






Synthèse des résultats des reconnaissances géologiques, hydrogéologiques, géophysiques.

Rapport final

BRGM/RP-56600-FR Septembre 2008







# Synthèse hydrogéologique du Nord-Est de Mayotte. Caractérisation des masses d'eau souterraine des secteurs de Petite Terre et de Tsoundzou-Koungou.

Synthèse des résultats des reconnaissances géologiques, hydrogéologiques, géophysiques.

> Rapport final BRGM/RP-56600-FR 2008

Étude réalisée dans le cadre des opérations de Service public du BRGM 2007 SP07EAUC07

Guilbert M., Aunay B., Lachassagne P., Malard A., Mathieu F.

#### Vérificateur :

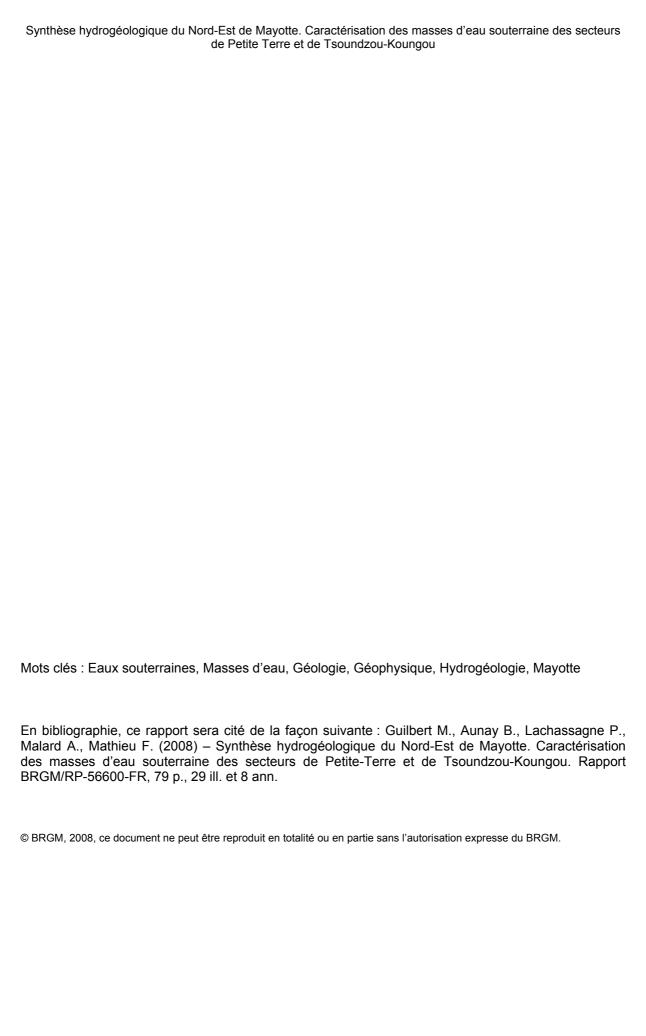
Nom: V. Petit

Date:

Signature:

### Approbateur:

Nom: P. Puvilland


Date:

Signature:

En l'absence de signature, notamment pour les rapports diffusés en version numérique, l'original signé est disponible aux Archives du BRGM. Le système de management de la qualité du BRGM est certifié AFAQ ISO 9001:2000.







## **Synthèse**

En réponse à la demande de la Communauté Européenne, le Service Géologique Régional du BRGM de Mayotte, dans le cadre de ses missions de Service Public, s'est vu confier par la Collectivité Départementale de Mayotte, la réalisation des études concernant l'identification, la délimitation et la caractérisation détaillée des masses d'eau souterraine dans les zones à forte pression d'urbanisation.

Une première délimitation des masses d'eau souterraine, réalisée dans le cadre du Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) de Mayotte, identifiait le secteur du Nord Est de Mayotte comme appartenant à une seule et même masse d'eau (la masse d'eau du M'Tsapéré). Petite Terre est considérée comme une masse d'eau à part entière.

La présente étude propose de caractériser structuralement et géologiquement la masse d'eau du Nord Est de Mayotte et d'en préciser le potentiel hydrogéologique. Il en sera fait de même sur la masse d'eau de Petite Terre.

Cette étude a été conduite dans le cadre de la programmation de Service Public 2007-2008 du BRGM (fiche SP07EAUC07), sur financement de la Collectivité Départementale de Mayotte et à partir des fonds propres de Service Public du BRGM (convention BRGM / Collectivité Départementale, signée le 14 mai 2007).

Le présent rapport est la synthèse de la caractérisation des masses d'eau souterraine du Nord-est de Mayotte et plus précisément les secteurs de Tsoundzou à Koungou et de Petite Terre. La démarche mise en œuvre a été la suivante :

- synthèse des données géologiques, géophysiques, hydrogéologiques disponibles sur ou à proximité de la zone d'étude;
- reconnaissance géologique et hydrogéologique de terrain ;
- prospection géophysique par panneaux électriques (détermination de la géométrie en profondeur des formations géologiques repérées en surface);
- synthèse et interprétation des données en termes de formations géologiques, et de potentiel hydrogéologique ;
- identification, délimitation et caractérisation des masses d'eau.

Au vu des résultats et des interprétations obtenus lors de cette étude deux masses d'eau souterraine ont été précisées dans le secteur de Tsoundzou-Koungou et de Petite Terre :

- · L'édifice volcanique du M'Taspéré (n° MESO¹ : 9602a) se voit subdivisé en 4 unités hydrogéologiques distinctes qui sont :
  - Le secteur de **Miangani-Koungou** à potentiel hydrogéologique modeste. Les formations aquifères sont peu développées. Il existe néanmoins quelques aquifères ponctuels aux propriétés hydrodynamiques moyennes ;

-

<sup>&</sup>lt;sup>1</sup> MESO est le code identifiant national des masses d'eau au sens de la DCE

- Le secteur de Bandrajou amont de Kawéni à potentiel hydrogéologique modeste. Les formations aquifères reconnues jusqu'alors sont peu développées et les propriétés hydrodynamiques observées sont insuffisantes pour envisager une exploitation de la ressource. En revanche, plus en profondeur, il est envisageable que le potentiel hydrogéologique soit plus conséquent. La 5<sup>ème</sup> campagne de forage de reconnaissance devrait permettre de préciser ce potentiel;
- Le secteur de Kawéni à Kavani où les remplissages de maars représentent les potentiels hydrogéologiques les plus intéressants. Les formations aquifères du cratère de Kawéni, largement reconnues par forage, montrent des propriétés hydrodynamiques largement suffisantes pour l'exploitation (forages F1 et F2 et forage de Kawéni 3). Il faut cependant ajouter que la proximité de la mangrove et l'occupation des sols à l'aplomb des formations aquifères par la zone industrielle de Kawéni sont des paramètres qui peuvent potentiellement impacter la qualité de la ressource exploitée. L'intrusion d'eau marine ou la pollution diffuse par infiltration des rejets industriels sont susceptibles de contaminer la ressource.
- Les vallées de Kwalé à Majimbini. Ces vallées aux formations géologiques relativement analogues présentent des potentialités aquifères intéressantes. L'enchevêtrement des formations basaltiques saines et fissurées β2 et β3 (formations aquifères) reposant sur des unités plus altérées (base imperméable du substratum) permet la formation d'unités aquifères aux propriétés hydrodynamiques conséquentes (citons par exemple les forages productifs de Kwalé 1, Kwalé 3). La 5<sup>ème</sup> campagne de forage de reconnaissance devrait permettre de préciser le potentiel hydrogéologique en amont de la vallée de la Kwalé au sein des basaltes β2 et dans la vallée de la Gouloué toujours au sein des basaltes β2. Le forage du M'Tsapéré dont les travaux sont programmés en amont de la vallée de la Majimbini, devrait permettre de reconnaître le potentiel aquifère du bassin.
- Petite-Terre (n° MESO: 9602b) est assimilée à une masse d'eau à part entière. Les formations aquifères reconnues par prospection géophysiques et par forage de reconnaissance sont peu développées et leurs propriétés hydrodynamiques en termes d'exploitation sont très modestes. Les volumes aquifères sont limités, les mécanismes de recharge ne sont pas quantifiés. La proximité permanente du littoral est un frein au développement du potentiel aquifère, que ce soit en termes de quantité (surface de recharge limité, profil radial de l'île qui ne favorise pas la concentration des eaux de surface et donc leur infiltration) ou de qualité (intrusion des eaux marines dans les aquifères).

La 5<sup>ème</sup> campagne de forage est la suite logique des travaux de reconnaissance du potentiel hydrogéologique du Nord Est de Mayotte. Les résultats des forages de reconnaissance permettront à la fois de préciser localement l'existence de ressources exploitables de tel et tel secteur mais aussi de valider le modèle conceptuel des formations aquifères de Mayotte et de leur fonctionnement élaboré sur la base des travaux du BRGM.

Par la suite, l'extension des projets de caractérisation des masses d'eau dans les secteurs Nord Ouest, Centre et Sud de l'île ainsi que la programmation de nouvelles campagnes de forage de reconnaissance devraient aboutir à une cartographie plus exhaustive des unités aquifères potentielles à l'échelle de l'ensemble de Mayotte. La programmation d'une campagne de forages profonds en parallèle permettrait d'affiner la compréhension des systèmes hydrogéologiques et de mettre à jour de nouvelles ressources potentielles inaccessibles avec les moyens actuellement mis en œuvre.

## **Sommaire**

| 1. | Introduction11                                                                     | l  |
|----|------------------------------------------------------------------------------------|----|
| 2. | La caractérisation des masses d'eau souterraine ; un objectif de la DCE            | 13 |
|    | 2.1. CARACTERISATION INITIALE                                                      | 3  |
|    | 2.2. CARACTERISATION PLUS DETAILLEE14                                              | 1  |
| 3. | Méthodologie et résultats17                                                        | 7  |
|    | 3.1. PHASE 1 - SYNTHESE DES DONNEES                                                | 7  |
|    | 3.2. PHASE 2 - PROSPECTION GEOLOGIQUE ET HYDROGEOLOGIQUE DE TERRAIN                | 7  |
|    | 3.3. PHASE 3 – ANALYSE ET INTERPRETATION DES DONNEES20                             | )  |
|    | 3.3.1.Synthèse des données pétrographiques et des datations20                      | )  |
|    | 3.3.2. Description des lithologies observées sur le terrain et à la loupe binocula |    |
|    | 3.4. PHASE 4 – PROSPECTION GEOPHYSIQUE PAR PANNEAUX ELECTRIQUES                    |    |
|    | 3.4.1.Généralités29                                                                | )  |
|    | 3.5. PHASE 5 – SYNTHESE HYDROGEOLOGIQUE30                                          | )  |
|    | 3.5.1. Vallée de la Kwalé32                                                        | 2  |
|    | 3.5.2. Vallée de la Gouloué36                                                      | 3  |
|    | 3.5.3. Vallée de la Doujani39                                                      | )  |
|    | 3.5.4. Vallée de la Majimbini42                                                    | 2  |
|    | 3.5.5.Kawéni / Kawénilajoli45                                                      | 5  |
|    | 3.5.6.MajiKavo-Koropa / Bandrajou49                                                | )  |
|    | 3.5.7.Koungou / Trévani / Kangani51                                                | 1  |
|    | 3.5.8.Miangani / Longoni55                                                         | 5  |
|    | 3.5.9. Petite Terre59                                                              | )  |

| 4. Synthèse à l'échelle du Nord-Est de Mayotte      | 65 |
|-----------------------------------------------------|----|
| 4.1. LA COUPE GEOLOGIQUE INTERPRETATIVE DE SYNTHESE |    |
| 4.2. POTENTIEL HYDROGEOLOGIQUE                      | 70 |
| 4.2.1.Formations sédimentaires                      | 70 |
| 4.2.2.Formations volcaniques                        | 70 |
| 5. Conclusion                                       | 75 |
| 6. Références bibliographiques                      | 77 |

## Liste des illustrations

| Illustration 1 - Carte des itinéraires parcourrus lors des reconnaissances géologiques de terrain réalisées dans le cadre de l'étude                                            | 18 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Illustration 2 – Conductivités électriques des émergences du massif du M'Tsapéré                                                                                                | 19 |
| Illustration 3 - Carte de localisation des nouveaux profils de géophysiques et des précédents profils                                                                           | 30 |
| Illustration 4 – Localisation du secteur d'étude de la vallée de la Kwalé, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)        | 33 |
| Illustration 5 - Coupe de résistivité interprétée. Site de Kwalé (ancien village)                                                                                               | 33 |
| Illustration 6 - Coupe de résistivité interprétée. Site de Kwalé Légion, profils A et B et coupe de forage de Kwalé1                                                            | 34 |
| Illustration 7 - Localisation du secteur d'étude de la vallée de Gouloué, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)         | 37 |
| Illustration 8 - Coupes de résistivité interprétée. Site de Gouloué, profils A et BC et coupe de forage de Gouloué.                                                             | 37 |
| Illustration 9 – Localisation du secteur d'étude de la vallée de la Doujani des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)       | 40 |
| Illustration 10 - Coupes de résistivité interprétée. Site de Doujani (P5) (2007)                                                                                                | 40 |
| Illustration 11 – Localisation du secteur d'étude de la vallée de la Majimbini, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)   |    |
| Illustration 12 - Coupes de résistivité interprétée. Site de Mtsapéré, profils Mtsap 1 et Majimbini (2001)                                                                      | 43 |
| Illustration 13 - Localisation du secteur d'étude de Kawéni – Kawénilajoli, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)       | 46 |
| Illustration 14 - Coupe de résistivité interprétée. Site de Kawéni, profil Kawéni A (2003)                                                                                      | 46 |
| Illustration 15 - Coupe de résistivité interprétée. Site de Kawéni, profil Kawéni B (2003)                                                                                      | 47 |
| Illustration 16 - Coupe de résistivité interprétée. Site de Kawéni, profil Kawéni C (2003)                                                                                      | 47 |
| Illustration 17 - Coupe de résistivité interprétée. Site de Kawénilajoli, profil P2 (2007)                                                                                      | 48 |
| Illustration 18 - Localisation du secteur d'étude de Majikavo Koropa / Bandrajou, de l'émergence, et tracés des profils géophysiques (extrait de la carte lithologique).        | 49 |
| Illustration 19 - Coupe de résistivité interprétée. Site de Bandrajou, profil P1 (2007)                                                                                         | 50 |
| Illustration 20 : Localisation du secteur d'étude de Koungou / Trévani / Kangani, des forages, émergences et tracés des profils géophysiques (extrait de la carte lithologique) | 52 |
| Illustration 21 - Coupe de résistivité interprétée sur le site de Kangani et coupe géologique du forage de Kangani 1 (12307X0117)                                               | 52 |
| Illustration 22 - Coupe de résistivité interprétée. Site de Kangani (P3 -2007).                                                                                                 | 53 |
| Illustration 23 - Coupe de résistivité interprétée. Site de Koungou (P4 -2007)                                                                                                  | 53 |
| Illustration 24 : Localisation du secteur d'étude de Miangani / Longoni, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)          | 55 |
| Illustration 25 - Coupe de résistivité interprétée. Site de Longoni (2005).                                                                                                     | 56 |
| Illustration 26 - Coupe de résistivité interprétée. Site de Longoni Tririni (2005)                                                                                              | 56 |
| Illustration 27 - Coupe de résistivité interprétée. Site de M'Gombani (P6 -2007)                                                                                                | 57 |
| Illustration 28 – Coupe géologique interprétative de Petite Terre                                                                                                               | 63 |

# Liste des annexes

| Annexe 1 | Tableau de description des affleurements                  | . 81 |
|----------|-----------------------------------------------------------|------|
| Annexe 2 | Observation des échantillons à la loupe binnoculaire      | . 95 |
| Annexe 3 | Cartes d'affleurements                                    | 101  |
| Annexe 4 | Coupes des forages disponibles dans la zone d'étude       | 107  |
| Annexe 5 | Rapport d'étude de Stratagem074                           | 123  |
| Annexe 6 | Localisations géographiques des lames minces              | 125  |
| Annexe 7 | Carte lithologique interprétative du massif du M'Tsapéré  | 129  |
| Annexe 8 | Coupes géologiques interprétatives du massif du M'Tsapéré | 131  |

### 1. Introduction

Afin de répondre aux nouvelles normes environnementales de la Directive Cadre Européenne sur l'eau, la Collectivité Départementale de Mayotte a engagé les études nécessaires à l'identification et à la caractérisation détaillée des masses d'eau souterraine dans le but de préciser la délimitation des masses d'eau et leur fonctionnement dans un secteur précis, en l'occurrence le Nord Est de Mayotte et Petite Terre.

En effet, soumise à une très forte pression démographique et urbaine, cette partie de l'île est probablement la plus intéressante au point de vue de son potentiel hydrogéologique. Il importe donc d'identifier les aquifères les plus prometteurs afin d'être en mesure de les protéger, tant d'un point de vue quantitatif que qualitatif comme le préconise la DCE mais aussi dans l'espoir d'identifier de nouveaux secteurs propices au développement de formations aquifères.

Cette étude peut donc se voir comme une synthèse géologique et hydrogéologique du Nord Est de l'île dont les résultats permettront à la fois de préciser la caractérisation des masses d'eau souterraine secteur par secteur et à plus grande échelle d'établir un modèle conceptuel des formations aquifères en contexte volcanique altéré avec l'objectif concret de mieux cibler les ressources en eau souterraine potentielles et de mettre sur pied les stratégies de surveillance et/ou des programmes d'action préconisée par la DCE.

Une cartographie géologique et hydrogéologique de l'ensemble de Petite Terre et du Secteur de Tsoundzou-Koungou qui comprend les bassins versants des principaux cours d'eau suivants, du sud vers le Nord-Ouest : Kwalé, Gouloué, Doujani, Majimbini, Kawénilajoli, bassins versants côtiers de Majicavo, Koungou, Trévani et Mro oua Kangani constituera le document de synthèse de la présente étude (documents hors texte).

# 2. La caractérisation des masses d'eau souterraine ; un objectif de la DCE

Au sens européen, une masse d'eau est définie comme : « un volume distinct d'eau souterraine à l'intérieur d'un ou plusieurs aquifères ».

La Directive Cadre européenne sur l'Eau (DCE) d'octobre 2000 impose aux états membres de caractériser leurs masses d'eau respectives (identification, délimitation et description des propriétés des masses d'eau par district hydrographique) afin de mettre en place un programme de surveillance de l'état de la ressource.

Les objectifs imposés par la Directive sont de maintenir ou le cas échéant d'atteindre le bon état qualitatif et quantitatif des ressources en eau souterraines, à l'échéance 2015.

Le calendrier imposé aux états membres par la DCE est résumé ainsi.

- Dresser un état des lieux de l'ensemble des ressources en eau des districts pour fin 2004. ce qui sous-entend qu'à cette date les masses d'eau ont été définies dans le détail;
- 2. Définir et mettre en place les programmes de surveillance appropriés en 2006 ;
- 3. Etablir des plans de gestion et programme de mesures adaptés pour 2009.

A Mayotte, le statut particulier de la Collectivité d'Outre Mer ainsi que la connaissance générale encore limitée des ressources en eau souterraine entraîne la nécessité d'un délai supplémentaire à l'application de la DCE.

Dans ce sens, la présente étude répond à un volet de la démarche préconisée par la DCE, dont les étapes peuvent être déclinées ainsi.

### 2.1. CARACTERISATION INITIALE

Il s'agit d'une identification et délimitation des masses d'eau souterraine en précisant celles qui sont trans-districts et transfrontalières (les notions de masses d'eau trans-districts et transfrontalières ne concernent pas l'île de Mayotte).

Ce volet a été traité par le bureau d'études ASCONIT lors de l'élaboration de l'état des lieux du SDAGE de Mayotte, validé le 10 octobre 2007 (ASCONIT 2006). Ainsi, 6 masses d'eau ont été définies (emplacement et limites) sur l'île sur la base de critères hydrologiques, géologiques, pédologiques, sur celui de l'utilisation des sols, des rejets, des captages ainsi que d'autres paramètres :

- les pressions auxquelles la ou les masses d'eau souterraine sont susceptibles d'être soumises, y compris:
- les sources de pollution diffuses,
- les sources de pollution ponctuelles,

- le captage,
- la recharge artificielle,
- le caractère général des couches supérieures de la zone de captage dont la masse d'eau souterraine reçoit sa recharge,
- les masses d'eau souterraine pour lesquelles il existe des écosystèmes d'eaux de surface ou des écosystèmes terrestres directement dépendants.

Le découpage des masses d'eau suit celui des unités volcaniques (comme préconisé par la DCE en environnement volcanique) et permet en premier lieu de distinguer des grands ensembles hydrogéologiques.

Au terme de cette caractérisation initiale, le principal risque identifié de non atteinte du bon état chimique en 2015 à Mayotte concerne les masses d'eau souterraine soumises aux pressions d'origine domestique (principalement la masse d'eau de Petite Terre) et la masse d'eau alluvionnaire en raison du développement industriel sur les terrains sus-jacents.

La mise en évidence du risque de dégradation de la quantité et/ou qualité de la ressource en eau par masse d'eau à Mayotte constitue le premier volet de la démarche imposée par l'application de la DCE.

### 2.2. CARACTERISATION PLUS DETAILLEE

La caractérisation initiale donne un aperçu des ensembles hydrogéologiques de l'île ainsi que du risque global de non atteinte du bon état chimique et écologique à l'horizon 2015.

La caractérisation plus détaillée de ces masses ou groupes de masses d'eau souterraine permet, dans le cadre de la DCE et de la connaissance des ressources en eau d'évaluer plus en détail le potentiel hydrogéologique à l'échelle de vallée ou de secteurs propices par exemple, de préciser l'importance du risque de non atteinte du bon état et de mieux mettre en place des stratégies de suivi de la ressource.

Cette caractérisation plus détaillée des masses ou groupes de masses d'eau souterraine comprend :

- les caractéristiques géologiques de la masse d'eau souterraine, y compris l'étendue et le type des unités géologiques.
- les caractéristiques hydrogéologiques de la masse d'eau souterraine, y compris la conductivité hydraulique, la porosité et le confinement,
- les caractéristiques des dépôts superficiels et des sols dans la zone de captage dont la masse d'eau souterraine reçoit sa recharge, y compris l'épaisseur, la porosité, la conductivité hydraulique et les propriétés d'absorption des dépôts et des sols,
- les caractéristiques de stratification de l'eau souterraine au sein de la masse,
- un inventaire des systèmes de surface associés, y compris les écosystèmes terrestres et les masses d'eau de surface auxquels la masse d'eau souterraine est dynamiquement liée (sources, marécages, mangrove, etc.)
- des estimations des directions et taux d'échange de l'eau entre la masse souterraine et les systèmes de surface associés (échange rivières/nappes, intrusion marine),

 des données suffisantes pour calculer le taux moyen annuel à long terme de la recharge totale, la caractérisation de la composition chimique des eaux souterraines, y compris la spécification des contributions découlant des activités humaines.

A Mayotte, afin de répondre aux principaux objectifs de la caractérisation détaillée des masses d'eau du Nord Est préconisée par la DCE, les travaux menés synthétiseront les investigations et réflexions portées sur le modèle géologique et hydrogéologique des formations aquifères du Nord Est de l'île et de Petite Terre.

## 3. Méthodologie et résultats

### 3.1. PHASE 1 - SYNTHESE DES DONNEES

Une synthèse des données a été réalisée sur le secteur du Nord Est de Mayotte. Ces données sont notamment issues des cartographies disponibles : cartographies géologiques et/ou lithologiques (Stieljes, 1988 ; Debeuf, 2004;), géophysiques et hydrogéologiques disponibles sur ou à proximité de la zone d'étude, cartographies issues des campagnes de reconnaissance hydrogéologique précédentes (forages, géophysique, etc.). Les documents relatifs à cette synthèse sont présentés au fil du texte du rapport.

En fonction de la synthèse des données, le dimensionnement des investigations à mettre en œuvre sur les secteurs concernés a été déterminé.

# 3.2. PHASE 2 - PROSPECTION GEOLOGIQUE ET HYDROGEOLOGIQUE DE TERRAIN

Des prospections géologique et hydrogéologique de terrain ont été menées afin de recueillir de nouvelles informations sur la zone d'étude en complément des reconnaissances géologiques et hydrogéologiques réalisées antérieurement :

- la reconnaissance géologique de terrain a consisté à établir une description macroscopique des affleurements en effectuant, entre autres, des levés de coupe dans les thalwegs (lithologie, géométrie des formations géologiques, fissuration, prismation, degré d'altération et nature de cette altération, etc.) et à prélever des échantillons. Les observations géologiques de terrain ont été quasi exclusivement réalisées à pied, principalement le long des thalwegs (principaux et secondaires) qui constituent les principales zones d'affleurement dans le contexte spécifique de Mayotte (Illustration 1).
  - Le long des thalwegs, les affleurements sont quasi continus et ont été relevés de manière exhaustive. Ainsi, l'absence d'affleurement identifié le long d'un itinéraire emprunté lors des reconnaissances de terrain constitue souvent, en tant que telle, une information pertinente. Elle peut traduire la présence de formations superficielles, alluviales notamment, masquant le substratum, la présence d'altérites, de formations géologiques saines mais peu compétentes, etc.
- 2. la reconnaissance hydrogéologique de terrain a été axée sur l'identification des différents types de venues d'eau souterraine et notamment la définition du contexte d'émergence des eaux souterraines, les interactions eaux souterraines/eaux de surface (zones d'apport d'eaux souterraines, zones de pertes des eaux de surface). Elle s'est appuyée sur des observations et mesures de terrain : évaluation du débit des émergences d'eau souterraine et des cours d'eau et des variations spatiales du débit de ces derniers, mesures de la conductivité électrique des eaux de surface et éventuellement des venues d'eau souterraine (illustration 2).



Illustration 1 - Carte des itinéraires parcourrus lors des reconnaissances géologiques de terrain réalisées dans le cadre de l'étude

La minute de terrain comprend notamment une description macroscopique des affleurements (lithologie, géométrie des formations géologiques, fissuration, prismation, degré d'altération, etc.); elle indique si un échantillon a été prélevé, dans quel contexte. La description des affleurements observés sur le terrain est rapportée dans le tableau de l'annexe 1. Les cartes d'affleurements figurent en annexe 3.

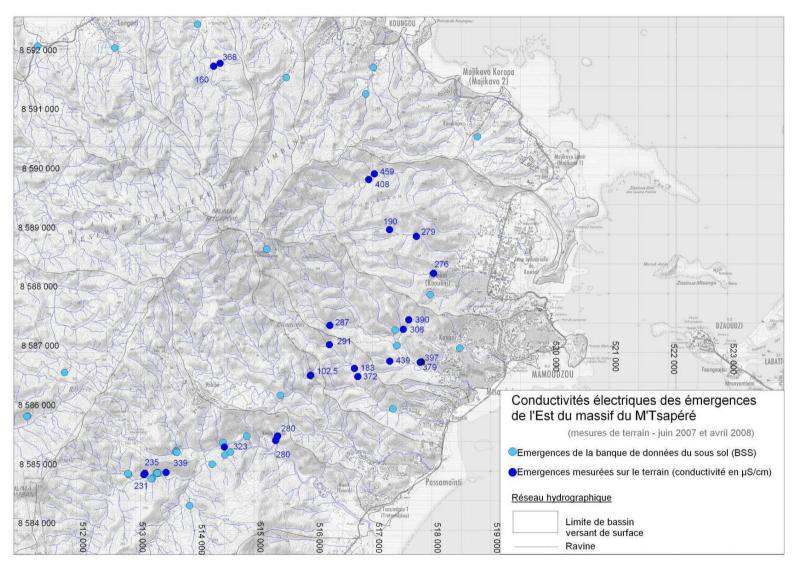



Illustration 2 – Conductivités électriques des émergences du massif du M'Tsapéré

#### 3.3. PHASE 3 – ANALYSE ET INTERPRETATION DES DONNEES

L'interprétation des données permet d'établir une première esquisse géologique et lithologique et contribue à la définition de l'emplacement de profils géophysiques destinés à valider et/ou améliorer ce premier modèle conceptuel. La méthodologie mise en œuvre est la suivante :

- description détaillée de la lithologie des échantillons à la loupe binoculaire, choix d'échantillons représentatifs et réalisation de lames minces, détermination pétrographique sur lames minces;
- recherche de relations lithologie/altération/morphologie, recoupement des données de subsurface avec les coupes géologiques des forages et les profils géophysiques des campagnes précédentes;
- établissement d'un ou de plusieurs logs géologiques synthétiques pour l'ensemble de la zone d'étude, permettant notamment de proposer une synthèse lithostratigraphique;
- 4. sur cette base, proposition d'un modèle géologique des secteurs étudiés, réalisation d'une carte de faciès lithologique de la zone d'étude et établissement de coupes géologiques longitudinales au sein de chaque vallée et transversales de vallée à vallée;
- 5. synthèse des données hydrologiques et hydrogéologiques recueillies (cartographie de la conductivité et des zones d'émergence notamment) et confrontation au modèle géologique d'une part pour disposer d'informations complémentaires destinées à le renforcer et, d'autre part, pour hiérarchiser le potentiel aquifère des différentes formations;
- 6. définition de l'emplacement de profils géophysiques complémentaires destinés à confirmer ou infirmer les données existantes et hypothèses retenues (de surface et de subsurface) dans les secteurs où ces nouvelles investigations sont supposées avoir une valeur ajoutée maximale et sont faisables techniquement.

La démarche proposée constitue d'un processus d'identification itératif des principaux faciès lithologiques et de caractérisation de la géométrie des formations considérées, à objectif hydrogéologique. Il ne s'agit donc pas d'une cartographie géologique au sens strict qui s'attacherait à définir avec précision la nature exacte des processus à l'origine de ces formations, qui utiliserait à cet effet des méthodes de datation, de géochimie, etc.

### 3.3.1. Synthèse des données pétrographiques et des datations

L'objectif était de constituer un référentiel litho-stratigraphique cohérent à l'échelle du Nordest de l'île de Mayotte et de disposer notamment de critères pétrographiques les plus objectifs possibles pour l'identification macroscopique des différents faciès afin de mener, in fine, le travail de cartographie.

Les principales données suivantes ont été utilisées :

 la description pétrographique de 13 lames minces réalisées sur des échantillons prélevés au cours de la première phase du projet et sélectionnés pour leur représentativité (Stratagem 974; 2008);

- les données et résultats de la thèse de Debeuf (2004) :
  - a) la « cartographie lithologique de la cote Nord-est de l'île de Mayotte » ;
  - b) les descriptions pétrographiques, bien que la localisation des échantillons ne soit pas définie avec précision. Néanmoins, compte tenu de la connaissance géologique du secteur et des affleurements les plus accessibles connus, il a été possible d'attribuer avec certaines précautions les descriptions pétrographiques à des lithologies types;
  - c) les datations : nouvelles datations réalisées par Debeuf et synthèse des travaux antérieurs. La précision de la localisation des échantillons est du même ordre que celle déjà mentionnée ci-dessus. Néanmoins, les échantillons datés par Debeuf (2004) peuvent être rattachés à une description pétrographique précise (les numéros d'échantillons sont connus).

# 3.3.2. Description des lithologies observées sur le terrain et à la loupe binoculaire

Les échantillons recueillis sur le terrain ont été observés à la loupe binoculaire. Ces descriptions sont rassemblées dans le tableau de l'annexe 2. Elles ont consisté à définir principalement la texture, la minéralogie et le degré d'altération de la roche, à en déduire des lithotypes et à effectuer des regroupements d'échantillons (attribution de plusieurs échantillons à un même lithotype).

A partir de la synthèse des observations et interprétations menées à partir des documents existants, à l'échelle du terrain (les cartes d'affleurements sont présentés en Annexe), de l'échantillon (observation à la loupe binoculaire, y compris sur des échantillons en provenance des forages existant) et de la lame mince, plusieurs faciès lithologiques ont été définis (Tableau 1). Ils sont organisés des formations supposées les plus anciennes au plus récentes. En l'absence de datations de l'ensemble des formations géologiques, la chronologie de mise en place a aussi été établie sur la base de critères géométriques et géomorphologiques.

Deux grands ensembles lithologiques ont été identifiés :

- les formations rattachées à l'activité du M'Tsapéré,
- les terrains plus anciens, indifférenciés dans le cadre du projet, sur lesquels se sont mises en place les formations plus récentes décrites ci-dessus.

| Ensemble<br>géologique /<br>dénomination<br>retenue                                                | Indice<br>BRGM<br>(carte) | Dénomination<br>Stratagem974<br>(lames min-<br>ces)                                         | Dénomination<br>Debeuf (2004)                                                       | Age<br>absolu<br>(Ma) <sup>2</sup> | Description<br>pétrographique<br>macroscopique<br>(Stratagem974<br>et Debeuf,<br>2004)                                                                                                                                                                                   | Principaux<br>critères rete-<br>nus pour<br>l'identification<br>macroscopi-<br>que <sup>3</sup> | Remarques                                                                                                                                |
|----------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| IV. Volca-<br>nisme récent                                                                         |                           |                                                                                             | Basalte (M53 –<br>Pte Mahabo ;<br>M72 Pte Ha-<br>mada ; M73<br>(carrière ?)         | ≤ 0.15                             | M53 : Basalte<br>porphyrique à<br>olivine<br>M72, M73 :<br>Basalte aphyri-<br>que                                                                                                                                                                                        |                                                                                                 |                                                                                                                                          |
| Volcanisme<br>explosif de<br>Kaweni. Cô-<br>nes de scories<br>récents et<br>coulées asso-<br>ciées |                           |                                                                                             |                                                                                     |                                    |                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                                                                                          |
| III. Mtsapéré<br>Nord                                                                              |                           |                                                                                             |                                                                                     |                                    |                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                                                                                          |
| Phonolite                                                                                          |                           | -                                                                                           | Phonolite (M76<br>Koungou)                                                          |                                    | M76 : Phonolite<br>porphyrique à<br>feldspath potas-<br>sique ± amphi-<br>bole brune                                                                                                                                                                                     |                                                                                                 |                                                                                                                                          |
| Tephrite                                                                                           | Тер                       | Mugéarite (435<br>Kawéni ; 289<br>Kawénilajolie)                                            | Téphrite                                                                            | 1.35                               | S974 : Texture microlithique. Quelques rares phénocristaux opaques. Microlithes de plagioclase                                                                                                                                                                           | Texture microli-<br>thique (critère<br>pertinent ?)                                             | La dénomination<br>téphrite a été privi-<br>légiée en raison de<br>la présence de<br>feldspathoïdes.<br>Datation à l'Ouest<br>de Trévani |
|                                                                                                    |                           | Trachyandésite<br>(BM12 Kanga-<br>ni ; BM18<br>Kangani ;<br>MY17 Rte<br>Convalescen-<br>ce) | Téphrite<br>(M123, Ouest<br>Trévani ; M31<br>Pte W Kanga-<br>ni)                    |                                    | S974: Texture porphyrique, mésostase microlithique (plagioclases). Phénocristaux d'amphibole s.s. ou brune (10%), de clinopyroxène (5%) et de leucite/néphéline (5% à non décrite/absente) DD: M123: Téphrite porphyrique à amphibole brune, ± pyroxène, ± fath. alcalin | Amphibole,<br>feldspathoïdes,<br>texture porphy-<br>rique.                                      |                                                                                                                                          |
| Basalte à pyroxène, amphibole et olivine                                                           | β3                        |                                                                                             | Téphrite (M4<br>Convalescence<br>bas; M75<br>(Koungou,<br>bord RN;<br>M122 Kangani) | 2.32                               | DD: M4, M75,<br>M122: téphrite<br>porphyrique à<br>pyroxènes, ±<br>olivine± amphi-<br>bole                                                                                                                                                                               |                                                                                                 | Datation : Kawé-<br>ni/Convalescence<br>(bas)                                                                                            |
| II. Maéva-<br>doani                                                                                |                           |                                                                                             |                                                                                     |                                    |                                                                                                                                                                                                                                                                          |                                                                                                 |                                                                                                                                          |
| -                                                                                                  |                           |                                                                                             | Tephrite (M56<br>Maévadoani)                                                        | 1.41                               | DD : Tephrite<br>porphyrique à<br>amphibole                                                                                                                                                                                                                              |                                                                                                 | Datation effectuée<br>au sommet du<br>relief.                                                                                            |

<sup>.</sup> 

<sup>&</sup>lt;sup>2</sup> Données et dénomination extraites de Debeuf (2004)

