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R É S U M É

Les traçages en écoulement radial constituent une méthode économique
pour l'obtention sur le terrain des paramètres de migration des substances dans
les eaux souterraines, lorsqu'ils sont mis en oeuvre sur les sites de captage
équipés d'un piézomètre.

Leur interprétation pose cependant quelques difficultés car il n'exis-
te pas de solution analytique exacte pratiquement utilisable et qui permettrait
de calculer les courbes de restitution à des traçages par injection continue ou
instantanée en écoulement radial convergent (pompage dans le puits central avec
injection dans le piézomètre satellite) ou divergent (injection centrale).

Le présent article indique une méthode simple de calcul par différen-
ces finies affranchie de la dispersion numérique, phénomène parasite affectant
habituellement ces méthodes. Il est montré, par la prise en compte de concentra-
tions moyennes sur des cercles concentriques, que la dispersion physique trans-
versale est sans effet dans le schéma hydrodispersif pur sur les concentrations
mesurées dans le puits ' central (dans le cas du pompage central)".

Un programme, élaboré sur ce principe, a permis, grâce à un choix ap-
proprié de variables adimensionnelles, d'établir un abaque universel pour chacun
des deux types d'injection et d'écoulement.

Il est montré que, dans chaque cas, il existe une formule analytique
approchée représentative de la courbe de restitution tant que la vitesse de
l'écoulement est suffisante (nombre de Péclet > 3).

Des méthodes automatiques ou manuelles sont proposées pour appliquer
ces résultats à l'identification des paramètres porosité cinématique et disper-
sivité.

Enfin, plusieurs exemples d'identification manuelle à l'aide de ces
abaques sont donnés dans le cas de traçage en aquifère monocouche et même stra-
tifié en deux couches.

Ces travaux ont été réalisés dans le cadre des études méthodologiques
du département Hydrogéologie.
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1. - INTRODUCTION

Les eaux souterraines constituent une ressource de qualité généralement
supérieure à celle des eaux de surface grâce à la protection naturelle des cou-
ches de sol susjacentes et aux propriétés filtrantes des terrains. Cependant,
l'accroissement des causes de pollution (rejets d'usines, excès d'engrais ou de
pesticides, dépôts d'ordure, stockage souterrain de déchets, etc..) est tel
que l'enfouissement de l'eau dans le sous-sol n'est plus un gage suffisant de
pureté.

Après une période où 1'hydrogéologie était principalement vouée à
l'évaluation quantitative des ressources avec la création d'une méthodologie de
mesures (piézométrie, essais de débit, ...) et d'outils de synthèse (modèles
analogiques puis mathématiques), vient une époque où 1'hydrogéologue doit de
plus en plus fréquemment faire face aux problèmes pratiques posés par l'évolu-
tion de la qualité des eaux souterraines.

La migration des produits nocifs, matières organiques et sels dissous,
entraînés par l'eau en mouvement, est régie par la convection, la dispersion
(diffusion moléculaire et dispersion mécanique), par les échanges physiques
avec le milieu et les réactions chimiques et biologiques. Les deux premiers
phénomènes sont la cause du déplacement des produits dans les nappes ; les
suivants sont plutôt un gage de destruction, ou au moins de retard, mais leur
influence relative tend à s'atténuer avec l'accroissement des quantités de pol-
luants déversées dans les aquifères.

Il est donc important au premier chef de prévoir la migration des con-
taminants dans les nappes par convection et dispersion. Si la connaissance théo-
rique de ces phénomènes est bonne, avec l'existence d'outils de simulation opé-
rationnels, les données de terrain sont peu nombreuses, et il est temps de déve-
lopper et appliquer systématiquement une méthodologie de mesures sur le terrain
peu coûteuse et simple d'emploi.

La plupart des captages importants sont équipés de piézomètres satel-
lites mis en place pour la mesure des coefficients d'emmagasinement par essai
de débit. Ils constituent un dispositif préexistant pour la mesure de la vites-
se de transfert et de la dispersivité : ils permettent donc d'économiser le coût
des forages.

La mesure est réalisée par traçage en écoulement radial convergent
avec pompage dans le puits central et injection de traceur dans le piézomètre
périphérique, ou bien en écoulement radial divergent avec injection du fluide
moteur et du traceur dans le puits central et prélèvement pour mesures dans
le piézomètre. L'interprétation de la courbe de restitution doit permettre
d'identifier des paramètres intrinsèques de l'aquifère, c'est-à-dire encore
valables pour des débits ou des conditions aux limites différents. Le traça-
ge sera réalisé par injection de traceur à concentration constante, ou par
injection brève.



L'interprétation de ce type de traçage présente cependant une diffi-
culté car il n'existe pas de formule analytique exacte représentative des
transferts hydrodispersifs en écoulement radial. Il est donc nécessaire de
recourir à une intégration numérique des équations.

Le présent article montre entre autres comment il est possible
d'établir des abaques universels par voie numérique et de les exploiter pour
analyser les courbes de restitution obtenues par les deux procédés d'injection
de traceur (continue ou instantanée) dans les deux types d'écoulement radial
(convergent ou divergent).
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Rappelons brièvement les différents phénomènes régissant la migration
d'un soluté dans les eaux en mouvement (cf. Fried et Combarnous, 1971 - Sauty, 1975).

Convection : entraînement du polluant par le mouvement du fluide solvant.

Dispersion : en s'éloignant du lieu d'injection, la masse de soluté se dilue pour
occuper un volume croissant avec une concentration corrélativement décroissante.
Cet étalement de la courbe de concentration est dû :

. au déplacement des molécules sous l'effet de la diffusion moléculaire,

. à la dispersion cinématique : le temps de transfert d'une section à une autre est
variable suivant les particules car, à l'échelle microscopique, les vitesses
sont très fluctuantes et les trajectoires sont de longueur variable suivant
les grains qu'elles doivent contourner.

Echanges : des échanges de soluté peuvent prendre place entre le liquide et les
grains solides du milieu poreux sous l'effet des différences de concentration
(adsorption, suivie de désorption en cas de réversibilité).

Des particules peuvent aussi être échangées entre l'eau en mouvement
qui occupe un volume uV du volume total V (avec co porosité cinématique) et l'eau
immobile qui occupe un volume (<f> - io)V (avec <|> porosité totale).

Réactions chimiques, minérales, organiques : Le milieu aquifère et les micro-orga-
nismes peuvent réagir sur les produits en solution. Il s'agit de phénomènes com-
plexes dont la cinématique varie considérablement en fonction des constituants.

L'équation classique (cf. Bear,1972) basée sur la loi de Fick ¿t la loi
de conservation de la masse de soluté, est :

(1) ^r = div (D grad C) - V . grad C - E
dt

qui exprime le bilan du soluté dont les fluctuations de concentration sont dues
à la dispersion (premier terme du second membre) à la convection (deuxième terme)
et aux échanges (terme E ) .

