP. Radiocarbon 40.

c leho e

C. FLEHOC



Chef du service : Correspondant Qualité : Coordination des analyses : A. GADALIA

A.M. FOUILLAC C. LEDUC

Unité Chimie minérale des solides : **D. MARTINEAU** Unité Chimie des micropolluants organiques : L. AMALRIC Unité Chimie des eaux : J.P. GHESTEM J.P. GIRARD Unité Chimie isotopique :



Demandeur	GARCIN
	ARN/ATL
Provenance des échantillons	REUNION
Nature des prélèvements	
N° ANA	I1236B
N° de demande	2400179
N° d'affaire	
N° de compte	O2RIS
Laboratoire Isotopes stables	

**C.FLEHOC** Responsable

Téléphone : (33) 02 38 64 30 17

Télécopie : (33) 02 38 64 39 25

le : Résultats certifiés par le(s) responsable(s) de laboratoire

13-DEC-02

Visa

A. Gadalia

gadalio

-> ATTENTION AUX INFORMATIONS PORTEES PAGE(S) SUIVANTE(S).

Les résultats exprimés ne concernent que les échantillons soumis à essais. La reproduction de ce rapport d'essais n'est autorisée que sous sa forme intégrale.

#### **BRGM** - Analyse

3, avenue Claude Guillemin - B.P. 6009 - 45060 Orléans cedex 2, France Táléphane ; (33) 02 38.64.30.17 - Tálácopieur : (33) 02 38.64.39.25 - Tálex : BRGM 780258 F

; 6đ 12 **T0:ST** 14/01/03



#### SERVICE ANALYSE ET CARACTERISATION MINERALE Laboratoire Isotopes stables et faible radioactivité

N/Réf. : ANA/ISO I1236B

Demandeur : M. GARCIN ARN/ATL Référence de l'étude : LA REUNION Nombre d'échantillons : 3

#### **RESULTATS D'ANALYSES ISOTOPIQUES**

Datation par le radiocarbone

Réf. interne : 02S247 Réf. échantillon : MG02-REU 1 BOIS

Activité (en % Carbone Moderne) : 83.5 +/- 0.6

 $\delta 13C^{\circ/\circ\circ}$  vs PDB : -28.4 +/- 0.1

 $\delta 15 N^{\circ/\circ\circ}$  vs air : ND +/- 0.2

Mesure réalisée par la méthode conventionnelle.

C. FLEHOC

N.B. - Les échantillons sont conservés six mois à compter de cette date. Leur destruction est ensuite systématique (sauf avis contraire de votre part).

ND : analyse non déterminée

Nb page : 3

Orléans, le 13/12/2002



SERVICE ANALYSE ET CARACTERISATION MINERALE Laboratoire Isotopes stables et faible radioactivité

N/Réf.: ANA/ISO I1236B

Demandeur : M. GARCIN ARN/ATL Référence de l'étude : LA REUNION Nombre d'échantillons : 3

#### **RESULTATS D'ANALYSES ISOTOPIQUES**

Datation par le radiocarbone

Réf. interne : 02S248 Réf. échantillon : MG02-REU 5 BOIS

Activité (en % Carbone Moderne) : 83.6 +/- 0.5

 $\delta 13C^{\circ/\circ\circ}$  vs PDB : -30.4 +/- 0.1

 $\delta 15N^{\circ/\circ\circ}$  vs air : ND +/- 0.2

Mesure réalisée par la méthode conventionnelle.

le ho c ٢ C. FLEHOC

N.B. - Les échantillons sont conservés six mois à compter de cette date. Leur destruction est ensuite systématique (sauf avis contraire de votre part).

ND : analyse non déterminée

Nb page : 3

2

.





#### SERVICE ANALYSE ET CARACTERISATION MINERALE Laboratoire Isotopes stables et faible radioactivité

N/Réf.: ANA/ISO I1236B

Demandeur : M. GARCIN ARN/ATL Référence de l'étude : LA REUNION Nombre d'échantillons : 3

#### **RESULTATS D'ANALYSES ISOTOPIQUES**

Datation par le radiocarbone

Réf. interne : 02S249 Réf. échantillon : MG02-REU 6 BOIS

Activité (en % Carbone Moderne) : 85.1 +/- 0.7

 $\delta 13C^{\circ/\circ\circ}$  vs PDB : -25.8 +/- 0.1

 $\delta 15N^{\circ/\circ\circ}$  vs air : ND +/- 0.2

Mesure réalisée par la méthode conventionnelle.

C | Leho c C. FLEHOC

N.B. - Les échantillons sont conservés six mois à compter de cette date. Leur destruction est ensuite systématique (sauf avis contraire de votre part).

ND : analyse non déterminée

Nb page : 3 3 5



Orléans, le 13/12/2002

#### RVICE ANALYSE et CARACTERISATION MINERALE Laboratoire Isotopes stables et faible radioactivité

Réf.: ANA / ISO 11236B

# RESULTATS D'ANALYSES ISOTOPIQUES ANNEXE

## Calibration des âges 14C conventionnels en années calendaires

Echantillon	réf. Labo	Age ¹⁴ C conventionnel ans BP $(\pm 1\sigma)$			Ag	e esti (	<b>mé en a</b> ± 2σ, 9	nnées cale 5% proba	nds )	ires	
MG02REU1	025 247	1450	±	60	440	-	460	Cal AD	(	0.01	)
					460	-	520	Cal AD	(	0.08	)
					520		680	Cal AD	(	0. <b>9</b> 1	)
MG02REU5	028 248	1440	±	40	550	-	660	Cal AD	(	1.00	)
MG02REU6	025 249	1300	Ŧ	60	640		880	Cal AD	(	1,00	)

#### Age conventionnel :

C'est l'âge déterminé à partir de la mesure de l'activité du 14C normalisée par rapport à celle du carbone moderne référence et corrigée des effets isotopiques. Par convention, la période du 14C est prise égale à 5568 ans, l'âge conventionnel est exprimé en ans BP (l'année référence est 1950 AD)

L'estimation statistique de l'âge en années calendaires est faite à partir des courbes de calibration de Stuiver *et al.* (Radiocarbon 40, p1041-1083, 1998). La période donnée représente la(les) zone(s) d'âge dans laquelle il y a 95% de chance de trouver l'âge. Entre parenthèses figure le poids relatif de chaque zone d'âge pour la statistique donnée.

AD : Anno Domini ; après J.C. BC : Before Christ ; avant J.C.

C. FLEHOC



Centre scientifique et technique 3, avenue Claude-Guillemin BP 36009 45060 – Orléans Cedex 2 – France Tél. : 02 38 64 34 34 Service géologique régional "Réunion" 5, rue Sainte Anne 97400 – Saint-Denis - France Tél. : 02 62 21 22 14