<sup>&</sup>lt;sup>3</sup> OI : Olivine – CPX : clinopyroxène – fath : feldspath

| Ensemble<br>géologique /<br>dénomination<br>retenue | Indice<br>BRGM<br>(carte)    | Dénomination<br>Stratagem974<br>(lames min-<br>ces)                                                                           | Dénomination<br>Debeuf (2004)                                        | Age<br>absolu<br>(Ma) <sup>2</sup> | Description<br>pétrographique<br>macroscopique<br>(Stratagem974<br>et Debeuf,<br>2004)                                                                                                        | Principaux<br>critères rete-<br>nus pour<br>l'identification<br>macroscopi-<br>que <sup>3</sup>                                      | Remarques                                                                                                                |
|-----------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|                                                     |                              |                                                                                                                               |                                                                      |                                    | brune, ± py-<br>roxène, ± fath.<br>Alcalin                                                                                                                                                    |                                                                                                                                      |                                                                                                                          |
| Basalte à pyroxène et olivine                       | β2<br>(Maé-<br>va-<br>doani) | Ankaramite<br>(Echant. 4)                                                                                                     |                                                                      | ≥ 1.41                             | S974: Lave mélanocrate. Texture porphyrique, mésostase microlithique (plagios). Phénocristaux de clinopyroxène (5%), Olivine (1%).                                                            | Phénocristaux<br>(CPx, OI.) moins<br>abondants que<br>dans β2 (critère<br>peu pertinent).                                            |                                                                                                                          |
| I. Mtsapéré<br>Sud                                  |                              |                                                                                                                               |                                                                      |                                    |                                                                                                                                                                                               |                                                                                                                                      |                                                                                                                          |
| Phonolite                                           |                              |                                                                                                                               | Phonolite<br>(Echant M58<br>Doujani ; M103<br>Mlima Comba-<br>ni)    | 0.8                                | DD : Phonolite<br>aphyrique mi-<br>crolithique<br>(M58)<br>Phonolite por-<br>phyrique à<br>néphéline et<br>feldspath potas-<br>sique (M103)                                                   |                                                                                                                                      | Datation à Doujani                                                                                                       |
| Basalte à<br>pyroxène,<br>amphibole et<br>olivine   | β3                           | Trachybasalte<br>(241 Majimbi-<br>ni ; 201 Majim-<br>bini)                                                                    |                                                                      |                                    | S974: Lave mélanocrate. Texture porphyrique fluidale, mésostase microlithique (plagios). Phénocristaux de clinopyroxène (15%), Olivine (1% à 5%) et amphibole brune (10% à 1%), opaques (1%). | Amphiboles,<br>ferromagnésiens<br>visibles à la<br>cassure (micro-<br>phénocristaux<br>qui miroitent),<br>pas de feldspa-<br>thoïdes | Datation à Kawéni<br>(S)                                                                                                 |
| Basaltes à pyroxène et olivine                      | β2                           | Ankaramite<br>(Echant.<br>35/Gouloué;<br>519 Majimbini-<br>Kawéni ; 279<br>Kawénilajolie;<br>53 Kougou;<br>MC52 Gomba-<br>ni) |                                                                      |                                    | S974: Lave mélanocrate. Texture porphyrique, mésostase microlithique (plagios). Phénocristaux de clinopyroxène (10%), Olivine (1 à 5, voire 10%). DD: Basanite                                | Absence d'amphibole. Présente un faciès d'altération clair et « grumeleux » masquant très souvent son caractère méla- nocrate.       | Faciès « sommital » : coulées épaisses dans paléovallées (Kawénilajolie) Faciès « basal » grumeleux. (critère empirique) |
|                                                     |                              |                                                                                                                               | Basanite<br>(M69 ; M74<br>Doujani littoral)<br>Basalte (M68<br>Idem) |                                    | porphyrique à Olivine et py- roxène  DD: Basalte porphyrique à olivine et py- roxène                                                                                                          |                                                                                                                                      |                                                                                                                          |
| Altérites                                           |                              |                                                                                                                               |                                                                      |                                    |                                                                                                                                                                                               |                                                                                                                                      | 10 à 30 m<br>d'épaisseur à<br>Gouloué                                                                                    |
| Pyroclastites<br>et laves inters-<br>tratifiées     |                              |                                                                                                                               |                                                                      |                                    | Gouloué 2 :<br>Lave mésocrate<br>pyroxène et<br>rares olivines,<br>mésostase<br>microlithique.<br>Gouloué 1 : lave                                                                            |                                                                                                                                      |                                                                                                                          |

| Ensemble<br>géologique /<br>dénomination<br>retenue | Indice<br>BRGM<br>(carte) | Dénomination<br>Stratagem974<br>(lames min-<br>ces) | Dénomination<br>Debeuf (2004) | Age<br>absolu<br>(Ma) <sup>2</sup> | Description<br>pétrographique<br>macroscopique<br>(Stratagem974<br>et Debeuf,<br>2004) | Principaux<br>critères rete-<br>nus pour<br>l'identification<br>macroscopi-<br>que <sup>3</sup> | Remarques |
|-----------------------------------------------------|---------------------------|-----------------------------------------------------|-------------------------------|------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------|
|                                                     |                           |                                                     |                               |                                    | mélanocrate,                                                                           |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | pyroxène et olivine.                                                                   |                                                                                                 |           |
| Formations no                                       | n identifié               | es à l'affleuremer                                  | ıt                            |                                    | Onvine.                                                                                |                                                                                                 |           |
|                                                     | <br>                      |                                                     |                               |                                    | Kwalé 1 et 3 :                                                                         |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | lave mélano-                                                                           |                                                                                                 |           |
| Basalte à                                           |                           |                                                     |                               |                                    | crate. Texture                                                                         |                                                                                                 |           |
| olivine et                                          |                           |                                                     |                               |                                    | porphyrique.                                                                           |                                                                                                 |           |
| pyroxène                                            |                           |                                                     |                               |                                    | Phénocristaux                                                                          |                                                                                                 |           |
| pyroxerie                                           |                           |                                                     |                               |                                    | d'olivine (jusqu'à                                                                     |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | 30 à 40% - K1)                                                                         |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | et de pyroxène.                                                                        |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | Kwalé 2 : cen-                                                                         |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | dres (7 m)                                                                             |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | basalte sombre                                                                         |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | à olivine, feld-                                                                       |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | spath et py-<br>roxène (7-22m),                                                        |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | basalte gris, très                                                                     |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | riche en py-                                                                           |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | roxène et olivine                                                                      |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | (40% de la                                                                             |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | roche) (C1 : 22-                                                                       |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | 35 ; C2 : 35-46 ;                                                                      |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | C3:46-67),                                                                             |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | paléosol, ba-                                                                          |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | salte à py-                                                                            |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | roxène, olivine                                                                        |                                                                                                 |           |
|                                                     |                           |                                                     |                               |                                    | et feldspath (67-                                                                      |                                                                                                 |           |
|                                                     | <u> </u>                  |                                                     |                               |                                    | 70)                                                                                    |                                                                                                 |           |
| Nota: les forma                                     | itions pyro               | clastiques interstra                                | itifiées, cônes de s          | cories, etc                        | . ne sont pas mentio                                                                   | nnés au sein de ce                                                                              | tableau   |

Tableau 1 – Synthèse pétrographique du secteur du M'Tsapéré

### a) Substratum

Formation composée de coulées de lave (basalte) altérées et zéolitisées, de cendres et de pyroclastites interstratifiées. Cette formation, dont la géométrie n'a pas été définie, affleure de manière généralisée dans les parties basses des vallées de la Kwalé et de la Gouloué et, très localement, dans la vallée de la Majimbini. Les terrains recoupés par les forages de Gouloué 1 et 2 et Kwalé 2 lui sont attribués.

Le forage Gouloué 1 (1230-7X-0045) recoupe, sous 25 m de formations volcaniques altérées<sup>4</sup>, une succession de coulées de lave (2 à 6 m) intercalées de formations pyroclastiques (4 à 11 m), la proportion de ces dernières par rapport aux coulées de lave augmente avec la profondeur. Des cendres sont recoupées sur les 25 derniers mètres de l'ouvrage (89 m de profondeur) (Lachassagne *et al.*, 2002).

Les horizons perméables identifiés sur ce forage correspondent aux niveaux scoriacés situés à la base de chaque coulée. Un débit maximal d'exploitation de 8 m³/h a été déterminé.

Le forage de Kwalé 2 (1230-7X-0023) est majoritairement constitué de basaltes hydrothermalisés, peu productifs.

Dans le cadre de la présente étude, il n'a pas été envisagé de distinguer les géométries et lithologies complexes du substratum du M'Tsapéré. Toutefois, il est probable que le fréquent modèle volcanique de paléovallée et d'inversion de relief soit préservé.

### b) Formations rattachées au système sud (Maévadoani)

Les formations issues du secteur du Maévadoani se localisent principalement dans le secteur du flanc sud de la vallée de la Kwalé. Il s'agit principalement des formations suivantes :

- une formation basaltique à olivine et pyroxène (β6). Elle affleure sur les flancs ouest et nord du Mlima Maévadoani et sur les flancs du relief situé à l'Ouest de celui-ci et culminant à 235 m d'altitude. Au droit du Mlima Maevadoani, cette formation comble très probablement une paléovallée orientée vers le NNE qui plonge sous la vallée actuelle au niveau des forages de Kwalé. Elle reposerait sur le substratum ancien. Cette formation est saine et fissurée (prismée) dans la rivière de la Kwalé où elle affleure entre les côtes +110 et +130 m NGM (captage d'eau de la rivière);
- une formation basaltique à gros pyroxène (trachybasalte β7) dont les coulées sont totalement démantelées. De très nombreux blocs sont situés sur une partie du flanc Ouest du Mlima Maévadoani entre les côtes +150 et +250 m NGM.

Les formations du forage Kwalé 1 sont attribuées au Maévadoani, ou du moins à une zone au contact, influencée par ce volcanisme. La limite entre le volcanisme du M'Tsapéré et celui du Maévadoani se localise sous l'actuel Mro Oua Kwalé.

Les téphrites du Maévadoani sont datées à 1.41 Ma (Debeuf, 2004). Il est probable que cet échantillon soit représentatif d'une phase récente du volcanisme de ce massif car il a été vraisemblablement prélevé en surface dans un secteur assez élevé en altitude. Il reste envi-

<sup>&</sup>lt;sup>4</sup> L'identification de formations altérées décamétriques sus-jacentes à des laves constitue un premier indice de la présence de substratum.

sageable que le volcanisme des massifs du M'Tsapéré et du Maevadoani soient pseudocontemporains.

### c) Formations rattachées au système du M'Tsapéré

<u>Une formation basaltique à gros pyroxène ( $\beta 2$ )</u>. Il s'agit de coulées de basalte mélanocrate à mésocrate à texture granuleuse, riche en pyroxènes de taille infra millimétrique à millimétrique. Elle affleure majoritairement en pied de versant. Cette formation s'est mise en place sous la forme de coulées massives d'une dizaine de mètres d'épaisseur qui ont comblés des paléovallées antérieures<sup>5</sup>. Elle se présente le plus souvent sous la forme de formations décamétriques saines et fissurées et présente fréquemment en base de coulées des niveaux de scories ou de pyroclastites métriques. L'épaisseur cumulée de cette formation peut atteindre une centaine de mètres environ (d'après données de géophysiques). Le plus souvent, on la retrouve sous forme altérée en aval des vallées, là où elle a été plus exposée à l'altération météorique. Dans la vallée de Kawénilajoli et dans l'amont de la Kawéni, elle présente souvent un débit en plaquettes. Dans les vallées de la Kwalé, la Gouloué, la Doujani et la Majimbini, ces coulées de laves reposent directement sur le substratum hydrothermalisé.

<u>Une formation basaltique à olivines, pyroxènes et amphibole (β3)</u>. Il s'agit de coulées de basalte mésocrate, riches en ferromagnésiens tels que l'olivine, le pyroxène et l'amphibole. Cette formation est constituée de plusieurs coulées massives d'épaisseur décamétrique environ. L'épaisseur globale de la formation peut-être estimée à 50 mètres environ. Elle repose le plus souvent sur des formations pyroclastiques d'épaisseur décimétrique à métrique ou directement sur le basalte à gros pyroxène. Ce faciès affleure dans toutes les vallées prospectées.

Au Sud du secteur d'étude, elle arme très fréquemment les reliefs (paléovallées en inversion de relief). Au Nord, elle affleure moins fréquemment. L'édification radiaire du massif volcanique du M'Tsapéré semble être diachrone car le Nord du massif et le sud-est du massif semblent sont constitués de formations différentes.

Ces laves sont le plus souvent saines avec une fissuration sub-horizontale (figures de flux) et sub-verticale (figures de refroidissement) et présentent fréquemment en base de coulées des niveaux de scories. Cependant, quelques variations de faciès sont observées selon la localisation des affleurements. Au Sud, ces laves sont le plus souvent saines et fissurées, néanmoins, lorsqu'elles affleurent au sommet des reliefs (secteurs de Doujani-Kavani) elles se présentent sous la forme de laves altérées blanches mais denses<sup>6</sup>. Dans les vallées de Kawéni et Kawénilajoli, cette formation basaltique présente un débit en plaquette. Plus au Nord également les laves semblent être plus riches en petites amphiboles et peuvent être parfois aphyriques.

Toutes les formations citées ci-dessus correspondent au début de l'édification du massif volcanique du Mlima M'Tsapéré daté autour de 1.8 Ma. Ce volcan s'est édifié par effusions successives de laves qui montrent des alternances de basalte massif, de niveaux scoriacés et d'altérites (paléosol). Les coulées de laves présentent différents degrés d'altération selon leur position géographique et morphologique. Elles peuvent être complètement argilisées, altérées en boule ou saines.

.

<sup>&</sup>lt;sup>5</sup> Les géométries des paléovallées son variées : bords redressés et subverticales pour les cas visibles à l'affleurement. En ce qui concerne les flancs des paléovallées observés sur la géophysique, ces derniers semblent plus proches de l'horizontalité. Ce phénomène peut-être expliqué par le lissage relatif aux lignes de courant.

<sup>&</sup>lt;sup>6</sup> L'altération, et plus particulièrement l'hydrothermalisme, constitue une cause envisageable de ces évolutions de faciès.

Une formation basaltique supérieure ( $\beta$ '3) au basalte  $\beta$ 3 a été définie qui se distingue du faciès inférieur par la présence de phénocristaux de pyroxène, le rapprochant du faciès  $\beta$ 2 avec lequel il peut être confondu.

<u>Une formation basaltique de type Trachyandésite (α).</u> Cette formation se distingue des faciès inférieurs par la présence de nombreux plagioclases ainsi que d'une majorité de phénocristaux d'amphibole noyés dans une matrice compacte et l'absence complète de cristaux d'olivine. Sur le site d'étude, il s'agit d'une formation saine qui apparaît seulement en amont de Kawéni.

<u>Téphrite phonolitique (Tep)</u>. Il s'agit d'une lave souvent saine à matrice grise, leucocrate à mélanocrate à structure grenue dont la minéralogie est composée de cristaux de néphéline, de pyroxènes très abondants, d'amphiboles et rarement d'olivine. Elle se caractérise également par une patine d'altération superficielle de couleur grise. Cette formation est présente sur les reliefs de Kawéni et, au Nord, dans les vallées de Kangani, M'gombani et Longoni.

C'est une formation assez récente liée à l'intrusion des phonolites. Elle s'est mise en place sous la forme de coulées massives d'une dizaine de mètres d'épaisseur. L'épaisseur cumu-lée de cette formation peut atteindre une centaine de mètre environ. Au sein des zones prospectées, la base des coulées est le plus souvent scoriacée. Certains toits de coulées sont vacuolaires et sont surmontés d'un niveau de pyroclastites d'épaisseur décimétrique.

Ces formations arment le plus souvent les reliefs. Des variations de faciès sont observées selon les zones prospectées. Localement dans les ravines de Kangani et de M'Gombani cette formation peut être très riche en phénocristaux de pyroxène qui se présentent le plus souvent sous forme d'amas. Dans le reste du Nord, la téphrite est généralement plus riche en amphibole.

Phonolite (Phon): Il s'agit d'une lave intrusive visqueuse qui s'est mise en place tardivement et qui se présente le plus souvent sous la forme de dôme. C'est une roche mésocrate légèrement verdâtre. Elle est le plus souvent aphyrique mais présente parfois quelques rares cristaux visibles à l'œil nu, tel que la néphéline. Elle se caractérise également par une patine d'altération superficielle blanchâtre. La phonolite s'altère en kaolinite blanche que l'on retrouve dans la vallée de la Doujani. Sur les bordures des intrusions, l'influence de l'hydrothermalisme est souvent marquée. Les phonolites arment les hauts reliefs de la vallée de la Gouloué, de Doujani et de la Krissoni. La phonolite affleure également à la pointe de Longoni. L'épaisseur cumulée de cette formation n'a pas été déterminée. Cependant, la mise en place des phonolites sous forme de protrusion suggère des épaisseurs de plusieurs centaines de mètre.

La fin de l'édification du massif volcanique du M'Taspéré est donc marquée par une phase d'activité phonolitique avec des coulées de téphrite associées, datée autour de 1.5 Ma. Ces formations plus visqueuses se sont mises en place au sein de grandes fractures de l'édifice, donnant en surface, par exemple le dôme-coulée du Mlima Mtsapéré. Des extrusions plus locales se sont aussi mises en place (Doujani, Longoni, Mlima Combani).

Une formation basaltique récente de type Ankaramite  $(\beta\pi)$ . Cette formation se distingue des formations inférieures intermédiaires ou acides (téphrites, phonolites) par la présence de phénocristaux de clinopyroxène et d'olivine. A l'heure actuelle, cette formation a été reconnue en bordure du cratère de Kavani ainsi qu'en amont du cratère de Kawéni ou elle repose sur des coulées de téphrite.

Brèches polygéniques (Br): Cette formation pourrait être liée aux effondrements partiels du dôme de phonolite de Longoni (Deboeuf, 2004). Ces brèches affleurent uniquement dans ce

secteur. Toutefois, le faciès de brèche polygénique peut aussi être rattaché à des déstabilisations gravitaires en masse de type avalanche de débris.

### d) Formations liées à du volcanisme explosif

Un volcanisme explosif, mal daté, autour de 500 000 ans pour les manifestations les plus anciennes, avec des activités beaucoup plus récentes<sup>7</sup> a donné lieu à la construction de cônes de scories de type strombolien. Leurs sont associés de petites coulées, l'émission de pyroclastites (retombées et écoulements) et la construction de cratères de type maar. Les formations géologiques présentes sur Petite Terre seraient liées à la même dynamique explosive mais se seraient peut-être déposés lors d'une phase plus récente en raison de la migration vers l'Est de la chambre magmatique.

<u>Scories (Scr.)</u>: Ce sont des matériaux de projections liés à la mise en place de cône de scories. Les laves associées à ces projections sont très vacuolaires et poreuses et présentent une surface irrégulière. Ces formations affleurent localement dans la vallée de la Kwalé, dans le secteur de Kavani, de Kawéni et sur Petite-Terre. Les matériaux d'altération des scories se présentent sous la forme d'argiles rouges de couleur lie de vin.

<u>Pyroclastites (Pyr), cendres (Cend) et ponces (Ponc)</u>: Ce sont des dépôts de retombées liés à la dynamique explosive tardive des cratères de Kawéni, Kavani et Trévani sur Grande-Terre et des cratères de Petite-Terre (principalement le Dzihani Dzaha). Elles se sont mises en place à la suite de la série lavique éruptive du M'Tsapéré. Les pyroclastites sont fréquemment présentes à la base des principales coulées, sous forme de niveaux pyroclastiques lités, de couleur beige à jaunâtre, à éléments polygéniques libres. Les pyroclastites sont localement granoclassées et reposent parfois sur des surfaces rubéfiés rougeâtres. Les cendres (généralement différenciée des pyroclastites par leur granulométrie plus fine et un litage plus net) et les ponces (caractérisés par leur structure très poreuse et donc leur faible densité) affleurent essentiellement sur Petite Terre.

### e) Formations alluvionnaires récentes

Au cours de la période récente (depuis la fin de l'activité volcanique du M'Tsapéré), marquée d'une part par une moindre production de formations volcaniques et d'autre part, par les fluctuations eustatiques quaternaires, les formations géologiques sont principalement des dépôts fluviatiles (galets, sables, limons, etc.) qui ont comblé les incisions creusées par les cours d'eau lors des bas niveaux marins. Ces dépôts peuvent atteindre 45 mètres d'épaisseur (forages de Kawéni). Dans la partie aval des cours d'eau, ces dépôts alluvionnaires quaternaires sont interstratifiés de formations lagonaires de type « mangrove ».

-

<sup>&</sup>lt;sup>7</sup> Pour Kawéni, le volcanisme semble plus récent que la dernière incision quaternaire, soit 10 000 ans environ. Sur Petite-Terre un âge postérieur à 0.15 Ma est avancé par Debeuf (2004)

# 3.4. PHASE 4 – PROSPECTION GEOPHYSIQUE PAR PANNEAUX ELECTRIQUES

Les investigations géophysiques adaptées à la détermination de la géométrie en profondeur des formations géologiques repérées en surface est la méthode des panneaux électriques en courant continu. Cette méthode permet d'imager la résistivité électrique du sous-sol sous la forme d'une coupe 2D et, par analogie ou par calibration (forages, observations de surface), d'en déduire des informations sur la structure géologique et hydrogéologique en profondeur. Six profils de résistivité, d'une longueur moyenne de 750 m et d'une profondeur d'investigation de l'ordre de 120 m ont été réalisés sur la zone d'étude.

Les objectifs attendus par la méthode géophysique des panneaux électriques sont de :

- déterminer la géométrie en profondeur des formations géologiques repérées en surface. Par analogie ou par calibration avec les données de forages et les observations géologiques de surface, d'en déduire des informations sur la structure géologique en profondeur (incision en paléo-vallée, matériaux de remplissage : pyroclastite, alluvions ...).
- préciser et valider par la géométrie des contacts qui seront observés sur les profils les faciès géologiques repérés en surface.

### 3.4.1. Généralités

Dans la mesure du possible (accès, effets topographiques) les profils ont été implantés de manière perpendiculaire aux structures géologiques repérées en surface (perpendiculaire aux coulées ; Illustration 3) afin d'espérer obtenir des formes géométriques intéressantes par les panneaux électriques (paléo-vallée, contact résistant et conducteur...).

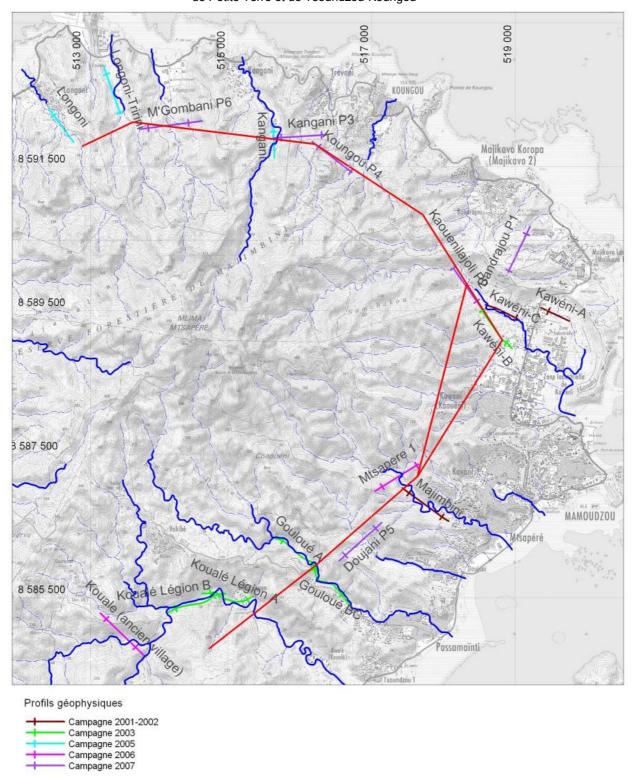



Illustration 3 - Carte de localisation des nouveaux profils de géophysiques et des précédents profils

### 3.5. PHASE 5 – SYNTHESE HYDROGEOLOGIQUE

La démarche a consisté à identifier les formations géologiques possédant des propriétés aquifères. Ces formations doivent être dotées d'une perméabilité originelle élevée (perméabilité d'interstices : principalement au sein des horizons scoriacés des laves et dans une moindre mesure, au sein de formations pyroclastiques remaniées, ou de fissures : figures de

flux et/ou de refroidissement des laves) et/ou d'une perméabilité secondaire significative (perméabilité de fractures). Ces différents types de perméabilité ne doivent pas avoir été oblitérés par des processus d'altération (climatique ou hydrothermale). La perméabilité des formations géologiques est qualifiée à partir des informations recueillies par forage à l'échelle de l'île et, de manière indirecte en général, à partir des observations effectuées au cours des reconnaissances géologiques, hydrologiques et hydrogéologiques de terrain et dans la mesure du possible, lors des prospections géophysiques.

La synthèse des données est présentée pour chaque secteur du Sud vers le Nord : Kwalé, Doujani, Majimbini, Kaouni, Kaouenilajoli, Majocavo-Koropa, Bandrajou, Koungou, Trévani, Kangani, Miangani/Longoni.

Les interprétations géologiques sont synthétisées sous la forme de cartes lithologiques et de coupes géologiques interprétatives du massif du M'Tsapéré (planche hors-texte). Les informations des données de terrain, des forages et des profils géophysiques ont servi à l'établissement des coupes. Certaines informations ont été légèrement déplacées afin d'être correctement projetées sur la coupe. Toutefois, l'agencement général des formations géologiques est conservé.

### 3.5.1. Vallée de la Kwalé

### a) Nature de la géologie et géométrie des formations

Les interprétations des profils géophysiques (Illustration 5 et Illustration 6) au droit des forages de Kwalé 1 et 3 sont les suivantes :

- En rive gauche : paléovallée comblée successivement d'un ensemble conducteur à éléments résistants : il s'agit probablement de pyroclastites à coulées interstratifiées<sup>8</sup> de lave, et dont la limite sud semble se trouver au droit du forage de Kwalé 1. Cette paléovallée serait orientée NO-SE, puis les formations β2 et β3 lui seraient susjacentes. La base des coulées β2 visibles à l'affleurement (au bord de la Kwalé) présente un faible pendage (vallées peu incisées);
- En rive droite, deux hypothèses peuvent être proposées :
  - O H1: paléovallée identique ou <u>paléovallée parallèle</u> à celle évoquée ci-dessus, fortement incisée, comblée par des produits plus anciens situés sous les pyroclastites et comprenant des coulées de vallée (Kwalé 3 et 1) reposant respectivement sur des alluvions et des hyaloclastites. La paléovallée de ces forages serait donc aussi orientée NO-SE et fossilisée par les formations du Maévadoani;
  - O H2: paléovallée beaucoup plus vaste, dont la limite serait le substratum conducteur située à l'ouest du profil géophysique B (Illustration 6) et qui serait comblée par des formations résistantes (de 150 à plus de 600 ohm.m) et des formations plus conductrices (50 à 150 ohm.m), restant tout de même dans une gamme de résistivités assez fortes. Cette paléovallée présenterait une orientation SSO NNE.
    - Toutefois, une contrainte apparaît : la datation du Maévadoani, localisée vers le haut du massif (Debeuf, 2004), concerne vraisemblablement des formations tardives et la partie ouest du relief est beaucoup plus ancienne.
- le système des paléovallées NO-SE du Mtsapéré débute en rive gauche de la Kwalé et il est partiellement masqué par le volcanisme du massif du Maévadoani.
- un substratum conducteur est identifié vers la cote 55 m NGM, ailleurs et jusqu'à des cotes de -100 m NGM environ, le substratum est résistant ou le substratum conducteur éventuel n'est pas atteint.

<sup>&</sup>lt;sup>8</sup> Pyroclastites à coulées de lave interstratifiées que l'on retrouverait aussi en rive droite de la Gouloué

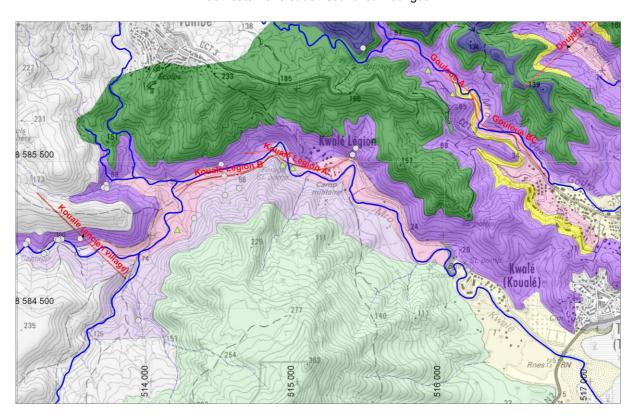



Illustration 4 – Localisation du secteur d'étude de la vallée de la Kwalé, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)

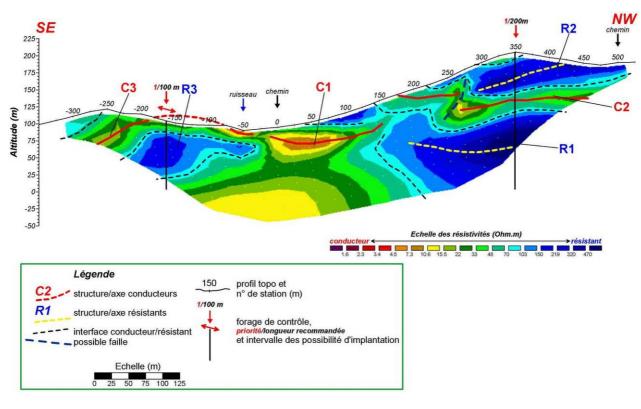



Illustration 5 - Coupe de résistivité interprétée. Site de Kwalé (ancien village)

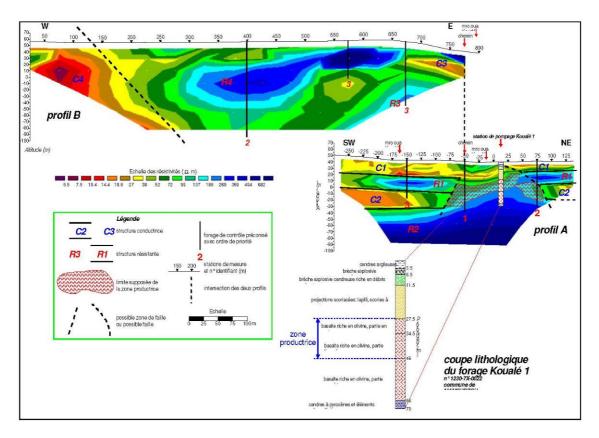



Illustration 6 - Coupe de résistivité interprétée. Site de Kwalé Légion, profils A et B et coupe de forage de Kwalé1.

### b) Caractérisation hydrogéologique de la vallée de la Kwalé

A la frontière entre le massif du Maévadoani et celui du M'Tsapéré, la vallée de la Kwalé présente un potentiel aquifère intéressant. Les ressources en eau se localisent au sein de paléovallées comblées par des coulées de laves. La productivité des ouvrages, récemment réévaluée (Guilbert *et al.*, 2008) est comprise entre 18 (Kwalé 3) et 80 m³/h (Kwalé 1) pour les secteurs aquifères. En ce qui concerne le piézomètre Kwalé 2 (productivité < 5 m³/h), il est vraisemblablement localisé à l'extérieur du système de paléovallées productive, c'est-à-dire dans le substratum du massif du M'Tsapéré. Les géométries et les lithologies propres au substratum ne sont pas distinguées dans le cadre de la présente étude.

La géométrie des aquifères correspond à la structure des paléovallées : la longueur est kilométrique, la largeur est estimée à quelques centaines de mètres sur une épaisseur aquifère de l'ordre de plusieurs dizaines de mètres.

Par ailleurs, de nombreuses venues d'eau ont été relevées dans le bassin de la Kwalé. La majorité de ces venues d'eau émerge au contact entre le substratum et les premières formations basaltiques sus-jacentes ( $\beta 2$  en rive gauche et  $\beta 6$  en rive droite). D'autres venues d'eau plus faibles ont été signalées directement dans les formations de  $\beta 2$ . Bien qu'il s'agisse d'informations ponctuelles, ces venues d'eau soulignent une potentialité hydrogéologique relativement importante du bassin.

Les modalités de recharge de l'hydrosystème souterrain du forage Kwalé 1 sont relatives à la présence de pertes vraisemblablement de façon diffuse dans le Mro Oua Kwalé (2.3 10<sup>5</sup> m³/an) et aux précipitations (3 10<sup>5</sup> m³/an) (Guilbert *et al.*, 2008). Par ailleurs, les niveaux piézométriques des forages sont à la même altitude que la surface libre du Mro Oua Kwalé à

Synthèse hydrogéologique du Nord-Est de Mayotte. Caractérisation des masses d'eau souterraine des secteurs de Petite Terre et de Tsoundzou-Koungou

proximité, ce qui indique que les formations aquifères et le cours d'eau forment un système hydrogéologique à l'interdépendance marquée.

#### 3.5.2. Vallée de la Gouloué

### a) Nature de la géologie et géométrie des formations

Au droit des panneaux électriques (Illustration 8), les interprétations suivantes peuvent être formulées :

- Il existe un substratum conducteur profond (-60 m NGM à -100 m environ là où il est le moins profond) qui semble matérialiser (profil BC) la limite sud-ouest de la paléovallée de Gouloué – Doujani). Cette paléovallée serait donc très incisée avec un mur largement plus profond que -120 m NGM;
- en rive gauche (NE), cette paléovallée serait comblée par des formations de résistivité moyenne (40 à 150 ohm.m) puis, à partir de -20 à 30 m NGM par des formations très résistantes (jusqu'à plus de 500 ohm.m) qui pourraient être assimilées aux formations β2 visibles à l'affleurement ou, tout au moins aux formations sous-jacentes au β2. Les formations de remplissage de cette paléovallée affleurent largement en rive gauche du Mro Oua Gouloué et sont de faciès β2;
- en rive droite (SW), les panneaux électriques imageraient la formation « conductrice à éléments résistants », qui comprend des laves et pyroclastites interstratifiées, et qui a été identifiée aussi dans la vallée de la Kwalé et est recoupée par les forages de Gouloué 1 et 2. Elle est surmontée par une couverture d'altérites significative (10 à 30 m aux forages ; forte rubéfaction au bord du Mro, etc.).

Il y aurait donc eu un arrêt significatif du volcanisme entre la mise en place des formations pyroclastiques (s.l.) et celle des  $\beta 2$ , ce qui est cohérent avec le caractère apparemment incisé de la paléovallée de  $\beta 2$  au sein des pyroclastites (Illustration 8 - profils A abscisses 300 et B abscisses -375 qui correspondent sans doute aux bordures d'un paléoaffluent rive droite de la paléovallée rive gauche ; les irrégularités de la base des formations résistantes du profil BC imagent ces variations morphologiques d'un flanc de la paléovallée), le tout se mettant en place au sein d'une morphologie plus large reposant sur le substratum conducteur. Les pyroclastites constitueraient donc bien un substratum relatif dans cette vallée.

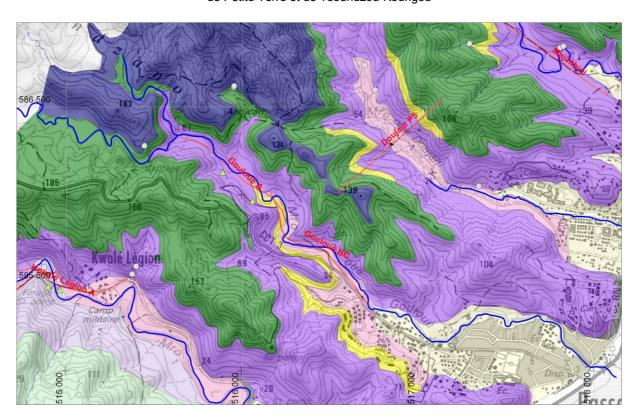



Illustration 7 - Localisation du secteur d'étude de la vallée de Gouloué, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)

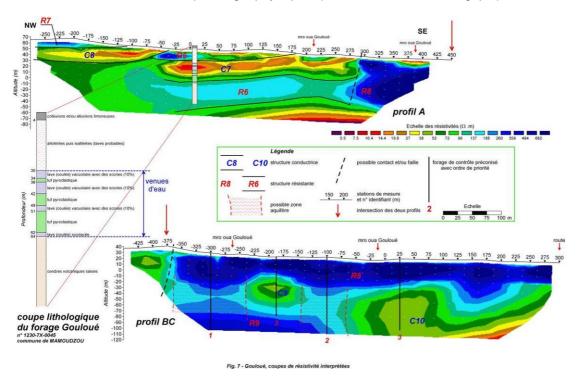



Illustration 8 - Coupes de résistivité interprétée. Site de Gouloué, profils A et BC et coupe de forage de Gouloué.

# b) Caractérisation de la masse d'eau de la Gouloué et mise en évidence du potentiel hydrogéologique

Le modèle conceptuel géologique est similaire à celui de la vallée de la Kwalé : les aquifères correspondent aux systèmes de paléovallées comblées par des laves « récentes. Au vu de ce modèle conceptuel, il est supposé que les forages implantés dans la vallée de la Gouloué (Gouloué 1 & 2) sont rattachées aux formations du substratum du massif du M'Tsapéré. Les productivités combinées de ces deux ouvrages atteignent 20 m³/h environ. Les processus de recharge sont vraisemblablement liés aux précipitations et il est envisageable que ces processus soient en partie similaires çà ceux de la vallée de la Kwalé.

En revanche, peu de venues d'eau ont été signalées dans la vallée de la Gouloué. Deux venues d'eau se développent dans les parties hautes du bassin au contact entre les formations phonolitiques et le basalte  $\beta 3$  sous-jacentes. Il n'en existe aucune dans les parties basses.

D'intéressantes perspectives en termes de ressources en eau apparaissent sur les profils géophysiques. Ces hypothèses seront vérifiées lors de la 5<sup>ème</sup> campagne de forage. En conséquence, le potentiel hydrogéologique, actuellement moyen, pourra éventuellement être réévalué si les hypothèses relatives à la présence d'une coulée récente en paléovallée sont vérifiées sur le futur forage de Gouloué.

# 3.5.3. Vallée de la Doujani

# a) Nature de la géologie et géométrie des formations

Au droit des panneaux électriques (Illustration 10), les interprétations suivantes peuvent être formulées :

- système montrant des niveaux résistants (80 à plus de 150 ohm.m) alternant avec des formations plus conductrices ;
- en rive droite (SW) se localise un ensemble bien résistant dont le substratum plus conducteur est à environ -50 m NGM. Hypothèse la plus probable : formation β2 ou formations sous-jacentes aux β2.
   Il est à noter que cette formation est surmontée d'une vingtaine de mètres de formations très conductrices relatives sans doute à un artefact topographique (fond de ravine, puis flanc de relief altéré). Mieux encore, cela marquerait le contact β3/β2. La profondeur de la base des formations résistantes se situe à une altitude (-50 m NGM) comparable à celle trouvée dans la vallée de la Gouloué<sup>9</sup>;
- en rive gauche (NE) est observée une alternance d'ensembles conducteurs et résistants, les résistants étant moins épais qu'en rive droite ;
- sous ces formations se localise un ensemble plutôt résistant qui ressemble électriquement à ce qui est observé sur le profil BC de la Gouloué sous les formations résistantes;
- pas de substratum conducteur clairement identifié à moins de -80 m NGM (C>20 ohm.m).