Le but des traçages interprétés ici étant d'identifier les paramètres
de convection et de dispersion, on s'arrangera pour que les échanges soient fai-
bles (E = 0) grâce à un traceur aussi parfait que possible. La diffusion molécu-
laire restera faible devant la dispersion cinématique, avec des vitesses telles
que l'on se trouve dans la zone IV des courbes expérimentales de Pfannkuch (1953)
(hypothèse usuelle de dispersion proportionnelle à la vitesse d'écoulement : hypo-
thèse de dispersivité géométrique de Scheidegger (I960). Le terme de dispersion
fonction du vecteur vitesse effective V, s'écrit alors :

(2) a
L u u

D = 0 a? 0
0 0 o T

avec aL dispersivité longitudinale et a_, dispersivité transversale.



PARAMETRES^INTRINS^QUES
Porosité cinématique
Dans une section AS du milieu aquifère saturé en eau, la portion (1-<|>)AS

est occupée par la matrice solide ; mais, sur la portion restante <f>AS, seule la
section d'aire uAS est traversée par de l'eau en mouvement : co, porosité cinémati-
que < <f>9 porosité totale.

En effet, certains pores en cul de sac (théorie de Coats) contiennent de
l'eau immobile ; d'autre part, au voisinage immédiat des grains, une pellicule d'eau
immobile, ou du moins fortement visqueuse, peut réduire considérablement la valeur
de u dans les sols à texture fine.

La porosité cinématique w est donc le rapport entre section totale et la
section traversée par de l'eau en mouvement ; par voie de conséquence, c'est aussi
le quotient de la vitesse apparente de Darcy rapportée à la section totale par la
vitesse effective de pore.

En première approximation, la porosité cinématique u est indépendante de
la vitesse.

Dispersivité
Les coefficients CUL et cx-p de l'équation (2) varient peu avec la vitesse

dans la plage des nombres de Reynolds correspondant aux écoulements habituels des
nappes superficielles.

Nombre de Péclet
C'est un nombre adimensionnel qui caractérise l'importance relative des

transferts par convection par rapport aux transferts par dispersion : on le désigne-
ra par la lettre P. Par définition, P = ——

u est la vitesse de pore,
D est le coefficient de dispersion longitudinale. Dans l'hypothèse retenue de pro-
portionnalité à la vitesse, D = aĵ u = au

d est une dimension caractéristique. On prendra ici d=r, distance entre le piézo-
mètre satellite et l'axe du puits central.

Donc, P = • = —, distance réduite.

Sur une trentaine de mesures effectuées avec des traceurs parfaits, sur
des distances allant de la dizaine de mètres à plusieurs centaines, le nombre de
Péclet a toujours été identifié entre 1 et 100, avec une fréquence maximale au
voisinage des valeurs 10 à 20.

?L.ëi. •' Originellement, le nombre de Pêalet a été défini pour l'étude des transferts
de chaleur : la variable D représente alors la diffusivité thermique (rapport
oonductivité/capacité calorifique). Son utilisation a été étendue aux trans-
ferts par diffusion moléculaire3 puis aux transferts par dispersion en milieux
poreux : D est le coefficient de dispersion et d une longueur caractéristique
du milieu (par exemple3 taille des grains ou diamètre moyen des pores).
Le nombre P défini dans la présente étude est une extension de cette notion.
Il caractérise la nappe munie de son dispositif d'observation (D est lié à
l'aquifère3 u à la vitesse de la nappe et d la distance de mesure).

Paramètres intrinsèques
Les coefficients a et u sont alors des paramètres intrinsèques qu'il est

possible de mesurer dans certaines conditions d'écoulement de la nappe (notamment
écoulement radial vers un forage en exploitation), et dont il est possible de con-
server les valeurs pour prédire le comportement hydrodispersif d'un soluté dans
d'autres conditions d'écoulement.



Il faut toutefois avoir présent à l'esprit, que le coefficient a rend•
compte des hétérogénéités et que sa valeur moyenne croît également avec, la dis-
tance sur laquelle il est mesuré puisque l'on intègre alors des hétérogénéités
à des échelles croissantes.

Si l'on désire s'assurer de la précision obtenue sur les paramètres
a et u>, il convient de réaliser des mesures à des distances et des débits va-
riables.

Par ailleurs, le traceur retenu doit être aussi "parfait" que possible,
c'est-à-dire peu sujet aux échanges et réactions chimiques. L'étude réalisée en
1975-1976 par le BRGM*et le CENG* a permis de mettre en évidence des pro-
duits plus facilement utilisables que d'autres réputés parfaits, tout en donnant
des courbes de réponse comparables (Gaillard et al., 1976).

EQUATIOMJ)ANS_ i,
Dans le cas de l'écoulement radial vers un puits dans une nappe de

puissance constante et de perméabilité statistiquement homogène, l'équation (1)
devient :

,,Ï 3C 9C i i 9Í 9Cl lu] afotf 3C

Quand l'écoulement est radial divergent (injection dans le puits central),
toutes les conditions étant symétriques, la concentration est indépendante de 6
et le troisième terme du second membre tombe.

Quand l'écoulement est radial convergent (pompage constant dans le puits
central et injection dans, le piézomètre satellite d'une quantité de traceur suffi-,
samment faible pour ne pas détruire la symétrie axiale de l'écoulement, le traceur
va se disperser latéralement, mais les particules de traceur passées dans un tube
voisin vont se trouver entraînées vers le pu.its d'éxhaure dans les mêmes conditions:
la dispersion transversale n'apporte pas de retard à la date d'arrivée au puits cen-
tral. Ce fait peut être facilement mis en évidence sur l'équation (3) à l'aide du
changement de variable :'•?-, , 1 ¡2i\ n. . . J O

C(r,t) - 2^T C(r,6,t) d6

qui représente la concentration moyenne à la distance r du puits. A la distance r-
du centre^correspondant à la position du piézomètre d'injection,cette concentration
est donnée par le rapport du flux massique injecté au débit total pompé.

217

Si l'on fait agir l'opérateur X = •?— f . d6 sur les différents ter-
mes de l'équation (3), on constate que : ^o

jJÇ _ _3£
' 3t " 3t '_

3C 3C

Y 3 3C| _ 3 3C
X* "5? [aL "37) " "§r ° L "§r '
en vertu de la règle de Leibniz, ou dérivation sous le signe somme —

D'autre part, " :'

r 96 r 36
1 3 aT 3C •_ 1 3 ctf 3C

0
36 r 96

• ^ • de

* BRGM : Bureau de Recherches Géologiques et Minières
CENG : Centre d'Etudes Nucléaires de Grenoble



Or, C est une fonction non multiforme de 6 ; c'est-à-dire C(6) = C(8+2TT)

De même, — 22LH- _ , de n'est pas multiforme.
I de l r do i

• » •

Dans ces conditions, l'équation (3) s'écrit :

3t 3r '"3

ou encore, en écoulement radial, avec otT uniforme :

avec :

Q = débit du puits central (> 0 s'il est injecté : écoulement divergent,

< 0 en pompage : écoulement convergent)

h = épaisseur aquifere

co = porosité cinématique

a dispersivité longitudinale.

N.B. r L'utilisation de la fonction ~C est aussi valable en écoulement divergent : -
les conditions-aux limites étant symétriques t Ç(rx&) = C ¥&.

