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RESUME

Les tragages en écoulement radial constituent une méthode économique
pour l'obtention sur le terrain des paramétres de migration des substances dans
les eaux souterraines, lorsqu'ils sont mis en oceuvre sur les sites de captage
équipés d'un piézométre.

Leur interprétation pose cependant quelques difficultés car il n'exis-
te pas de solution analytique exacte pratiquement utilisable et gqui permettrait
de calculer les courbes de restitution & des tragages par injection continue ou
instantanée en écoulement radial convergent (pompage dans le puits central avec
injection dans le piézométre satellite) ou divergent (injection centrale).

Le présent article indique une méthode simple de calcul par différen-
ces finies affranchie de la dispersion numérique, phénoméne parasite affectant
habituellement ces méthodes. Il est montré, par la prise en compte de concentra-
tions moyennes sur des cercles concentr¢ques, que la dispersion physique trans-
versale est sans effet dans le schéma hydrodispersif pur sur les concentrations
mesurées dans le puits central (dans le cas du pompage central). =

Un programme, &laboré sur ce principe a permis, grdce 3 un choix ap-
proprié de variables adimensionnelles, d'établir un abaque universel pour chacun
des deux types d'injection et d'écoulement.

Il est montré que, dans chaque cas, il existe une formule analytique
approchée représentative de la courbe de restitution tant que la vitesse de
1'écoulement est suffisante (nombre de Péclet > 3).

Des méthodes automatigues ou manuelles sont proposées pour appliquer
ces résultats & l'identification des paramétres porosité cinématique et disper-
sivité.

Enfin, plusieurs exemples d'identification manuelle & l'aide de ces
abagues sont donnés dans le cas de tragage en aguifére monocouche et méme stra-
tifié en deux couches.

Ces travaux ont été réalisés dans le cadre des études methodologlques
du département Hydrogéologie.
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1. - INTRODUCTION

Les eaux souterraines constituent une ressource de qualité généralement
supérieure 3 celle des eaux de surface grdce a la protection naturelle des cou-
ches de sol susjacentes et aux propriétés filtrantes des terrains. Cependant,
1l'accroissement des causes de pollution (rejets d'usines, excés d'engrais ou de
pesticides, dépdts d'ordure, stockage souterrain de déchets, etc...) est tel
que l'enfouissement de 1'eau dans le sous-sol n'est plus un gage suffisant de
pureté.

Aprés une période ou 1l'hydrogéologie était principalement vouée a
1'évaluation quantitative des ressources avec la création d'une méthodologie de
mesures (piézométrie, essais de débit, ...) et d'outils de synthése (modéles
analogiques puis mathématiques), vient une époque ol 1l'hydrogéologuye doit de
plus en plus fréquemment faire face aux problémes pratiques posés par 1'évolu-
tion de la qualité des eaux souterraines.

La migration des produits nocifs, matiéres organiques et sels dissous,
entralnés par l'eau en mouvement, est régie par la convection, la dispersion
(diffusion moléculaire et dispersion mécanique), par les échanges physiques
avec le milieu et les réactions chimiques et biologiques. Les deux premiers
phénoménes sont la cause du déplacement des produits dans les nappes ; les
suivants sont plutdt un gage de destruction, ou au moins de retard, mais leur
influence relative tend & s'atténuer avec l'accroissement des quantités de pol-
luants déversées dans les aquiféres.

I1 est donc important au premier chef de prévoir la migration des con-
taminants dans les nappes par convection et dispersion. Si la connaissance théo-
rique de ces phénoménes est bonne, avec l'existence d'outils de simulation opé-
rationnels, les données de terrain sont peu nombreuses, et il est temps de déve-
lopper et appliquer systématiquement une méthodologie de mesures sur le terrain
peu colteuse et simple d'emploi.

La plupart des captages importants sont équipés de piézométres satel-
lites mis en place pour la mesure des coefficients d'emmagasinement par essai
de débit. Ils constituent un dispositif préexistant pour la mesure de la vites-
se de transfert et de la dispersivité : ils permettent donc d'économiser le colit
des forages.

La mesure est réalisée par tragage en écoulement radial convergent
avec pompage dans le puits central et injection de traceur dans-le piézométre
périphérique, ou bien en écoulement radial divergent avec injection du fluide
moteur et du traceur dans le puits central et prélévement pour mesures dans
le piézométre. L'interprétation de la courbe de restitution doit permettre
d'identifier des paramétres intrinséques de 1l'aquifére, c'est-a-dire encore
valables pour des débits ou des conditions aux limites différents. Le traga-
ge sera réalisé par injection de traceur 3 concentration constante, ou par
injection bréve.