Les paléovallées de  $\beta 2$  en rives droite et gauche, comportant des formations résistantes altérées en surface (de 80 à plus de 150 ohm.m) et reposant sur les formations de pyroclastites et laves de Gouloué/Kwalé (30 à plus de 120 ohm.m) reposent elles-mêmes sur le substratum ancien conducteur. Toutefois, de manière moins probable, il est envisageable que le  $\beta 2$  soit aussi présent sous l'axe actuel de la vallée.

-

<sup>&</sup>lt;sup>9</sup> Une dissymétrie similaire à celle observée dans la vallée de la Gouloué peut être notée : le flanc sud-ouest des paléovallées est plus abrupt que le flanc nord-est.

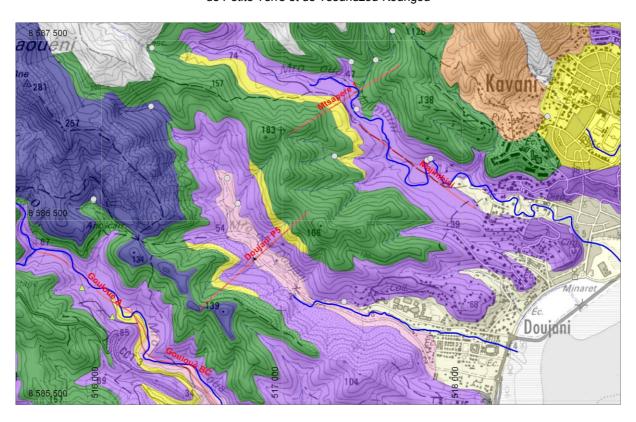



Illustration 9 – Localisation du secteur d'étude de la vallée de la Doujani des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)

# **DOUJANI**

# Profil - P5

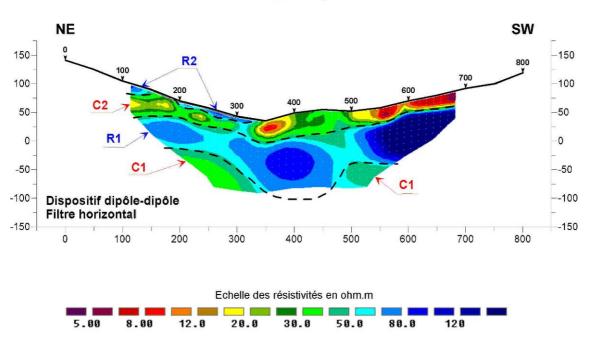



Illustration 10 - Coupes de résistivité interprétée. Site de Doujani (P5) (2007)

# b) Caractérisation de la masse d'eau et mise en évidence du potentiel hydrogéologique

Aucun forage n'a été réalisé dans la vallée de la Doujani. La masse d'eau conserve un caractère hypothétique dans ce secteur d'étude.

En hauteur, la présence de l'intrusion phonolitique et de son auréole d'hydrothermalisme réduit les potentialités aquifères. Toutefois, quelques faibles venues d'eau ont été recensées sur le pourtour Nord-est et Sud-ouest de l'intrusion.

Dans les parties basses de la vallée, des venues d'eau ont été relevées au contact entre le substratum et les formations de basalte  $\beta 2$  (Illustration 9), particulièrement en rive gauche du cours d'eau. Ce contact marque probablement l'exutoire des formations aquifères de la vallée qui se développeraient dans les horizons résistants (laves saines en rive gauche). Ce qui préfigure un contexte hydrogéologique analogue à celui des vallées de la Gouloué et de la Kwalé.

# 3.5.4. Vallée de la Majimbini

# a) Nature de la géologie et géométrie des formations

Une large coulée de vallée dont le flanc forme une cascade et dont le toit constitue le plateau sur lequel coule la rivière a été observée dans la partie amont du Mro Oua Majimbini (Illustration 11). Vraisemblablement composée de basalte  $\beta$ '3, cette remarquable coulée est située sous une formation moins résistante (François, 2008). Ces coulées épaisses de  $\beta$ '3 sont issues de la partie centrale du massif du M'Tsapéré.

Au toit formations conductrices sous la mince couche résistante superficielle (< 5 m) se situent des paléoaltérites (observation de laves altérées sur le terrain) sur une trentaine de mètre d'épaisseur.

Plus en aval, au niveau des panneaux électriques (illustration 12), on distingue du haut vers le bas :

- en sommet de relief profil SW-NE : formations β3 dont la partie résistante fait une trentaine de mètres d'épaisseur, surmontées de formations moins résistantes ;
- un ensemble conducteur composé, d'après les observations de terrain, d'altérites de β2 surmontées de pyroclastites, le total faisant 40 m d'épaisseur environ ;
- un ensemble résistant composé *a priori* des formations β2, de 60 à 70 m d'épaisseur. Le mur de ces formations semble montrer un léger pendage vers le nord-est, d'une pente de 5% environ ;
- substratum conducteur (15 20 ohm.m) à 50 m NGM au niveau de l'intersection des profils, avec une pente vers le SE (-90 m NGM environ à l'extrémité du profil NW-SE) de 5% environ (avec ondulations)

Le système semble relativement tabulaire, tant longitudinalement que transversalement.

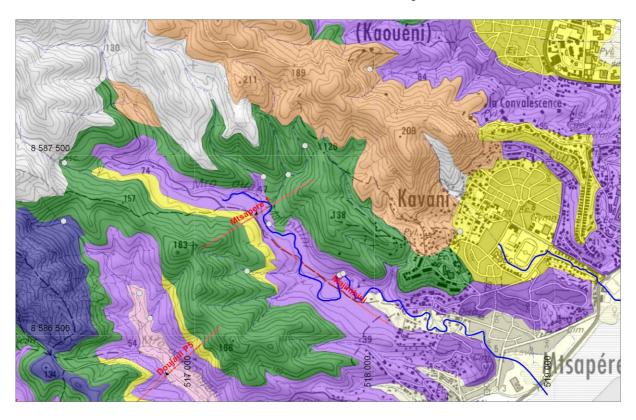



Illustration 11 – Localisation du secteur d'étude de la vallée de la Majimbini, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)

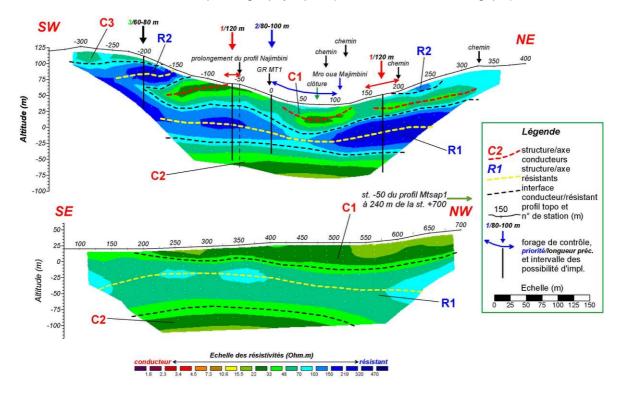



Illustration 12 - Coupes de résistivité interprétée. Site de Mtsapéré, profils Mtsap 1 et Majimbini (2001)

# b) Caractérisation de la masse d'eau et mise en évidence du potentiel hydrogéologique

Aucun forage n'a été réalisé dans la vallée de la Majimbini. La masse d'eau conserve un caractère hypothétique dans ce secteur d'étude.

Plusieurs venues d'eau ont été identifiées dans le bassin. Bien que minces, Il semblerait que la majorité d'entre elles émerge à la base des formations de basalte  $\beta 3$  au contact des basaltes  $\beta 2$ . Ces formations semblent (à première vue) les formations au potentiel aquifère le plus élevé de la vallée (Illustration 11).

Dans le même contexte que celui des vallées localisées plus au sud, les potentielles ressources en eau se localiseraient dans des horizons résistants (laves saines).

# 3.5.5. Kawéni / Kawénilajoli

# a) Nature de la géologie et géométrie des formations

Au droit des panneaux électriques (Illustration 14, Illustration 15, Illustration 16, et Illustration 17), on observe :

- La même succession de lithologie :
- Une formation conductrice en surface de pyroclastites dont l'épaisseur est légèrement croissante de l'intérieur des terres vers la côte, de 25-30 m (profil B et C) d'épaisseur à 50 m (profil A).
- Cette formation conductrice repose directement sur une formation résistante, de basalte à pyroxène (probablement β2 car identifié en amont), qui plonge vers l'Est de 20 m à 45 m de profondeur, en s'évasant.
- Sur les profils C et P2, on voit apparaître une nouvelle formation conductrice se développant sous les basaltes β2, respectivement à partir de – 70 à – 100 m de profondeur. Cette formation est identifiée comme étant le substratum local. Sous le profil A, cette formation n'apparaît pas, on suppose donc que le toit du substratum a une formation supérieur.
- D'après le profil C, l'épaisseur maximale que l'on ait pu observer sur les profils est de 80 m. cette épaisseur semble augmenter vers l'est du profil, c'est-à-dire vers le centre du cratère de Kawéni.
- En amont, sur le profil P2, apparaît une nouvelle structure résistante, à la géométrie significative au flanc d'une paléovallée. Cette lithologie est identifiée comme étant une coulée de basalte à pyroxène et amphibole, β3, d'âge postérieur à la coulée de β2 et chevauchant ces structures.

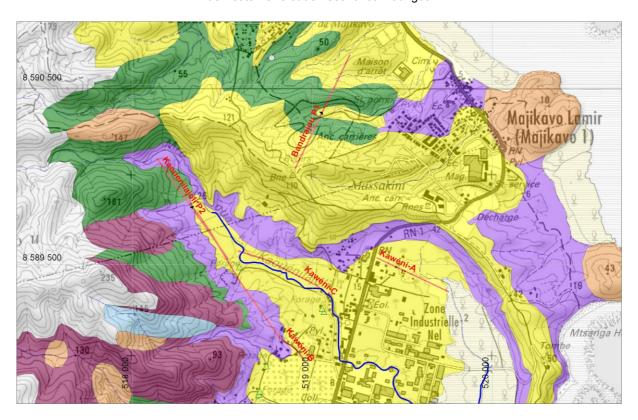



Illustration 13 - Localisation du secteur d'étude de Kawéni – Kawénilajoli, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)

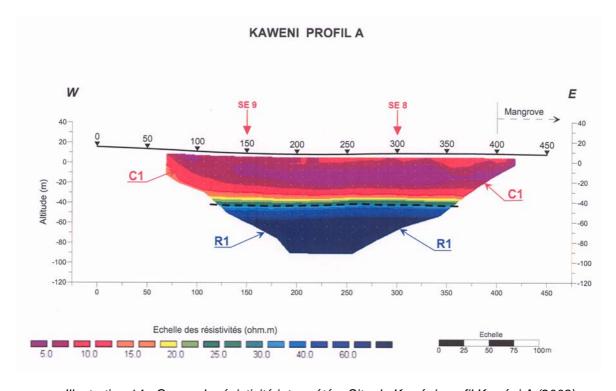
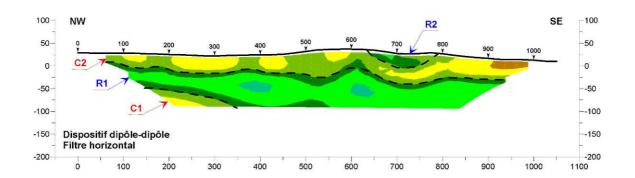




Illustration 14 - Coupe de résistivité interprétée. Site de Kawéni, profil Kawéni A (2003)

#### **KAOUENILAJOLI**

# Profil - KAWENI B (2003)



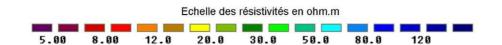



Illustration 15 - Coupe de résistivité interprétée. Site de Kawéni, profil Kawéni B (2003)

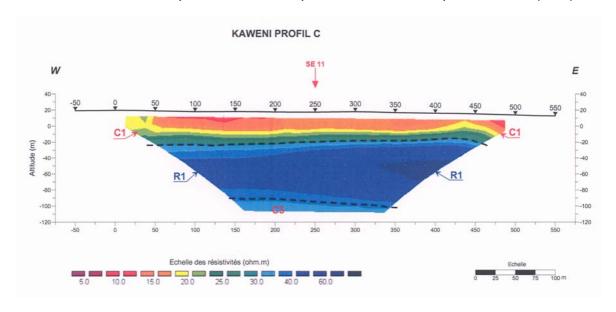



Illustration 16 - Coupe de résistivité interprétée. Site de Kawéni, profil Kawéni C (2003)

#### **KAOUENILAJOLI**

#### Profil - P2

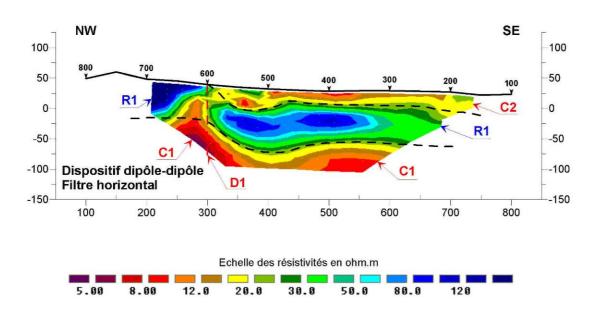



Illustration 17 - Coupe de résistivité interprétée. Site de Kawénilajoli, profil P2 (2007).

#### b) Caractérisation de la masse d'eau et mise en évidence du potentiel hydrogéologique

Aucun forage n'a été réalisé dans la partie amont des vallées de Kawénilajoli et de Kawéni. La masse d'eau conserve un caractère hypothétique dans ce secteur d'étude (Illustration 13).

En ce qui concerne le cratère de Kawéni, l'hydrosystème souterrain se limite aux bordures du cratère. Les caractéristiques hydrogéologiques sont intéressantes : les forages d'exploitation sont localisés dans les alluvions dont la productivité varie entre 15 et 30 m³/h environ pour des profondeurs captées comprises entre 10 et 60 mètres.

Les formations aquifères correspondent principalement aux terrains volcano-sédimentaires récents. Les transmissivités de ces unités sont de l'ordre de 2 à 7<sup>E</sup>-3 m²/s, valeurs relativement élevée comparées à celles que l'on rencontre usuellement à Mayotte. Les formations du « substratum » doivent plutôt jouer un rôle d'imperméable, sans exclure localement la présence de niveaux perméables en leur sein (la nature et la géométrie de ce substratum n'étant pas encore identifiées précisément). Cependant, leur faible altitude (> -100 m NGM) dans la partie aval du système influence probablement peu l'hydrosystème exploité.

Bien que productive au point de vue hydrogéologique, cette zone est exposée à la proximité des eaux salées de la mangrove d'une part et d'autre part au développement de la zone industrielle de Kawéni.

# 3.5.6. Majikavo-Koropa / Bandrajou

# a) Nature de la géologie et géométrie des formations

Au droit du profil (Illustration 19), on observe :

- Une structure résistante en profondeur, se développant au minimum jusqu'à 100 m NGM. Cette structure est identifiée comme étant une coulée de basalte à pyroxène β2, plongeant en direction du NNE. Elle est affectée par une paléovallée supposée pseudo perpendiculaire au plongement de la structure.
- Cette paléo vallée d'environ 300 m de large et au flanc abrupt est remplie par un horizon conducteur identifié comme un niveau de pyroclastites interstratifiées de 70 m d'épaisseur au moins.
- La formation de pyroclastites est recouverte de façon éparse par une unité résistante de basalte à pyroxène et amphibole, β3, probablement altérée.
- Une seconde unité conductrice, affleurant au NNE du profil, d'environ 25 m d'épaisseur, est identifiée comme étant un horizon de pyroclastites plus récent (probablement les pyroclastites du cratère de Kawéni).

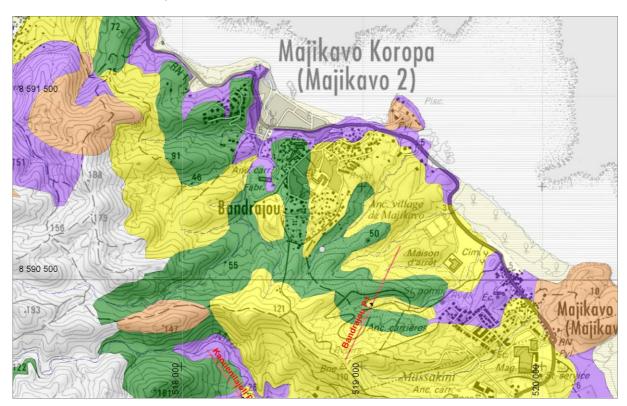



Illustration 18 - Localisation du secteur d'étude de Majikavo Koropa / Bandrajou, de l'émergence, et tracés des profils géophysiques (extrait de la carte lithologique)

#### **BANDRAJOU**

#### Profil - P1

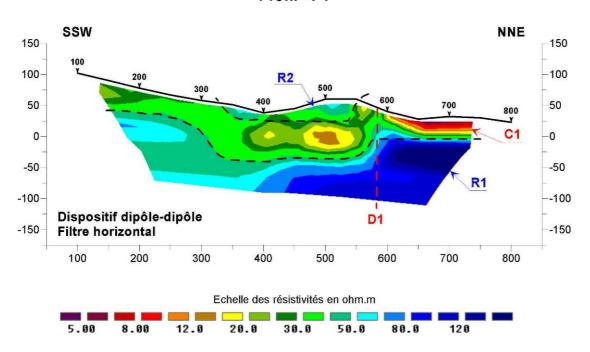



Illustration 19 - Coupe de résistivité interprétée. Site de Bandrajou, profil P1 (2007).

### b) Caractérisation de la masse d'eau et mise en évidence du potentiel hydrogéologique

Il n'existe actuellement aucun forage dans le secteur de Majikavo Koropa et Bandrajou qui pourrait mettre en évidence le potentiel hydrogéologique. Il n'existe pas non plus de cours d'eau permanent et cette absence s'explique par la taille restreinte et le découpage du bassin versant.

Ces arguments ne sont pas favorables au développement d'un potentiel hydrogéologique conséquent. La présence d'une faible venue d'eau dans le secteur dans le secteur de Bandrajou (Illustration 18) indique que les formations les plus propices à une activité aquifère seraient les basaltes β3, dans leur partie saine, au contact des pyroclastites sous-jacentes.

La couverture de surface du secteur étant assurée par des produits volcaniques tardifs (pyroclastites, cendres, et produits scoriacés) et altérés majoritairement imperméables, la recharge des formations aquifères (si elles existent réellement) s'opéreraient davantage en amont du bassin et non par infiltration diffuse.

# 3.5.7. Koungou / Trévani / Kangani

# a) Nature de la géologie et géométrie des formations

L'analyse combinée des résultats des trois profils (Illustration 21,Illustration 22 etIllustration 23) ainsi que du log de forage de Kangani montrent :

- La présence d'un substratum conducteur (profil Kangani 2005), dont le toit est à environ -30 m NGM. Le forage de Kangani témoigne qu'à cet endroit, le substratum est essentiellement composé d'alluvions (sables et cailloutis fluviatiles) qui pourraient occuper le fond d'une paléovallée.
- Le toit du substratum n'apparaît pas sur les autres profils. On en déduit que celui-ci plonge en profondeur vers le SSE.
- Sur ce substratum, repose un niveau de pyroclastites d'une quinzaine de mètre d'épaisseur (reconnu par le forage), mais dont le contraste de résistivité est insuffisant pour le distinguer sur le profil.
- Vient se déposer sur ces pyroclastites une structure résistante, identifiée comme étant la coulée de basalte probablement de faciès β3. Sur le profil de Kangani P3, la géométrie de cette structure se distingue nettement comme étant un remplissage de paléovallée, dont l'orientation est supposée NS. Le profil de Kangani 2005 vient étayer cette hypothèse en illustrant l'extension NS de la coulée. Au droit du forage de Kangani (représenté par un triangle vert sur Illustration 20), la coulée a une épaisseur d'environ 50 m. Au droit de la station 350 du profil P3, la coulée a une épaisseur supposée maximale de 100 m. Etant donné la géométrie de la paléovallée, on peut supposer que le centre de la coulée se situe au droit de la station 350 du profil P3 et que le profil Kangani 2005 recoupe les flancs moins épais de cette même coulée. Cette lithologie est absente du profil de Koungou (P4), qui est réalisé topographiquement plus haut.
- Un horizon conducteur de pyroclastites d'épaisseur relativement constante recouvre les basaltes β3, entre 30 et 60 m d'altitude. La combinaison des profils de Kangani, indique que ces pyroclastites sont sub-affleurantes au NO et s'approfondissent en direction du SE et constituent par conséquent, le substratum conducteur, à – 20 m NGM, du profil de Koungou P4.
- Une formation résistante présente sur les trois profils est identifiée comme étant un basalte à pyroxène et amphibole (β3). Cette formation s'est mise en place le long d'une paléo vallée visible sur le profil P4 d'orientation supposée NE. Sur le profil P4, cette coulée se développe entre -30 m NGM et 70 m NGM. Cette formation affleure dans le secteur de Koungou.
- Un horizon résistant de téphrite, vient en recouvrement de ces structures. Cet horizon affleurant dans le secteur de Kangani permet de la distinguer des coulées résistantes de basalte β3 sous-jacentes. Ces coulées sont plutôt éparses sur le profil P3 et s'approfondissent en direction du sud sur le profil de Kangani 2005. Le profil P3 ne recoupe qu'une partie des flancs de cette coulée entre 25 et 75 m NGM.

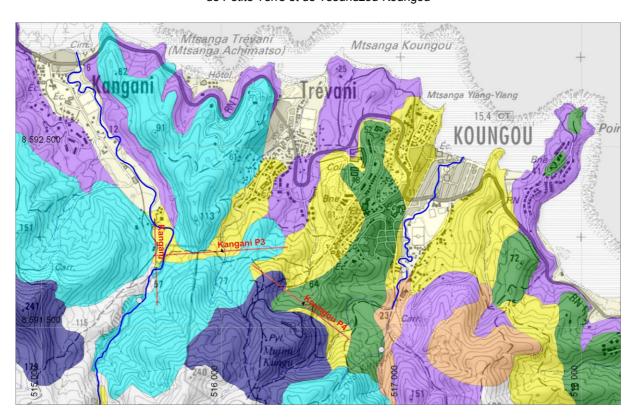



Illustration 20 : Localisation du secteur d'étude de Koungou / Trévani / Kangani, des forages, émergences et tracés des profils géophysiques (extrait de la carte lithologique)

# **KANGANI**

#### **Profil - 2005**

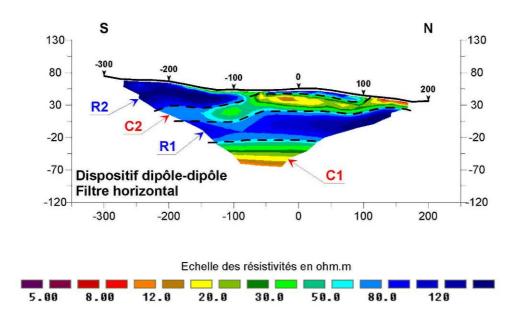



Illustration 21 - Coupe de résistivité interprétée sur le site de Kangani et coupe géologique du forage de Kangani 1 (12307X0117).

#### **KANGANI**

#### Profil - P3

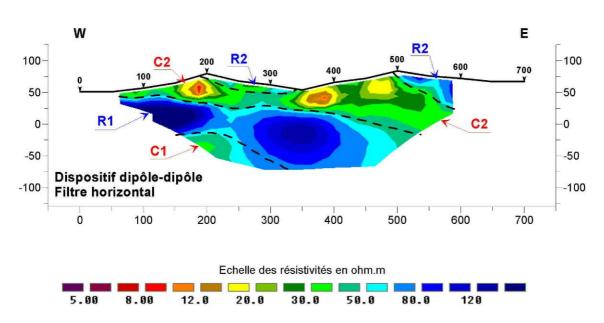



Illustration 22 - Coupe de résistivité interprétée. Site de Kangani (P3 -2007).

#### **KOUNGOU**

#### Profil - P4

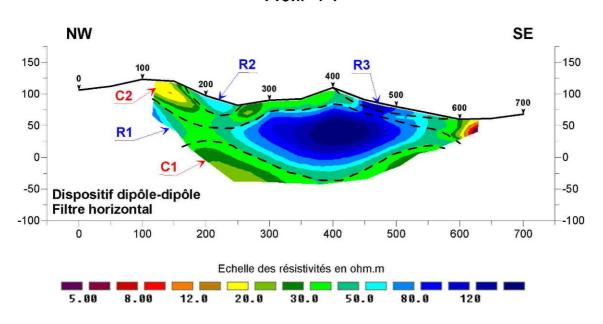



Illustration 23 - Coupe de résistivité interprétée. Site de Koungou (P4 -2007).

# b) Caractérisation de la masse d'eau et mise en évidence du potentiel hydrogéologique

Bien qu'ayant fait l'objet de peu d'investigations, le potentiel aquifère du secteur de Koungou / Trévani / Kangani est manifestement peu développé.

Pour les mêmes raisons qu'évoquées plus haut dans le secteur de Majikavo Koropa / Bandrajou, les indices hydrogéologiques sont faibles. A l'exception du Mro Oua Kangani, les dimensions des bassins versants des cours d'eau sont modestes. Ces cours d'eau sont par conséquent temporaires ou permanents mais avec un débit très faible. Les venues d'eau identifiées sont rares et ne permettent pas de discriminer avec précision une formation aquifère. Deux émergences sont localisées dans le secteur d'étude : la première en amont de Koungou à l'interface entre les basaltes β3 et les pyroclastites sous-jacentes et la deuxième en amont de Kangani à la base des formations de téphrites.

Potentiellement, les formations les plus susceptibles d'être aquifère sont les formations basaltiques saines telles que les téphrites ou les basaltes β3 dont la recharge s'effectuerait plus en amont dans les parties hautes du M'Tsapéré. De la même façon que cité plus haut, il est difficile d'envisager ici des recharges importantes par infiltration directe étant donné la couverture de surface majoritairement imperméable (pyroclastites, produits scoriacés, etc.) et la faible alimentation par les cours d'eau.

L'unique forage du secteur est le forage de Kangani 12307X0117 (Annexe 4) situé dans la vallée du Mro Oua Kangani n'a pas recoupé d'horizons aquifères significatifs bien qu'il ait traversé une vingtaine de mètres de basaltes β2 sains et vacuolaires soupçonnés de contenir de l'eau.

Un futur forage de reconnaissance est programmé sur le versant Est du Mro Oua Kangani avec l'objectif de recouper en profondeur la base des formations basaltiques  $\beta 2$  qui seraient potentiellement plus aquifères.

#### 3.5.8. Miangani / Longoni

#### a) Nature de la géologie et géométrie des formations

La nature et la géométrie des formations géologiques du secteur de Longoni sont fournies par les logs du forage de Longoni-Tririni 12307X0116 (Annexe 4), du forage de la société MAYCO et par les profils géophysiques Longoni 2005, Longoni-Tririni 2005 et M'Gombani 2007.

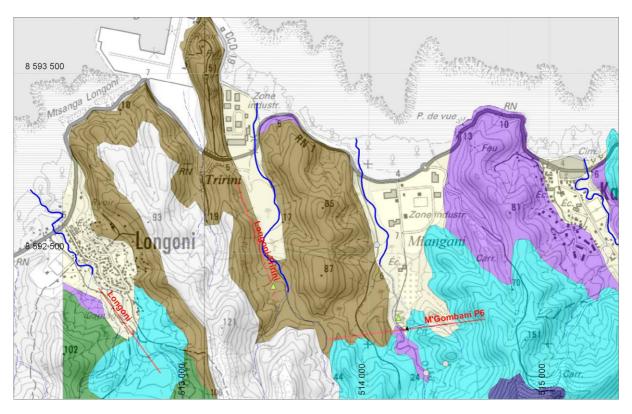



Illustration 24 : Localisation du secteur d'étude de Miangani / Longoni, des émergences, forages et tracés des profils géophysiques (extrait de la carte lithologique)

#### Sur le profil de Longoni 2005 (Illustration 25), on observe :

- Une unité résistante sub-affleurante d'épaisseur plus prononcée au sud et s'amincissant vers le nord. Géologiquement cela correspond à la coulée de téphrite, qui présente un faciès plus altéré vers le nord, s'apparentant à des brèches ou repris dans des alluvions;
- En profondeur, on devrait s'attendre à trouver des formations résistantes correspondant à des coulées de basalte. Cependant, on observe des valeurs de conductivité très élevées à partir de 20 m de profondeur (0 m NGM), qui pourraient être interprétées comme une intrusion du biseau salée, s'expliquant par sa proximité à la côte. Cette hypothèse peut être confortée par la géométrie de la formation très conductrice C1 dont le plongement vers le sud est très similaire à un corps de biseau salé.

#### Sur le profil de Longoni-Tririni 2005 (Illustration 26), on observe :

 Des formations résistantes éparses en surface, identifiées comme des coulées de téphrite potentiellement reprises dans des ensembles colluvions/alluvions;

- Au nord du profil, on observe un corps résistant entre -80 et -10 m NGM qui correspond à une coulée de lave basaltique. Dans ce secteur, le manque d'affleurement géologique de qualité ne permet pas de distinguer la lithologie de ce corps;
- Au sud du profil, une unité conductrice de 60 m d'épaisseur, recoupée par le forage de Longoni, correspond à différentes séries de pyroclastites. Vers le nord, ces pyroclastites plongent sous le corps résistant identifié comme la coulée de basalte;
- Sous les pyroclastites, un niveau très conducteur apparaît à partir de -70 m NGM. Ce niveau correspond au substratum local qui plonge vers le nord.

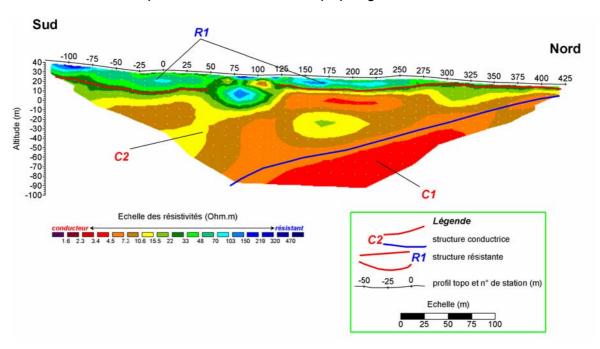



Illustration 25 - Coupe de résistivité interprétée. Site de Longoni (2005).

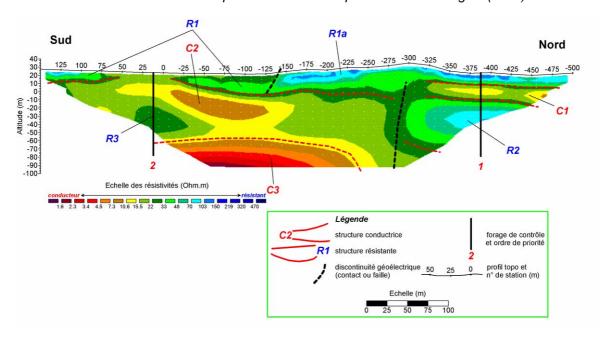



Illustration 26 - Coupe de résistivité interprétée. Site de Longoni Tririni (2005).

Le forage de Longoni-Tririni 12307X0116 (coupe technique en Annexe 4) est situé sur le profil de Longoni-Tririni 2005 et fait état d'une dizaine de mètres de colluvions et alluvions à matrice argileuse recouvrant 8 m de limons imperméables. De 20 à 80 m de profondeur, il s'agit d'une succession de pyroclastites cendreuses. Le forage n'ayant recoupé aucun horizon aquifère significatif, il a été préférable de le reboucher.

# Le profil de M'Gombani (Illustration 27) est interprété comme suit.

De haut en bas, on voit apparaître à l'ouest une unité conductrice sub-affleurante (C3), identifiée sur le terrain comme étant une brèche de coulée à éléments polygéniques recouvrant une vallée actuelle.

Ces brèches recouvrent une formation plus résistante (R2), qui affleure tout le long du profil entre 0 et 30 m NGM. Il s'agit des coulées de téphrite.

Une structure plus conductrice (C2) a été reconnue en profondeur, elle correspondrait à un niveau de pyroclastites interstratifiées, manifestement érodées au point bas topographique de la vallée. En effet, le forage de la société MAYCO situé à proximité recoupe la téphrite sur les premiers mètres puis une succession d'horizon argileux, brèchiques et sableux (ces derniers constituent la formation aquifère locale jusqu'à -60 m de profondeur).

Dans la partie est du profil, ces pyroclastites recouvrent un corps résistant (R1) qui correspond à une coulée probable de basalte β2.

Le niveau très conducteur (C1) constituant le substratum du profil, serait (du moins dans les premiers mètres), une formation alluviale. Au-delà de -40 m NGM (limite du forage), la nature du substratum n'est pas connue.

Vu les niveaux de conductivité repérés en profondeur, l'hypothèse d'une contamination par intrusion marine n'est pas à écarter.

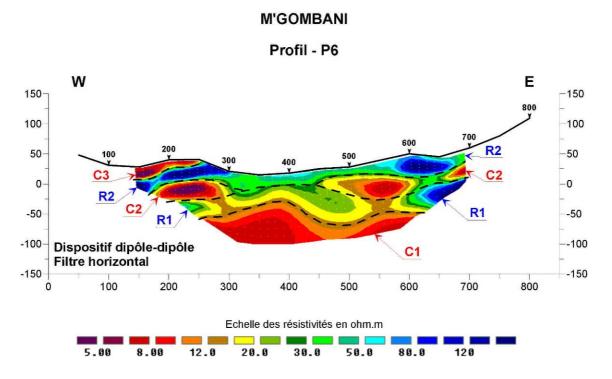



Illustration 27 - Coupe de résistivité interprétée. Site de M'Gombani (P6 -2007).

# b) Caractérisation de la masse d'eau et mise en évidence du potentiel hydrogéologique

Les formations géologiques du secteur de Miangani / Longoni sont sensiblement différentes des formations rencontrées plus à l'Est. La présence quasi généralisée des formations brèchiques et des niveaux pyroclastiques en profondeur ne favorisent pas le développement de formations aquifères (Illustration 24). Il est manifeste que ce secteur de Mayotte présente un intérêt hydrogéologique des plus modestes. Le forage de Longoni-Tririni en est l'exemple.

Par ailleurs, la possibilité d'une contamination des eaux en profondeur par intrusion marine (voir ci-dessus) réduit d'autant l'identification des formations aquifères exploitables.

Néanmoins, la présence de quelques venues d'eau dans les parties basses des vallées de Miangani et de Longoni (au contact entre les brèches et/ou les basaltes et les formations alluvionnaires sous-jacentes) ainsi que l'exploitation du forage de la société MAYCO montrent que localement une activité hydrogéologique est envisageable mais que les potentiels exploitables ne dépassent probablement pas le m³/h.

#### 3.5.9. Petite Terre

#### a) Nature de la géologie et géométrie des formations

La formation du relief émergé de Petite Terre est à rattacher au volcanisme phréatomagmatique tardif daté entre 7000 et 4000 ans BP (Zinke *et al.*, 2001 et 2003).

Deux appareils volcaniques ont été identifiés, le cratère du Dziani-Dzaha au Nord ainsi que le cratère de la Vigie situé en bordure Est de l'île. La géométrie et les datations des évènements suggèrent une activité volcanique en plusieurs phases. Suite à la migration de la chambre magmatique initialement centrée sur Grande Terre, les appareils s'édifient au sein de la barrière de corail qui ceinture l'île principale.

Localement, de petits appareils stromboliens de 500 m de diamètre au maximum sont visibles dans les secteurs de Totorossa, Dzaoudzi, la Ferme et Sandravouangué. Ces appareils sont contemporains ou antérieurs à la formation de Petite Terre et se distinguent géologiquement comme étant des formations basaltiques plus massives ou scoriacées (Stieljes, 1988).

Du fait de l'interaction constante entre l'eau de mer et les remontées magmatiques, l'activité volcanique de Petite Terre est plutôt de type explosif et se singularise par une succession de dépôts rythmiques de cendres et de ponces trachytiques ainsi que de matériaux, remaniés des événements précédents ou appartenant soit aux édifices stromboliens (scories basaltiques) ou au substratum corallien (débris de coraux arrachés lors des éruptions et incrustés dans les formations pyroclastiques tapissant les bordures du maar de Dziani).

L'édifice de Petite Terre est constitué par un empilement stratifié de dépôts volcaniques meubles, de sables basaltiques et de niveaux coralliens qui viennent s'intercaler lors des périodes d'accalmies volcaniques. Le récif corallien vient coloniser les dépôts les plus frais qui forment alors un nouveau platier. Cette colonisation est aussi favorisée par les variations eustatiques Quaternaire.

Par ailleurs, ces variations eustatiques vont favoriser localement l'intrusion d'eau salée (bras de mer) lors des hauts niveaux marins de côte et la formation de plages dont les limites paléogéographiques n'ont pas encore été déterminées. Néanmoins, la présence de ces paléoplages est manifeste dans le forage de Pamandzi 2 et se traduit par une vingtaine de mètres de dépôts d'argile, sables coralligènes et galets.

En subsurface, la géologie de Petite Terre est monotone (Illustration 28 et Illustration 29) et se compose essentiellement d'une couche de cendres de quelques mètres d'épaisseur. Ces dépôts sont relativement meubles sur les pentes des reliefs de Dziani et de la Vigie et plus indurés dans les parties basses de l'île (forages de Pamandzi 1 et 2 ; 1230-8X0038 et 1230-8X0039, les coupes techniques sont données en Annexe). En bordure du littoral, ces formations de cendres sont reprises dans les dépôts de plage de sable blanc corallien.

En profondeur, la géométrie des dépôts pyroclastiques est plus délicate à approcher. Le profil géophysique réalisé pendant la campagne d'investigation du potentiel géothermique de Petite Terre (Traineau *et al.*, 2006) est présenté sur l'illustration 28.

Les informations du profil portent essentiellement sur l'investigation à grande profondeur (entre 500 et 600 m) et ne permettent pas de distinguer dans le détail la géométrie des formations émergées (les 100 premiers mètres sous la surface).