N.B. : Le fait que la dispersion trav.srrey¡fíále disparaisse lorsque l'on considère la
courbe de restitution dans l'eau prélevée dans le puits central ne doit pas
surprendre. On a recours au même raisonnement lorsqu'on-injecte le traceur
sur une portion seulement de l'épaisseur aquifere3 et que l'on considère
ensuite la concentration moyenne obtenue en rapportant la masse injectée
au débit total circulant dans l'aquifere.

ANALYTIQUE
L'intégration analytique a été développée pour la migration d'un traceur

injecté de façon continue sous concentration constante dans un écoulement diver-
gent. Ogata (1958) en donne la solution exacte , mais son expression néces-
site l'intégration d'une fraction rationnelle de fonctions de Bessel de première
et deuxième espèce. Le calcul numérique de cette fonction est extrêmement complexe
et la méthode de résolution doit être recherchée ailleurs.

Raimondi et al. (1959) en donnent la solution approchée suivante :

C . 1 _ .. r2/2 - r 2/2

co 2 - yïï -~r



Lau et al. (1959) présentent une autre solution approchée :

c - 1 Erfc r - 7
E r f c nr-=

v1avec r_ rayon du front convectif pur à l'instant t
r = /2^Â7

et A " 2Íh^

Ces solutions ne sont qu'approchées et ne traitent qu'un seul des cas
qui nous intéressent. Elles seront d'ailleurs vues plus en détail au paragraphe 4.

Pour résoudre le problème de l'écoulement convergent ou de l'injection
instantanée, le recours à une voie numérique est apparu nécessaire.

_LES METHOVESJ1SUELLES_
A l'intégration des transferts en écoulement radial,

les trois méthodes principales : différences finies, caractéristiques,
Galerkine.

Différences finies

La méthode la plus simple consiste à discrétiser le temps en pas At
constants et l'axe des rayons en pas Ar constants. Cette méthode, utilisée dès
1958 par Ogata, puis en 1965 par Hoopes et Harleman, pose des problèmes de
convergence, de stabilité, et introduit un terme parasite de dispersion numéri-
que. Des schémas plus complexes permettent d'atténuer ces difficultés: Stone
et Brian (1963) ; Shamir et Harleman (1966), sans toutefois les éliminer tota-
lement, et ce notamment aux faibles dispersivités, car la réduction de la dis-
persion numérique introduit des oscillations.

Méthode des caractéristiques

Cette méthode, mise en oeuvre par Gardner, Peaceman et Pozzi (1964)
puis par Pinder et Cooper (1970) et par Konikow et Bredehoeft (1974) a été
reprise par Oakes et Edworthy (1976) pour l'écoulement radial.

Au sein d'un maillage établi pour les différences finies, on répartit
un certain nombre de particules dans chaque cellule ("particles in cell method"),
Les échanges par dispersion et diffusion sont calculés par différences finies
entre les cellules. Par contre, les échanges par convection sont calculés en
laissant chaque particule se déplacer sur sa ligne de courant. A l'issue de
chaque pas de temps, on affecte aux cellules la concentration résultant de la
moyenne des concentrations des particules qu'elles contiennent. Cette méthode
élimine la dispersion numérique à condition de prendre un grand sombre de par-
ticules. Elle conduit alors à des temps importants de passage sur ordinateur,
auxquels s'ajoute .la complexité de conception et de réalisation du programme.



Méthode de Galerkin

Les méthodes variationnelles, appliquées dès 1968 aux transferts de mas-
se par Price et al., puis principalement par Pinder (1973), consistent (cf. Neuman
et Witherspoon (1273)) à remplacer les équations aux dérivées partielles par
deux systèmes d'équations intégrales approchées. Les fonctions potentiel hydrau-
lique et concentration sont alors décomposées sur un système de fonctions
orthogonales relatives à chaque élément qui résulte de la discrétisation du
domaine. Ces fonctions sont déterminées par la géométrie des éléments, le
degré de précision désiré et les conditions aux limites. Les éléments couram- •
ment utilisés sont triangulaires (Pickens et Lennox, 1976) ou des quadrilatères ..
curvilignes dits éléments isoparamétriques (Pinder, 1973 ; Segol et al., 1975)'.

Mais, là aussi, la méthode est complexe, et on a des difficultés à
éliminer la dispersion numérique sans créer d'instabilité, quand le coefficient
de dispersion devient faible.

Conclusions sur ces méthodes

Les~deux dernières méthodes citées fournissent des résultats satisfaisants
quand le nombre-de Péclet n'est pas trop élevé, mais au prix d'une programmation
complexe et d'un code généré volumineux.

L'analyse de la dispersion numérique dans le cas d'une formulation par
différences finies montre la voie d'une méthode de résolution simple et parfai-
tement adaptée aux simulations prenant en compte les valeurs de dispersivité
usuellement rencontrées dans les aquifères superficiels.

kJLLE?lä. WUMERI£IE
La discrétisation de l'équation (4) par différences finies à pas d'espace

Ar et de temps At constants s'écrit :

j n «\*\ ¿ji - 2 Sj + C 1 + 1 A (1-X)

At r Ar2 r Ar

avec :

C.n = C(iAr, nAt)

\ = (1-6!) C. n
+ 6l C.

n+1

ô\ = (i-e2) c±
n + e2 ev

n+1 --•- "

6j = coefficient de pondération implicite-explicite pour le terme dispersif
Os &i $.1

62 ••-«--coefficient de pondération implicite-explicite-pour le terme-convëctif
0 $ S2 i l - •

X = coefficient de pondération amont-aval pour le terme convëctif
0 í À í 1



Si l'on développe les divers C. en séries de Taylor limitées au second
ordre, puis si l'on remplace les dérivées secondes par rapport à t en dérivées par
rapport à r (selon les méthodes de Lantz (1971) on fait apparaitre, pour les nom-
bres de Pécl^t suffisamment élevés, le terme suivant en facteur de â £ :

A f ,.. .. Ar A At] 92C

txA
A la dispersion physique — , s'ajoute donc un terme parasite :

Par ailleurs, un autre terme parasite apparait en dérivée croisée :

On peut en tirer la stratégie suivante :

-a- 0! n'intervient pas dans ces termes parasites. On peut retenir la valeur 6j = 1
pour répondre à des critères de stabilité : le terme dispersif est alors
implicite.

-b- Pour supprimer le facteur de „ _ , on choisit 62 = 0 ; donc terme convectif
explicite.

-c- Pour éliminer la première partie de la.dispersion parasite, on pourrait
choisir A = ¿, mais le second terme -~—••.-=— ne pourrait être éludé.

2 r '

-d- Par contre, si l'on choisit un découpage tel que At = — Ar, les deux
termes se détruisent.

-e- Pour permettre un pas de temps At aussi grand que possible, on a retenu X = 1
d'où At = — r —

A
-f- Le pas de temps est imposé par le maillage spatial.
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(5)

£ISCRETI5ATIÖW_RETENUE
Le découpage spatial n'est plus uniforme :

. AtAr = A —

On définit N mail-
les indicées par i, avec :

Q
i=l : maille centrée sur la

périphérie du puits cen-
tral de rayon r-,=r .