L'interprétation de ce type de tragage présente cependant une diffi-
culté car il n'existe pas de formule analytique exacte représentative des
transferts hydrodispersifs en écoulement radial. Il est donc nécessaire de
recourir 3 une intégration numérique des équations.

Le présent article montre entre autres comment il est possible
d'établir des abaques universels par voie numérique et de les exploiter pour
analyser les courbes de restitution obtenues par les deux procédés d'injection
de traceur (continue ou instantanée) dans les deux types d'écoulement radial
(convergent ou divergent).



Rappelons briévement les différents phénoménes régissant la migration
d'un soluté dans les eaux en mouvement (cf. Fried et Combarnous, 1971 - Sauty, 13975).

Convection : entralnement du polluant par le mouvement du fluide solvant.

Dispersion : en s'éloignant du lieu d'injection, la masse de soluté se dilue pour
occuper un volume croissant avec une concentration corrélativement décroissante.
Cet étalement de la courbe de concentration est 44

. au déplacement des molécules sous l'effet de la diffusion moléculaire,

. & la dispersion cinématique : le temps de transfert d'une section 3 une autre est
variable suivant les particules car, & 1l'échelle microscopique, les vitesses
sont trés fluctuantes et les trajectoires sont de longueur variable suivant
les grains qu'elles doivent contourner.

Echanges : des échanges de soluté peuvent prendre place entre le liquide et les
grains solides du milieu poreux sous l'effet des différences de concentration
(adsorption, suivie de désorption en cas de réversibilité).

Des particules peuvent aussi 8tre &changées entre 1l'eau en mouvement
qui occupe un volume wV du volume total V (avec w porosité cinématique) et l'eau
immobile qui occupe un volume (¢ - w)V (avec ¢ porosité totale).

Réactions chimiques, minérales, organiques : Le milieu aquifére et les micro-orga-
nismes peuvent réagir sur les produits en solution. Il s'agit de phénoménes com-
plexes dont la cinématique varie considérablement en fonction des constituants.

EQUATION GENERALE

L'équation classique (cf. Bear,1972) basée sur la loi de Fick et la loi
de conservation de la masse de soluté, est
(1) %%:div(ﬁg?gdc)—v.g?{dc-ﬁ
qui exprime le bilan du soluté dont les fluctuations de concentration sont dues
34 la dispersion (premier terme du second membre) 3 la convection (deuxiéme terme)
et aux échanges (terme E).

Le but des tragages interprétés ici étant d'identifier les paramétres
de convection et de dispersion, on s'arrangera pour que les é&changes soient fai-
bles (E = 0) gr8ce 3 un traceur aussi parfait que possible. La diffusion molécu-
laire restera faible devant la dispersion cinématique, avec des vitesses telles
que l'on se trouve dans la zone IV des courbes expérimentales de Pfannkuch (1863)
(hypothése usuelle de dispersionproportionnelle 3 la vitesse d'écoulement : hypo-
thése de dispersivité géométrique de Sgheidegger (1960). Le terme de dispersion
fonction du vecteur vitesse effective V, s'éerit alors

(2) - GL 0 0
D = 0 ap O . I-\?I
0 0 C!T

avec % dispersivité longitudinale et ar dispersivité transversale.



PARAMETRES TNTRINSEQUES

Porosité cinématique

Dans une section AS du milieu aquifére saturé en eau, la portion (1-¢)AS
est occupée par la matrice solide ; mais, sur la portion restante ¢AS, seule la
section d'aire wAS est traversée par de 1l'eau en mouvement : w, porosité cinémati-
que < ¢, porosité totale,

En effet, certains pores en cul de sac (théorie de Coats) contiennent de
1'eau immobile ; d'autre part, au voisinage immédiat des grains, une pellicule d'eau
immobile, ou du moins fortement visqueuse, peut réduire considérablement la valeur

~

de w dans les sols 3 texture fine.

La porosité cinématique w est donc le rapport entre section totale et la
section traversée par de 1'eau en mouvement ; par voie de conséquence, c'est aussi
le quotient de la vitesse apparente de Darcy rapportée a la section totale par la
vitesse effective de pore.

En premiére approximation, la porosité cinématique w est indépendante de
la vitesse.

Dispersivité

Les coefficients ap, et aT de 1'équation (2) varient peu avec la vitesse
dans la plage des nombres de Reynolds correspondant aux écoulements habituels des
nappes superficielles.