Néanmoins, l'analyse des résistivités de surface permet de distinguer deux corps résistants qui correspondent aux deux appareils volcaniques de Dziani et de la Vigie. Le contact entre les deux appareils est discordant et se situe sous la route des plages de Moya (CCD9).

L'appareil de Dziani est centré sur le lac du même nom et la géométrie des interfaces indiquent que les dépôts s'épanchent radialement autour du lac sur plus de 300 m de profondeur. Le lac de Dziani peut être assimilé à un maar de faible profondeur d'eau et sous lequel le conduit volcanique se développe verticalement sur plusieurs centaines de mètres.

Sous la Vigie, la géométrie des dépôts est moins nette. Les mesures révèlent une alternance de dépôts horizontaux dont l'extrémité nord semble venir sceller une partie de l'édifice volcanique du Dziani.

# b) Caractérisation de la masse d'eau de Petite Terre et mise en évidence du potentiel hydrogéologique

Le potentiel hydrogéologique de Petite Terre est limité. L'existence de ressource aquifère intéressante en termes d'exploitation n'a pas été mise en évidence, que ce soit par :

- les forages de reconnaissance de la campagne 1990-1991;
- les observations géologiques de terrain ;
- l'investigation géophysique menée dans le cadre des projets de géothermie.

Compte tenu de la géométrie radiale des formations géologiques de Petite Terre, l'existence d'un réservoir hydrogéologique de type paléovallée comme il en existe sur Grande Terre est à exclure. Il existe néanmoins une masse d'eau aquifère dont les limites, la géométrie et le fonctionnement n'ont pas encore été caractérisés dans le détail.

#### Localisation des masses d'eau

Les formations aquifères de Petite Terre ont été mis en évidence par les deux forages de la campagne de reconnaissance de 1990-1991 dans la plaine de Pamandzi (Pamandzi 1 BSS : 12308X0038 et 2 BSS : 12308X0039, rapport BRGM/RP-40750-FR et coupe technique en Annexe 4).

Les formations reconnues sur Petite Terre lors de cette campagne sont :

- Les pyroclastites indurées, formations les plus abondantes, mais qui sont majoritairement très peu perméables (10<sup>-6</sup> m/s dans les forages de Pamandzi 1 et 2);
- Localement, les niveaux de cendres et de sables superficiels qui peuvent être aquifères (propriétés hydrodynamiques correctes dans le forage de Pamandzi 2) mais leur extension restreinte conduit à une ressource en eau limitée;
- Les formations de paléoplages intercalées entre les formations de pyroclastites sont des unités aquifères potentielles. Les propriétés hydrodynamiques de ces unités sont modestes (10<sup>-5</sup> m/s pour les perméabilités du forage de Pamandzi 2). De plus leur extension est inconnue.

#### • Fonctionnement hydrodynamique de la masse d'eau

Il n'existe pas de cours d'eau pérenne sur Petite Terre. Ce phénomène s'explique en majeure partie par les dimensions réduites de l'île et sa géométrie radiale qui ne permettent ni

la création ni le développement d'un bassin versant suffisant pour l'alimentation d'un cours d'eau. Néanmoins, en saison humide, des cours d'eau temporaires dévalent des reliefs de la Vigie et de Dziani en direction des plages de Papani et de Moya. Il n'existe aucune donnée hydrométrique permettant d'évaluer le débit de ces cours d'eau en saison des pluies et donc de quantifier raisonnablement la distribution du ruissellement et des précipitations.

Les précipitations moyennes enregistrées sur Petite Terre par la station de Météo France s'élèvent à 1300 mm/an. Ces précipitations sont sensiblement inférieures à celles communément enregistrées dans le Nord de Grande Terre mais supérieures à la moyenne de celles rencontrées au sud de l'île.

La recharge des aquifères s'opèrent par infiltration diffuse des précipitations sur l'ensemble de la surface de l'île.

Au niveau des forages, les formations aquifères recoupées sont manifestement libres et en communication.

En ce qui concerne les forages de Pamandzi 1 (12308X0038) et 2 (12308X0039), les niveaux piézométriques relevés sont de 5 m NGM pour le premier et 1 m NGM pour le second (février 1990). Compte tenu de la différence des charges hydrauliques et des propriétés hydrodynamiques entre ces deux forages séparés d'environ 500 m, il apparaît que les horizons captés ne sont pas en connexion directe. Un fort contraste de perméabilité (présence d'un niveau argileux) justifie le gradient hydraulique.

Au niveau de Pamandzi 1, les faibles perméabilités rencontrées ne favorisent pas le drainage des eaux de la nappe vers les exutoires. Ce qui a pour conséquence première de maintenir une charge hydraulique élevée dans l'aquifère.

En revanche, au forage de Pamandzi 2, le niveau piézométrique étant topographiquement proche du niveau marin, il est envisageable d'avancer des phénomènes de drainage plus importants dans cette partie de l'aquifère et par conséquent un potentiel hydrogéologique plus élevé. Toutefois, la proximité de l'Océan est contraire à un potentiel hydrogéologique très intéressant. La seule exploitation envisageable pourrait être effectuée par « écrémage » de l'aquifère (multiplication de forages à faible débit et profondeur ou réseau de drains horizontaux).

A 1ère vue, il semblerait que les horizons aquifères soient peu différenciés, localement en connexion et d'extension horizontale très restreinte (moins de 500 m de toute évidence).

La proximité du littoral frein le développement des nappes et a des conséquences sur la dégradation de la qualité des eaux souterraines.

La part des infiltrations dans les précipitations est probablement faible compte tenu des reliefs accentués et de l'absence ou du moins la présence relativement rare de zones dépressionnaire favorisant les infiltrations. La géométrie dépressionnaire du cratère de Dziani pourrait en faire une zone d'infiltration privilégiée. Malheureusement, la proximité du cratère avec le littoral a pour conséquence de permettre les échanges d'eau avec le milieu marin et notamment de contribuer à l'intrusion d'eau salée dans le lac et la vidange des eaux diluviennes vers le large. L'eau du cratère est saumâtre et ne peut correspondre à une ressource potentielle ni même alimenter une nappe souterraine

La contamination des aquifères par l'intrusion d'eau salée dans les unités géologiques de Petite Terre est un frein au potentiel d'exploitation des aquifères. Il a d'ores et déjà été remarqué que la qualité des eaux souterraines se dégradait avec la profondeur des ouvrages de Pamandzi 1 et 2. La quantité d'eau mobilisable dans les aquifères étant naturellement

limitée, les intrusions d'eau salée (notamment en provenance de la base des aquifères suivant le phénomène de gradient de densité) pourraient très rapidement atteindre les niveaux captés et rendre la ressource impropre à la consommation.

#### c) Conclusion sur l'intérêt hydrogéologique de la masse d'eau de Petite Terre

De toute évidence le potentiel aquifère de Petite Terre n'est pas en adéquation avec les besoins des occupants de l'île. L'exploitation des eaux souterraines de Petite-Terre conduirait rapidement à l'épuisement des ressources en termes de quantité et très rapidement à sa dégradation en termes de qualité en raison de l'intrusion d'eau saline dans les horizons captés.

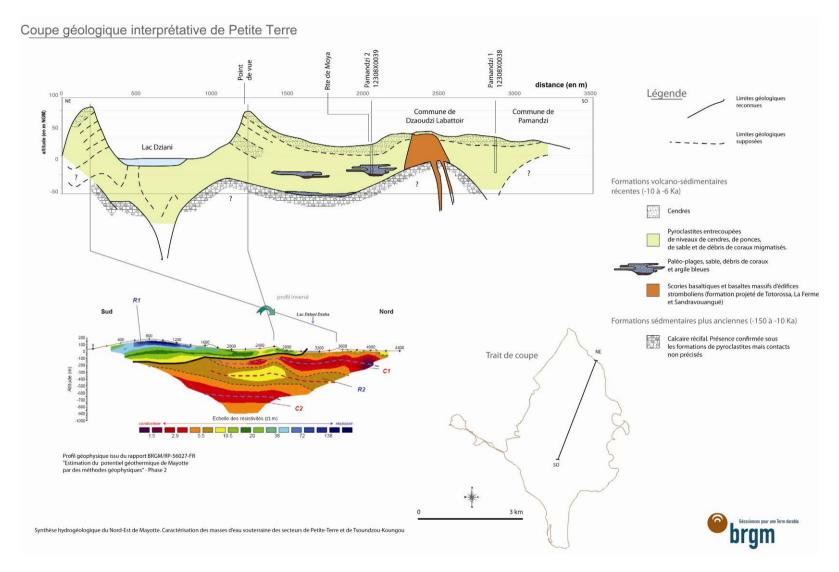



Illustration 28 – Coupe géologique interprétative de Petite Terre

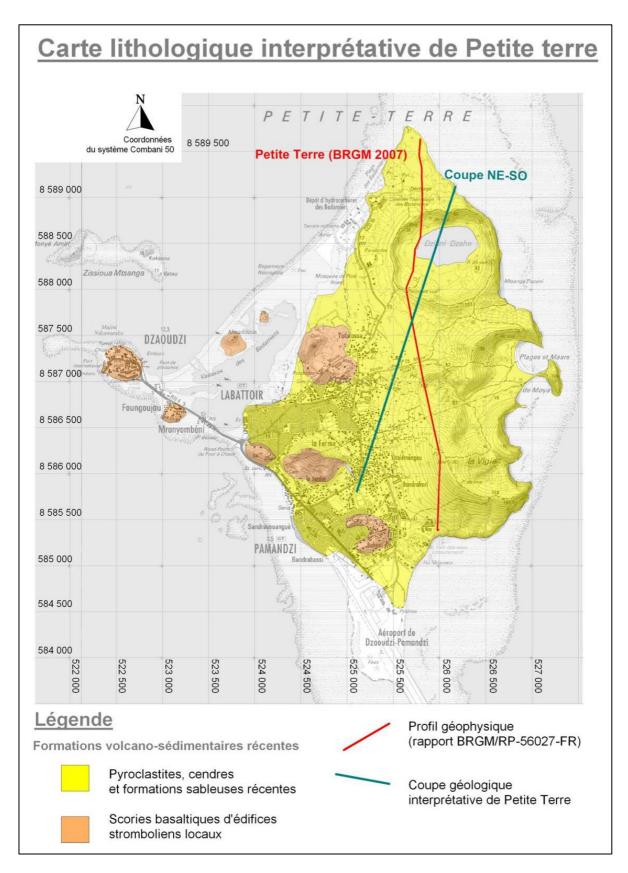



Illustration 29 – Carte géologique synthétique de Petite Terre

# 4. Synthèse à l'échelle du Nord-Est de Mayotte

La coupe géologique interprétative (planche hors texte) constitue un document de synthèse dont l'objectif est de présenter l'ensemble des résultats obtenus sur le secteur du M'Tsapéré à travers notamment les informations : des profils géophysiques, des reconnaissances géologiques de terrain complétées des descriptions lithologiques ainsi que des informations des forages.

Cette coupe, complémentaire à la carte lithologique interprétative du Nord Est de Mayotte synthétise les informations relatives à :

- La géométrie des paléovallées (pente des flancs) ;
- L'organisation verticale des lithologies ;
- La profondeur estimée des structures et des formations géologiques.

Dans le détail, on remarque que le style géologique a conduit à la différenciation des unités hydrogéologiques fonctionnelles.

# 4.1. LA COUPE GEOLOGIQUE INTERPRETATIVE DE SYNTHESE DU M'TSAPERE

#### a) Vallées de la Kwalé à la Majimbini.

La succession des formations géologiques peut se résumer comme l'enchevêtrement des unités basaltiques du substratum, des basaltes de faciès  $\beta 2$  surmontés de dépôts pyroclastiques d'une dizaine de mètres sur lesquels viennent en recouvrement les basaltes  $\beta 3$  puis les phonolites du M'Tsapéré (visibles sur la coupe sur la crête entre la vallée de la Gouloué et celle de la Doujani).

Le substratum et les unités de β2 portées à l'affleurement montrent un degré d'altération poussé, visible dans la vallée de la Doujani et de la Majimbini du principalement à l'action des eaux météoriques. Cette altération est moins prononcée dans la vallée de la Kwalé et de la Gouloué. Le substratum en profondeur est lui aussi affectée par l'altération notamment les flancs des paléovallées sous-jacentes (mis en évidence par la géophysique).

Le forage de Kwalé 1 (et probablement aussi Kwalé 3) marquent le contact entre les édifices volcaniques du Maévodoani et du M'Tsapéré. Les successions lithologiques au contact entre ces deux édifices expliquent probablement le potentiel aquifère élevé des unités en rive droite de la Kwalé (qui ne sont pas les mêmes que celles rencontrées lors de la foration de l'ouvrage de Kwalé 2).

#### b) Unités de Kawéni et Kavani

Le style géologique du cratère de Kawéni met bien en évidence l'important remplissage volcano sédimentaire tardif du cratère qui constitue la formation aquifère la plus intéressante du secteur. Cette formation aquifère peut être assimilée à un milieu poreux bien que dans le détail, les horizons soient très hétérogènes. Les unités marquant le substratum du cratère n'ont pas été reconnues dans le détail mais sont identifiées comme étant des basaltes de faciès β2 (rencontrées en amont du cratère) et s'enfonçant progressivement par le jeu des failles bordières.

En amont, sur la coupe 2, le style géologique fait apparaître un enchevêtrement de coulées basaltiques comblant des paléovallées, style qui s'apparente à celui rencontré dans les vallées de la Kwalé à la Majimbini mais affectant des formations plus jeunes. Le substratum identifié est le basalte de faciès β2 dont les géométries et les contacts n'ont pas été précisés. Ce substratum entaillé par de profondes paléovallées a été comblé par des coulées basaltiques de faciès β3 dont les bases de coulées s'approfondissent en se dirigeant vers le Nord de la coupe. Par la suite, des coulées de trachyandésite viennent combler les paléovallées entaillées dans les formations sous-jacentes. Jusqu'à présent, ce type de coulée n'a été identifié que dans le secteur amont du cratère de Kawéni (voir carte lithologique interprétative). Des coulées de téphrites et de basaltes récents (faciès ankaramites) viennent en recouvrement des formations sous-jacentes.

#### c) Secteur Bandrajou et amont de Kawéni

Des bords du cratère de kawéni à la carrière ETPC, le profil géologique montre la juxtaposition de coulées basaltiques de faciès β2 et β3 dont les contacts ne sont pas précisés. En recouvrement de ces unités viennent se déposer des scories, attribués au volcanisme récent du M'Tsapéré ainsi que des pyroclastites dont l'origine est probablement liée aux éruptions du cratère de Kawéni.

#### d) Secteur Sud de Koungou

Dans ce secteur, les formations géologiques sont plus bousculées que dans la partie Sud de la coupe. La mise en place des cônes de scories « anciens » au pied de la carrière et des phonolites en amont du secteur contribue à ce bouleversement qui rend l'identification des formations plus délicate. Par ailleurs, l'importante couverture de surface composée de scories « récentes » et de pyroclastites rend aussi la compréhension des formations plus délicate.

Néanmoins, il est possible d'avancer que les formations géologiques en profondeur sont de type paléovallées comblées par des coulées basaltiques de type β3 sur lesquelles se sont épanchées à la fois les dômes de phonolite et les coulées de téphrites. D'importants dépôts de type pyroclastites dont les épaisseurs ne sont pas toujours confirmées viennent séparer ces unités.

### e) Secteur de Kangani et M'Gombani

Une paléovallée sous la vallée actuelle a pu être mise en évidence. Le faciès des basaltes occupant cette paléovallée est identifié comme s'approchant du faciès  $\beta$ 3 mais sans certitude. En se décalant à l'Ouest, les unités portées à l'affleurement sont des téphrites récentes reposant sur d'épaisses pyroclastites dont l'extension n'est pas confirmée.

L'insuffisance et la qualité des informations géologiques rendent délicates l'interprétation des formations géologiques au droit de la vallée de la M'Gombani. Les unités portées à l'affleurement sont des téphrites, bien que le secteur soit partiellement couvert de brèches et de produits d'altération qui rendent l'identification géologique plus complexe. Par ailleurs, comme indiqué plus haut, les informations fournies par le profil géophysique de M'Gombani 2007 n'ont pas permis de trancher pour une formation particulière en profondeur.

# f) Récapitulatif des formations aquifères du Nord Est de Mayotte

Les formations aquifères principales recoupées par forage dans le Nord Est de Mayotte sont récapitulées dans le Tableau 2 - Synthèse des formations aquifères des forages du Nord-est de Mayotte. Les productivités des ouvrages donnent localement une idée du potentiel aquifère de (ou des) formation(s) recoupées.

| Secteur | Indice_Bss   | Nom          | X       | Y         | Autres<br>déno-<br>mina-<br>tion   | Commune   | Campagne  | Formation<br>Aquifère                                                                    | Horizon<br>capté (m) | Produc-<br>tivité<br>(m3/h) | Equipe-<br>ment | Exploitation | Potentiel<br>d'exploitation | Risque<br>intrusion<br>saline |
|---------|--------------|--------------|---------|-----------|------------------------------------|-----------|-----------|------------------------------------------------------------------------------------------|----------------------|-----------------------------|-----------------|--------------|-----------------------------|-------------------------------|
| Kwalé   | 1230-7X-0022 | Kwalé 1      | 519 970 | 8 585 460 | kwalé<br>aval ,<br>kwalé<br>légion | Mamoudzou | 1999/2000 | Alternance de<br>basaltes<br>fissurés et basaltes<br>scoriacés                           | 33-62                | 60                          | Forage          | Oui          | Fort                        | Nul                           |
|         | 1230-7X-0023 | Kwalé 2      | 519 182 | 8 585 038 | kwalé<br>amont ,<br>kwalé<br>haut  | Mamoudzou | 1999/2000 | Alternance de<br>basaltes fissuré s<br>et scoriacés (+<br>altération hydro-<br>thermale) | 35 - 50              | <5                          | Piézo.          | Non          | Faible                      | Nul                           |
|         | 1230-3X-0100 | Kwalé 3      | 519 903 | 8 585 480 |                                    | Mamoudzou | 2004      | Basalte scoriacé                                                                         | 58 - 74              | 18                          | Forage          | Non          | Fort                        | Nul                           |
| Gouloué | 1230-7X-0045 | Gouloué 1    | 520 896 | 8 586 129 | gouloué<br>amont,<br>gouloué<br>1  | Mamoudzou | 2001/2003 | Lave scoriacée                                                                           | 28 - 46<br>63 - 68   | 6 à 11                      | Forage          | Non          | Moyen                       | Faible                        |
|         | 1230-7X-0053 | Gouloué 2    | 521 064 | 8 585 967 | gouloué<br>aval                    | Mamoudzou | 2001/2003 | Lave scoriacée                                                                           | 52 - 80              | 12 à 21                     | Forage          | Non          | Moyen                       | Faible                        |
| Kawéni  | 1230-7X-0013 | Kawéni F1    | 523 710 | 8 588 780 | ancien<br>forage<br>de<br>Kaweni   | Mamoudzou | 1990/1991 | Alluvions                                                                                | 12 - 37              | 15                          | Forage          | Oui          | Moyen                       | Moyen                         |
|         | 1230-7X-0014 | Kawéni F2    | 523 750 | 8 588 940 | ancien<br>forage<br>de<br>Kaweni   | Mamoudzou | 1990/1991 | Alluvions                                                                                | 11 - 37              | 11                          | Forage          | Oui          | Moyen                       | Moyen                         |
|         | 1230-7X-0011 | Kawéni 1 8"  | 523 764 | 8 588 653 | KAWE1                              | Mamoudzou | 1990/1991 | Alluvions                                                                                | 11 - 40              | <5                          | Piézo.          | Non          | Moyen                       | Moyen                         |
|         | 1230-7X-0012 | Kawéni 2 8"  | 523 714 | 8 588 799 | KAWE2                              | Mamoudzou | 1990/1991 | Alluvions                                                                                | 11 - 30              | 35                          | Piézo.          | Non          | Fort                        | Moyen                         |
|         | 1230-7X-0019 | Kawéni 1 10" | 524 070 | 8 589 240 | Kaweni<br>aval                     | Mamoudzou | 1999/2000 | Alluvions -<br>Basalte<br>scoriacé                                                       | 9 - 19<br>26 - 45    | 30                          | Piézo.          | Non          | Fort                        | Moyen                         |
|         | 1230-7X-0020 | Kawéni 2 10" | 524 060 | 8 589 260 | Kaweni<br>aval<br>piézo-<br>metre  | Mamoudzou | 1999/2000 | Alluvions -<br>Basalte scoriacé                                                          | 11 - 33<br>34 - 48   | 30                          | Forage          | Non          | Fort                        | Moyen                         |
|         | 1230-7X-0021 | Kawéni 3 10" | 523 600 | 8 589 490 | Kaweni                             | Mamoudzou | 1999/2000 | Alternance basalte                                                                       | 19 - 59              | 30                          | Forage          | Oui          | Fort                        | Moyen                         |

Synthèse hydrogéologique du Nord-Est de Mayotte. Caractérisation des masses d'eau souterraine des secteurs de Petite Terre et de Tsoundzou-Koungou

|                 |              |                 |         |           | amont |          |           | fissuré et basalte<br>scoriacé |         |        |          |     |        |        |
|-----------------|--------------|-----------------|---------|-----------|-------|----------|-----------|--------------------------------|---------|--------|----------|-----|--------|--------|
| Kangani         | 1230-7X-0117 | Kangani         | 520 650 | 8 591 850 |       | Koungou  | 2005/2006 | -                              | -       | Nulle  | Remblayé | Non | Nul    | Faible |
| Longoni         | 1230-7X-0116 | Longoni Tririni | 516 475 | 8 592 320 |       | Koungou  | 2005/2006 | -                              | -       | Nulle  | Remblayé | Non | Nul    | Faible |
| Petite<br>Terre | 1230-8X-0038 | Pamandzi 1      | 530 300 | 8 586 400 | PAMA1 | Pamandzi | 1990/1991 | Pyroclastite friable et altéré | 41 - 65 | Nulle  | Piézo.   | Non | Nul    | Fort   |
|                 | 1230-8X-0039 | Pamandzi 2      | 530 600 | 8 587 160 | PAMA2 | Pamandzi | 1990/1991 | Alluvions sableuses            | 22 - 48 | Faible | Piézo.   | Non | Faible | Fort   |

Tableau 2 - Synthèse des formations aquifères des forages du Nord-est de Mayotte

#### 4.2. POTENTIEL HYDROGEOLOGIQUE

La synthèse des enseignements tirés lors des précédentes études et complétée par la présente étude : campagnes de forage, coupes de forages, investigations géophysiques et prospections de terrain permet aujourd'hui de définir les formations géologiques à potentiel aquifère. Sur le secteur de Tsoundzou à Koungou et de Petite-Terre, ces formations sont décrites ci-dessous.

#### 4.2.1. Formations sédimentaires

Les formations sédimentaires n'ont été recoupées en forage qu'au sein des paléovallées récentes, dont l'origine est très probablement relative aux incisions quaternaires (bas niveaux marins des périodes glaciaires 10) et aux phases de comblement qui ont suivi la ou les remontées du niveau de base. Il s'agit exclusivement de formations alluviales, au sein desquelles aucun indice de niveau mis en place en contexte marin n'a été mis en évidence. Les forages concernés sont les suivants : Kawéni 1, 2 & 3, Kawéni F1 et F2 et Kawéni 1 8" et Kawéni 2 8 " et Pamandzi 2.

Cette absence de niveaux marins au sein des formations sédimentaires, même à des profondeurs importantes (plusieurs dizaines de mètres sous le zéro marin actuel) est en accord avec les connaissances géologiques qui suggèrent une tendance générale à la subsidence, à l'échelle de l'ensemble de l'île sous son propre poids, consécutive à l'arrêt de l'activité volcanique.

Ces formations alluviales présentent, en règle générale, une faible perméabilité d'ensemble qui peut être reliée à leur teneur élevée en matériaux argileux, conséquence du fort développement des altérites à l'échelle de l'ensemble des bassins versants de Mayotte (altération latéritique accrue sous climat tropical humide).

Les formations alluviales à Mayotte, ne doivent *a priori* pas être retenues en tant que ressource en eau d'intérêt. Cependant dans la zone étudiée elles représentent une ressource non négligeable.

A Mayotte, les formations calcaires ne sont connues qu'au sein de la barrière corallienne périphérique de l'île. L'absence de formations émergées s'explique par les phénomènes de subsidence auxquels l'île est soumise et l'absence de niveaux marins durablement et significativement plus hauts que l'actuel au Quaternaire. Ces formations ne doivent pas être retenues en tant que potentiel aquifère compte tenu de leur degré de fissuration et de karstification faible ainsi que de l'omniprésence des eaux marines en leur sein.

#### 4.2.2. Formations volcaniques

Le massif du M'Tsapéré présente un réel intérêt sur le plan hydrogéologique. Ceci est en accord avec l'homogénéité de la géologie du M'Tsapéré à l'échelle de Mayotte : la nature des formations volcaniques ne montrent pas de disparités significatives sur le plan hydrogéologique (nature des roches, importance de l'altération).

Cependant, à l'échelle du massif du M'Tsapéré, et de manière plus marquée à l'échelle des vallées, une forte variabilité spatiale des propriétés hydrodynamiques est observée. En effet,

\_

<sup>&</sup>lt;sup>10</sup> La chute eustatique du dernier maximum glaciaire atteint – 120 m NGM à –18 000 ans BP.

les forages montrent qu'à plus grande échelle, le sous-sol présente une importante variabilité latérale et verticale de ses propriétés hydrodynamiques. Les principaux déterminismes de cette variabilité, tels qu'ils apparaissent, peuvent être hiérarchisés à l'issue de cette campagne de reconnaissance. Les déterminismes mis en évidence sont décrits ci-dessous.

#### a) Déterminisme lithologique

Les **laves** constituent les formations les plus intéressantes en termes de perméabilité, avec des débits instantanés souvent supérieurs à 100 m³/h et, par voie de conséquence, des valeurs de transmissivité relativement élevées, comprises entre 5.10-4 et 7.10-3 m²/s.

Les autres formations recoupées en forage, dépôts pyroclastiques (cendres, brèches d'explosion) et projections scoriacées, montrent, sans être exclusives, de très médiocres propriétés hydrodynamiques. Ces mauvaises propriétés, en particulier en ce qui concerne les projections scoriacées, sont très probablement à relier à leur hétérométrie ainsi et surtout qu'à leur plus forte altérabilité que celle des laves et à l'absence de produits de cette nature très frais à Mayotte. De plus, les formations pyroclastiques peuvent être « soudées à chaud » lors de leur mise en place. Ce phénomène réduit considérablement la porosité connectée.

Aucun terrain de type **intrusif** (**dyke**, **phonolites**) n'a été identifié en forage. Les propriétés hydrogéologiques de ces formations ne sont donc pas connues à Mayotte. Toutefois, dans le contexte de milieu volcanique, ces formations constituent souvent des hétérogénéités marquées sur le plan hydraulique. Saines, ces formations peuvent constituer des drains efficaces et montrer des valeurs de transmissivité élevées. Au contraire, si le degré d'altération est élevé, ces formations joueront davantage le rôle de barrière hydraulique et conduiront au compartimentage des unités aquifères

#### b) Laves : déterminisme lié à la structure interne de chaque coulée

Les laves présentent une forte variabilité de leurs propriétés hydrodynamiques au sein d'une même coulée qui se traduit, en forage, par une variabilité verticale des perméabilités. Cette variabilité s'explique majoritairement par la structure interne des coulées, liée à leur mode de mise en place. Celle-ci comprend généralement, de haut en bas :

- 1. Soit une surface scoriacée montrant des gratons (coulée de type Aa), soit une surface lisse, assez régulière et rugueuse (coulée de type Pahoehoe). Les forages ont essentiellement recoupé des coulées montrant une surface en gratons ;
- 2. un cœur de coulée plus massif souvent diaclasé (fissures de refroidissement), mais sans que cela soit systématique ;
- 3. une brèche de base de coulée présentant des éléments scoriacés, en gratons, et reprenant fréquemment des blocs de la coulée sous-jacente.

La synthèse des mesures de débit à l'avancement montre qu'en termes de perméabilité, les cœurs de coulée, lorsqu'ils sont fissurés, sont les plus productifs. Les niveaux en gratons et scoriacés contribuent aussi significativement au débit des forages. La perméabilité de ces horizons est de l'ordre de 10<sup>-4</sup> m/s. Les horizons fissurés sont en général plus épais que les niveaux scoriacés ou en graton. Ces zones les plus perméables présentent néanmoins toujours une épaisseur modeste (quelques mètres - 5 m en moyenne - à une dizaine de mètres tout au plus). Dans certains ouvrages (ex : M'tsangamouji 1 & 2), la quasi totalité du débit du forage provient d'un seul horizon d'une épaisseur de quelques mètres.

L'homogénéité des mesures de conductivité électrique des eaux souterraines à l'avancement suggère l'existence de communications entre ces différentes zones de perméabilité au sein d'une même coulée.

#### c) Déterminisme lié à la fracturation

Les observations en forage montrent le rôle important joué par la fissuration (cf. ci-dessus). Celle-ci se marque par des tapissages de minéraux sur les plans de fissures (zéolites, traces d'oxydation brune, etc.). Il ne peut être exclu que ces discontinuités aient aussi localement une origine tectonique (fracturation avec circulations de fluides associées). Ce phénomène est très probable sur le forage de Mrereni 1 (fracturation avec altération hydrothermale et colmatage quasi total de la perméabilité matricielle ou de fractures).

Ce phénomène est également envisageable sur les forages de M'tsangamouji 1 (la zone fissurée à 35 m de profondeur est probablement d'origine lithologique, celle mise en évidence entre 66 et 70 m pourrait être d'origine tectonique, en raison de l'importance des dépôts hydrothermaux et du découpage de la roche en dièdres décimétriques), Tsararano 1 (hydrothermalisation importante entre 31 et 50 m environ, alors que le forage est productif à ce niveau). En revanche, il peut être quasiment exclu que les horizons les plus perméables des forages suivants aient pour origine une fracturation de type tectonique car leurs niveaux producteurs correspondent bien à des faciès de gratons ou scoriacés : M'tsangamouji 2, Kawéni 1 et 2, Béja 1.

#### d) Déterminisme lié à l'altération

Tous les forages ont, sans exception, recoupé une majorité de formations volcaniques saines. Les altérites, imperméables forts, se situent donc quasi exclusivement à proximité de la surface topographique.

Des niveaux altérés existent essentiellement au niveau des interfaces entre coulées (paléosols, altération superficielle des coulées). Ils correspondent à des périodes suffisamment longues d'arrêt du volcanisme permettant une érosion significative des dernières unités mises en place. Par ailleurs, des phénomènes d'hydrothermalisme peuvent entraîner un colmatage de la perméabilité des laves (exemple du forage de Mrereni 1).

#### e) Compartimentage des aquifères

Les observations hydrogéologiques montrent le fort « compartimentage » apparent des aquifères. Cela se marque par :

- de forts gradients hydrauliques apparents, qui traduisent très vraisemblablement l'existence de discontinuités piézométriques, ainsi que le caractère captif de la plupart des aquifères et, localement, leur artésianisme (exemple : M'tsangamouji 1);
- l'absence de mise en évidence d'une « nappe de base » à proximité du littoral (modèle classique au sein des volcans insulaires récents : Réunion, Hawaï, etc.) ;
- au contraire, une structure généralisée en nappes « perchées », y compris en contexte littoral ;
- la mise en évidence fréquente de « limites étanches » lors de l'interprétation des pompages d'essai;

des variations latérales de la chimie des eaux souterraines (telle que la conductivité électrique peut permettre de l'apprécier), etc.

Ce compartimentage est à relier à la structure géologique des aquifères :

- lithologie: faciès perméables limités aux coulées, et, plus encore, à certains faciès très localisés au sein de celles-ci (zones fissurées et/ou fracturées, gratons, etc.), qui présentent une extension verticale réduite et doivent aussi présenter une extension limitée latéralement (bordure de paléovallées, limites d'érosion ultérieure), et longitudinalement (« tuilage » lié à leur mise en place polyphasée). Entre chaque coulée, la présence d'intercalations de cendres, de paléosols, etc. accentue cette hétérogénéité d'origine lithologique;
- **fracturation**, d'origine tectonique ou gravitaire (subsidence, effondrements, etc.), non identifiée de manière directe et indubitable cependant.

Dans les secteurs reconnus par forage, aucun dyke n'a été mis en évidence, ni observé à l'affleurement ; il paraît donc difficile d'invoquer ce type de structure pour expliquer le compartimentage observé. Néanmoins, l'île étant relativement ancienne et soumise à des phénomènes de subsidence depuis une longue période, sa partie actuellement émergée correspond probablement aux parties hautes de l'ancien volcan, plus compartimentées que ses anciens flancs. Par ailleurs, le fait que la présence de formations d'origine alluviale à la base des différentes séquences volcaniques identifiées en forage soit limitée à de rares secteurs (Béja 1 & 2 et M'tsangamouji 1) suggère, lui aussi, que ces séries volcaniques se sont mis en place dans un contexte de partie supérieure du volcan, au sein de laquelle ce type de formation est assez peu fréquent.

Ce compartimentage présente très vraisemblablement des points positifs vis à vis de la ressource en eau souterraine (faible risque d'intrusion saline, charges hydrauliques toujours voisines de l'altitude du sol donc moindre énergie nécessaire pour le pompage, etc.), mais également des conséquences négatives (extension limitée des aquifères, donc de probables apparitions de « limites étanches » lors de l'exploitation des aquifères, ressource limitée, etc.).

#### 5. Conclusion

La méthodologie mise en œuvre dans le cadre de cette étude de reconnaissance et de caractérisation des potentialités hydrogéologiques secteur par secteur en vue de préciser la délimitation et le fonctionnement des masses d'eau du Nord Est de Mayotte est le fruit des réflexions et de l'expérience du BRGM en contexte volcanique altéré.

La complémentarité des méthodes (synthèses hydrogéologiques des campagnes de forage, reconnaissances géologiques de terrain et interprétation des profils géophysiques) a permis d'obtenir les résultats suivant.

- Aboutir à un modèle géologique conceptuel qui prend en considération la lithologie, la structure, la géométrie et l'âge (datation) des formations. Ce modèle sert de support à la réflexion hydrogéologique en permettant de définir des propriétés propices au développement aquifère (structure et géométrie des formations, degré d'altération et de fracturation, perméabilité intrinsèque, etc.).
- 2. Définir des unités hydrogéologiques fonctionnelles. Ces unités sont au nombre de 4 au sein de la masse d'eau du M'Tsapéré et Petite Terre est considérée comme une unité fonctionnelle propre. Ces unités fonctionnelles se distinguent par des comportements hydrogéologiques particuliers : modèles de formations aquifères différents, mécanismes de recharge différents, disponibilité de la ressource différente tant en termes de quantité que de qualité des eaux, etc.
- 3. Envisager des potentialités aquifères autres que celles reconnues jusqu'à aujourd'hui. La mise en évidence de formations aquifères potentielles par les méthodes utilisées permet ensuite de reconnaître ces potentialités par forage de reconnaissance. Dans le cas présent, la 5ème campagne de forage de reconnaissance a été programmée sur les résultats de la présente étude en ce qui concerne le Nord Est de Mayotte. Les résultats de cette campagne devraient permettre à la fois de reconnaître ces potentialités aquifères et de valider le modèle conceptuel utilisé.

Cette approche méthodologique, appropriée au contexte volcanique altéré compte tenu de ces particularités, est néanmoins sujette à des limites qui sont :

- d'une part la reconnaissance des indices géologiques et hydrogéologiques est souvent indirecte (reconnaissance d'un faciès géologique unique sous de nombreuses formes altérées, reconnaissance des limites géologiques par interprétation des contrastes géophysiques, extension géométrique des formations aquifères reconnues en un endroit précis). Il n y a donc pas de certitude absolue quant aux interprétations. Cette approche pourra être révisée en fonction de l'évolution des concepts et des connaissances géologiques et hydrogéologiques sur l'ile de Mayotte;
- d'autre part, dans le cadre des masses d'eau au sens de la Directive Cadre sur l'Eau, l'étude vise à identifier les principaux aquifères d'intérêt sur le plan patrimonial pour l'AEP. Cela ne s'oppose pas à ce que les formations considérées comme non aquifères selon cette définition ne puissent pas faire l'objet d'une exploitation, à faible débit notamment (quelques m³/h), et que des transferts de fluides ne puissent pas s'y produire (problématiques des transferts de polluants par exemple). La question d'échelle des formations aquifères est capitale à Mayotte compte tenu de la multitude et de la taille restreinte de ces formations.

Les résultats de la campagne de forage n°5 (2006-2007) ne sont pas encore connus. Il est évident que la meilleure source d'informations directes est la donnée de forage : informations qui permettent de corréler formations géologiques et potentiels aquifères et d'en préciser le fonctionnement

Etant donné que 5 des 9 forages prévus sont implantés dans la zone d'étude du M'Tsapéré (vallée de la Kangani, amont de la vallée de la Majimbini, vallée de la Gouloué et 2 en amont de la vallée de la Kwalé), les résultats viendront confirmer ou infirmer, pour certaines zones, la validité du modèle géologique proposé et de son fonctionnement.

La connaissance des ressources en eau souterraine à Mayotte est capitale compte tenu du développement démographique, de la hausse de la consommation et de la vulnérabilité accrue de jours en jours des ressources en eau de surface. La présente étude de synthèse hydrogéologique a mis en évidence des formations aquifères nombreuses, très localisées, très compartimentées et aux propriétés hydrodynamiques variables. Néanmoins la ressource de ce secteur n'est pas négligeable à l'échelle de l'île et il est évident que même les formations aquifères les plus modestes (qui sont aussi les plus nombreuses sur l'île) sont potentiellement exploitables à raison de quelques centaines de litres par heure ou du mètre cube par heure.