-i- m m
i=N : maille centrée sur le

piézomètre satellite
à la distance ru=rinax
de l'axe du puits
central

La condition (5)
peut s'écrire :

Figur<Tl

r. -, . i + 2 A At
i-vr.

2

On prend la même loi
de découpage pour les centres
des mailles :

+ 2 A At

En faisant jouer la formule de récurrence sur les N-l intervalles
séparant les N mailles :

max m m
+ 2 (N-l)A At

N.B. Avec ce découpage, dans le cas de la convection pure (absence de
dispersion)s chaque maille est exactement remplie au cours d'un
pas de temps par le contenu de la maille située immédiatement en
amont ; en effett le volume d'eau contenu dans une maille est :

f 1
V = iruhlr? i - r2. i
V = 2irwh r Ar : j r ir

et d'après (5)
V = Q At

Ceci explique alors Vélimination de la dispersion numérique due
au remplissage partiel de certaines mailles.
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VES CALCULS
La discrétisation, choisie p i un calcul exact du terme de convection,

conduit à utiliser des mailles de plus en plus étroites vers la périphérie. On
peut s'attendre à des difficultés en provenance de l'intégration au terme dis-
persif.

Il est difficile de définir un critère de convergence, c'est pour-
quoi on se réferre au pas de temps de stabilité de la méthode explicite :

Ar2 r Ar2

Ä t $ 2D = 2 et A

D'après (5), ceci peut être réécrit :

^>. 2
a

Ce critère laisse prévoir des difficultés de convergence aux faibles
nombres de Péclet (forte dispersivité), d'abord pour les mailles périphériques
(plus faible Ar), et ce d'autant plus qu'on utilise un grand nombre de mailles
car bien sûr Ar décroît corrélativement. Toutefois, la précision a été vérifiée
empiriquement en faisant varier la dimension des pas d'espace et de temps, et
elle s'est trouvé satisfaisante tant que P 5 1 (ce qui est le cas dans la pratique).

Contrairement aux méthodes classiques précédemment citées, cette mé-
thode conduit à une simulation d'autant meilleure que le nombre de Péclet est
élevé. Pour les valeurs de ce nombre les plus usuellement rencontrées dans les
nappes (ordre de 10 à 100), les résultats sont excellents.

PR£GRAMMATIOM £TC£NTR£LE VES
Un programme a donc été bâti autour de la méthode décrite ci-dessus

et que l'on pourrait appeler méthode des différences finies synchrones puisque
le découpage de l'espace est choisi pour s'adapter exactement au déplacement
convectif d'un front non dispersif.

Avec cette méthode, les centres des mailles sont répartis suivant une
loi en ^ ; le terme dispersif est implicite, le terme convectif est explicite et
spatialement centré à l'amont.

Le programme RAMSES (simulation RAdiale de la Migration d'un Soluté
dans les Eaux Souterraines) permet de simuler les écoulements radiaux conver-
gent ou divergent, avec une loi quelconque d'injection d'un soluté à l'amont.

Il a été utilisé pour dresser des abaques de réponse à des injections
continues ou ponctuelles dans le temps, pour les deux sens d'écoulement. Aupa-
ravant, le programme a été testé par quelques calculs simples.
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Transfert d'un créneau

La figure 2 présente le transfert d'un créneau avec et sans dispersion.
Dans le second cas, on constate l'absence de toute dispersion parasite.

fl».t

PROCRAIWE RAfISES > TEST NO 1 «CRENEAIMION DISPERSE <ALFA=O>«DISPERSE <ALFA=1>«

Variation du nombre de mailles

Cinq simulations ont été réalisées successivement avec les mêmes para
mètres physiques, mais en prenant des découpages différents : 64, 32, 16, 8 et 4
mailles (figure 3). Les résultats pour 32 et 64 mailles sont quasimenx confon-
dus. Avec 4 mailles seulement, les résultats sont encore "extrêmement bons.

f(»9

RATISES....PRECISION DES RESULTATS EN FONCTION DU NOMBRE DE riAILLES(64,32,16,B,¿>
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Comparaison aux solutions approchées de Raimondi et de Lau

Quelques tests ont montré l'excellente concordance avec ces solutions
analytiques approchées dans leur domaine d'application. Une étude systématique
(figures 5 et 6) en donne une vue synthétique.

4. -

On verra que, moyennant le choix de variables adimensionnelles conve
nables, il est possible d'établir un abaque universel donnant la courbe de res
titution au point de prélèvement pour des conditions simples d'injection du
traceur. Quatre abaques ont pu être tracés qui correspondent à la combinaison
des deux types d'écoulement (convergent et divergent) et des deux méthodes
classiques d'introduction du traceur (continue et impulsion).

Il est montré que, malgré l'absence de solution analytique exacte,
on peut mettre en évidence des formules analytiques approchées qui, dans cha-
cun des quatre cas, restituent les courbes avec une bonne précision tant que
le nombre de Péclet reste suffisamment élevé.

CHOIX VES_ .FRIABLES AVIMENSJONMELLES
L'examen de l'équation différentielle (4) met en évidence la dépen-

dance de la concentration C vis-à-vis des deux variables indépendantes r et
t, et des trois paramètres a, A et e (ainsi que des conditions aux limites
notées C L ) Q

C = C(r,t,ot,A,e,CL) avec
' ' ' ' ' u

= sgn(Q) e = tl : divergent
e = -1 : convergent

= concentration sur la limite amont

Distance réduite

On choisit rR = — où a, coefficient de dispersivité, a la dimension
d'une longueur.

Temps réduit

La durée de référence a été prise égale au temps tp de transfert du
point d'injection à la distance r considérée, par convection pure :

to irr2h _ r^_
tC Q 2A

D'où l'expression du temps réduit :
_ t_ 2 At

t R - tc - -grz-

Equation aux variables réduites

Le remplacement dans (4) de r et de t en fonction de r R et t R conduit
à l'équation aux dérivées partielles suivante :
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Donc :
^ C = C(rR,tR,e,CL)

Seul subsiste le paramètre e qui caractérise le sens de l'écoulement,
ainsi, bien sûr, que les conditions d'injection.

-lËi. • Traditionnellement, (Ogata* EavmorvH* Lau ...)3 le temps réduit tß
est remplacé 'par la variable ç :

Ç = 2 Trhu a* = O.2 = 2 XR ^

Ce choix conduit à une équation aux variables réduites plus simple
que (6) et plus propre à Vintégration analytique. Elle a cependant
l'inconvénient de recourir à une échelle de temps qui dépend à la
fois de a) et de a. Les abaques que l'on obtiendrait de cette façon
seraient impropres à un ajustement manuel des paramètres. D'autre
party le temps réduit t^ a une signification analogue à celui que
l'on utilise dans les modèles "linéaires : —t.

x

Courbe de restitution
Lorsqu'on s'intéresse aux courbes de restitution, la position spatiale

du point de prélèvement est fixée, et le rayon à prendre en compte est r ,
distance entre points d'injection et d'observation.

r
Donc, rR =

 m X devient paramètre, et la seule variable indépendante
est tR.