Nombre de Péclet
C'est un nombre adimensionnel qui caractérise 1'importance relative des
transferts par convection par rapport aux Eransferts par dispersion : on le désigne-

ra par la lettre P, Par définition, P = 5

u est la vitesse de pore,

D est le coefficient de dispersion longitudinale. Dans 1'hypothése retenue de pro-
portionnalité & la vitesse, D = apu = ou

d est une dimension caractéristique. On prendra ici d=r, distance entre le piézo-
métre satellite et l'axe du puits central.

Donc, P = EBQ =-§, distance réduite.

Sur une trentaine de mesures effectuées avec des traceurs parfaits, sur
des distances allant de la dizaine de métres 3 plusieurs centaines, le nombre de
Péclet a toujours été identifié entre 1 et 100, avec une fréquence maximale au
voisinage des valeurs 10 & 20.

N.B. : Originellement, le nombre de Péclet a été défini pour 1'étude des transferts
de chaleur : la variable D représente alors la diffusivité thermique (rapport
conductivité/capacité calorifique). Son utilisation a été étendue aux trans-—
ferts par diffusion moléeculaire, puis aux transferts par dispersion en milieux
poreux : D est le coefficient de dispersion et d une longueur caractéristique
du milieu (par exemple, taille des grains ou diamétre moyen des pores).

Le nombre P défini dans la présente étude est une extension de cette notion. -
Il caractérise la nappe munie de son dispositif d'observation (D est lié 4
l'aquifére, u 4 la vitesse de la nappe et d la distance de mesure).

Paramétres intrinséques o

Les coefficients o et w sont alors des paramétres intrinséques qu'il est
possible de mesurer dans certaines conditions d'écoulement de la nappe (notamment
écoulement radial vers un forage en exploitation), et dont il est possible de con-
server les valeurs pour prédire le comportement hydrodispersif d'un soluté dans
d'autres conditions d'écoulement.




11 faut toutefois avoir présent 3 1'esprit que le coefficient a rend-
compte des hétérogénéités et que sa valeur moyenne crolt également avec la dis-
tance sur laguelle il est mesuré puisque l1l'on intégre alors des hétérogénéités
3 des échelles croissantes.

Si 1'on désire s'assurer de la précision obtenue sur les paramétres
o et w, il convient de réaliser des mesures 3 des distances et des débits va-
riables.,

Par ailleurs, le traceur retenu doit @tre aussi "parfait" que possible,
c'est-a-dire peu sujet aux échanges et réactions chimiques. L'étude réalisée en
1975-1876 par le BRGM*®et 1le CENG* a permis de mettre en évidence des pro-
duits plus facilement utilisables que d'autres réputéds parfaits, tout en donnant
des courbes de réponse comparables (Gaillard et al., 1976).

EQUATION DANS LE CAS DE L'ECOULEMENT CYLINDRIQUE

— it e e e e —— . S — f— —— - — G— — — - — — ——

Dans le cas de 1'écoulement radial vers un puits dans une nappe de
puissance constante et de perméabilité statistiquement homogéne, 1l'équation (1)
devient

8C _ _ BC oC u] o of aC
(3) ot u Br Iul Br[aL ar] + r 33{ r 55}

Quand 1'écoulement est radial divergent (injection dans le puits central),
toutes les conditions étant symétriques, la concentration est indépendante de 6
et le troisiéme terme du second membre tombe.

' Quand 1'écoulement est radial convergent (pompage constant dans le puits
central et injection dans le plezometre satellite d'une quantlte de traceur suffi-.
samment faible pour ne pas détruire la symétrie axiale de 1' ecoulemenﬁ, le traceur
va se dlspercer latéralement, mais les particules de traceur passees dans un tube
voisin vont se trouver entralnees vers le puyits d' exhaure dans les mémes conditions:
la dispersion transversale n 'apporte pas de retard 2 la date d'arrivée au puits cen-
tral. Ce fait peut etre facilement mis en évidence sur 1'équation (3) 3 l'aide du
changement de variable : C( 1) 3 _iF JO C(r,6,t) dé
qui représente la concentration moyenne 3 la dlstance r du puits, A la distance r
du centre,correspondant d la position du plezometre d'injection,cette concentration
est donnée par le rapport du flux massique injecté au débit total pompé.