En perspective, il est évident que ce secteur mérite de continuer à être investigué. Les prochaines études hydrogéologiques à l'échelle des masses d'eau devraient porter sur le Nord Ouest de Mayotte (Dzoumogné, M'Tsamboro, Acoua, M'Tsangamouji) et permettront de préciser la génétique des formations géologiques, leur architecture et géométrie afin de déterminer leur potentiel hydrogéologique.

## 6. Références bibliographiques

ASCONIT. Schéma Directeur d'Aménagement et de Gestion des Eaux (SDAGE) de Mayotte. Etat des lieux et définition des principaux problèmes – Tome 1, Décembre 2006.

Bonnier J., Jossot O., Lachassagne P., Mouron R. (2003) – Programme de recherche et d'exploitation des eaux souterraines à Mayotte (Campagne 2001-2003). Forage de Gouloué 2 (12307X0053). Rapport BRGM/RP-52551-FR. 63 p., 20 fig., 4 ann.

Cluzet C., Guilbert M. et Lachassagne P. (2008) – Etude préliminaire à l'implantation d'un forage d'eau sur le site de la carrière ETPC de Koungou (Mayotte). Rapport final. BRGM/RC-56509-FR, 55 p.

Cruchet M., Daesslé M., Gérard A., Lachassagne P. (2000) – Programme de recherche et d'exploitation des eaux souterraines à Mayotte. Synthèse des résultats des reconnaissances géologiques, hydrogéologiques, géophysiques et énamométriques radon. Propositions d'implantation des sondages cde reconnaissance. Rapport BRGM/RP-50386-FR. 54 p., 17 fig., 3 ann.

Directive-cadre européenne sur l'eau Circulaire DCE 2006/16 : document de cadrage pour la constitution et la mise en oeuvre du programme de surveillance (contrôle de surveillance, contrôles opérationnels, contrôles d'enquête et contrôles additionnels) pour les eaux douces de surface (cours d'eau, canaux et plans d'eau). Circulaire du Ministère de l'écologie et de l'environnement durable du 13 juin 2006.

Debeuf D. (2004) - Étude de l'évolution volcano-structurale et magmatique de Mayotte (Archipel des Comores, Océan Indien) - Thèse de 3ème cycle de l'Université de la Réunion, 277 p.

Eucher G., Mouron R. (2006).- Programme de recherche et d'exploitation des eaux souterraines à Mayotte – Campagne 2005 - Forage 1230-7X-0117 (Kangani 1). Rapport BRGM/RP-54670–FR. 43 p., 8 ill., 2 ann.

Eucher G., Mouron R. (2006).- Programme de recherche et d'exploitation des eaux souterraines à Mayotte – Campagne 2005 - Forage 1230-7X-0116 (Longoni-Tririni). Rapport BRGM/RP-54434–FR. 41 p., 6 ill., 3 ann.

François B. (2008) - Etude géophysique à Chaouéni, BRGM/RC-56104-FR, 23 p.

Frissant N., Lachassagne P., Miehe J.M., Eucher G, Petit V., Mouron R., coll. Barthélemy L. (2006) – Programme de recherche et d'exploitation des eaux souterraines à Mayotte (Campagne 2006-2007). Synthèse des résultats des reconnaissances géologiques, hydrogéologiques, géophysiques et radon. Proposition d'implantation des sondages de reconnaissance. Rapport BRGM/RP-55322-FR. 138 p., 41 ill., 6 ann.

Jourdain T., Maurillon N., Mouron R. (2002) – Approche géologique et hydrogéologique des ensembles volcaniques de Grande-Terre (Ile de Mayotte). Rapport BRGM/RP-52193-FR, 80 p., 17 fig., 8 tab., 5 ann.

Jourdain T., Lachassagne P., Lebon D., Miehe J.M., Mouron R. (2002) – Programme de recherche et d'exploitation des eaux souterraines à Mayotte. Campagne 2001-2002 – Syn-

thèse des résultats des reconnaissances géologiques, hydrogéologiques, géophysiques et radon – Proposition d'implantation des sondages de reconnaissance - Rapport BRGM/RP-51498-FR, 115 p., 33 fig., 6 tab., 4 ann.

Lachassagne P., Cruchet M., Daesslé M., Lebon D., (2000) – Programme de recherche et d'exploitation des eaux souterraines à Mayotte. Campagne prioritaire d'études et de forages de reconnaissance / d'exploitation (juin 1999 – octobre 2000). Compte-rendu des travaux et principaux résultats géologiques et hydrogéologiques. Rapport BRGM/RP-50428-FR, 20 p., 2 fig., 4 tabl., 14 ann.

Lachassagne P., Ladouche B., Petit V. avec la collaboration de Jourdain Th. et Mouron R. (2002) – Protection et optimisation de la ressource en eau souterraine à Mayotte. Réévaluation des débits d'exploitation des forages de 1999-2000, sur la base d'observations complémentaires réalisées en 2000-2001. BRGM/RP-51603-FR, 89p., 31 fig.

Lachassagne P., Maurillon N., Mouron R. (2002) – Programme de recherche et d'exploitation des eaux souterraines à Mayotte (campagne 2001-2002) – Forage de Gouloué (12307X0045). Compte rendu des travaux – Principaux résultats géologiques et hydrogéologiques. Rapport BRGM/RP-52035-FR. 30 p., 8 fig., 6 ann.

Guilbert M., Dewandel B., Lachassagne P. et Malard A. (2008) – Protection et optimisation de la ressource en eau souterraine à Mayotte. Année 4 – BRGM/RP-56438-FR, 105 p.

Lachassagne P., Noël Y., Jossot O., Wuillemier A. (2004).- Valorisation des données d'exploitation du forage de Kwalé 1 (1230-7X-0022) recueillies en 2002-2003. Réévaluation des volumes exploitables. Présentation des données piézométriques recueillies sur 4 forages suivis par la DAF.- Collectivité Territoriale de Mayotte, Direction de l'Agriculture et de la Forêt.- Rapport BRGM/RP-53193-FR.- 74 p., 36 ill., 6 tabl., 2 ann., 1CD ROM.

Mathieu F. (1999) – Programme de recherche et d'exploitation des eaux souterraines à Mayotte. Reconnaissance géophysique. Rapport BRGM/RR-40750-FR, 103 p., 16 fig., 2 tabl., 2 ann.

Mauroux B., (1992) – Programme des forages de reconnaissance des eaux souterraines à Mayotte. Rapport BRGM/RR-35165-FR, 102 p., 34 fig., 3 tab., 5 ann.

Miehe J.M., Eucher G., Petit V. (2005) – Programme de recherche et d'exploitation des eaux souterraines à Mayotte – Campagne 2005 – Reconnaissance géophysique et implantation des forages. Rapport BRGM/RP-54111-FR, 37 p., 8 ill., 3 ann.

Petit V., Frissant N., Eucher G., Lachassagne P. (2004) – Programme de recherche et d'exploitation des eaux souterraines à Mayotte – Campagne 2004 – Forage 12307X01000 (Kwalé 3). Rapport BRGM/RP-53471-FR, 89 p., 13 ill., 4 ann.

Petit V., Eucher G. (2005) – Etude préalable à l'élaboration des périmètres de protection des forages de Kwalé (12307X0022 et 12307X0100) – Rapport BRGM/RP-53593-FR. 38 p., 9 ill., 3 ann.

Petit V., avec la collaboration de G. Eucher (2005) – Valorisation des données piézomètriques acquises à Mayotte en 2003-2004. Réévaluation des volumes exploitables au forage de Kwalé 1 (1230-7X-0022). Présentation de données piézomètriques recueillies sur 4 forages suivis par la DAF – Rapport BRGM/RP-54090-FR, 48 p., 2 ill., 2 ann.

Synthèse hydrogéologique du Nord-Est de Mayotte. Caractérisation des masses d'eau souterraine des secteurs de Petite Terre et de Tsoundzou-Koungou

Salesse E., Mauroux B., Weber O. (1991) – Alimentation en eau potable de Mamoudzou des forages F1 (1230-7X-0013) et F2 (1230-7X-0014) – Z.I. de Kawéni – Assistance hydrogéologique. Rapport BRGM/RR-33200-FR, 1 vol., 71 p., 29 pht., 2 cartes.

Stieljes L., (1988) - Carte géologique de l'île de Mayotte - Archipel des Comores.

Stratagem974, (2008) - Pétrographie de 13 lames minces de Mayotte, Etude par Benoit WELSCH, Laboratoire Géosciences Réunion, 14 p.

Traineau H., Sanjuan B., Brach M., Audru J.-C. (2006) – Etat des connaissances du potentiel géothermique de Mayotte. BRGM/RP-54700-FR, 82 p.

Wuilleumier A., Jossot O., Eucher G. ((2004) – Etude hydrogéologique préalable à l'élaboration des périmètres de protection du forage de Kwalé 1 (12307X0022). Rapport BRGM/RP-53153-FR. 56 p., 7 ill., 3 tab., 3 ann.

Wuilleumer A., Mathieu F., Jossot o., Eucher G. (2004) – Modalités d'exploitation et de protection de l'aquifère de Kawéni – Année 1- BRGM/RP-53161-FR, 168p., 19 ill., 6 tab., 14 ann.

Zinke J., Reijmer J.J.G., Thomassin B.A. (2001) - Seismic architecture and sediment distribution within the Holocene barrier reef-lagoon complex of Mayotte (Comoro Archipelago, SW Indian Ocean). Paleogeogr. Paleoclimatol. Paleoecol., 63, 275-291.

Zinke J., Reijmer J.J.G., Thomassin B.A., Dullo W.C., Grootes P.M., Erlenkeuser H. (2003) - Postglacial flooding history of Mayotte Lagoon (Comoro Archipelago, southwest Indian Ocean). Marine Geol., 194, 181-196.

# Tableau de description des affleurements

| ID        | CODE | LOCALISATION     | POINT GPS | VALLEE  | TYPE                 | DESCRIPTION                          | REMARQUES                | ECHANTILLON | MESURE                   |
|-----------|------|------------------|-----------|---------|----------------------|--------------------------------------|--------------------------|-------------|--------------------------|
| Pho       | 5    | Carrière         | 40        | Doujani | Phonolite            |                                      |                          | 40          | Cond.                    |
| Pho       | 5    |                  | 42        | Doujani | Phonolite kaolinisée |                                      |                          |             |                          |
| Pho       | 5    | RD               | 52        | Doujani | Lave attérée         | Gros Fd. hydrotherm.                 | Pseudo en place          | 52          | Cond.                    |
|           |      |                  |           |         |                      | Contact lave attérée/ basatte sain à | Pt. 58 : prise d'eau sur |             | Contact : N558W10.       |
| β3        | 3    |                  | 56        | Doujani |                      | px.                                  | belle coulée             | 56          | Cond pt. 58              |
| Substr    | 1    |                  | 81        | Doujani | Lave attérée         | Sous colluvions                      |                          |             |                          |
| Substr    | 1    |                  | 85        | Doujani |                      |                                      | Laves ou alluvions?      |             | Cond.                    |
| Substr    | 1    | RG               | 86        | Doujani | Laves altérées       | Colluvions à gros blocs              |                          | 86          |                          |
|           |      |                  |           | •       |                      | -                                    | Peu à très               |             |                          |
| Pho       | 5    | RG - RG - fond   | 89        | Doujani |                      |                                      | hydrothermalisé          | 89          | Cond.                    |
| Pho       | 5    | RG               | 91        | Doujani | Lave hydrotherm.     |                                      |                          | 91          |                          |
| Pho       |      | RG               | 93        | Doujani | Lave hydrotherm.     |                                      |                          |             |                          |
| Pho       | 5    | RG - RD - fond   | 95        | Doujani | Laves hydrotherm.    |                                      |                          |             |                          |
| Pho       |      | Pierre volante   | 101       | Doujani | Phonolite            |                                      | Pierre volante           |             |                          |
|           |      |                  |           | •       |                      |                                      |                          |             |                          |
| Pho       | 5    | Sol              | 118       | Doujani | Phonolite            |                                      | Crête armée de phonolite |             |                          |
| Pho       |      | Sol              | 119       | Doujani | Phonolite            | Blocs de phonolite                   | Padza                    | 119         |                          |
| β2        |      | Carrière         | 142       | Doujani |                      | Paléovallée N60                      |                          | 142         |                          |
|           |      |                  |           |         |                      |                                      | Substratum carrière ou   |             |                          |
| β2        | 1 2  | Sol              | 142       | Doujani |                      |                                      | attération?              | 142         |                          |
| β2        | 2    |                  | 151       | Doujani | Lave                 |                                      |                          | 151         |                          |
| Substr    | 1    |                  | 152       | Doujani | Lave attérée         |                                      | Substratum attéré?       | 152         |                          |
| Substr    | 1    |                  | 156       | Doujani |                      | Laves attérées                       |                          |             | Cond.                    |
|           |      |                  |           |         |                      | A la base, scorie rouge de base de   | Pendage base de coulée   |             |                          |
| β2        | 2    |                  | 157       | Doujani | Lave saine           | coulée                               | : 140NE35                |             | Cond.                    |
| <u></u>   | _    |                  |           |         |                      |                                      | phonolite ou basalte     |             |                          |
| β2        | 2    |                  | 159       | Doujani | Lave attérée         | Lave leucocràte. Fissur, importante  | massif?                  | 159         | Cond.                    |
| <u>β2</u> | 2    |                  | 162       | Doujani | Lave attérée         | Grumeleux                            | mava.                    | 162         | 001101                   |
| <u>β2</u> | 2    |                  | 165       | Doujani | Lave attérée         | Fissur. Blanc-gris. Grumeleux        | N0E10                    | 165         |                          |
| Pyr       | 7    |                  | 166       | Doujani | Pyroclastites?       | Sub. horiz.                          |                          | 100         |                          |
| Pyr       | 7    |                  | 170       | Doujani | Pyroclastites?       |                                      |                          | 170         |                          |
| β2        | 2    |                  | 172       | Doujani | Grumeleux            |                                      |                          | 172         |                          |
| <u>β2</u> | 2    |                  | 176       | Doujani | Grumeleux            | fissur.                              |                          | 176         |                          |
| Pal Pal   | 10   |                  | 177       | Doujani | Paléosol             | Brèche?                              |                          | 177         |                          |
| β3        | 3    |                  | 178       | Doujani | Lave attérée         | Fissur, Moins grumeleux? Grise       |                          | 178         |                          |
| β3        | 3    |                  | 183       | Doujani | Lave attérée         | Leucocrate grise                     |                          | 183         |                          |
| Pho Pho   |      | RD - RG - fond   | 107-109   | Doujani | Zave dielee          | Deciderate gride                     | Cascade phonolite        | 107;109     | Cond.                    |
| 1110      | "    | IND - INO - IOHA | 101-100   | Doujani |                      |                                      | Base de coulée           | 101,100     | Soriu.                   |
| β2        | 0    | Talus RG         | 145-147   | Doujani |                      | Coulée massive, Fissur, sub, vert.   | scioriacée               | 145; 147;   |                          |
| pΖ        |      | Talus NO         | 140-147   | Doujani |                      | Coulee massive, rissur, sub, vert.   | scionacee                | 140, 147,   | Cond. pt. 45, 46,48, 49, |
| Col       | 11   |                  | 44-51     | Doujoni | Colluvions           |                                      |                          |             | 50, 5                    |
| Col       | 11   |                  | 44-51     | Doujani | Collamons            |                                      |                          |             | 00,0                     |

| Тер |    |               |             | VALLEE    | TYPE                 | DESCRIPTION                            | REMARQUES                    | ECHANTILLON | MESURE           |
|-----|----|---------------|-------------|-----------|----------------------|----------------------------------------|------------------------------|-------------|------------------|
|     |    |               |             |           |                      | Assez vacuolaire - Fissur, sub, horiz, |                              |             |                  |
|     | 4  | RG puis RD-RG | MC11-MC12   | M'Gombani | Lave attérée         | et sub. vert.                          |                              | 11          |                  |
| Тер |    | RD            | MC13-MC14   | M'Gombani | Lave attérée         | Leucocrate, riche en FerroMg.          |                              |             | Cond. pt.13      |
|     |    |               |             |           |                      |                                        | Ctx. visibles à l'oeil nu et |             |                  |
|     |    |               |             |           |                      |                                        | sur patine de la roche.      |             |                  |
| Тер | 4  | Relief        | MC15        | M'Gombani | Téphrite             | Phénoctx. Fd, Px. Amphi.               | Px en amas.                  | 15          |                  |
|     |    |               |             |           |                      | Fissur, sub, vert, Début attérat,      | Coule au dessus petite       |             |                  |
| Тер | 4  | RD            | MC16-MC17   | M'Gombani | Téphrite             | boules                                 | cascade.                     |             |                  |
| Тер | 4  | Lit Mro       | MC21        | M'Gombani | Lave attérée         |                                        |                              |             |                  |
|     |    |               |             |           |                      | Fissur, sub, vert, Léger débit en      | Prise d'eau au pied de       |             |                  |
| Тер | 4  | RD            | MC22-MC23   | M'Gombani | Téphrite             | plaquettes.                            | l'affleurement               | 23          | Cond. pt. 22     |
| β3  | 3  | Lit puis RG   | MC25-MC26   | M'Gombani | Lave mésocrate       | Trés sain. Px. amphi. ol.              |                              | 25; 25bis   | ·                |
| β3  | 3  | RG            | MC27        | M'Gombani | Lave mésocrate       | ·                                      |                              |             |                  |
| β3  | 3  | RG            | MC29-MC30   | M'Gombani | Lave attérée         |                                        |                              |             |                  |
|     |    |               |             |           |                      | Lave mélanocrate à px. amphi. et       | Paléochenal localisé ou      |             |                  |
| β3  | 3  | RG            | MC31-MC32   | M'Gombani | Lave attérée         | Fd.                                    | coulée de débris             |             |                  |
| β3  | 3  | Sortie du mro | MC33        | M'Gombani | Lave mésocrate       |                                        |                              | 33          |                  |
|     |    |               |             |           | Lave mésocrate       |                                        |                              |             |                  |
| β3  |    | RG            | MC36-MC37   | M'Gombani | altérée et saine     |                                        |                              | 36          |                  |
| β3  | 3  | Relief        | MC39        | M'Gombani | Blocs lave saine     |                                        |                              |             |                  |
|     |    |               |             |           | Lave leucocrate      |                                        |                              |             |                  |
| Тер |    | Piste         | MC41-MC42   | M'Gombani | altérée              |                                        |                              |             |                  |
| Тер |    | RG            | MC5         | M'Gombani | Lave attérée         | Gris clair. Légère fissur. sub. horiz. |                              |             | 5                |
| Col | 11 | RG            | MC6         | M'Gombani | Alluvions-Colluvions | •                                      |                              |             |                  |
|     |    |               |             |           | Lave mélanocràte à   |                                        |                              |             |                  |
| Тер | 4  | RG            | MC8         | M'Gombani | gros px.             |                                        |                              |             |                  |
|     |    |               |             |           | Lave leucocràte très |                                        |                              |             |                  |
| Тер | 4  | RG            | MC9-MC10    | M'Gombani | riche en px          |                                        | ld. terrain Bertrand         |             | 9 - Cond. pt. 10 |
|     |    |               |             |           |                      | Blanche. Peu de mnx visibles à l'oeil  |                              |             |                  |
| Тер | 4  | RD            | MC48-MC49   | Longoni   | Lave attérée         | Inu                                    |                              | 48          |                  |
| Тер |    | RG            | MC50-MC51   | Longoni   | Lave attérée         | Blanche, Altérat, en boules            |                              | 1,          |                  |
| 100 | ·  | 110           | 10000 10001 | zorigorii | Eave dieres          | Lave blanche attérée avec boule        |                              |             |                  |
| β3  | 3  | RG            | MC52        | Longoni   | Lave attérée         | saine                                  |                              | 52          |                  |
| Тер |    | Relief        | MC53        | Longoni   | Téphrite             | Sur blocs en haut petit relief         |                              | 53          |                  |
| β3  |    | Falaise       | MC54        | Longoni   | Basatte sain         | Basalte à ol.                          |                              | 54          |                  |
| Br  |    | Route         | MC56-MC57   | Longoni   | Brèche               |                                        |                              |             |                  |
| Br  |    | Route         | MC58        | Longoni   | Brèche               |                                        |                              |             |                  |
| Br  |    | Route         | MC59        | Longoni   | Brèche               | Facies d'attération visible            | Dans talus travaux           |             |                  |
| Br  |    | Route         | MC60        | Longoni   | Brèche               | Téphrite au dessus                     |                              |             |                  |
| β2  |    | Route         | MC61        | Longoni   | Grumeleux            | Grumeleux sous Téphrite                |                              |             |                  |
|     |    |               |             |           |                      | Grumeleux sous téphrite avec niv de    |                              |             |                  |
| β2  | 2  | Route         | MC62        | Longoni   | Grumeleux            |                                        | échantillon de téphrite      | 62          |                  |

| ID      | CODE | LOCALISATION         | POINT GPS | VALLEE  | TYPE                 | DESCRIPTION                          | REMARQUES             | ECHANTILLON | MESURE              |
|---------|------|----------------------|-----------|---------|----------------------|--------------------------------------|-----------------------|-------------|---------------------|
| Pal     | 10   | Talus - route        | 4         | Koualé  |                      | Coulée intercallée de scories        | Càne strombolien?     | 4           | N130E40             |
| β6      | 6    | RG - RD - fond       | 4         | Koualé  |                      |                                      |                       | 12;13       | Cond.               |
|         |      |                      |           |         |                      |                                      | Cendres, charbon à la |             |                     |
| β2      | 2    | RG - fond            | 7         | Koualé  | Lave                 | Sub. horiz. Fissur. sub.vert         | base                  | 7           | Cond.               |
| β2      | 2    | RG - RD - fond       | 10        | Koualé  |                      | Substratum?                          | Ech. zéolitisé        | 10          | Cond.               |
| β6      | 6    | RG - talus           | 15        | Koualé  |                      | Px. abondants                        |                       | 15          |                     |
| β6      | 6    | RD                   | 16        | Koualé  |                      |                                      | Eboulis               | 16          |                     |
|         |      |                      |           |         | Substartum ou        |                                      |                       |             |                     |
| Substr  | 1    |                      | 18        | Koualé  | pyroclastites?       |                                      | Efflorescence         |             |                     |
|         |      |                      |           |         |                      |                                      | Base de coulées       |             |                     |
| β6      | 6    | RG - talus 20m /rout | 21        | Koualé  | Lave massive         | Un peu attérée. Prismation grossière | scoriacées pt.21      |             | Pendage pt.21 : N20 |
|         |      |                      |           |         | Coulée intercalée de |                                      |                       |             |                     |
| Pal     | 10   |                      | 24        | Koualé  | scories              | OI. et Px.                           | Cône strombolien?     |             |                     |
| β2      | 2    | Cascade RG           |           | Koualé  |                      |                                      |                       |             | Cond.               |
| β2      | 2    | RD - RG              | 60        | Gouloué | Lave altérée         |                                      | Altérée               | 60          |                     |
|         |      |                      |           |         |                      |                                      | Scories de base de    |             |                     |
| β2      | 2    | RG - talus           | 68        | Gouloué |                      | Contact grumeleux/substratum         | coulée                | 68          |                     |
| Substr  | 1    |                      | 71        | Gouloué | Eboulis              | Blocs de phonolite                   |                       | 71          |                     |
|         |      |                      |           |         | Lave différenciée à  |                                      |                       |             |                     |
| Pho     | 5    |                      | 77        | Gouloué | gros Fd.             |                                      |                       | 77          |                     |
| β3      | 3    | Ravine               | 110       | Gouloué | Lave                 |                                      |                       | 110         |                     |
| β3      | 3    |                      | 112       | Gouloué | Lave altérée         |                                      |                       | 112         |                     |
| β3      | 3    |                      | 128       | Gouloué | Lave alttérée        | OI. iddingsitisée                    |                       | 128         |                     |
| β3      | 3    |                      | 133       | Gouloué | Basatte sain         | Cassure lisse                        |                       |             |                     |
|         |      |                      |           |         | Intercoulée          |                                      |                       |             |                     |
| Sco_bas | 14   |                      | 138       | Gouloué | scoriacée            |                                      |                       |             |                     |
| β3      | 3    |                      | 113-114   | Gouloué | Lave saine           | Coulée massive                       |                       | 113; 114    |                     |
| β2      | 2    |                      | 123-125   | Gouloué | grumeleux            |                                      |                       | 123; 125    |                     |
| β3      | 3    |                      | 129-130   | Gouloué | Lave saine           | Scories de base de coulées           |                       | 129         |                     |
| β2      | 2    |                      | 134-135   | Gouloué | Grumeleux            |                                      |                       |             |                     |
| β2      | 2    |                      | 136-137   | Gouloué | Grumeleux            |                                      |                       |             |                     |
| β2      | 2    | RG                   | 34-35     | Gouloué | Grumeleux            | Px.                                  | Un peu attérée        | 34;35       | Cond.               |
| β2      |      | RD - RG              | 63-65     | Gouloué | Lave altéreé         |                                      | Altérée               | 63;65       |                     |
| β2      | 2    | RG - RD - fond       | 72-73     | Gouloué | Lave altérée         |                                      |                       | 72; 73;     |                     |

| ID      | CODE | LOCALISATION        | POINT GPS | VALLEE                         | TYPE                            | DESCRIPTION                                    | REMARQUES                            | ECHANTILLON | MESURE           |
|---------|------|---------------------|-----------|--------------------------------|---------------------------------|------------------------------------------------|--------------------------------------|-------------|------------------|
| β3      | 3    |                     | 254       | Kaouénilajoli                  | Lave attérée                    | En plan. Lave blanche                          |                                      |             |                  |
| β2      | 2    | RG                  | 258       | Kaouénilajoli                  | Grumeleux                       | Contact coulée massive/scories base. Dyke      |                                      | 258-1, 258  | Dyke : N65       |
| Dyke    | 0    |                     | 263       | Kaouénilajoli                  | Dyke                            |                                                |                                      |             | N65              |
| Deb     | 13   |                     | 264       | Kaouénilajoli                  | Coulée de débris                | Contact coulée de débris/lave                  | Paléo-chenal                         |             |                  |
| Dyke    | 0    |                     | 267       | Kaouénilajoli                  | Dyke                            |                                                |                                      |             | N70              |
| Pho     | 5    | Pierre volante      | 268       | Kaouénilajoli                  | Phonolite                       | Blocs de phonolite                             |                                      |             |                  |
| β3      | 3    |                     | 269       | Kaouénilajoli                  | Lave Álithique                  | Superbe coulée massive                         | Fissur, sub.vert.                    | 269         | Cond.            |
| Sco_bas | 14   | RD                  | 270       | Kaouénilajoli                  | Scorie                          | Scorie base de coulée                          | Pendage fort, p-ê flanc<br>de coulée |             |                  |
| β3      | 3    | Cascade : RD-RG     | 272       | Kaouénilajoli                  |                                 | Contact lave/coulée de débris                  |                                      |             | Contact : N90830 |
| β3      | 3    |                     | 274       | Kaouénilajoli                  | Lave saine riche en<br>FerroMg. |                                                | pt. 273 : mur ; pt. 274 :<br>toit    | 274         | Coulée : N120    |
| β3      |      | RD                  | 279       | Kaouénilajoli<br>Kaouénilajoli | Lave saine riche en<br>FerroMg. | Pt. 280 : scorie de base                       | ion.                                 | 279         | 000lee : N120    |
| β3      | 3    |                     | 281       | Kaouénilajoli                  |                                 | Coulée vacuolaire fixée sur paléosol           |                                      | 281         |                  |
| Sco     | 8    |                     | 283       | Kaouénilajoli                  | Càne de scories?                | ·                                              |                                      |             |                  |
| Pyr     | 7    |                     | 284       | Kaouénilajoli                  | Cendres                         | Litage avec granoclassement. Roche indurée     |                                      | 284         | N60SE70          |
| β2      | 2    | RG                  | 289       | Kaouénilajoli                  | Grumeleux                       | Base de coulées. Prism. et fissur. sub. horiz. |                                      | 289         |                  |
| β2      | 2    |                     | 292       | Kaouénilajoli                  | Grumeleux                       | Prismat. sub. horiz. Débit en plaquette        |                                      | 292         |                  |
| β2      | 2    |                     | 294       | Kaouénilajoli                  | Grumeleux                       | Coulée bulleuse, moins fissurée                | Fissur. sub. horiz en 298            | 294         |                  |
| β3      |      | RD                  | 306       | Kaouénilajoli                  | Contact                         | Lave/pyroclastite/coulée de débris/lie de vin  |                                      |             | N20NW25          |
| β2      | 2    |                     | 330       | Kaouénilajoli                  | Substratum                      | Peu sain sous coulée                           |                                      |             |                  |
| β3      |      | RD                  | 338       | Kaouénilajoli                  | Lave saine                      |                                                |                                      | 338         |                  |
| Br      | 12   |                     | 343       | Kaouénilajoli                  | Brèche                          | Coulée de débris                               |                                      | 343         | Cond. N50        |
|         |      | RG puis RD puis RD- |           |                                |                                 |                                                |                                      |             |                  |
| β2      |      | R                   | 346       | Kaouénilajoli                  | Lave à gros Px.                 |                                                | Prise d'eau en 348                   | 346         | Cond. et Q       |
| Pal     | 10   |                     | 371       | Kaouénilajoli                  | Nougat rouge                    | Local                                          |                                      |             |                  |
| Pyr     | 7    |                     | 380       | Kaouénilajoli                  | Cendre remaniée                 | Ponctuel                                       | Qq, blocs volants                    |             |                  |
| β3      | 3    |                     | 389       | Kaouénilajoli                  | Coulée démantelée<br>en place   |                                                |                                      |             |                  |

| ID      | CODE | LOCALISATION  | POINT GPS | VALLEE        | TYPE              | DESCRIPTION                               | REMARQUES           | ECHANTILLON | MESURE          |
|---------|------|---------------|-----------|---------------|-------------------|-------------------------------------------|---------------------|-------------|-----------------|
| β3      | 3    |               | 390       | Kaouénilajoli | Lave en place     |                                           |                     | 390         |                 |
| β2      | 2    |               | 392       | Kaouénilajoli | Coulée de vallée  |                                           |                     | 392         |                 |
| β2      | 2    |               | 395       | Kaouénilajoli | Lave en place     |                                           |                     | 395         |                 |
| β3      | 3    |               | 399       | Kaouénilajoli | Lave              |                                           |                     | 399         |                 |
| Deb     | 13   | RG puis RD-RG | 259-260   | Kaouénilajoli | Coulée de débris  | Contact coulée de débris/ lave saine      |                     |             | Contact N180    |
| β2      | 2    |               | 301-302   | Kaouénilajoli | Grumeleux altéré  |                                           |                     | 301;302     |                 |
|         |      |               |           |               | Scorie base de    |                                           |                     |             |                 |
| Sco_bas | 14   |               | 301-305   | Kaouénilajoli | coulée            | Fissurée et un peu attérée                | Suintements pt. 303 |             | Cond. pt. 303   |
| β3      | 3    |               | 307-308   | Kaouénilajoli | Lave              |                                           |                     |             |                 |
|         |      |               |           |               |                   |                                           |                     |             | Cond. Pendage : |
| β3      | 3    | RG            | 309-311   | Kaouénilajoli | Laves fissurées   | Trou d'eau, suintements pt. 310           |                     |             | N150NE20        |
| β3      |      | RD            | 312-313   | Kaouénilajoli | Laves fissurées   |                                           |                     |             |                 |
| β3      |      | RG            | 314-315   | Kaouénilajoli | Laves fissurées   | Un peu plus attérée                       |                     |             |                 |
| β3      | 3    | RD            | 316-317   | Kaouénilajoli | Lave fissurée     | Un peu altérée                            |                     |             |                 |
| β3      | 3    | RG puis RD    | 318-321   | Kaouénilajoli | Lave fissurée     |                                           |                     |             |                 |
|         |      |               |           |               |                   |                                           |                     |             |                 |
| Pyr     | 7    |               | 322-324   | Kaouénilajoli | Cendres           | Cendres avec brèches rouges sous-jacentes |                     |             |                 |
|         |      |               |           |               | Nougat? Brèche de |                                           |                     |             |                 |
| Pal     | 10   | RG            | 325-327   | Kaouénilajoli | débourrage?       |                                           |                     |             |                 |
|         |      |               |           |               | Nougat? Brèche de |                                           |                     |             |                 |
| Pal     | 10   |               | 328-329   | Kaouénilajoli | débourrage?       | Un peu attéré                             |                     |             |                 |
| β2      |      | RD            | 331-332   | Kaouénilajoli | Coulée bulleuse   |                                           |                     |             |                 |
| β2      |      | RG            | 333-334   | Kaouénilajoli | Coulée            |                                           |                     |             |                 |
| Br      | 12   | RG            | 340-342   | Kaouénilajoli | Brèche            |                                           |                     |             |                 |
| Br      | 12   | RG            | 344-345   | Kaouénilajoli | Brèche            | RG coule                                  |                     |             |                 |
| Pyr     | 7    |               | 353-354   | Kaouénilajoli | Cendres           | Lave/cendres remaniées/scories            |                     |             |                 |
| Pyr     | 7    | RG puis RD    | 356-358   | Kaouénilajoli | Cendre remaniée   |                                           |                     |             |                 |
| Pyr     | 7    |               | 359-362   | Kaouénilajoli | Cendre            | Affleurement ponctuel                     |                     |             |                 |
| Pyr     | 7    |               | 363-364   | Kaouénilajoli | Cendre            | Affleure en continu                       | Dyke pt. 364        |             | Dyke : N55      |
| Pyr     | 7    |               | 368-367   | Kaouénilajoli | Cendre            | Affleurement ponctuel                     |                     |             |                 |
| Pal     | 10   |               | 369-370   | Kaouénilajoli | Nougat rouge      | Monogénique                               |                     |             |                 |
| Pal     | 10   |               | 372-373   | Kaouénilajoli | Nougat rouge      |                                           |                     |             |                 |
| Pal     | 10   |               | 374-379   | Kaouénilajoli | Nougat rouge      | Affleurements ponctuels                   |                     |             |                 |

| ID         | CODE | LOCALISATION     | POINT GPS | VALLEE  | ТҮРЕ                  | DESCRIPTION                               | REMARQUES                 | ECHANTILLON | MESURE       |
|------------|------|------------------|-----------|---------|-----------------------|-------------------------------------------|---------------------------|-------------|--------------|
|            |      |                  |           |         | lave leucocràte       |                                           |                           |             |              |
|            |      |                  |           |         | altérée et lave saine |                                           | Fig. d'attération en      |             |              |
| Тер        | 4    | RG - Fond du Mro | 403       | Kaouéni | riche en mnx          | Lave attérée sur lave saine               | boules                    | 403         |              |
| Тер        | 4    | Méandre          | 404       | Kaouéni | Basalte massif        | Au contact scories basaltiques ou dyke    |                           | 404         | Contact N120 |
| Dyke       | 0    |                  | 407       | Kaouéni | Dyke                  |                                           |                           |             | N110-115     |
|            |      |                  |           |         | Lave à petites        |                                           |                           |             |              |
| Тер        | 4    |                  | 407       | Kaouéni | amphi.                |                                           |                           | 407         |              |
| Dyke       | 0    |                  | 408       | Kaouéni | Dyke                  | Bord E                                    | Epaisseur 4 m             |             | N110-115     |
|            | 0    |                  | 409       | Kaouéni | Dyke                  | Bord W                                    | ld dyke 408-407           |             |              |
| Dyke<br>β3 | 3    |                  | 409       | Kaouéni | Lave à amphi.         |                                           |                           |             |              |
|            |      |                  |           |         |                       |                                           | En RD les laves           |             |              |
|            |      |                  |           |         |                       |                                           | remontent                 |             |              |
| β3         | 3    | Méandre          | 410       | Kaouéni | Lave à amphi          | Base de coulée scoriacée                  | sur au moins 15m          |             | N120NE80     |
| Dyke       | 0    |                  | 412       | Kaouéni | Dyke                  |                                           | ld 408-409-407            |             | N115         |
| β3         | 3    |                  | 413       | Kaouéni | Lave à amphi          | Affleurement ponctuel                     |                           |             |              |
|            |      |                  |           |         | '                     | Blocs bulleux tombés dans dyke.           |                           |             |              |
| β3         | 3    |                  | 421       | Kaouéni | Lave bulleuse à px    | Patine ext blanche. Trace de recuit rouge | P-ê dyke ou scories       | 421         | N110         |
|            |      |                  |           |         | ·                     | Ĭ                                         | Sols lie de vin au dessus |             |              |
| β3         | 3    |                  | 422       | Kaouéni | Lave à Px             | Fissur, sub, vert Riche en mnx.           | Proche cône de scories.   |             |              |
| β3         | 3    |                  | 423       | Kaouéni | Lave Álithique        | Sub en place Fissur, sub, horiz.          |                           | 423         |              |
|            |      |                  |           |         |                       | <u>'</u>                                  | Au dessus càne de         |             |              |
| β3         | 3    |                  | 430       | Kaouéni | Lave Álithique        | En plaquettes. Arme le relief. Fissur.    | scories                   | 430         |              |
|            |      |                  |           |         |                       | Contact lave sur scories avec épisode     |                           |             |              |
| β3         | 3    |                  | 435       | Kaouéni | Lave Álithique        | alluvionaire intercallé                   | Affleuremment quasi E-W   | 435         | N115         |
|            |      |                  |           |         |                       |                                           | Remonte profil            |             |              |
| Тер        | 4    |                  | 446       | Kaouéni | Lave                  | Toit de coulée - Lave bulleuse            | d'attération              | 446         |              |
| Sco        | 8    |                  | 448       | Kaouéni | Lave bulleuse         |                                           | Faciès scoriacé           |             |              |
| Sco        | 8    |                  | 449       | Kaouéni | Lave bulleuse         | Scories en RG                             | Faciès scoriacé           |             |              |
| Sco        | 8    |                  | 450       | Kaouéni | Lave bulleuse         | Légèrement attéré                         | Faciès scoriacé           |             |              |
|            |      |                  |           |         |                       |                                           |                           |             |              |
|            |      |                  |           |         | Cendres ou brèches    |                                           |                           |             |              |
| Br         | 12   |                  | 454       | Kaouéni | de débourrage         | Etts. grossiers et anguleux               |                           | 454         |              |
|            |      |                  |           |         |                       |                                           | Peu épaisse -             |             |              |
| Тер        | 4    |                  | 457       | Kaouéni | Lave bulleuse         | Très finement cristallisé                 | Légèrement scoriacée -    | 457;458     |              |
|            |      |                  |           |         |                       |                                           |                           |             |              |
| Тер        | 4    |                  | 462       | Kaouéni | Lave                  |                                           | Emergence coule un peu    | 462         | Cond.        |