Nombre de Péclet
r u r

La distance réduite rR =
 m a- = —=p^*- est alors le nombre de Péclet P

défini au paragraphe 2.

Concentration réduite

L'amplitude des courbes est déterminée :

- par la concentration imposée en amont dans le cas d'une injection continue,
- par la masse injectée instantanément dans le cas d'une impulsion brève (pic de

Dirac).
Dans le premier cas, le recours à la concentration réduite

CR = — = s'impose.

Dans le second cas, on pourrait normer les courbes de telle sorte que
leur aire soit unitaire (réponse impulsionnelle) :

C(t)dt
o
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* Cependant, l'utilisation de cette norme est mal commode pour l'em-

en effet q U S S' S t P S U t r e n d r e d i f f i^le l'interprétation de la courbe ;

- il faut alors commencer par planiméxrer la courbe expérimentale avant de la
tracer en coordonnées réduites. En effet, la masse restituée est toujours

de 1 aire calculée est fortement influencée par la queue de la
courbe que l'on ne peut mesurer que partiellement (coût d'une longue mani-
pulation) et qui généralement reflète des phénomènes tout autres L la
dispersion (échanges notamment). aurres que la

la dis ersïvitéOœ>b^S ^ ^ n ° ™ é e S Permettront donc difficilement d'identifier

nu la norme de l'amplitude du maximum observé • 1 O n' ^ * a U S S 1 r e t e~

C = c

max

PRESENTATION VES ABAQUES

rt.in ¿ v , ^ a ! t é t r a c é p o u r c h a c u n d e s quatre cas cités avec injection
d un echelon ou d'un pic de Dirac, dans un écoulement convergent ou divergea

f ( 1 p n , , L'évolution de la concentration réduite en fonction du temps réduit

300, lOo/â^ltT^TT* POUr dÍfférenteS Valeurs du n o m^ te Péclet : 1000,

LNlE£Tl°E ¡M_ECOüLEIÁB¡l VI VERGEHT

constants
i n^ e c t i o n à d é b it et concentration
^ ^ * dis-

fig . 4

R WISES ABAQUE POUR UNE INJECTION CONTINUE DANS UN ECOULEMENT DIVERGENT
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Comparaison à la solution approchée de Raimondi

Cette solution, publiée par Raimondi et al, ÍL959) et citée au para-
graphe 2, peut être transcrite en variables réduites sous la forme :

(7) CR = 0,5 Erfc
R

L'approximation de Raimondi (Bear, 1972) obtenue,en négligeant l'in-
fluence de la dispersion en un point comparée à l'effet cumulé de celle qu'il
a subie auparavant n'est valable que pour les nombres de Péclet élevés.

DISPERSION EN ECOULEMENT RADIAL

1,0

0,5

Raimondi

Programme Romset

Fig. 5 - Injection continue en écoulement divergent
( Approximation de Raimondi)

Les différences entre les courbes de restitution calculées par la
solution de Raimondi et l'abaque de la figure 4 sont mises en évidence sur
la figure 5 pour des nombres de Péclet de 1 à 1000.

On remarquera que les courbes de Raimondi passent toutes par le
point central CR = 0,5 pour tR = 1.

L'erreur très faible pour P i 100 est encore tolerable pour P = 30,
mais devient très forte quand P < 10.
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Comparaison à la solution approchée de Lau

Cette solution, publiée par Lau et al. (1959) et citée au paragraphe 2,
peut être transcrite en variables réduites sous la forme :

'/3P 1 - V£R1
0>25J.(8) = 0,5 Erfc

tR

Cette approximation obtenue (Bear 1972)en supposant que le traceur a
une distribution normale, somme de deux effets indépendants et linéairement ad-
ditifs (dispersion longitudinale et divergence des lignes de courant), n'est
valable que pour les nombres de Péclet élevés.

DISPERSION EN -ECOULEMENT RADIAL

0,5 1,0 1,5 2,0

Fig.6 - Injection continue en écoulement iivergent
( approximation de Lau)

£.5

Les différences entre les courbes de restitution calculées par la
solution de Lau et l'abaque de la figure 4 sont mises en évidence sur la fi-
gure 6 pour des nombres de Péclet de 1 à 1000.

On remarque que là aussi toutes les courbes passent par le point
central C^ = 0,5 pour t~ = 1.

De. même que pour la solution de Raimondi , l'erreur faible pour
P >, 100 n'est plus acceptable pour P < 10.
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La solution de Lau conduit à des écarts légèrement plus accentués
pour tR < 1.

Par contre, aux valeurs de tR > 1, la solution de Lau est meilleure
que celle de Raimondi.

1U1EÇ.T1P!1 £ONTINUEJPAMS W_EC0ULB€NT CONVERGENT
Le puits central est le siège d'un pompage à débit constant. Le traceur

est injecté à débit massique constant dans le piézomètre satellite avec une sur-
charge suffisamment faible pour ne pas perturber la symétrie radiale de l'écoule-
ment.

La figure 7 présente les courbes de restitution au puits central
pour des injections à différentes distances réduites —.

Kf.T

RAflSES • ABAQUE POUR UNE INJECTION CONTINUE OANS UN ECOULEdENT CONVERGENT
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Comparaison entre échelons en écoulement convergent et divergent

La figure 8 met en évidence les écarts entre les courbes de réponse
à une injection continue en écoulement divergent d'une part, et en écoulement
convergent d'autre part pour des nombres de Péclet de 1000 à 10. Les écarts
ne sont pas donnés pour P = 3 et 1 car leur amplitude devient telle que les
zones se recouvrent.

DISPERSION EN ECOULEMENT RADIAL

0,5 t,o 1,5 2.0

Fig. 8 - Injection continue en écoulements convergent et divergent

2,5
*R

On constate que la montée en concentration est systématiquement plus
rapide en écoulement convergent qu'en écoulement divergent. En particulier,
pour t R = 1, \C R > 0,5 en écoulement convergent

îCR < 0,5 en écoulement divergent.

Si les courbes sont confondues pour P 5 300, elles sont nettement
démarquées pour des valeurs inférieures.

Comparaison entre échelon convergent et monodimensionnel uniforme

Les écarts entre la restitution d'une injection continue en écoulement
radial convergent et en écoulement monodimensionnel uniforme (champ de vitesse
uniforme et absence de dispersion transversa]e) sont mis en évidence par la
figure 9.

La courbe de restitution a pour équation dans ce dernier cas (Ogata
et Banks ,--̂tâ 61). :

(9) C R = 0,5 Erfc -Ü-: exp(P) . Erfc
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DISPERSION EN ECOULEMENT RADIAL

1,0

0,5

Convergent

Monodimemionnel

Fig.9 - Injection continue en écoulement convergent comporoison
ovec écoulement monodimensionnel

On observe une très bonne concordance tant que P 5 3. L'équation (9)
donne une meilleure approximation de la réponse à l'échelon en écoulement con-
vergent que les équations (7) Raimondi et (8) Lau pour le cas divergent.