| ID  | CODE | LOCALISATION     | POINT GPS   | VALLEE  | TYPE                 | DESCRIPTION                                  | REMARQUES                | ECHANTILLON | MESURE                   |
|-----|------|------------------|-------------|---------|----------------------|----------------------------------------------|--------------------------|-------------|--------------------------|
| Alt | 9    | Chemin           | 464         | Kaouéni | Lie de vin           |                                              | Charbonnière             |             |                          |
|     |      |                  |             |         |                      |                                              | Altération càne de       |             |                          |
| Alt | 9    | Chemin           | 466         | Kaouéni | Lie de vin           |                                              | scories                  |             |                          |
| β3  | 3    |                  | 467         | Kaouéni | lave altérée         |                                              |                          | 467         |                          |
| β2  | 2    |                  | 468         | Kaouéni | Grumeleux            | Falaise 10m pt. 469. Toit de coulée.         |                          | 468         | Cond. pt. 469            |
| β2  | 2    | RD               | 478         | Kaouéni | Lave altérée         |                                              | Coule très peu - 0.2l/s  | 478         |                          |
| Alt | 9    |                  | 490         | Kaouéni | Lie de vin           |                                              |                          |             |                          |
| Тер | 4    |                  | 491         | Kaouéni | Lave altérée         |                                              |                          |             |                          |
| Alt | 9    |                  | 493         | Kaouéni | Lie de vin           |                                              |                          |             |                          |
| β2  | 2    | Chemin           | 497         | Kaouéni | Grumeleux            |                                              |                          | 497         |                          |
| Pal | 10   |                  | 501         | Kaouéni | Paléosol rouge       | Posé sur grumeleux                           |                          |             |                          |
| β2  | 2    |                  | 502         | Kaouéni | Lave altérée         | Riche en Px. attéré                          |                          |             |                          |
| β2  | 2    |                  | 503         | Kaouéni | Lave attérée         | Px. attéré                                   |                          | 503         |                          |
|     |      |                  |             |         |                      | Coulée saine avec base scoriacée.            | Faciès grumeleux à       |             | Orientation affleurement |
| β3  | 3    |                  | 505         | Kaouéni | Basatte riche en Fer | Grossièrement fissuré.                       | proximité                | 505         | N80                      |
|     |      |                  |             |         |                      |                                              | Pt. 513 : base de coulée |             |                          |
| β3  | 3    |                  | 511         | Kaouéni |                      | Lave saine riche en FerroMg                  | recuits                  | 511         |                          |
| β3  | 3    | RG               | 414-418     | Kaouéni | Lave à amphi         | Contact scoriacé à la base                   |                          |             | N115 contact au pt 418   |
|     |      |                  |             |         |                      |                                              | P-ê proche du pt.        |             | ·                        |
| Sco | 8    |                  | 424-429     | Kaouéni | Scories              | Cône de scories avec fort pendage            | d'émission               |             | N170E25 - Cond pt. 429   |
| Sco | 8    |                  | 432-434     | Kaouéni | Scories              | Scories puis sol rouge, lie de vin           |                          |             |                          |
|     |      |                  |             |         |                      |                                              | La ravine coule pt. 438  |             |                          |
|     |      |                  |             |         |                      |                                              | Contact lave scorie en   |             |                          |
| Тер | 4    |                  | 436-438     | Kaouéni | Lave                 | Bulleuse, riche en mnx.                      | continu                  |             | Q pt.438 - N145 -        |
| •   |      |                  |             |         |                      |                                              |                          |             |                          |
| Тер | 4    |                  | 439-440     | Kaouéni | Lave                 | Toit de coulée                               | Coulée au dessus en RD   |             | Cond. pt. 439            |
| Sco | 8    |                  | 453-452     | Kaouéni | Lave bulleuse        | Affleurement ponctuel                        | Faciès scoriacé          |             |                          |
| β2  | 2    |                  | 471-477     | Kaouéni | Grumeleux            | Affleurement en continu                      |                          |             |                          |
|     |      |                  |             |         |                      |                                              | Pt. 479 : affluent RG    |             |                          |
|     |      |                  |             |         |                      |                                              | ne coule plus et rivière |             |                          |
| β2  | 2    |                  | 479-481     | Kaouéni | Lave altérée         |                                              | principale sèche         |             |                          |
| β2  | 2    |                  | 482-483     | Kaouéni | Grumeleux            | Pt. 482 = base ; Pt. 483 = haut              |                          |             |                          |
| β2  | 2    |                  | 484-488     | Kaouéni | Grumeleux            |                                              |                          |             |                          |
| β2  | 2    |                  | 494-495     | Kaouéni | Lave altérée         |                                              |                          |             |                          |
| β2  | 2    |                  | 499-500     | Kaouéni | Grumeleux            |                                              |                          |             |                          |
|     |      |                  |             |         | Basalte riche en     |                                              | Eau semble sortir en     |             |                          |
| β3  | 3    |                  | 507-509     | Kaouéni | FerroMg              | Coulée de 8 m qui arme le relief des 2 côtés | base de coulée           |             |                          |
| Sco | 8    |                  | 514-515-516 | Kaouéni | Scories              | ·                                            |                          |             |                          |
|     |      |                  |             |         | Lave à petites       |                                              |                          |             |                          |
| β3  | 3    | RG - cours d'eau |             | Kaouéni | amphi.               |                                              |                          |             |                          |

Synthèse hydrogéologique du Nord-Est de Mayotte. Caractérisation des masses d'eau souterraine des secteurs de Petite Terre et de Tsoundzou-Koungou

| ID   | CODE | LOCALISATION     | POINT GPS   | VALLEE  | TYPE                  | DESCRIPTION                                       | REMARQUES                | ECHANTILLON | MESURE |
|------|------|------------------|-------------|---------|-----------------------|---------------------------------------------------|--------------------------|-------------|--------|
|      |      |                  |             |         |                       | Colluvions grossiers. Blocs basaltes sains riches |                          |             |        |
| Col  | 11   | RD               | BM003       | Kangani |                       | en FerroMg, altérés et phonolite                  |                          |             |        |
| Col  | 11   | RG               | BM004-BM005 | Kangani |                       | Colluvions grossiers                              |                          |             |        |
| Тер  | 4    | Sur flanc morne  | BM009       | Kangani |                       | Laves en place. Fissur, sub, vert.                |                          | BM009       |        |
|      |      |                  |             |         |                       |                                                   | Laves leucocrates        |             |        |
|      |      |                  |             |         |                       |                                                   | Px. en amas, presque     |             |        |
| Тер  | 4    |                  | BM012       | Kangani | Lave en place         | Fissur. Légèrement lité                           | pyroxénite.              | BM012       |        |
| Col  | 11   | RG               | BM014       | Kangani | Colluvions            | Affleurement %m                                   |                          |             |        |
| Col  | 11   | RD               | BM015       | Kangani | Colluvions            |                                                   |                          |             |        |
| Тер  | 4    | RD               | BM016-BM017 | Kangani | Laves leucocrates     |                                                   |                          |             |        |
|      |      |                  |             |         |                       |                                                   | Fissur, sub.vert.        |             |        |
| Тер  | 4    | RD               | BM018       | Kangani | Laves leucocrates     | Scories de base de coulées.                       | Enclaves de px.          | BM018       |        |
|      |      |                  |             |         | Colluvions/Pyroclasti |                                                   |                          |             |        |
| Col  | 11   | RG               | BM019       | Kangani | tes                   | Qq. etts. polygéniques                            |                          |             |        |
|      |      |                  |             |         |                       |                                                   | Scories de base de       |             |        |
| Тер  | 4    | RD               | BM020-BM021 | Kangani | Laves leucocrates     | Fissur, sub.vert. Débit en plaquette.             | coulées.                 |             |        |
| Тер  | 4    | RD - RG          | BM022       | Kangani | Laves leucocrates     |                                                   |                          |             |        |
|      |      |                  |             | _       | Laves                 |                                                   |                          |             |        |
|      |      |                  |             |         | leucocrates/Pyroclas  | Fissur, sub, vert. Suintements en base de         | Plus d'enclaves mais des |             |        |
| Тер  | 4    | RG               | BM023       | Kangani | tites                 | coulée                                            | px. cmtiq.               | BM023       |        |
| Тер  | 4    | RD - Au sommet   | BM025       | Kangani | Laves leucocrates     |                                                   |                          |             |        |
|      |      |                  |             |         |                       | Falaise : \$m. Débit en plaquettes. Fissur. sub.  | Base recuite entre       |             |        |
| Тер  | 4    |                  | BM026       | Kangani | Laves leucocrates     | vert.                                             | scories et pyroclastites |             |        |
| Тер  | 4    | RG               | BM027       | Kangani | laves leucocrates     |                                                   |                          | BM027       |        |
| β2   | 2    | RG en haut pente | BM033       | Kangani | Lave à px.            |                                                   |                          |             |        |
| Pyr  | 7    | RD               | BM033       | Kangani | pyroclastites         | En pied de pente                                  |                          |             |        |
| Pyr  | 7    | RD               | BM034       | Kangani | Pyroclastites         | Scorie fine en RD et RG. Lapillis?                |                          |             |        |
| Dyke | 0    |                  | BM035       | Kangani | Dyke?                 | ·                                                 |                          |             |        |

| ID      | CODE | LOCALISATION        | POINT GPS   | VALLEE  | TYPE               | DESCRIPTION                                   | REMARQUES               | ECHANTILLON | MESURE  |
|---------|------|---------------------|-------------|---------|--------------------|-----------------------------------------------|-------------------------|-------------|---------|
|         |      |                     |             |         | Scories fines.     |                                               |                         |             |         |
| Pyr     | 7    |                     | BM035       | Kangani | Lapillis?          |                                               |                         |             |         |
|         |      |                     |             |         | Lave grumeleuse à  | En haut falaise. Contact sub-horizontal lave/ |                         |             |         |
| β2      | 2    |                     | BM037-BM038 | Kangani | gros px.           | scories en 37                                 |                         | BM037       |         |
|         |      | RG puis RD et RD-   |             |         | Lave grumeleuse à  |                                               |                         |             |         |
| β2      |      | RG                  | BM039-BM040 | Kangani | gros px.           |                                               |                         |             |         |
| Pyr     | 7    | RD dans ravine      | BM041       | Kangani | Pyroclastites      |                                               |                         |             |         |
| Pyr     | 7    |                     | BM042       | Kangani | Pyroclastites      |                                               |                         |             |         |
| Pyr     | 7    | RG                  | BM043       | Kangani | Pyroclastites      | Affleurement sur 8m de haut                   |                         |             |         |
|         |      |                     |             |         |                    |                                               |                         |             |         |
| Pyr     |      | RD                  | BM044-BM045 | Kangani | Pyroclastites      | Granoclassement. Epaisseur : 5m - 90N30       |                         |             |         |
| Pyr     |      | RD                  | BM046-BM047 | Kangani | Pyroclastites      |                                               |                         |             |         |
| Pyr     | 7    | RD - cascade        | BM048       | Kangani | Pyroclastites      |                                               |                         |             |         |
| Dyke    | 0    |                     | BM049       | Kangani | Dyke               | N80S60                                        |                         |             |         |
| Pyr     | 7    |                     | BM049-BM050 | Kangani | Pyroclastites      |                                               |                         |             |         |
|         |      |                     |             |         |                    |                                               | Ravine en RG avec       |             |         |
| Pyr     |      | RG                  | BM051       | Kangani | Pyroclastites      | Très beau litage                              | légers suintements      |             |         |
| Pyr     | 7    | RD                  | BM053-BM055 | Kangani | Pyroclastites      |                                               |                         |             |         |
| Pyr     | 7    |                     | BM056-BM057 | Kangani | Pyroclastites      |                                               |                         |             |         |
| Pyr     | 7    |                     | BM059-BM060 | Kangani | Pyroclastites      | Contact avec le basaite grumeleux             |                         |             | N60SW20 |
| β2      | 2    |                     | BM060-BM061 | Kangani | Basalte grumeleux  | Contact avec pyroclastites                    |                         |             | N60SW20 |
|         |      |                     |             |         | Scories de base de |                                               |                         |             |         |
| Sco_bas | 14   |                     | BM061       | Kangani | coulées            |                                               |                         |             |         |
|         |      |                     |             |         | Basalte type phono |                                               |                         |             |         |
| Тер     | 4    | Sommet              | BM063       | Kangani | avec Népéhéline    |                                               |                         |             |         |
|         |      |                     |             |         |                    |                                               | Echantillon dans tas de |             |         |
| Тер     | 4    | Carrière            | BM067       | Kangani |                    |                                               | granulats               | BM067       |         |
|         |      |                     |             |         | Lave leucocrate    |                                               |                         |             |         |
| Тер     | 4    | Bordure de route    | BM068       | Kangani | attérée            | Lave altérée, en place et massive             |                         | BM068       |         |
|         |      |                     |             |         |                    |                                               | Ech1 en haut FT, ech 2  |             |         |
|         |      |                     |             |         |                    |                                               | au pied                 |             |         |
| β2      | 2    | Carrière de Koungou | BM069       | Kangani | Basatte grumeleux  | Coulée d'environ 50-60m                       | ech3 au sommet          | BM069       |         |

| ID      | CODE | LOCALISATION | POINT GPS | VALLEE    | TYPE                     | DESCRIPTION                       | REMARQUES                         | ECHANTILLON | MESURE               |
|---------|------|--------------|-----------|-----------|--------------------------|-----------------------------------|-----------------------------------|-------------|----------------------|
| β3      | 3    |              | 190       | Majimbini | Lave attérée             | Leucocrate                        |                                   | 190         |                      |
| β3      | 3    |              | 191       | Majimbini | Lave attérée             | Contact lave scories rubéfiées    |                                   |             |                      |
| Pal     | 10   |              | 192       | Majimbini | Rubéfié                  |                                   |                                   | 192         |                      |
|         |      |              |           |           |                          |                                   | Echantillon dans rupture          |             |                      |
| β3      | 3    |              | 198       | Majimbini | Substratum               |                                   | de pente                          | 198         |                      |
| Pyr     | 7    |              | 204       | Majimbini | Pyroclastites            |                                   |                                   |             |                      |
| β2      | 2    | RG           | 210       | Majimbini | Grumeleux                | Fissur, sub, horiz, légère        | axe coulée N66                    | 210         |                      |
| Substr  | 1    | RG           | 212       | Majimbini |                          | lave attérée                      | Lave grise altérée                | 212         |                      |
| Substr  | 1    |              | 215       | Majimbini | Lave attérée             | Substratum?                       |                                   |             |                      |
| β2      | 2    |              | 216       | Majimbini | Grumeleux                |                                   |                                   | 216         |                      |
| β3      | 3    |              | 227       | Majimbini | Lave attérée             | Très argilisée, faciès bleu clair |                                   | 227         |                      |
| Alt     | 9    |              | 228       | Majimbini | Sol rouge                |                                   |                                   |             |                      |
|         |      |              |           | •         |                          |                                   | Grandes cascades                  |             |                      |
| β2      | 2    | Falaise      | 232       | Majimbini | Grumeleux                |                                   | escalade                          | 232         |                      |
| Pyr     | 7    |              | 237       | Majimbini | Pyroclastite             |                                   |                                   | 237         |                      |
| β3      | 3    | RD           | 239       | Majimbini | Lave attérée             | Pas blanche                       |                                   | 239         |                      |
| β3      |      | RG           | 241       | Majimbini | Lave saine               |                                   |                                   | 241         |                      |
| β2      | 2    |              | 517       | Majimbini |                          | Grumeleux                         |                                   | 517         |                      |
|         |      |              |           | ,         | Lave riche en            |                                   |                                   |             |                      |
| β3      | 3    |              | 519       | Majimbini | FerroMg                  |                                   |                                   | 519         |                      |
| Sco_bas | 14   |              | 524       | Majimbini | Scories                  | Intercoulée ?                     |                                   |             |                      |
| β3      | 3    |              | 184-186   | Majimbini | Lave attérée             | Leucocrate, grise                 |                                   |             |                      |
| β3      | 3    |              | 193-194   | Majimbini | Lave attérée claire      | 73                                |                                   |             |                      |
| β3      | 3    |              | 195-197   | Majimbini | Lave attérée             | Altération en boules              |                                   | 197         |                      |
|         |      |              |           |           |                          |                                   | Pt. 203 : eau coule au<br>contact |             |                      |
| β3      | 3    |              | 200-203   | Majimbini | Lave saine               | Coulée sub en plan                | sain/paléosol                     | 200; 201;   | Cond. pt.203         |
| _       |      |              |           |           | Pyroclastites ou         |                                   |                                   |             |                      |
| Pyr     | 7    |              | 205-208   | Majimbini | lapillis                 |                                   |                                   |             |                      |
| Alt     | 9    |              | 219-221   | Majimbini | Sol rouge, lie de vin    |                                   |                                   |             |                      |
| Alt     | 9    |              | 222-223   | Majimbini | Sol rouge                |                                   |                                   |             |                      |
| Alt     | 9    |              | 225-226   | Majimbini | Sol rouge                |                                   |                                   |             |                      |
| β3      |      | Pied falaise | 233-234   | Majimbini |                          |                                   | Substratum coulée                 | 233; 234    |                      |
| β3      |      | Fond         | 235-236   | Majimbini |                          |                                   | Très fracturé                     |             |                      |
| β2      |      | RG           | 242-244   | Majimbini | Grumeleux                |                                   |                                   | 242; 244    | Pt. 242 et 244 cond. |
| β3      | 3    |              | 520-521   | Majimbini | Lave attérée             | Riche en Px. Légèrement bulleuse  | La ravine coule                   |             |                      |
| β3      | 3    |              | 522-523   | Majimbini | Lave bulleuse            | Peu de phénoctx. Assez saine.     |                                   | 523         |                      |
| β3      | 3    |              | 525-526   | Majimbini | Lave riche en<br>FerroMg |                                   |                                   | 526         | Cond.                |

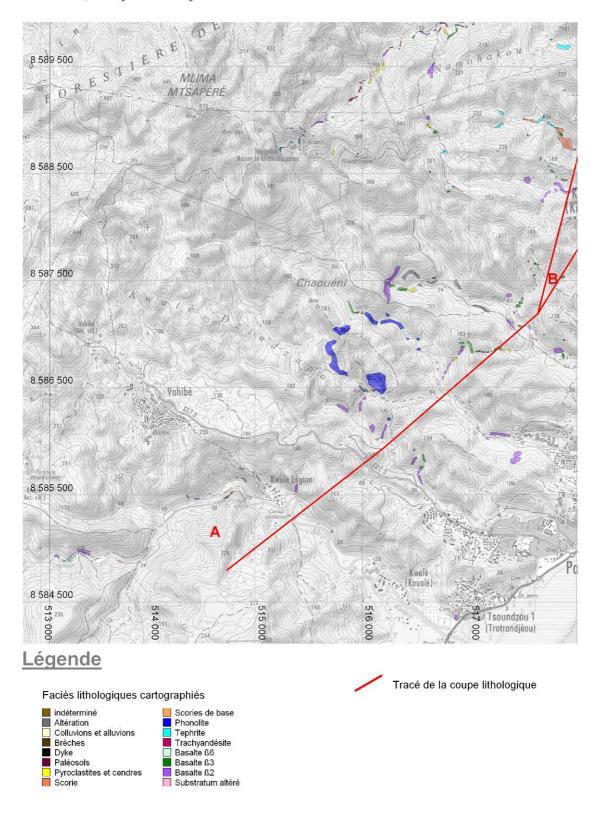
|          |      |                     | 1         |                 | I                                |                                             |                           | I           | 1         |
|----------|------|---------------------|-----------|-----------------|----------------------------------|---------------------------------------------|---------------------------|-------------|-----------|
| ID       | CODE | LOCALISATION        | POINT GPS | VALLEE          | TYPE                             | DESCRIPTION                                 | REMARQUES                 | ECHANTILLON | MESURE    |
|          |      |                     |           |                 |                                  |                                             | Fissur sub verticale .    |             |           |
| β3       | 3    | Talus chemin        | MY1       | Convalescence   | Lave altérée                     | Grise, nbx px orange et ol iddingsitisé     | Boule saine de B3         | MY1         |           |
| β3       | 3    | Talus chemin        | MY2       | Convalescence   | Lave altérée                     |                                             |                           |             |           |
|          |      |                     |           |                 |                                  |                                             |                           |             |           |
| β3       | 3    | Talus chemin        | MY3       | Convalescence   | Lave attérée                     | Altération en boule                         | Remblais du chemin = B2   |             |           |
|          |      |                     |           |                 | Lave saine et                    |                                             |                           |             |           |
| β3       | 3    | Talus chemin        | MY4       | Convalescence   | altérée                          | px, ol et amphi                             | Affleurement local        | MY4         |           |
|          |      |                     |           |                 |                                  |                                             | fissur sub horiz et sub   |             |           |
| Тер      | 4    | Sentier             | MY6       | Convalescence   | lave grise leucocrate            | phénoctx, de px et néph                     | vert                      | MY6         |           |
|          |      |                     |           |                 |                                  |                                             | Affleurement en place sur |             |           |
| β2       | 2    | Sentier             | MY8       | Convalescence   | Grumeleux                        | Fissuration sub vert                        | 4-5 m de haut             | MY8         |           |
|          |      |                     |           |                 |                                  |                                             | Croisement chemin,        |             |           |
| β2       |      | Sentier             | MY9       | Convalescence   | Grumeleux                        | Fissuration sub horiz                       | affleurement local        |             |           |
| β2       | 2    |                     | MY10      | Convalescence   | Bloc local                       |                                             |                           |             |           |
| β2       | 2    |                     | MY11      | Convalescence   | Bloc local                       |                                             |                           |             |           |
| β2       | 2    |                     | MY12      | Convalescence   | Bloc local                       |                                             |                           |             |           |
| _        |      |                     |           | l               |                                  | L                                           | Echantillon vacuolaire    |             |           |
| Тер      | 4    | Sentier             | MY13      | Convalescence   | Lave attérée                     | Grise, leucocrate, phenoctx blanc et px     | rose de Sb à proximité    | MY13        |           |
|          |      |                     |           |                 |                                  |                                             | Altération en boule.      |             |           |
| <b>-</b> |      | Ob and to           | 1005      |                 | T17-                             |                                             | ravine sèche. Légère      |             |           |
| Тер      | 4    | Chemin              | MY15      | Convalescence   | Tephrite                         | affleure sur %m de haut, 20m de long        | fissur, sub, vert.        |             |           |
| T        | ا، ا | Observing Ossessels | 1000 1007 | 0               | t-                               | Cardán da 40 m da bard. Firan e ada barin   | En 17 lave attérée avec   | MY17        | Onute man |
| Тер      | 4    | Chemin-Cascade      | MY16-MY17 | Convalescence   | teph                             | Coulée de 10 m de haut. Fissur. sub. horiz. | bloc patiné               | MYTZ        | Coule peu |
| Dur      | -    | talua Chamin        | MV46      | Convolessense   | Purceleette                      | Matrico iguno orongo cobleuso               | Elt polygénique ponceux,  | LIVAS       |           |
| Pyr      | - 1  | talus Chemin        | MY18      | Convalescence   | Pyroclastite Basalte à ol, px et | Matrice jaune orange sableuse               | px, autres                | MY18        |           |
| β3       | ,    | Talus chemin        | MY19      | Convalescence   |                                  | Prismation grossière,                       | Contact B2/B3             |             |           |
| ро       | 0    | raius crieniiri     | 101113    | Convalescence   | Lave attérée                     | rnsination grossiere,                       | CONTACT DZ/D3             |             |           |
| β3       | 2    | Talus chemin        | MY20      | Convalescence   | blanche                          | Boule saine avec px et amphi                |                           |             |           |
| Po       |      | raido criciálit     | INTEV     | SOLINGIESCELIEE | Lave attérée en                  | poure suite avec pix et ampril              |                           |             |           |
| β3       | 3    | Talus chemin        | MY21      | Convalescence   | place                            | Assez vacuolaire. Riche en px               |                           |             |           |
| <u> </u> | ľ    | Taido orioniiri     | WILL      | CONTRACTOR      | Pyroclastite, Nougat,            | Proce vasadiano, radiro di pi               |                           |             |           |
|          |      |                     |           |                 | matériaux de                     |                                             |                           |             |           |
| Pal      | 10   | Entrée GR           | MY22      | Convalescence   |                                  | Ett polygénique, matrice rouge              |                           |             |           |
| β3       |      | GR                  | MY23      | Convalescence   | Blocs de B2                      | Lave blanche attérée aux alentourx          |                           |             |           |
| Тер      |      | GR                  | MY24      | Convalescence   | Blocs pas en place               | Phonolite ou tephrite                       |                           | MY24        |           |
|          |      |                     |           |                 |                                  |                                             | Fissur sub vert et sub    |             |           |
| β3       | 3    | GR                  | MY25      | Convalescence   |                                  | Sub en place. Basalte à px et ol            | horiz                     |             |           |
|          |      |                     |           |                 | Brèche pyroclastite              |                                             |                           |             |           |
| Pal      | 10   | GR                  | MY26      | Convalescence   | Nougat                           |                                             | Idem pt MY22?             |             |           |
| β2       |      | GR ravine           | MY27      | Convalescence   | Grumeleux                        |                                             |                           |             |           |
| β2       | 2    | GR                  | MY28      | Convalescence   | Grumeleux                        | Lave en place dans chemin                   |                           |             |           |
|          |      |                     |           |                 | ブニババビビ ちちらけし                     | R – Rapport tinal                           |                           |             |           |

BRGIVI/RP-50000-FR - Rapport Tinal

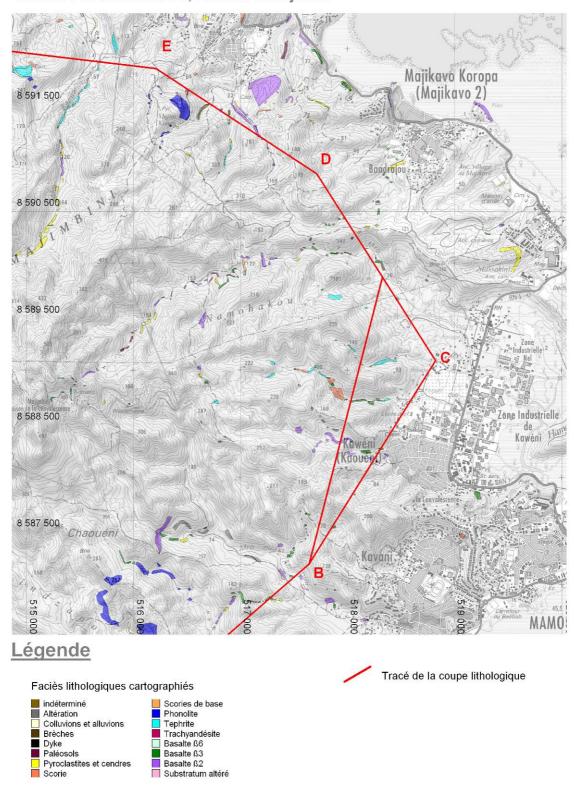
| ID      | CODE | LOCALISATION  | POINT GPS   | VALLEE  | TYPE               | DESCRIPTION                                         | REMARQUES                 | ECHANTILLON | MESURE |
|---------|------|---------------|-------------|---------|--------------------|-----------------------------------------------------|---------------------------|-------------|--------|
|         |      |               |             |         |                    |                                                     | Echantillon de sain au    |             |        |
| Pho     | 5    | Talus piste   | MY36        | Koungou | Phonolite altérée  | Leucocrate, gris clair, gros ctx blanc de Fd        | pointMY37                 | MY36        |        |
|         |      |               |             |         |                    |                                                     | Echantillon avec MY36.    |             |        |
|         |      |               |             |         |                    |                                                     | On retrouvephase          |             |        |
|         |      |               |             |         |                    |                                                     | altérée du pt36 sur cette |             |        |
| Pho     | 5    | Talus piste   | MY37        | Koungou | Phonolite altérée  | Débit en dalle, fissur sub horiz, patine blanche    | affleurement              | MY36        |        |
| Pho     | 5    | Ravine        | MY38        | Koungou | Phonolite          | En blocs plus sains                                 |                           |             |        |
|         |      |               |             |         |                    | Fissur sub horiz, profil d'altération blanc sur les |                           |             |        |
| Pho     | 5    | GR            | MY39        | Koungou | Phonolite          | extrémités.                                         | Carrière clandestine      |             |        |
| Pho     | 5    | Ravine        | MY40        | Koungou | Blocs de phonolite |                                                     |                           |             |        |
| Pho     | 5    | Ravine        | MY41        | Koungou | Blocs de phonolite |                                                     |                           |             |        |
| Тер     | 4    | Chemin        | MY42        | Koungou | Blocs de téphrite  |                                                     |                           |             |        |
| Pho     | 5    | Sentier       | MY43        | Koungou | blocs de phonolite |                                                     |                           |             |        |
| Pho     | 5    | Sentier       | MY44        | Koungou | Lave altérée       | Blanche avec gros Fd                                |                           |             |        |
| Pho     | 5    | Sentier       | MY45        | Koungou | Lave altérée       | Blanche avec gros Fd                                |                           |             |        |
|         |      |               |             |         | Blocs métriques de |                                                     |                           |             |        |
| Тер     | 4    | Chemin        | MY46        | Koungou | téphrite           |                                                     |                           |             |        |
| β2      | 2    | Chemin        | MY47        | Koungou | Lave altérée       | Grise avec ctx attéré orange                        |                           |             |        |
|         |      |               |             | _       |                    | Basalte altéré en boule. Boule saine de             |                           |             |        |
| β2      | 2    | Chemin        | MY48        | Koungou | grumeleux          | grumeleux                                           |                           |             |        |
|         |      |               |             |         |                    | Basalte altéré en boule. Boule saine de             |                           |             |        |
| β2      | 2    | Chemin        | MY49        | Koungou | grumeleux          | grumeleux                                           |                           |             |        |
|         |      |               |             |         |                    |                                                     | Aspect grumeleux          |             |        |
| β2      | 2    | Chemin        | MY50 - MY52 | Koungou | Grumeleux          | Affleurement dans chemin                            | d'extérieur               | MY50        |        |
| β2      | 2    | Chemin        | MY53 - MY54 | Koungou | Grumeleux          | Affleurement dans chemin                            | Carrière = grumeleux      |             |        |
| Pho     | -    | Ravine        | MY55        | Koungou | Phonolite          | Blocs de phonolite dans terre végétale              |                           |             |        |
| Pho     | 5    | Chemin relief | MY57        | Koungou | Phonolite          | T T T T T T T T T T T T T T T T T T T               | Exploitation clandestine  |             |        |
|         |      |               |             |         | scories de base de |                                                     |                           |             |        |
| Sco_bas | 14   | Chemin        | MY58        | Koungou | coulée             |                                                     |                           |             |        |
| β2      | 2    | Piste         | MY59        | Koungou | Basatte à px       | Très sain, mésocrate                                |                           |             |        |

# Observation des échantillons à la loupe binnoculaire

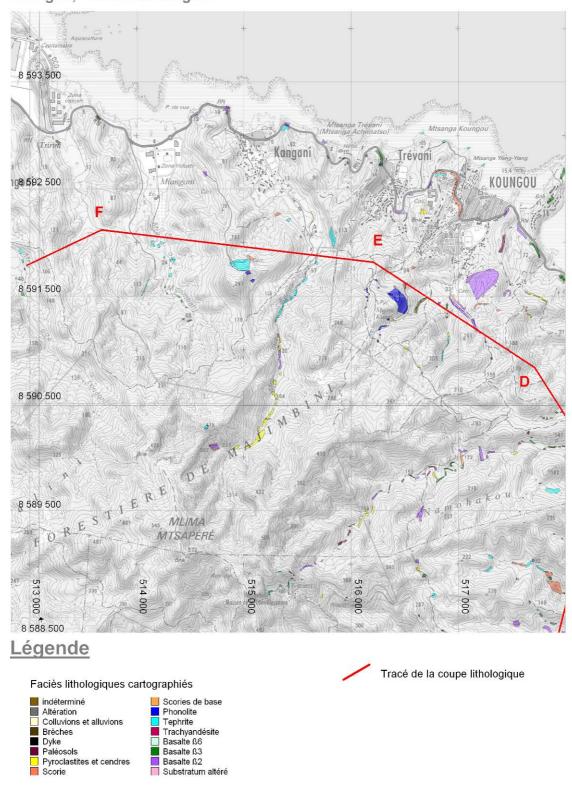
| Numéro échantillon | Vallée  | Date       | Couleur                                    | Densité                    | Cassure                      | Altération-Oxydation                                                                                                                                                                                                  | Cristallisation - Abondance ctx                                                            | Phénocristaux                                                                                                                                                          | Microcristaux                                                                   | Remarques                                                                                                                                                    | LM | Litho |
|--------------------|---------|------------|--------------------------------------------|----------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|
| 4 ;10              | Koualé  | 07/07/2007 | mésocrate                                  |                            | grumeleuse                   | Roche légèrement vacuoliaire Mnal secondaire d'altération, fréquent dans les cavités, verdâtre à orrange, en forme de 'mamelons' ou de 'vermicelle'(calcédoine ou souffre?) Traces d'oxydation orange rouge Irisation | Peu de ctx                                                                                 | peu de phénocristaux visibles à l'œil nu                                                                                                                               | Olivine et pyroxène < 1mm<br>Olivine très rare et saine<br>Px. fréquent et sain | Echantillon raye le marteau                                                                                                                                  |    | β2    |
| 12                 | Koualé  | 07/07/2007 | mésocrate                                  | très dense                 | esquilleuse                  | Pâte légèrement vacuolaire<br>Vacuoles fréquemment remplies de zéolites                                                                                                                                               | Pâte finement cristallisé<br>Riche en Ferromagnésien                                       | рх.                                                                                                                                                                    | Px. Abondants et sains <1mm Rares olivines saines                               |                                                                                                                                                              |    | β3    |
| 13                 | Koualé  | 07/07/2007 | mésocrate                                  |                            |                              | très légèrement vacuolaire<br>mnx de remplissage de vacuoles (ld. n°10)<br>mnx d'altération blanc opaque fissuré                                                                                                      | Pâte finement cristallisé<br>Riche en Ferromagnésien                                       | px. sain et abondant<br>phenocristaux bleu gris attéré sur clivage<br>(px?)                                                                                            | Px. Abondants et sains<br><1 mm                                                 | Echantillon raye le marteau                                                                                                                                  |    | β3    |
| 15                 | Koualé  | 07/07/2007 | mésocrate                                  |                            | esquilleuse                  | légèrement attéré                                                                                                                                                                                                     | Riche en Ferromagnésien                                                                    | px. sain et abondant                                                                                                                                                   | Quelques olivine saines                                                         |                                                                                                                                                              |    | β3    |
| 16                 | Koualé  | 07/07/2007 | mésocrate                                  |                            | esquilleuse                  | Néant                                                                                                                                                                                                                 | Riche en Ferromagnésien                                                                    | px. sain et abondant                                                                                                                                                   | Quelques olivine saines                                                         |                                                                                                                                                              |    | β3    |
| 19                 | Koualé  | 07/07/2007 | mésocrate                                  |                            | esquilleuse                  | Néant                                                                                                                                                                                                                 | Riche en Ferromagnésien                                                                    | px. sain et abondant                                                                                                                                                   | Quelques olivine saines                                                         |                                                                                                                                                              |    | β3    |
| 34                 | Gouloué |            | mélanocrâte                                |                            | grumeleuse                   | Légèrement vacuolaire<br>Minéraux secondaire d'altération dans vacuole                                                                                                                                                | Très riche en ferromagnésien                                                               | px. sain et altéré<br>qui présentent début d'auréole brunatre                                                                                                          | Très peu d'olivine                                                              |                                                                                                                                                              |    | β2    |
| 35                 | Gouloué | 07/07/2007 | mélanocrate                                |                            | rugueuse<br>grumeleuse       | Légèrement vacuolaire<br>Minéraux secondaire d'altération dans vacuole                                                                                                                                                |                                                                                            | quelques px. sain et attéré qui présentent<br>début d'auréole brunatre                                                                                                 | Pas d'olivine                                                                   | phenocristaux fantômes :<br>forme hexagonale, fait<br>penser à des px mangés et<br>entièrement recristallisés,<br>couleur bleuté, début de<br>grumelisation? | х  | β2    |
| 40 ; 101; 107      | Doujani | 08/07/2007 | mésocrate<br>teinte légèrement<br>verdatre |                            | esquilleuse<br>à éclats gras | Patine blanchatre                                                                                                                                                                                                     | Pas de mnx. visible à l'œil nu<br>Pâte très finement cristallisée<br>Texture microlithique |                                                                                                                                                                        |                                                                                 |                                                                                                                                                              |    | phon  |
| 52 ; 77            | Gouloué | 08/07/2007 | leucocrate<br>gris clair                   | Assez dense<br>et compacte | rugueuse                     | Lave altérée                                                                                                                                                                                                          | 50% de mnx, 50% de pâte                                                                    | Phénocristaux blanc<br>altéré sur clivage en 'marche d'escalier'<br>Hyp : roche type phonolite très altérée<br>donc kaolinite donc minéral serait<br>Néphéline altérée | Baguette d'amphibole saine                                                      |                                                                                                                                                              | х  | β5    |
| 56 ; 63 ; 65 ; 68  | Gouloué |            | mélanocrate                                |                            | rugueuse                     |                                                                                                                                                                                                                       | 1./3 minéraux, 2./3 de pâte                                                                | Px. +/- altérés                                                                                                                                                        | Quelques amphiboles                                                             | phenocristaux fantômes :<br>forme hexagonale, fait<br>penser à des px mangés et<br>entièrement recristallisés,<br>couleur bleuté, début de<br>grumelisation? |    | β2    |
| 60                 | Gouloué | 08/07/2007 | mélanocrate                                |                            | rugueuse                     | Altérée                                                                                                                                                                                                               |                                                                                            | Px. En début d'attération                                                                                                                                              |                                                                                 |                                                                                                                                                              |    | β2    |
| 71; 72; 73         | Gouloué | 08/07/2007 | mesocrate<br>teinte légèrement<br>verdatre | très dense                 | esquilleuse<br>à éclats gras | Patine blanchatre                                                                                                                                                                                                     | Très riche en Ferromagnésien                                                               | Néphéline et pyroxène                                                                                                                                                  |                                                                                 |                                                                                                                                                              |    | phon  |
| 86                 | Doujani | 08/07/2007 |                                            | Très friable               |                              | Lave très attérée                                                                                                                                                                                                     |                                                                                            | Px très attéré, couleur rouille                                                                                                                                        |                                                                                 |                                                                                                                                                              |    | Subst |
| 89 ; 91; 113 ; 119 | Doujani |            | mesocrate<br>teinte légèrement<br>verdatre | très dense                 | esquilleuse<br>à éclats gras | Patine blanchatre                                                                                                                                                                                                     | Très minéralisé                                                                            | Népéhéline abondante                                                                                                                                                   |                                                                                 |                                                                                                                                                              |    | β5    |
| 109 ; 110 ; 114    | Doujani | 08/07/2007 |                                            |                            |                              |                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                        |                                                                                 |                                                                                                                                                              |    | β3    |
| 123 ; 125          | Doujani | 08/07/2007 |                                            |                            |                              |                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                        |                                                                                 |                                                                                                                                                              |    | β2    |
| 128 ; 129          | Doujani | 08/07/2007 |                                            |                            |                              |                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                                                        |                                                                                 |                                                                                                                                                              |    | β3    |