Le puits central est le siège d'une injection à débit constant. A l'ins-
tant t = 0, on y introduit une masse m de traceur, solubilisé dans l'eau d'in-
jection. La durée d'introduction du traceur doit être brève comparée au temps
de transit de la substance jusqu'au piézomètre de prélèvement. Cette condition
initiale d'injection instantanée peut alors être représentée par une fonction
de Dirac.

L'abaque de la figure 10 fournit les courbes de restitution à diffé-
rentes distances réduites — du puits central.

Pour les raisons exposées précédemment (concentrations réduites), les
courbes sont normées par l'amplitude du pic.

04

t*

II g 10

RAÍ1SES ai ABAQUE POUR UNE INJECTION INSTANTANEE OANS UN ECOULEnENT DIVERGENT
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Comparaison entre Dirax divergent et monodimensionnel uniforme

Les écarts entre les restitutions d'une injection instantanée en
écoulement radial divergent et en écoulement monodimensionnel uniforme sont
mis en évidence par la figure 11.

La courbe de restitution a pour équation dans ce dernier cas :

(10)

avec :
K = /t_ . . exp

Rmax
Rmax

DISPERSION EN ECOULEMENT RADIAL
C R

1,0

0,5

— — — Divergent

Monodimensionnel

0,5

Fig. 11 - Impulsion breve en écoulement divergent comparoison ovec
écoulement monodimensionnel

On observe une excellente concordance tant que P > 1.
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IMPULSION K£ULEME^rC£NJ/ER6EWr
Le puits central est soumis à un pompage continu à débit constant.

On introduit une masse m de traceur dans le piézomètre satellite. Cette masse passe
rapidement dans l'écoulement qui ne doit pas être sensiblement perturbé par la
surcharge nécessaire à l'injection du traceur.

La figure 12 présente les courbes de restitution au puits central
pour des injections à différentes distances réduites —.

t.3

lit 12

RAflSES ABAQUE POUR UNE INJECTION INSTANTANEE DANS UN ECOULEnENT CONVERGENT

Comparaison entre Dirac divergent et convergent

La figure 13 indique les écarts entre les courbes de restitution à
une impulsion brève obtenues dans les deux types d'écoulement : divergent et
convergent.
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DISPERSION EN ECOULEMENT RADIAL

0,5 1,0 1.5 2,0

Fig. 13 - Impulsion brève en écoulements convergent et divergent

2,5

On observe une quasi-identité des courbes pour P > 100. Pour P s 1009

les différences deviennent très importantes.

Dans tous les cas, les courbes de restitution en écoulement convergent
montent plus tôt qu'en divergent, avec un pic décalé en avant dans le temps.

Comparaison entre Dirac convergent et dérivée de la réponse à un échelon
en écoulement monodimensionnel uniforme

Les écarts entre la courbe de restitution à une injection brève en
écoulement radial convergent et la dérivée de la réponse à une injection continue
dans un écoulement monodimensionnel à vitesse uniforme sont rapportés figure 14.

La courbe de restitution s'obtient par dérivation de l'équation (9)
par rapport à to :

•K

(11)

avec :

K'
C-, = exD
K * 1»5

LR

K' =

- — (l-tR)2
HtR

Rmax

Une formulation équivalente a été proposée par. Lenda et Zuber (1970Tï



N.B. Il est courant de confondre dérivée de la réponse à l'échelon et réponse
a une impulsion de Dirac, parce que l'impulsion de Dirac est la dérivée
de I echelon unité. Or, les deux fonctions (10) et (11) ne correspondent
pas aux mêmes conditions aux limites. Tour (10), il s'agit de la migra-
tion d une masse constante de traceur, alors que pour l'équation (11)
qui constitue le cas limite d'un créneau de surface donnée, dont l'écar-
tement tendrait vers zéro, une concentration nulle est imposée en x = 0
des que tR > 0, et la masse n'est plus conservatrice.

DISPERSION EN ECOULEMENT RADIAL

Dérivée échelon monodimenslonnel

Fig. 14 - Impulsion brève en écoulement convergent comparaison ovec la dérivée
de la réponse ö l'échelon en écoulement monodimensionnel

On observe une très bonne concordance tant que P > 3.

CONCLUS}OW_COWÇERWAMT LES £ORMULES_APPR0CHEES
Dans les quatre cas étudiés, il a été montré que des formules analyti-

ques # pouvaient fournir une solution approchée à condition que le nombre de Péclet
P soit suffisamment élevé. Les résultats sont synthétisés par la table II.

La figure 15 permet la comparaison des réponses à une inroulsion dans
les deux types d'écoulement et leurs solutions approchées, pour un nombre de
Peclet égal à dix.

DISPERSION EN ECOULEMENT " RADÏAL

Fig. 15 - Comparoison entre écoulements divergent , convergent
Diroc monodimensionnel e1 dérivée de l'échelon monodimensionnel
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5. - INTERPRETATION_DES_COURBES_DE_RESTITUTION

L'interprétation des courbes de restitution dans l'hypothèse d'un
schéma convectif-dispersif (ou encore Piston-Diffusion) consiste à ajuster les
paramètres m, porosité cinématique et a, dispersivité, de façon à ce que la
courbe théorique correspondante soit aussi voisine que possible de la courbe
observée.

Les abaques ont été construits dans l'hypothèse d'un transfert pure-
ment hydrodispersif dans un aquifère homogène. En réalité, les courbes de res-
titution mesurées présentent une traînée ou queue plus ou moins accentuée
(cf. figures 17 à 25) ; celle-ci peut être due aux phénomènes suivants :

- Echanges par adsorption-désorption avec la phase solide et réactions chimi-
ques. Ces phénomènes peuvent être pratiquement éliminés par le choix d'un
bon traceur (Gaillard et al., 1976 - Molinari et al., 1977).

- Echanges entre l'eau en mouvement et une phase d'eau immobile (Gaudet et
Vachaud, 1977). L'effet de cette phase immobile est semblable à celui d'une
mince couche parallèle dont la vitesse d'écoulement serait quasiment nulle
(Brissaud et al., 1976).

- Aquifère de structure multistrate : si les échanges entre les différentes
couches restent faibles, chacune conduit à une courbe de restitution de type
piston-diffusion. La courbe observée dans l'ouvrage de prélèvement en cons-
titue une combinaison fonction du flux capté dans chacune des couches.

Si les vitesses des différentes couches sont suffisamment différen-
ciées, la première partie de la courbe (montée, pic et éventuellement début de
descente) permet d'identifier les paramètres de la strate la plus rapide.

Le reliquat non expliqué par cette première interprétation pourra
être interprété comme provenant de couches à vitesse moins rapide, véhiculant
une fraction de l'écoulement radial très variable suivant les cas. L'exemple
n° 1 met en évidence une structure bicouche bien caractérisée.

Effets de l'écoulement régional

L'interprétation en écoulement à symétrie cylindrique n'est valable
que si le piézomètre satellite est suffisamment proche du puits central pour
que l'influence de l'écoulement naturel de la nappe n'y perturbe pas sensible-
ment la symétrie.