| Numéro échantillon         | Vallée         | Date       | Couleur                        | Densité                                         | Cassure              | Altération-Oxydation                                                                                                  | Cristallisation - Abondance ctx                                                                                                | Phénocristaux                                                                                                                                                                           | Microcristaux                             | Remarques                                                                                                                                                    | LM | Litho |
|----------------------------|----------------|------------|--------------------------------|-------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|
| 141                        | Doujani        | 09/07/2007 |                                |                                                 |                      | _                                                                                                                     |                                                                                                                                |                                                                                                                                                                                         |                                           |                                                                                                                                                              |    | β2    |
| 142                        | Doujani        | 09/07/2007 | mésocrate<br>teinte verdatre   |                                                 | rugueuse             |                                                                                                                       | quelques phénocristaux                                                                                                         | en partie la roche et lui donne sa teinte                                                                                                                                               | рх.                                       |                                                                                                                                                              |    | β3    |
| 145                        | Doujani        | 09/07/2007 | mésocrate                      |                                                 | rugueuse             | légèrement vacuolaire                                                                                                 | pâte très finement cristallisée<br>1/3 microcristaux, 2/3 pâte<br>quelques phénocristaux                                       | olivine altérée<br>phénocristaux jaune orangé brillant ou<br>blanc à verdatre<br>parfois altéré en marche d'escalier sur<br>clivage                                                     | rares px sain                             |                                                                                                                                                              | x  | β2    |
| 147; 162 ; 165             | Doujani        | 09/07/2007 | mélanocrate                    |                                                 | grumeleuse           | légèrement altéré<br>pas de vacuoles<br>trace d'oxydation noire<br>irisation                                          | 1/3 pâte, 1/3 microcristaux,<br>1/3 phénocristaux                                                                              | px. Altérés sur clivage en marche<br>d'escalier<br>auréole réadionnelle brune autour du<br>minéral, couleur jaune orangée, px à cœur<br>sodique (d. Deboeuf)<br>Minéral hexagonal en CT | amphibole                                 | phenocristaux fantômes :<br>forme hexagonale, fait<br>penser à des px mangés et<br>entièrement recristallisés,<br>couleur bleuté, début de<br>grumelisation? |    | β2    |
| 149 ; 152; 159             | Doujani        | 09/07/2007 | leucocrate                     |                                                 |                      | très attéré, friable<br>pate plus attérée que les minéraux<br>microfissures avec traces d'oxydation noires à<br>l'int | Très minéralisé                                                                                                                | px abondants et attérés, de teinte rouille,<br>quelques traces d'attération en marche<br>d'escalier,<br>clivage encore visible                                                          |                                           |                                                                                                                                                              |    | Subst |
| 151                        | Doujani        | 09/07/2007 | leucocrâte<br>teinte rougeatre |                                                 |                      | Lave attérée à gros px<br>Vacuolaire                                                                                  |                                                                                                                                | px altérés en marche d'escalier                                                                                                                                                         |                                           |                                                                                                                                                              |    | β2    |
| 155                        | Doujani        | 09/07/2007 | mésocrate                      | lave saine                                      |                      |                                                                                                                       | Riche en Ferromagnésien<br>1/3 ctx, 2/3 pâte                                                                                   |                                                                                                                                                                                         | amphibole en baguette<br>ol iddingsitisé? |                                                                                                                                                              |    | β3    |
| 166 ; 170                  | Doujani        | 09/07/2007 | leucocrate                     |                                                 |                      |                                                                                                                       |                                                                                                                                |                                                                                                                                                                                         |                                           |                                                                                                                                                              |    | Pyr   |
| 171; 172 ; 173 ;176 ; 197  | Doujani        | 09/07/2007 | mélanocrate                    |                                                 | grenue<br>arumeleuse | légèrement vacuolaire<br>minéraux secondaire d'altération                                                             | 1/3 mnx, 2/3 pâte                                                                                                              | px attéré en marche d'escalier<br>de teinte brunatre                                                                                                                                    |                                           |                                                                                                                                                              |    | β2    |
| 178 ; 183; 190; 192 ; 195  | Doujani        | 09/07/2007 | mélanocrate                    | roche ferme<br>malgré<br>degrès<br>d'altération |                      | fissure d'attération noire oxydée<br>pâte très attérée                                                                | 11.63mineraux 263 nate                                                                                                         | minéraux attérés de couleur rouille<br>quelques minéraux noirs en baguettes                                                                                                             |                                           | facies d'attération du β3                                                                                                                                    |    | β3    |
| 200 ; 201, 202 ; 208       | Majimbini      | 09/07/2007 | mésocrate                      | très saine                                      |                      |                                                                                                                       | peu minéralisée<br>1/3 minéraux, 2/3 pâte                                                                                      |                                                                                                                                                                                         | amphibole en baguette                     |                                                                                                                                                              |    | β3    |
| 206 ; 237                  | Majimbini      | 09/07/2007 |                                |                                                 |                      |                                                                                                                       | , ,                                                                                                                            |                                                                                                                                                                                         |                                           |                                                                                                                                                              |    | Pyr   |
| 210 ; 216; 232 ; 241; 242  | Majimbini      | 09/07/2007 |                                |                                                 | grumeleuse           | légèrement vacuolaire                                                                                                 |                                                                                                                                | px en cours d'attération                                                                                                                                                                |                                           |                                                                                                                                                              |    | β2    |
| 212 ; 227                  | Majimbini      | 09/07/2007 |                                |                                                 |                      |                                                                                                                       |                                                                                                                                |                                                                                                                                                                                         |                                           |                                                                                                                                                              |    | Subst |
| 233 ; 234; 239             | Majimbini      | 09/07/2007 | leucocrate                     | roche ferme<br>malgré<br>degrès<br>d'altération |                      | lave attérée                                                                                                          | Très peu de minéraux                                                                                                           |                                                                                                                                                                                         |                                           | facies d'attération du β3                                                                                                                                    |    | β3    |
| 258                        | Kaouénilajolie | 10/07/2007 |                                |                                                 |                      |                                                                                                                       |                                                                                                                                |                                                                                                                                                                                         |                                           | Fantôme de px                                                                                                                                                |    | β2    |
| 269 ; 274 ; 279 ; 281      | •              | 10/07/2007 | mésocrate                      | très dense                                      |                      |                                                                                                                       | pate très finement cristrallisée<br>où l'on ne distingue pas les<br>minéraux<br>lave riche en feroomagnésien<br>la pâte brille | Quelque Px (5mm)                                                                                                                                                                        | amphibole en baguette                     |                                                                                                                                                              | х  | β3    |
| 284                        | Kaouénilajolie | 10/07/2007 |                                |                                                 |                      |                                                                                                                       |                                                                                                                                |                                                                                                                                                                                         |                                           |                                                                                                                                                              |    | Pyr   |
| 289 ; 292 ; 294 ; 301 ; 30 |                |            |                                |                                                 |                      |                                                                                                                       |                                                                                                                                |                                                                                                                                                                                         |                                           |                                                                                                                                                              |    | β2    |
| 338 ; 343; 390 ; 399       | Kaouénilajolie | 10/07/2007 | mésocrate                      | lave massive                                    |                      |                                                                                                                       | riche en ferromagnésien                                                                                                        |                                                                                                                                                                                         |                                           |                                                                                                                                                              |    | β3    |
| 346 ; 392 ; 395            | Kaouénilajolie | 10/07/2007 |                                |                                                 |                      |                                                                                                                       |                                                                                                                                |                                                                                                                                                                                         |                                           |                                                                                                                                                              |    | β2    |

| Numéro échantillon                         | Vallée    | Date       | Couleur                  | Densité       | Cassure     | Altération-Oxydation                                                                                                                        | Cristallisation - Abondance ctx.                                                          | Phénocristaux                                  | Microcristaux                                                     | Remarques                                                                                  | LM | Litho |
|--------------------------------------------|-----------|------------|--------------------------|---------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----|-------|
| 403 ; 404; 407                             | Majimbini | 11/07/2007 | leucocrate<br>gris clair | Roche dense   | rugueuse    | Néant                                                                                                                                       | très minéralisée<br>50% cristaux, 50% pâte                                                | Néphéline et pyroxène                          | amphibole en baguette                                             |                                                                                            | х  | Тер   |
| 421; 430; 435                              | Majimbini | 11/07/2007 | mésocrate                | très dense    | esquilleuse |                                                                                                                                             | aphyrique, 90% de pâte<br>rares cristaux visibles à l'œil nu                              |                                                | amphibole ou pyroxène?                                            |                                                                                            | ×  | β3    |
| 441 ; 446 ; 457 ; 458 ; 46;                | Majimbini | 11/07/2007 | leucocrate<br>gris clair |               |             |                                                                                                                                             |                                                                                           | Néphéline et pyroxène                          |                                                                   |                                                                                            |    | Тер   |
| 454                                        | Majimbini | 11/07/2007 | leucocrate<br>sableuse   | assez friable |             | assez vacuolaire                                                                                                                            | composée d'élements<br>polygéniques<br>de taille et de composition<br>différentes         | quelques restes de gros px                     |                                                                   | brèche de débourrage                                                                       |    | Br    |
| 467; 523                                   | Majimbini | 11/07/2007 | leucocrate<br>blanche    | dense         |             | lave attérée                                                                                                                                |                                                                                           |                                                |                                                                   |                                                                                            |    | β3    |
| 505 ; 509 ; 511;519; 526                   | Majimbini | 11/07/2007 | mésocrate                | dense         |             |                                                                                                                                             | riche en ferromagnésien                                                                   |                                                |                                                                   |                                                                                            |    | β3    |
| 468 ; 478 ; 497 ; 503 ; 51                 |           | 11/07/2007 | mélanocrate              | grumeleuse    |             |                                                                                                                                             |                                                                                           |                                                |                                                                   |                                                                                            |    | β2    |
| BM009; BM011; BM012                        | Kangani   | 13/07/2007 | leucocrate               | dense         | grenue      | Néant                                                                                                                                       | 1/3 minéraux, 2/3 pâte                                                                    | pyroxène et néphéline                          |                                                                   |                                                                                            |    | Тер   |
| BM018 ; BM020 ;<br>BM022;<br>BM023 ; BM027 | Kangani   | 13/07/2007 | mésocrate                | dense         |             | parfois vacuolaire en base de coulée                                                                                                        | très riche en ferromagnésien                                                              |                                                |                                                                   |                                                                                            |    | β3    |
| BM037; BM060; BM069                        | Kangani   | 13/07/2007 | mélanocrate              |               | grumeleuse  |                                                                                                                                             |                                                                                           |                                                |                                                                   |                                                                                            |    | β2    |
| BM062 ; BM063 ;<br>BM067 ; BM068           | Kangani   | 13/07/2007 | leucocrate<br>gris clair |               |             |                                                                                                                                             |                                                                                           | néphéline                                      |                                                                   |                                                                                            |    | Тер   |
| MC05 ; MC023                               | Gombani   | 13/08/2007 | leucocrate<br>gris clair |               |             | lave très attérée, ++ friable<br>Roche vacuolaire<br>quelques traces d'oxydation noire                                                      | 1/3 minéraux, 2/3 pâte                                                                    |                                                | cristaux rouille attéré                                           |                                                                                            |    | Тер   |
| MC08                                       | Gombani   | 13/08/2007 | mélanocrate<br>bleu-gris | dense         | grenue      | trace d'oxydation<br>légèrement vacuolaire                                                                                                  | peu minéralisée<br>1/4 minéraux, 3/4 pâte                                                 | 1 phénocristal de pyroxène<br>dans échantillon | microcrisataux de pyroxène et néphéline ?                         |                                                                                            |    | Тер   |
| MC09 ; MC11                                | Gombani   | 13/08/2007 | mélanocrate<br>bleu-gris | dense         | grenue      | trace noire d'oxydation dans micro fissures<br>+/- vacuolaire<br>minéral blanc de remplissage de vacuoles                                   | peu minéralisée<br>1/3 minéraux, 2/3 pâte                                                 | pyroxène                                       | pyroxène et amphibole ?                                           |                                                                                            |    | Тер   |
| MC15                                       | Gombani   | 13/08/2007 | mélanocrate<br>bleu-gris | très dense    | esquilleuse | patine gris clair avec minéraux<br>ferromagnésien noir qui ressortent en relief                                                             | pâte finement cristallisée<br>1/2 pâte; 1/2 minéraux                                      | Néphéline et pyroxène                          | Baguette d'amphibole?                                             |                                                                                            |    | Тер   |
| MC25 ; MC52 ; MC54                         | Gombani   | 13/08/2007 | mésocrate                | dense         | grenue      |                                                                                                                                             | tres riche en ferromagnésien<br>pâte très finement cristallisée<br>3/4 cristaux, 1/4 pâte | olivine, pyroxène                              | nombreuses baguettes<br>d'amphiboles<br>px en coupe longitidinal? | le pyroxène se présente<br>parfois sous forme d'amas<br>de minéraux. Petite<br>pyroxénite? | х  | β3    |
| MC33 ; MC36 ; MC48<br>MC53                 | Gombani   | 13/08/2007 | mélanocrate              | dense         | esquilleuse | patine gris clair avec minéraux<br>ferromagnésien noir qui ressortent en relief<br>rares vacoles avec minéraux de remplissage<br>secondaire | riche en ferromagnésien<br>pâte finement cristallisée<br>1/3 cristaux, 2/3 pâte           | olivine, pyroxène , néphéline                  | nombreuses baguettes<br>d'amphiboles<br>px en coupe longitidinal? | le pyroxène se présente<br>parfois sous forme d'amas<br>de minéraux. Petite<br>pyroxénite? | х  | Тер   |
| MC62                                       | Gombani   | 13/08/2007 | mélanocrate              | dense         | esquilleuse | patine gris clair avec minéraux<br>ferromagnésien noir qui ressortent en relief<br>vacoles avec minéraux de remplissage<br>secondaire       | riche en ferromagnésien<br>pâte finement cristallisée<br>1/3 cristaux, 2/3 pâte           | pyroxène , néphéline saine et en début d'a     | nombreuses baguettes<br>d'amphiboles<br>px en coupe longitidinal? |                                                                                            |    | Тер   |

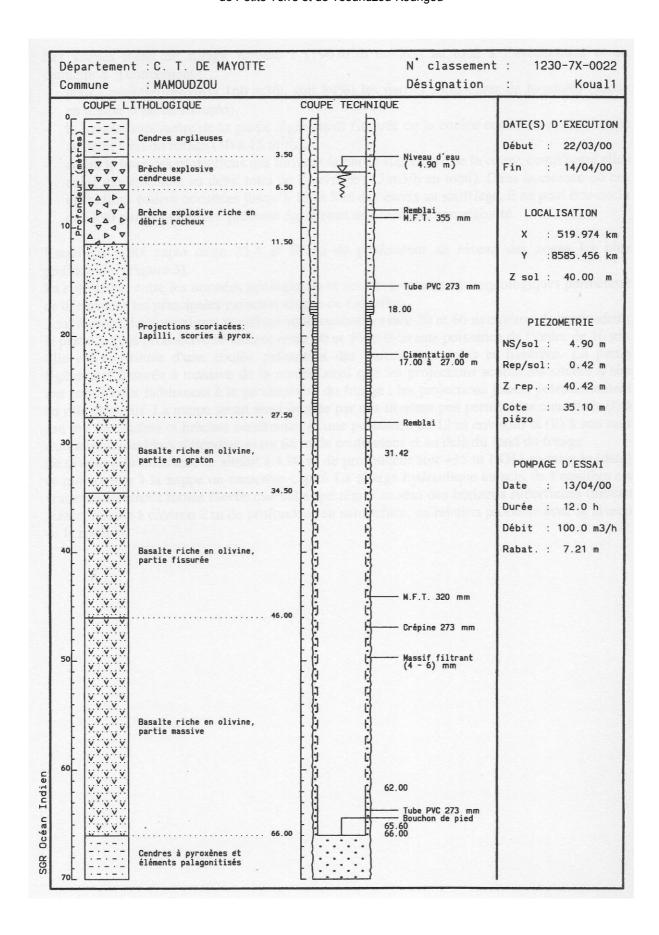

| Numéro échantillon | Vallée       | Date        | Couleur                            | Densité     | Cassure                         | Altération-Oxydation                                                   | Cristallisation - Abondance ctx                                | Phénocristaux                                              | Microcristaux           | Remarques                                                                                                                        | LM | Litho |
|--------------------|--------------|-------------|------------------------------------|-------------|---------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------|----|-------|
| MY01               | Convalescend | 04/10/2007  | mésocrate                          | dense       | esquilleuse                     |                                                                        | pate très finement cristallisée<br>1/3 cristaux, 2/3 pâte      | pyroxéne et olivine                                        | pyroxène et amphibole ? |                                                                                                                                  |    | β3    |
| <b>М</b> Ү04       | Convalescend | 04/10/2007  | mélanocrate                        | dense       |                                 | traces noires d'oxydation<br>px attéré, orange et olivine iddingsitisé | 1.8 cristaux, 2.8 pâte                                         | pyroxéne et olivine                                        | pyroxène et amphibole ? | olivine en phase<br>d'iddingsitisation<br>dans cet échantillon, cœur<br>sain et contour orangé                                   |    | β3    |
| MY07               | Convalescend | 04/10/2007  | leucocrate                         |             |                                 | Itracae d'avvedation nairee                                            | 1/3 cristaux, 2/3 pâte<br>pâte finement cristallisée           | pyroxène et néphéline                                      |                         |                                                                                                                                  |    | Тер   |
| MYOS               | Convalescend | :04/10/2007 | mésocrate                          |             | grenue                          | Texture granuleuse très nette                                          | Très peu de minéraux visibles<br>à l'œil nu et à la bino       |                                                            | pyroxène et olivine     | phenocristaux fantômes :<br>forme hexagonale, fait<br>penser à des px mangés et<br>entièrement recristallisés,<br>couleur bleuté |    | β2    |
| MY13               | Convalescend | 04/10/2007  | leucocrate                         | dense       |                                 | pâte de teinte rose et vacuolaire<br>traces d'oxydation jaune orange   | Peu de minéraux visibles à l'œil<br>nu et à la bino            |                                                            | pyroxène amphibole?     | Tephrite à proximité.<br>Semble être base de<br>coulée                                                                           | х  | Тер   |
| MY17               | Convalescend | 04/10/2007  | mésocrate                          | très dense  | esquilleuse                     | Inatine hlanche drise                                                  | pâte très finement cristallisée<br>1/3 microcristaux, 2/3 pâte | pyroxène, olivine                                          | amphibole               | pyroxène en amas                                                                                                                 | х  | Тер   |
| MY18               | Convalescend | 04/10/2007  |                                    | Assez dense | grenue                          |                                                                        | matrice sableuse, jaune orangée                                | eléments polygéniques : ponce<br>cristaux, débris de roche |                         |                                                                                                                                  | ×  | Pyr   |
| MY24               | Convalescend | 04/10/2007  | mésocrate<br>de teinte<br>verdatre | dense       | esquilleuse<br>à éclats<br>gras | patine grise                                                           | matrice très finement cristallisée                             | néphéline                                                  | pyroxène                |                                                                                                                                  |    | Тер   |
| МУ36               | Koungou      | 05/10/2007  | Leucocrate                         | très dense  | esquilleuse                     | patine blanche<br>lave blanche avec gros Fd blanc                      | matrice très finement cristallisée                             | feldspath?                                                 |                         | echantillon de sain et<br>d'attérée<br>dans même affleurement<br>profil d'attération                                             | х  | phon  |
| MY50 ; MY53        | Koungou      | 05/10/2007  | mésocrate                          | dense       | grenue                          | Texture granuleuse très nette                                          | Très peu de minéraux visibles<br>à l'œil nu et à la bino       | quelques pyroxènes +/- attérés                             |                         | phenocristaux fantômes :<br>forme hexagonale, fait<br>penser à des px mangés et<br>entièrement recristallisés,<br>couleur bleuté | х  | β2    |

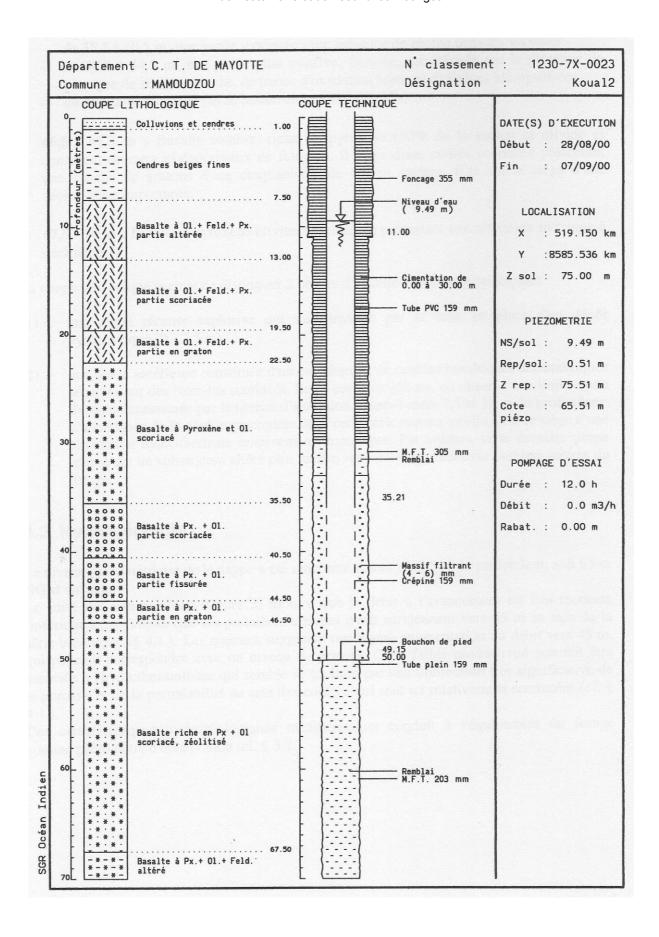
## Cartes d'affleurements

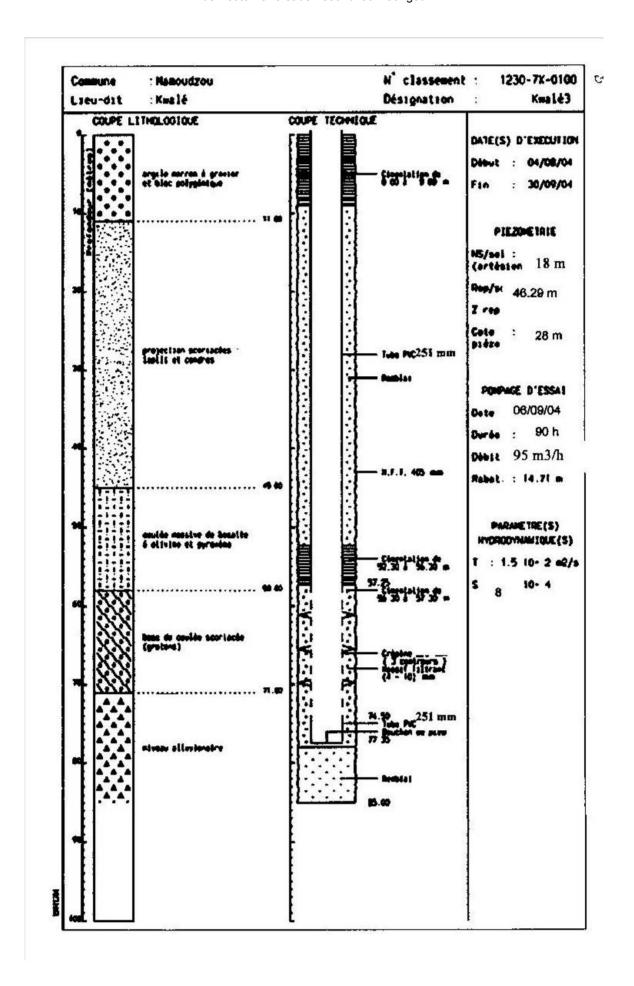

Carte 1 Affleurements lithologiques des vallées du Mro Oua Kwalé, Gouloué, Doujani et Majimbini

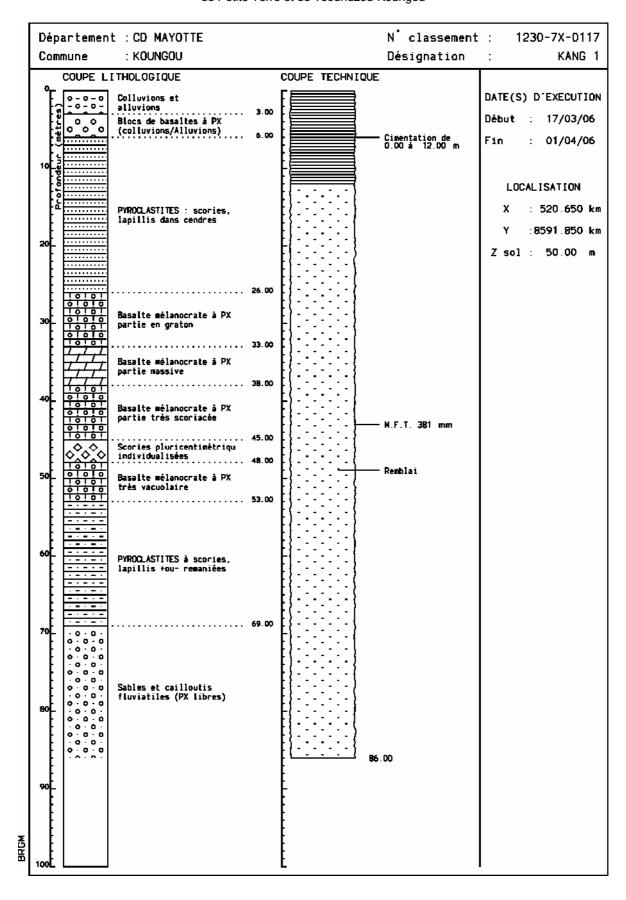


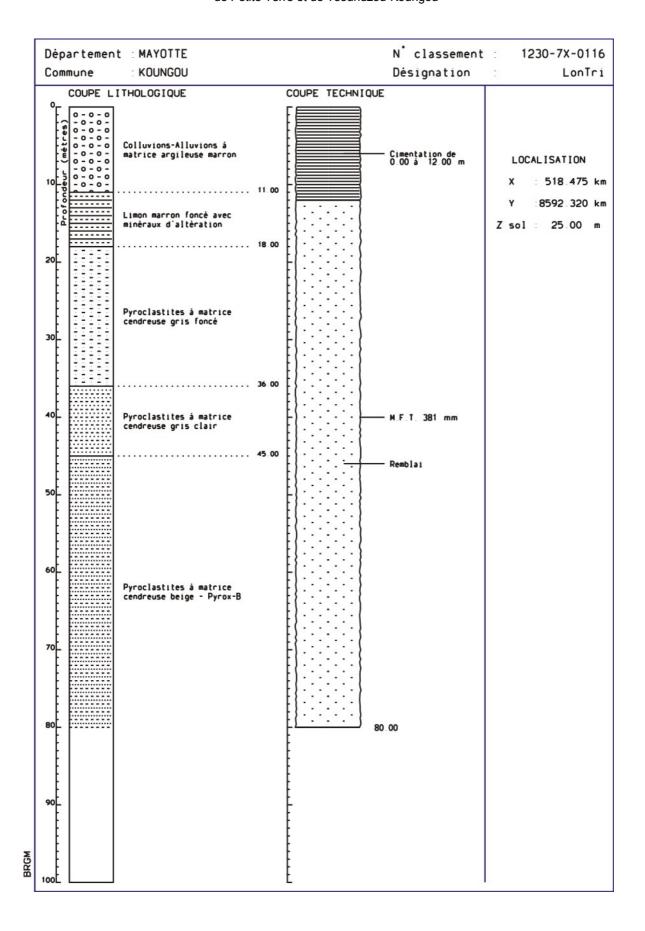
Carte 2 Affleurements lithologiques des vallées du Mro Oua Majimbini, Kawénilajoli, Kirissoni, Doujani et Kangani et des secteurs de Mamoudzou, Kawéni et Majikavo

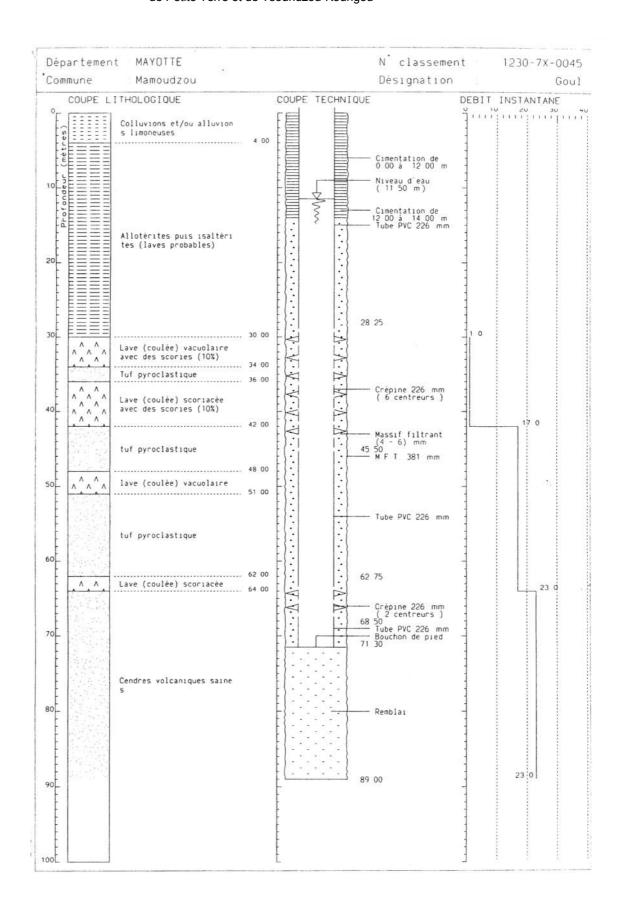


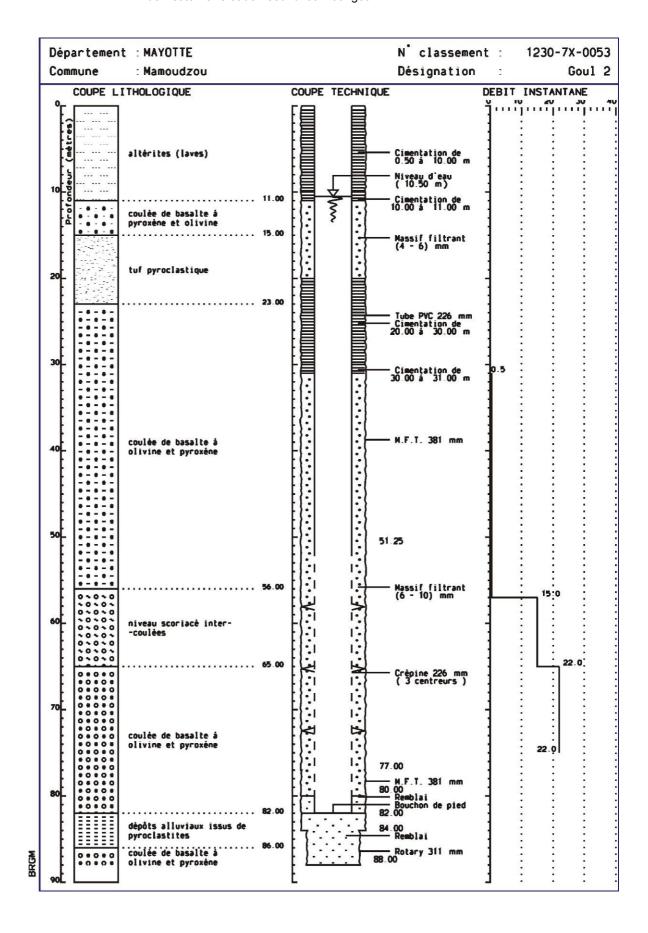


Carte 3 Affleurements lithologiques des vallées du Mro Oua Kirissoni, Kangani, M'Gombani et Longoni et des côtes de Koungou, Trévani et Kangani

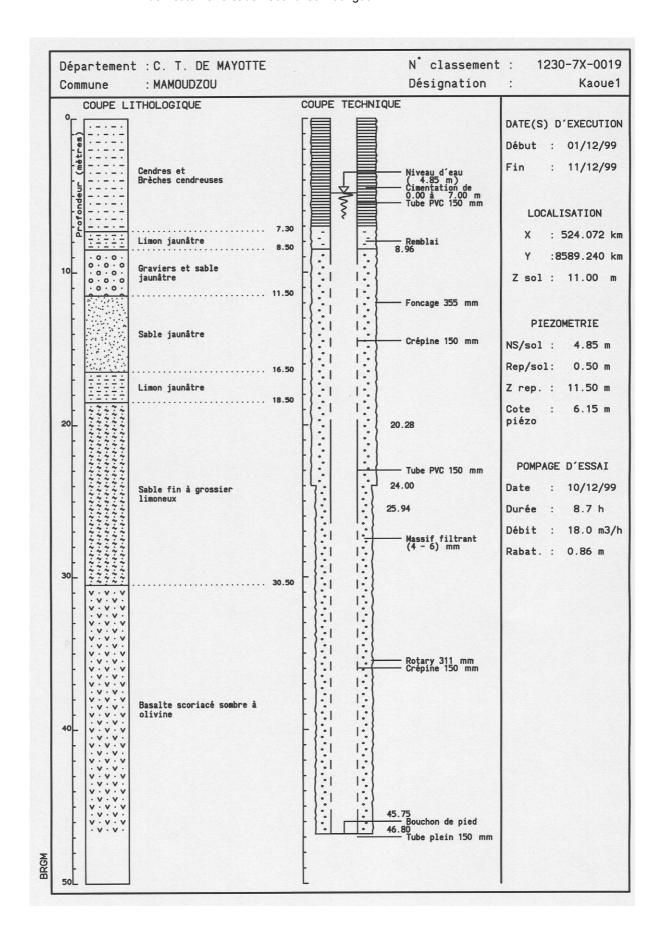


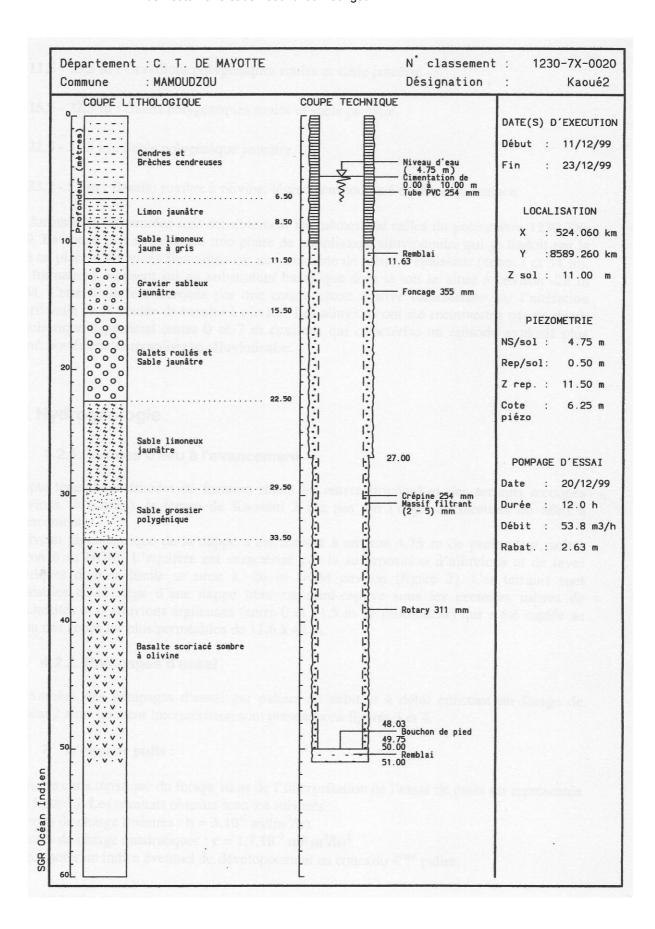


# Coupes des forages disponibles dans la zone d'étude

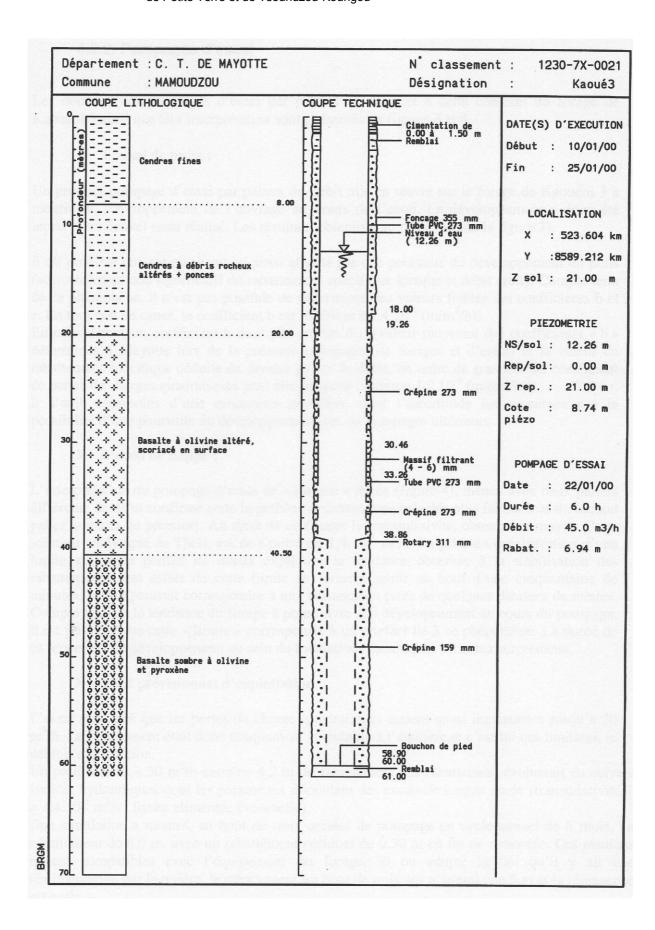

- Kwalé 1 12307X0022
- Kwalé 2 12307X0023
- Kwalé 3 12307X0100
- o Kangani 1 12307X0117
- o Longoni Tririni 12307X0116
- Gouloué 1 12307X0045
- o Gouloué 2 12307X0053
- o Kawéni 1 10" 12307X0019
- o Kawéni 2 10" 12307X0020
- o Kawéni 3 10" 12307X0021
- Kawéni F1 12307X0013
- Kawéni F2 12307X0014
- Kawéni 1 8 " 12307X0011
- o Kawéni 2 8" 1307X0012