La dissymétrie créée par l'écoulement régional peut être calculée
d'après Bear et Jacob (1965) ou Sauty et Thiery (1975) : le temps de transfert
entre le forage central et deux points situés à la même distance r de part et
d'autre de ce forage et sur l'axe de l'écoulement régional est :

pour le point en amont

pour le point en aval,

avec v vitesse de Darcy de l'écoulement naturel.

1 = ~Q r - 3~-Q"

N.B. : Ce résultat obtenu par développement limité n'est valable qu'au voisinage
du puits lorsque

2hvo
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La méthode la plus usuelle pour interpréter les courbes en écoulement
uniforme consiste à ajuster automatiquement les paramètres a et m par minimisation
d'une norme d'écart entre les points de mesure et la courbe théorique définie
par son expression analytique exacte.

En fait, en écoulement radial, on ne dispose pas de telle expression
analytique. On a le choix entre :

- interpréter à l'aide de la solution analytique approchée. Le résultat ne sera
suffisamment précis que si le nombre de Péclet est au moins égal à 10.

- ou bien calculer les courbes théoriques pour des couples a et to'-obtenus par
interpolation dans un réseau de courbes calculées par voie numérique et stoc-
kées sur ordinateur sous forme discrète.

Une autre méthode d'interprétation consiste à ajuster manuellement
en reportant la courbe mesurée sur un abaque.

La difficulté matérielle provient de la nécessité d'ajuster simulta-
nément deux paramètres. En fait, le réseau de courbes est tel que l'on ne ren-
contre pas d'ambiguité quant à l'ajustement d'un couple de paramètres ; de plus,
l'indétermination sur les résultats reste de l'ordre de 10%. Ceci est nettement
suffisant, compte tenu de la nature imprécise des phénomènes étudiés et des pré-
cautions à prendre peur-en extrapoler les résultats.

L'interprétation manuelle a été appliquée à quelques traçages en écou-
lement radial convergent par injection brève.

Interprétation en coordonnées semi-logarithmiques

La .méthode adoptée est la suivante :
- les concentrations mesurées sont normées par l'amplitude du pic :

CR = C/Cmax
- les points de mesures (CR, t) sont alors reportés sur un papier semi-

logarithmique transparent (échelle logarithmique des temps).

- la courbe ainsi obtenue est comparée aux courbes de l'abaque de la figure
12bis (injection instantanée dans un écoulement convergent), qui est une
transposition en coordonnées semi-logarithmiques de la figure 12.

- on obtient après translation suivant l'axe des temps, la coïncidence entre
la courbe normée (ou au moins partie de celle-ci) et une des courbes de
1•abaque.
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ABAQUE POUR UNE INJECTION INSTANTANEE
DANS UN ECOULEMENT CONVERGENT

llgur« It bll

- le nombre de Péclet est celui de la courbe théorique en coïncidence.

- le temps de transfert par convection est le temps réel de la courbe mesurée,
en correspondance avec le temps réduit tR = 1 sur la courbe théorique.

- connaissant le débit (Q), l'épaisseur aquifère (h) et la distance puits-
piézomètre ( r), on déduit directement la dispersivité a à partir de P et la
porosité cinématique a s. partir de tç.

Interprétation en coordonnées cartésiennes
Cette identification peut aussi être réalisée à l'aide de l'abaque de

la figure 12, en conservant l'échelle cartésienne pour les temps. Dans ce cas,
il est nécessaire de transposer les temps en variables réduites : tR = t/tç. Le
paramètre to (fonction de la porosité cinématique) étant a priori inconnu, il
convient de faire plusieurs estimations successives :

- si la valeur essayée pour ±Q est trop faible, la montée de la courbe de res-
titution sera trop lente, comparée aux courbes voisines de l'abaque (fig. 16) ;

- si t« est trop élevé, la montée de la courbe de restitution sera trop pentue ;

- en quelques essais, on trouve une valeur de tç pour laquelle la courbe (au moins
en sa partie ascendante) s'accorde avec le réseau de l'abaque ;

- il suffit alors de lire la valeur correspondante du nombre de Béclet par inter-
polation entre les courbes voisines.

Cette dernière méthode ayant l'avantage de mieux mettre en évidence
la précision à attendre de l'identification, c'est en axes cartésiens que seront
présentés les exemples d'application.
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EXEMPLE £ '
On trouvera, ci-après, cinq exemples d'interprétation de courbes de

restitution. Le traceur retenu pour ces expérimentations a été l'iodure de sodium
pour lequel des études méthodologiques antérieures, réalisées dans des sols de
nature comparable (Gaillard et al, 1976 ou Molinari-et Peaudecerf,1977) ont mis
en évidence un comportement très voisin du tritium, tout en étant d'un emploi
moins onéreux.

L'interprétation physique des résultats ainsi que la méthodologie^
pratique de traçage soùt décrites par ailleurs CGaillard, Rousselot, Saüty7 Í977-)."

On s'attachera ici à l'ajustement de a et tu sur la première partie
de la courbe, et qui correspond donc à la couche aquifère la plus conductrice.

Traçage n° 1
La courbe de restitution a été reportée quatre fois en variables ré-

duites pour des valeurs de t„ égales à 20 h, 12h, llh et 10h (figure 16).

i te« 2 0 k •

fig.i« _ TRACA6E Nl| . COURBE DE RESTITUTION EN VARIABLES REDUITES

La courbe t„ - 12h, proche de la courbe P = 20 en début de montée,
est très proche de la courbe P = 10 en son sommet. Donc, tp < 12.

De même, la courbe tç - 10h, très proche de la courbe P = 20 à sa
base, est à mi-chemin entre P = 20 et P = 40 à proximité du pic.
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Par contre, la courbe t_ = llh s'insère très bien dans les observa-
tions de courbes, à proximité de P = 20. La valeur correspondante du nombre de
Péclet est de l'ordre de 18.

On peut ensuite calculer la porosité cinématique et la dispersivité :

<»> = — ^ Z % = 8,4% et a - ~ = 0,3 m.ir r h "

La courbe P = 18, tc = llh est ensuite reportée dans les axes réels,
avec la courbe de restitution observée et ses points de mesure (figure 17).
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Ce premier exemple met en évidence une "explication" très incomplète
par le modèle Piston-Diffusion sur une seule couche : écarts imDortants entre
courbe ajustée et courbe réelle sur la seconde partie«

En fait, une étude géologique plus approfondie (Gaillar-dret_.alĵ -lä77)
présence de deux couches géologiques bien différenciées et continues depuis le
piézomètre d'injection jusqu'à l'ouvrage d'exhaure. Cet exemple sera repris a
la fin du présent paragraphe.
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Traçage n° 4
De nombreuses autres expériences de traçage sur le terrain ont été in-

terprétées par cette méthode (cf.Saùty, 1977) :

- essais de plusieurs valeurs de tc pour choisir l'échelle des temps puis inter-
polation du nombre de Péclet ;

- la courbe est ensuite reportée dans les axes aux dimensions réelles.

Les contraintes de publication nous limitent à en présenter un seul exem-
ple. Le choix du traçage n° 4 est intéressant car il montre un accord quasiment
parfait entre la mesure et le schéma théorique (fig. 18 et 19).