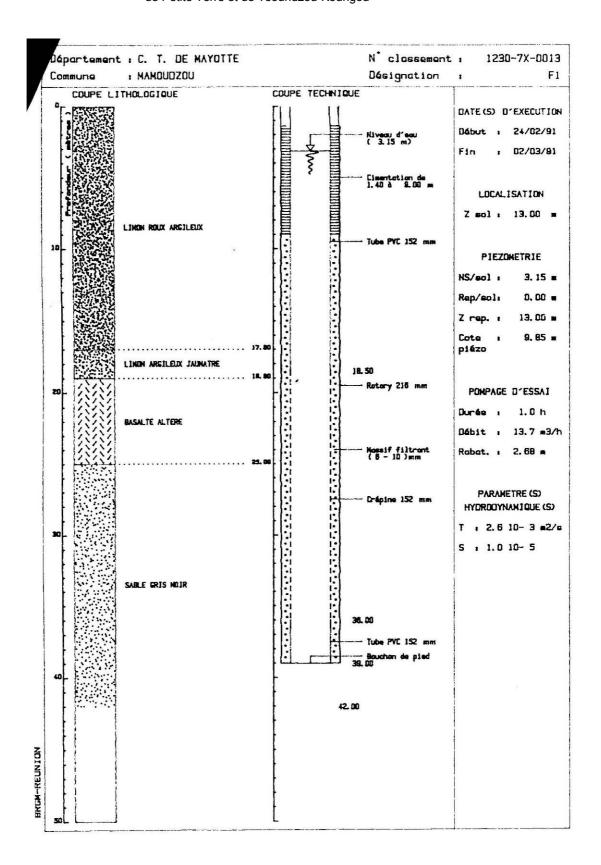


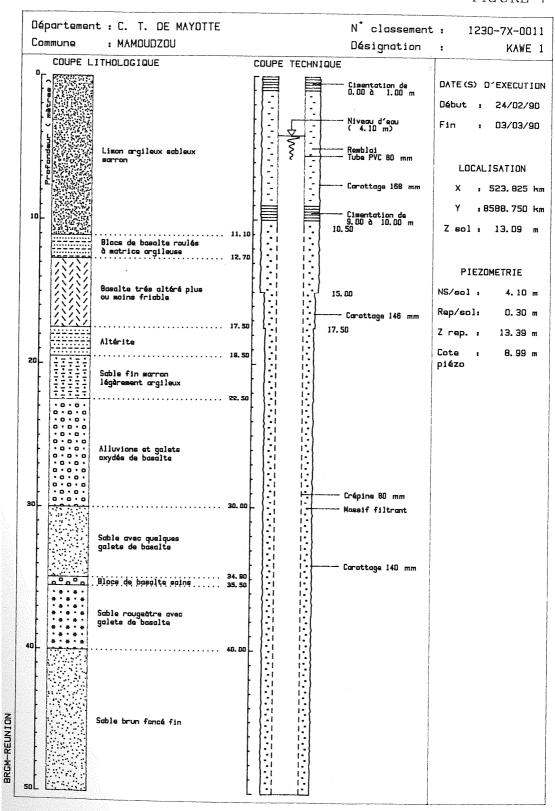



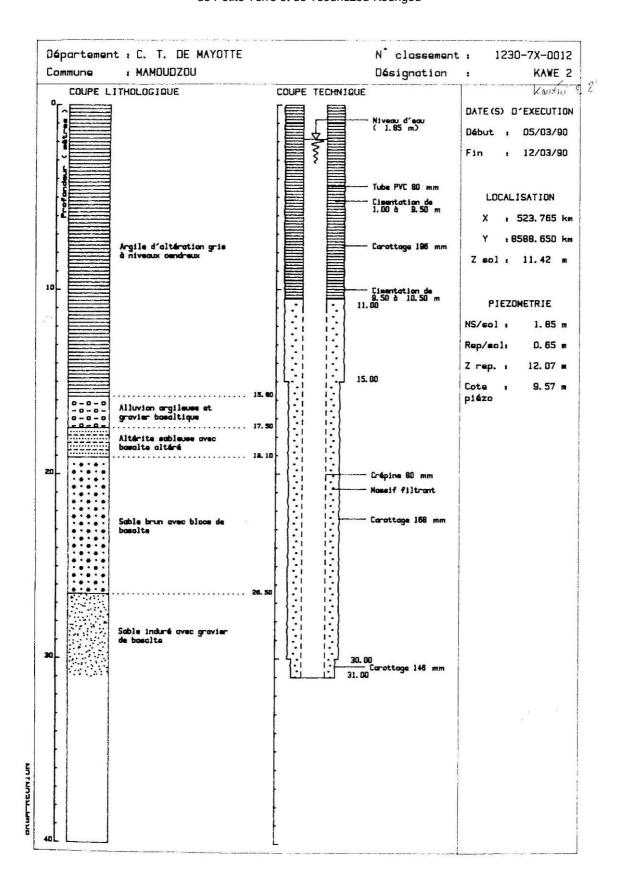












#### FIGURE 7





# **Annexe 5**

# Rapport d'étude de Stratagem074



## Pétrographie de 13 lames minces de Mayotte

Etude par Benoit WELSCH, Laboratoire Géosciences Réunion

|    | Pt  | Date     | Références<br>lames | Roche Type     | Phénocristaux &<br>Microphénocristaux | Microlites    | Crist.<br>matrice | Altération |
|----|-----|----------|---------------------|----------------|---------------------------------------|---------------|-------------------|------------|
| 01 | 4   | 08/07/07 | 4                   | Ankaramite     | Cpx + Ol                              | Pl + Op       | +                 | ++++       |
| 02 | 12  | 11/12/07 | 12                  | Trachyandésite | Hbl + Lct + Cpx                       | Pl + Op       | ++                | -          |
| 03 | 35  | 07/07/07 | 35                  | Ankaramite     | Cpx + Ol                              | Pl + Op + Cpx | ++                | ++         |
| 04 | 201 | 09/07/07 | 201                 | Trachybasalte  | Cpx + Hbl + Ol                        | Pl + Op + Ol  | +                 | ++         |
| 05 | 241 | 09/07/07 | 241                 | Trachybasalte  | Cpx + Hbl + (Ol)                      | Pl + Op + Ol  | +                 | +          |
| 06 | 279 | 10/07/07 | 279                 | Ankaramite     | Cpx + Ol                              | Pl + Op       | +++               | ++         |
| 07 | 289 | 10/07/07 | 289                 | Mugéarite      | (Op + Ne)                             | Pl + Op + Cpx | +                 | ++         |
| 08 | 435 | 11/10/07 | 435                 | Mugéarite      | (Op)                                  | Pl + Op       | +                 | -          |
| 09 | 519 | 10/07/07 | 519                 | Ankaramite     | Cpx + Ol                              | Pl + Op + Cpx | +                 | ++         |
| 10 | 18  | 13/07/07 | BM018               | Trachyandésite | Hbl + Cpx                             | Pl + Op       | +                 | ++         |
| 11 | 52  | 13/08/07 | MC52                | Ankaramite     | Cpx + Ol                              | Pl + Op       | -                 | -          |
| 12 | 17  | 04/10/07 | MY17                | Trachyandésite | Cpx + Hbl + (Ne)                      | Pl + Op + Cpx | -                 | -          |
| 13 | 53  | 05/10/07 | MY53                | Ankaramite     | Cpx + Ol                              | Pl + Op + Ol  | -                 | ++         |

Figure 1: Synthèse des échantillons préparés

#### **Abréviations**

#### Microscopie - lumière transmise

LPNA : Lumière polarisée non-analysée LPA : Lumière polarisée analysée

#### Minéralogie

Op: oxydes métalliques opaques (spinelle Sp, ilménite Ilm, magnétite Mgt, hématite Hem)

Ol: olivine (Fe, Mg)<sub>2</sub> SiO<sub>4</sub>

Cpx: clinopyroxène Ca (Fe, Mg, Al, Ti)  $Si_2O_6$ 

Pl: plagioclase CaAl<sub>2</sub>Si<sub>2</sub>O<sub>8</sub> – NaAlSi<sub>3</sub>O<sub>8</sub>

Hbl: amphibole brune (Ca, Na, K)<sub>2</sub> (Mg, Fe<sup>2+</sup>, Fe<sup>3+</sup>, Al)<sub>5</sub> [Si<sub>6</sub>(Al,Si)<sub>2</sub>O<sub>22</sub>] (OH,F)<sub>2</sub>

Ne : néphéline (Na, K) AlSiO<sub>4</sub>

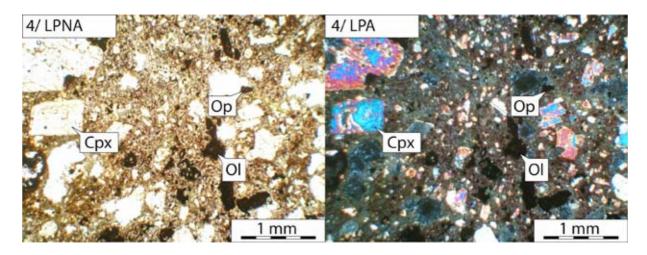
Lct: leucite KAlSi<sub>2</sub>O<sub>6</sub>

#### Cristallographie

Phénocristaux : 5 - 0.5 mm

Microphénocristaux : 500 – 100 μm

Microlites : < 100µm


Cristal automorphe : faces externes exprimées

Cristal xénomorphe : grains arrondis et / ou fragmentés



## 4/ Ankaramite

### **Section polie**



#### Macroscopie

Roche volcanique basique à texture porphyrique : phénocristaux d'olivine et de clinopyroxène noyés dans une matrice vésiculée et altérée

## Microscopie

#### Phénocristaux:

• Clinopyroxène 5% : automorphes et zonés

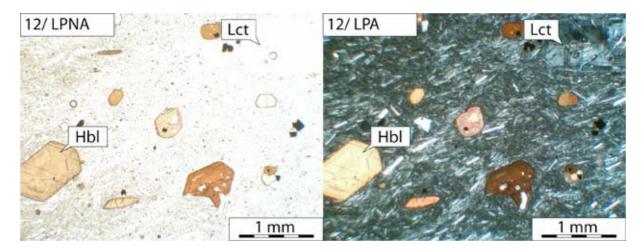
• Olivine 1% : automorphes très iddingsitisés avec inclusions d'oxydes

#### Microphénocristaux:

• Clinopyroxène 20% : automorphes

• Olivine 10% : automorphes très iddingsitisés

Mésostase : microlites de plagioclase + opaques


Texture: porphyrique

Cristallisation de la matrice : + Vésiculation / Porosité : Faible



# 12/ Trachyandésite

#### **Section polie**



## Macroscopie

Roche volcanique intermédiaire à texture porphyrique : phénocristaux d'amphibole et de leucite noyés dans une matrice compacte

## Microscopie

#### Phénocristaux:

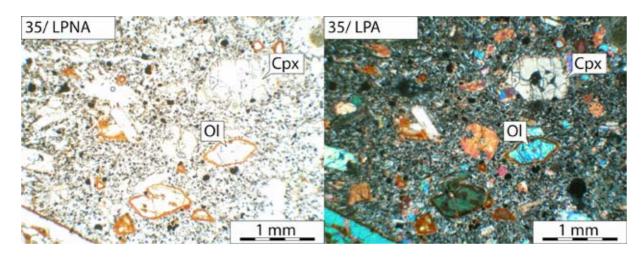
- Amphibole 10%: automorphes avec inclusions d'opaques et d'apatite
- Leucite 5%: automorphes
- Clinopyroxène 5% : automorphes, zonés avec inclusions d'oxydes

#### Microphénocristaux:

- Amphibole 15% : automorphes en aggrégats
- Opaques 5%

Mésostase : microlites de plagioclase + opaques

Texture : porphyrique fluidale Cristallisation de la matrice : ++


Vésiculation / Porosité : -

Altération : -



#### 35/ Ankaramite

#### **Section polie**



## Macroscopie

Roche volcanique basique à texture porphyrique : phénocristaux de clinopyroxène et d'olivine noyés dans une matrice vésiculée et altérée

## Microscopie

#### Phénocristaux:

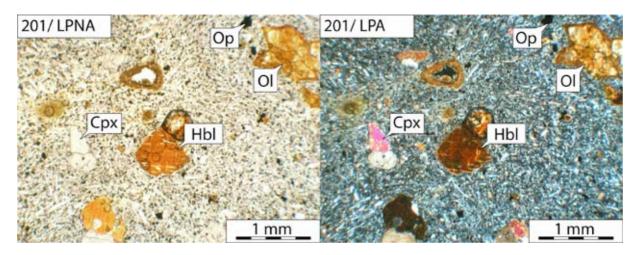
- Clinopyroxène 10% : automorphes, zonés avec inclusions d'oxydes
- Olivine 5%: automorphes avec bordure d'iddingsite

#### Microphénocristaux:

- Clinopyroxène 10%: automorphes
- Olivine 10%: automorphes avec bordure d'iddingsite

Mésostase : microlites de plagioclase + opaques + clinopyroxène

Texture: porphyrique


Cristallisation de la matrice : ++

Vésiculation / Porosité: -



# 201 / Trachybasalte

#### **Section polie**



#### Macroscopie

Roche volcanique basique à texture porphyrique : phénocristaux de clinopyroxène, d'olivine et d'amphibole noyés dans une matrice vésiculée et altérée

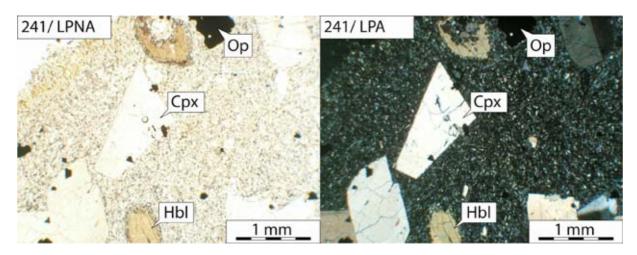
#### Microscopie

#### Phénocristaux:

- Clinopyroxène 15%: automorphes zonés, en aggrégats, avec inclusions d'oxydes
- Olivine 5%: automorphes avec bordure d'iddingsite
- Amphibole brune 1% : automorphes à xénomorphes, altérés

#### Microphénocristaux:

- Clinopyroxène 5%: automorphes en aggrégats
- Opaques 1%


Mésostase : microlites de plagioclase + opaques + olivine

Texture : porphyrique fluidale Cristallisation de la matrice : + Vésiculation / Porosité : ++



# 241 / Trachybasalte

## **Section polie**



## Macroscopie

Roche volcanique basique à texture porphyrique : phénocristaux de clinopyroxène, d'amphibole et d'olivine noyés dans une matrice peu vésiculée et altérée

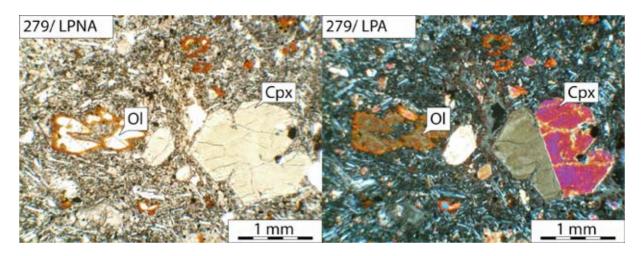
### Microscopie

#### Phénocristaux:

- Clinopyroxène 15%: automorphes zonés, en aggrégats, avec inclusions d'oxydes
- Amphibole 10% : baguettes automorphes à xénomorphes avec bordure réactionnelle
- Olivine 1%: automorphes avec bordure d'iddingsite
- Opaques 1%: xénomorphes

#### Microphénocristaux :

- Clinopyroxène 5%: automorphes
- Amphibole 5% : automorphes avec bordure réactionnelle
- Opaques 5%


Mésostase : microlites de plagioclase + opaques + olivine

Texture : porphyrique fluidale Vésiculation / Porosité : ++ Cristallisation de la matrice : +



#### 279 / Ankaramite

#### **Section polie**



#### Macroscopie

Roche volcanique basique à texture porphyrique : phénocristaux et xénocristaux de clinopyroxène noyés dans une matrice vésiculée et altérée

## Microscopie

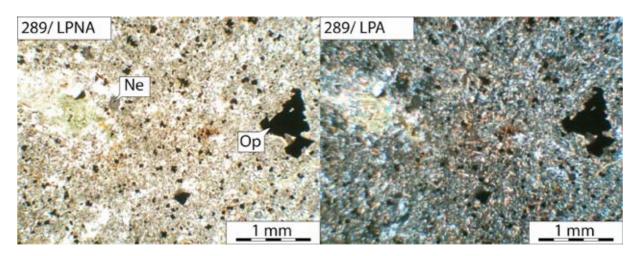
#### Phénocristaux:

- Clinopyroxène 10% : automorphes, zonés. Rares fragments wherlitiques
- Olivine 1% : automorphes à xénomorphes avec bordure d'iddingsite

#### Microphénocristaux :

- Clinopyroxène 15% : automorphes
- Olivine 10%: automorphes avec bordure d'iddingsite
- Opaques 1%

Mésostase : microlites de plagioclase + opaques


Texture: porphyrique

Cristallisation de la matrice : +++
Vésiculation / Porosité : ++



# 289 / Mugéarite

## **Section polie**



## Macroscopie

Roche volcanique basique à texture microlitique : matrice finement cristallisée, vésiculée et altérée contenant quelques phénocristaux opaques

## Microscopie

#### Phénocristaux:

• Opaques 5%: automorphes voire dendritiques

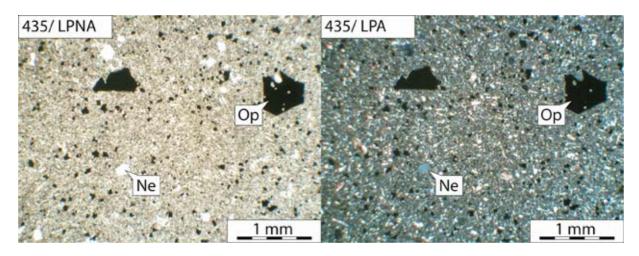
#### Microphénocristaux:

• Néphéline 5% : automorphes et altérés

• Plagioclase 5%: automorphes

• Opaques 1%

Mésostase : microlites de plagioclase + opaques + clinopyroxène


Texture: microlitique

Cristallisation de la matrice : + Vésiculation / Porosité : +



## 435 / Mugéarite

## **Section polie**



## Macroscopie

Roche volcanique basique à texture microlitique : matrice finement cristallisée contenant quelques phénocristaux opaques

## Microscopie

#### Phénocristaux:

• Opaques 5%: automorphes voire dendritiques

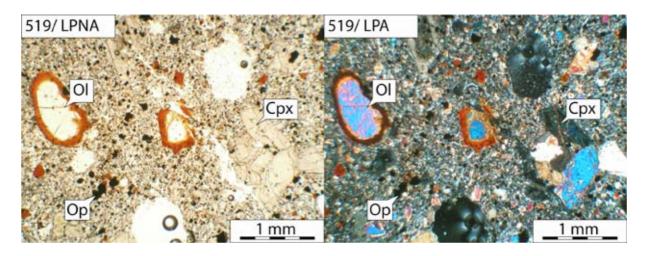
#### Microphénocristaux:

• Opaques 1%

Mésostase : microlites de plagioclase + opaques + clinopyroxène

Texture: microlitique

Cristallisation de la matrice : + Vésiculation / Porosité : ++


Altération : -

9



## 519 / Ankaramite

#### **Section polie**



## Macroscopie

Roche volcanique basique à texture porphyrique : phénocristaux de clinopyroxène et d'olivine noyés dans une matrice vésiculée et altérée

#### Microscopie

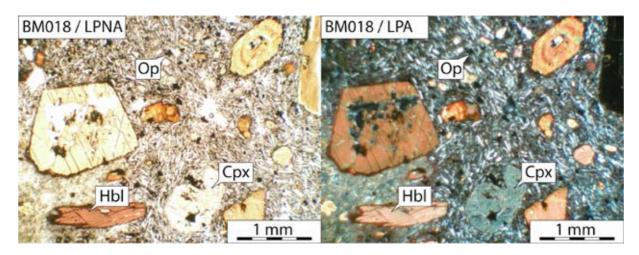
#### Phénocristaux:

- Clinopyroxène 10% : automorphes, zonés, en aggrégats avec inclusions d'opaques
- Olivine 10% : xénomorphes avec bordure d'iddingsite

#### Microphénocristaux:

- Clinopyroxène 15% : automorphes
- Olivine 10% : xénomorphes avec bordure d'iddingsite
- Opaques 5%: automorphes squelettiques à dendritiques

Mésostase : microlites de plagioclase + opaques + clinopyroxène


Texture: porphyrique

Cristallisation de la matrice : + Vésiculation / Porosité : ++



# BM018 / Trachyandésite

### **Section polie**



## Macroscopie

Roche volcanique intermédaire à texture porphyrique : phénocristaux d'amphibole et de clinopyroxène noyés dans une matrice vésiculée et altérée

## Microscopie

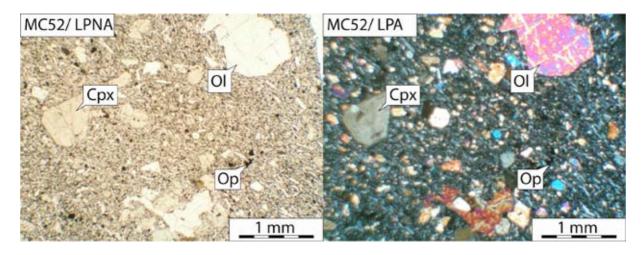
#### Phénocristaux:

- Amphibole brune 10%: automorphes avec bordure réactionnelle, inclusions d'opaques et d'apatite
- Clinopyroxène 5% : automorphes avec inclusions d'opaques

#### Microphénocristaux:

- Clinopyroxène 10% : automorphes
- Amphibole brune 10% : automorphes avec bordure réactionnelle
- Opaques 5%: automorphes

Mésostase : microlites de plagioclase + opaques


Texture: porphyrique

Cristallisation de la matrice : + Vésiculation / Porosité : ++



## MC52 / Ankaramite

### **Section polie**



#### Macroscopie

Roche volcanique basique à texture porphyrique : xénocristaux centimétriques de clinopyroxène, phénocristaux de clinopyroxène et d'olivine noyés dans une matrice saine peu vésiculée

## Microscopie

#### Phénocristaux:

- Clinopyroxène 15%: automorphes, zonés avec inclusions d'opaques. Fragments wehrlitiques xénomorphes
- Olivine 5% : automorphes, immaculés

#### Microphénocristaux:

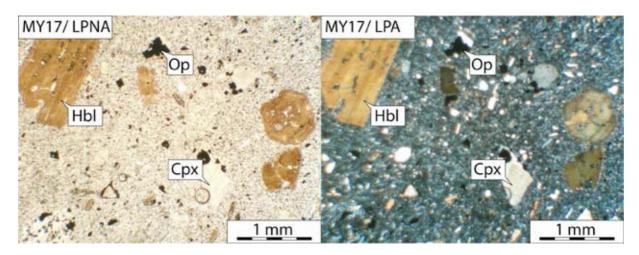
• Clinopyroxène 10% : automorphes

• Olivine 5% : automorphes, immaculés

• Opaques 5% : automorphes dendritiques

Mésostase : microlites de plagioclase + opaques + clinopyroxène

Texture: porphyrique


Cristallisation de la matrice : - Vésiculation / Porosité : -

Altération : -



# MY17 / Trachyandésite

### **Section polie**



## Macroscopie

Roche volcanique intermédiaire à texture porphyrique : phénocristaux de clinopyroxène, d'amphibole brune et de néphéline noyés dans une matrice saine peu vésiculée

## Microscopie

#### Phénocristaux:

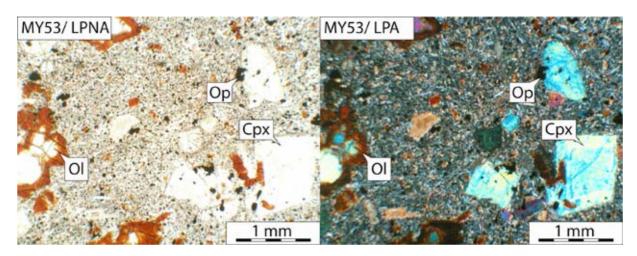
- Amphibole brune 10%: automorphes avec bordure réactionnelle et inclusions d'opaques
- Clinopyroxène 5% : automorphes, zonés avec inclusions d'opaques

#### Microphénocristaux:

- Clinopyroxène 5% : automorphes
- Néphéline 5% : automorphes et altérés
- Opaques 5%: automorphes dendritiques

Mésostase : microlites de plagioclase + opaques + clinopyroxène

Texture: porphyrique


Cristallisation de la matrice : - Vésiculation / Porosité : -

Altération: -



## MY53 / Ankaramite

#### **Section polie**



## Macroscopie

Roche volcanique basique à texture porphyrique : phénocristaux de clinopyroxène et d'olivine noyés dans une matrice altérée, peu vésiculée et fracturée

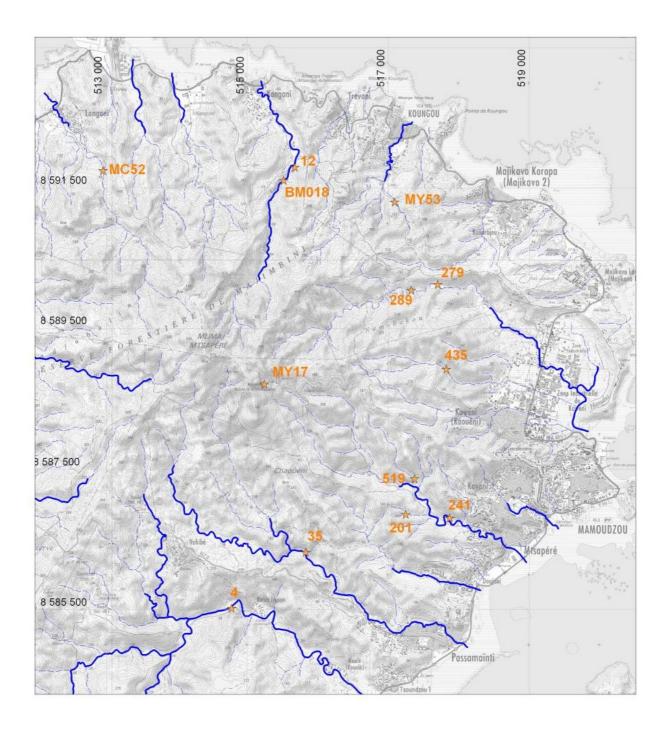
#### Microscopie

#### Phénocristaux:

- Clinopyroxène 15% : automorphes, zonés avec inclusions d'opaques
- Olivine 10% : automorphes à xénomorphes avec bordure d'iddingsite

#### Microphénocristaux:

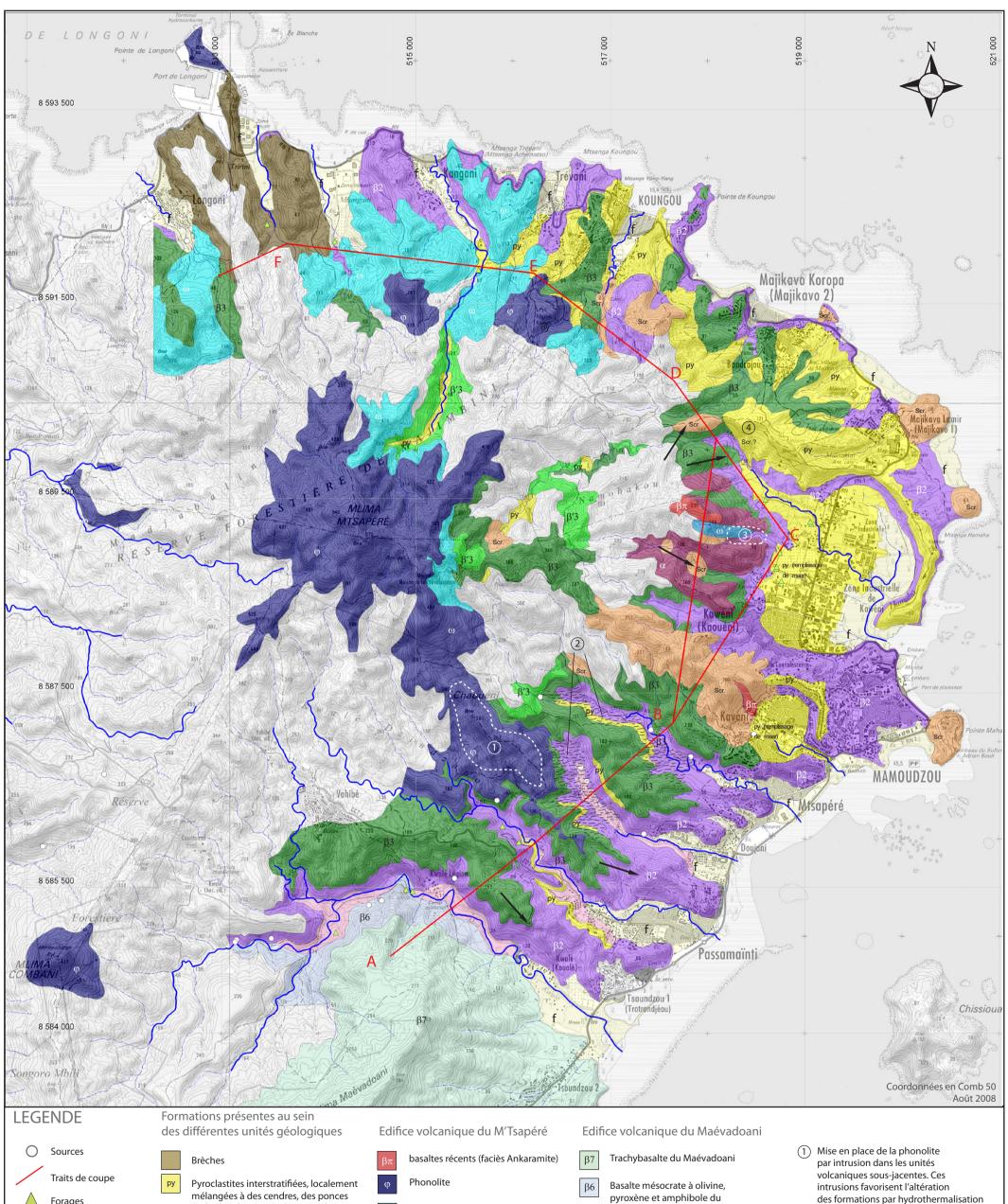
- Clinopyroxène 10% : automorphes
- Olivine 10% : automorphes et iddingsitisés
- Opaques 5%


Mésostase : microlites de plagioclase + opaques + olivine

Texture: porphyrique

Cristallisation de la matrice : - Vésiculation / Porosité : +

## Annexe 6


# Localisations géographiques des lames minces



## **Annexe 7**

# Carte lithologique interprétative du massif du M'Tsapéré

# Carte lithologique interprétative du massif du M'Tsapéré





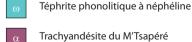
Sens des coulées

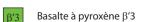
Formations récentes

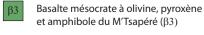
Formations alluvionnaires, plages et mangroves actuelles

et des brèches - remplissage volcano sédimentaire tardif (maar de Kawéni, etc)




Cendres et ponces





Cônes et projections scoriacées









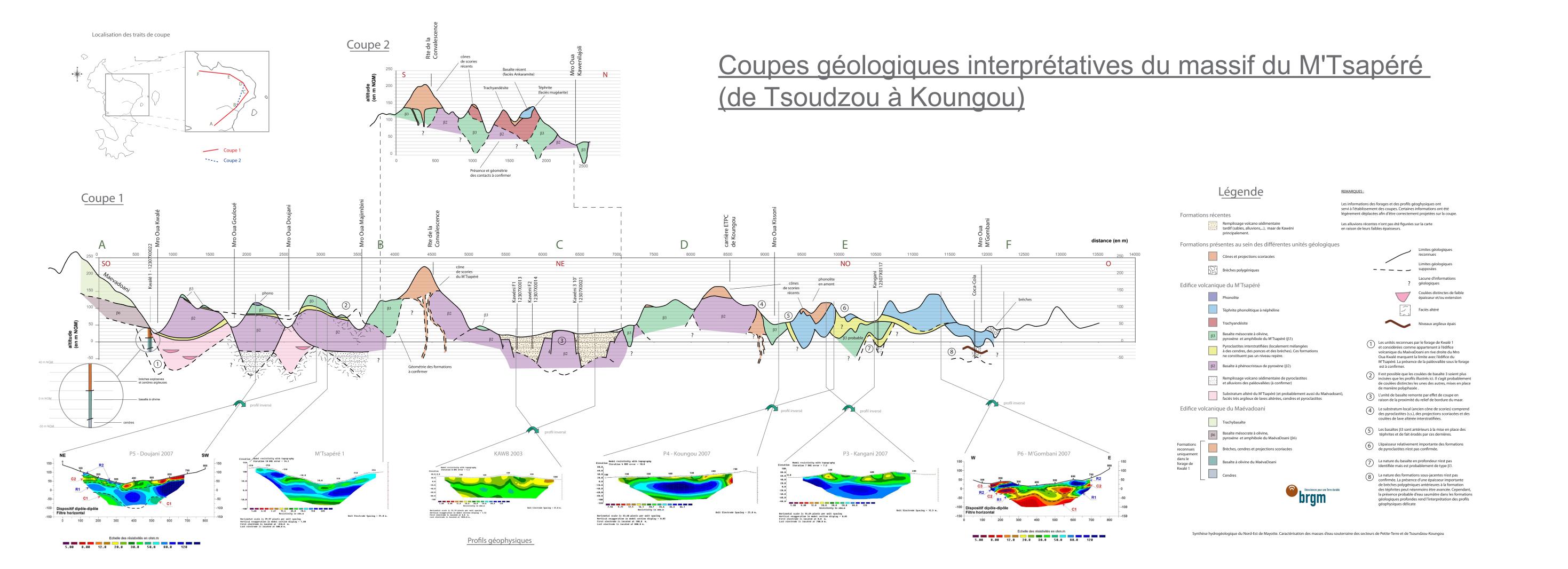


Basalte à phénocristaux de pyroxène du M'Tsapéré (β2)

Maévadoani (β6)



Substratum altéré (probablement commun à l'édifice volcanique du M'Tsapéré et du Maévadoani)


- des formations par hydrothermalisation
- 2 Les formations de fond de vallée sont très altérées (le substratum en particulier mais aussi les unités de β2 à l'affleurement, altération météorique)
- 3 Altération du fond de vallée par hydrother malisation
- les formations de pyroclastites sont melangées à des scories



 $Synth\`ese \ hydrog\'eologique \ du \ Nord-Est \ de \ Mayotte. \ Caract\'erisation \ des \ masses \ d'eau \ souterraine \ des \ secteurs \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ et \ de \ Tsoundzou-Koungou \ de \ Petite-Terre \ de \ Tsoundzou-Kou$ 

## **Annexe 8**

# Coupes géologiques interprétatives du massif du M'Tsapéré







Centre scientifique et technique 3, avenue Claude-Guillemin BP 6009 45060 – Orléans Cedex 2 – France Tél.: 02 38 64 34 34

Service géologique régional de Mayotte" 9, centre Amatoula, Z.I. de Kawéni BP 1398 97600 – Mamoudzou France

Tél. : 02 69 61 28 13