0,3

Fig.. 18

TRAÇAGE N14 . COURBE DE RESTITUTION EN VARIABLES REDUITES

0 MMMtf •* (M B«»VH»

— «••rb» a)vtU« (t »Itfc.PM,»)

Fig. 19

Trocog« n'4 . C»»rt» da rotltitiag latarpr««««

II conduit à l'identification des paramètres suivants :
tc = 18 h ; a = 14,5 % ; P = 1,3 ; a - 6,9 m.
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Réinterprétation du traçage n"1 par un modele bicouche
Si j.'on compare sur la rigure 17 l'aire comprise entre les courbes

ajustée:et mesurée ex la droite C = Co = 10 ug/1, on trouve un rapport de 0,43.
Donc seuls 43% de la restitution sont expliqués par le modèle monocouche. En
fait, les coupes dressées pour les forages indiquent une couche priviligiée
de galets d'épaisseur lm. Le restant de la couche aquifère en eau est consti-
tué de 4,9 m de formations glaciaires beaucoup moins conductrices.

La première partie de la courbe de restitution peut donc être attri-
buée à la couche de galets avec 43% du débit puisque le traceur a été soigneu-
sement homogénéisé sur toute la hauteur d'injection. La seconde partie, avec
57% du débit, conduit à l'ajustement de la courbe théorique P = 8, te = 33h.

La figure 26 donne l'interprétation finale du traçage n°l avec indi-
vidualisation des transferts par chacune des couches supposées non communicantes
en première approximation, selon le schéma de BRISSAUD et al. (1976).

La connaissance du débit Q = 4 nr/h et de la distance puits-piézomètre
r = 5,3 m permettent de calculer les caractéristiques des deux couches :

couche de galets toi = 21%
formation glaciaire o>2 - 18%

04 = 0,3m
ct2 = 0,7m

• • >• tèm» • • • » •

Fig. 20
Trocsç« I . lnl«rpr«t»iicn por y« m»ail«
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6* - CONCLUSIONS

Une méthode numérique a permis de calculer les courbes de restitution
de traceurs en écoulement radial convergent ou divergent suivant deux types
d'injection : continue ou brève.

Des formules analytiques ont été comparées à ces résultats.

Les courbes de restitution ont été assemblées sous forme d'abaques
construits pour les valeurs de paramètres adimensionnels rencontrées dans la pra-
tique. Une méthodologie d'interprétation manuelle a été mise en oeuvre pour ajus-
ter les paramètres de porosité cinématique et de dispersivité de la couche aqui-
fère la plus rapide sur des courbes de restitution obtenues sur le terrain.

Il a aussi été montré que cette méthode manuelle permet d'identifier
les paramètres d'une formation bicouche lorsque les vitesses dans chaque couche
sont suffisamment distinctes.

Puisque la courbe de restitution d'un traçage radial peut être simple-
ment interprétée, et que ce mode de traçage peut être réalisé économiquement sur
les puits munis de piézomètres satellites (Gaillard et al., 1977), il serait
souhaitable d'entreprendre systématiquement ce type de mesure, notamment lors des
essais -de débit des captages destinés à la consommation humaine.

On pourrait ainsi mieux définir au voisinage de captages l'extension
des périmètres à protéger contre un transfert de polluant dans le milieu saturé.

Par la même occasion, on verserait au dossier de la dispersion dans les
nappes d'eau souterraine des mesures nombreuses réalisées in situ. Ces mesures,
nécessaires pour des études systématiques en fonction de la géologie des aquifè-
res, ou en relation avec d'autres paramètres tels que la perméabilité ou la gra-
nulométrie, font actuellement défaut.
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TABLEAU I

TABLE DES SYMBOLES

C(r,6,t)
ou C

D

h

K

K'

r.

'R

Dimension

"1

M L-3

M IT3

sans

L2 T-

L

Tl »5

sans

3 T-l

sans

Constante du calcul en écoulement radial A = Q/2rrhw

Concentration en masse par unité de volume

Concentration moyenne sur un cercle de rayon r:
f2ïï

' 0 • de

Concentration réduite C„ = C/C
R max

avec C concentration maximale de la courbe de restitution
lila. A

Tenseur de dispersion

Epaisseur aquifère en eau

Facteur de normation de la courbe de restitution d'un pic
de Dirac en écoulement monodimensionnel uniforme par une
concentration maximale unitaire :

K = t 0' 5

* Rmax ' k t
Rmax

)2

Facteur de normation de la dérivée âe la courbe de restitution
d'un échelon en écoulement monodimensionnel uniforme par une
concentration maximale unitaire :

K' = t¿'5 . exp
Rmax r

Rmax

Nombre de Péclet de 1'aquifère muni de son dispositif de
me sure :

P - u r

avec r : distance puits-piézomètre

Débit injecté (Q > 0) ou pompé (Q < 0) dans le puits central

- Variable indépendante, distance à l'axe des puits
- Plus particulièrement utilisée pour désigner la distance

puits-piézomètre

Rayon du front convectif pur à l'instant t:

r = /2 At

Rayon central de la maille d'indice i

r = — = P rayon réduit (distance réduite puits-piézomètre)
K ex

Temps, variable .indépendante.
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Symbole

Rmax

u

o,

At

Ar

Dimension

T

sans

sans

L T"1

L

L

T

L

sans

sans

sans

sans

sans

sans

Temps de transfert par convection pure du point de pré-
lèvement au point d'injection :

t = (to Trr2h)/Q = r2/2A

Temps réduit t R = t/t = 2 At/r2

Temps réduit correspondant au maximum de la courbe de
restitution

Vitesse effective de pore à la distance r : u = Q/(2irrh(o) = A/r

Dispersivité longitudinale ou coefficient longitudinal
intrinsèque de dispersion.

Dispersivité transversale

Pas de temps pour l'intégration numérique

Pas d'espace pour l'intégration numérique

Facteur donnant le signe du débit :

injection
pompage

e = +1
e = -1

Q > 0
Q < 0

Porosité totale

Coefficient de pondération amont-aval du terme convectif
dans la méthode numérique

Coefficient de pondération implicite-explicite du terme
dispersif dans la méthode numérique

Coefficient de pondération implicite-explicite du terme
convectif dans la méthode numérique

Porosité cinématique
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TABLEAU II

Formules approchées représentatives des courbes de restitution

type type - . ,.. domaine de
, . . . „_. formule approchée , .,. ,

écoulement injection r r validité

• RAIMONDI (7): CR = 0,5 Erfc \—
 1"t^ j P > 10

divergent continue '•'

LAU (8) : Cp = 0,5 Erfc —
 1~ t R 1 P > 10

R [2 tR0'25

Echelon vitesse uniforme (1 dimension)*

(9) CR = 0,5ÍErfc ^
( 1 " t R \ exp(P) .

convergent continue [ 2 /tR P > 1

Impulsion vitesse uniforme (1 dimension)*.

V

divergent impulsion (10) C_, = . exp
R

R ^

(i-tR)
2 . P > i

'Dérivée de (9) :

convergent impulsion (11) C_ = exp (l-tR)
2 ' P > 3