27
Si 1'on fait agir 1'opérateur X = L Jf . d6 sur les différents ter-
12 . 2
mes de l'équation (3), on constate que : 0
3C _ aC
X3¢ "% 2
X uig = u 2
© o or

en vertu de la régle de Leibniz, ou dérivation sous le signe somme.-

X . 238 36 T | 36 | r 96

D'autre part, ¢ Jzﬂ
0

1 a[dTacJ 1 __a_[ﬂ_c] a6

* BRGM : Bureau de Recherches Géologiques et Minidres
CENG : Centre d'Etudes Nucl&aires de Gremoble



Or, C est une fonction non multiforme de 6 ; c'est-3-dire C(8) = C(6+2m)

De méme, jae [GTLUI gg . 46 n'est pas multiforme, :

2T
Donc [ ﬁ—i -EILEL acde] = 0.
a6 r

Dans ces conditions, 1l'équation (3) s'éerit :

9

BT }48r[ °L 3v ]

ou encore, en écoulement radial, avec a. uniforme :

L
3C _ A aC lal 32C
() . T T T 32

avec :

5= o

Q = débit du puits central (> 0 s'il est injecté : écoulement divergent,
< 0 en pompage : écoulement convergent)

h = épaisseur aquifére

w = porosité cinématique

o dispersivité longitudinale.

N.B. - L'utilisation de la fonction C est aussi valable en écoulement divergent :
les conditions.aux limites étant symétriques, C(r,8) = C ¥e.

N.B. : Le fait que la dispersiern trarnsrersale disparaisse lorsque 1'on considére la
T courbe de restitution dans 1'eau prélévée dans le puits central ne doit pas
surprendre. On a recours au méme raisommement lorsqu’em-injecte le traceur
sur une portion seulement de 1'épaisseur aquifére, et que l'on considére
ensuite la concentration moyenne obtenue en rapportant la masse injectée
au débit total eirculant dans 1'aquifére.

INTEGRATION ANALYTIQUE

L'intégration analytique a été développée pour la migration d'un traceur
injecté de fagon continue sous concentration constante dans un écoulement diver-
gent., Ogata (1958) en donne la solution exacte , mais son expression néces- '
site 1'intégration d'une fraction rationnelle de fonctions de Bessel de premiére
et deuxiéme espéce. Le calcul numérique de cette fonction est extrémement complexe
et la méthode de résolution doit 8tre recherchée ailleurs.

Raimondi et al. (1959) en domnent la solution approchée suivante :
C

2/ _ H 2
—=iErfcr/2 r 4/2

Co 2 VA

3




Lau et al., (1859) présentent une autre solution approchée

r-Drr

rayon du front convectif pur & 1'instant t

c _1
C—o- = E Erfc

avec E
r = 2QAt
et A % omn

Ces solutions ne sont qu'approchées et ne traitent qu'un seul des cas
qui nous intéressent. Elles seront d'ailleurs vues plus en détail au paragraphe 4.

Pour résoudre le probléme de 1l'écoulement convergent ou de l'injection
instantanée, le recours 3 une voie numérique est apparu nécessaire.

A 1'intégration des transferts en écoulement radial,
les trois méthodes principales : différences finies, caractéristiques,
Galerkine.

Différences finies

La m2thode la plus simple consiste & discrétiser le temps en pas At
constants et 1l'axe des rayons en pas Ar constants. Cette méthode, utilisée dés
1858 par Ogata, puis en 1965 par Hoopes et Harleman, pose des problémes de
convergence, de stabilité, et introduit un terme parasite de dispersion numéri-
que. Des schémas plus complexes permettent d'atténuer ces difficultés: Stone
et Brian (1963) ; Shamir et Harleman (1966), sans toutefois les éliminer tota-
lement, et ce notamment aux faibles dispersivités, car la réduction de la dis-
persion numérique introduit des oscillationms.

Méthode des caractéristiques

Cette méthode, mise en oeuvre par Gardner, Peaceman et Pozzi (1964)
puis par Pinder et Cooper (1970) et par Konikow et Bredehoeft (1974) a été
reprise par Oakes et Edworthy (1876) pour 1'écoulement radial.

Au sein d'un maillage établi pour les différences finies, on répartit
un certain nombre de particules dans chaque cellule ("particles in cell method").
Les échanges par dispersion et diffusion sont calculés par différences finies
entre les cellules. Par contre, les échanges par convection sont calculés en
laissant chaque particule se déplacer sur sa ligne de courant. A 1l'issue de
chagque pas de temps, on affecte aux cellules la concentration résultant de la
moyenne des concentrations des particules qu'elles contiennent., Cette méthode
élimine la dispersion numérique & condition de prendre un grand mombre de par-
ticules, Elle conduit alors a des temps importants de passage sur ordinateur,
auxquels s'ajoute .la complexité de conception et de réalisation du programme.



Méthode de Galerkin

Les méthodes variationnelles, appliquées dés 1968 aux transferts de mas-
se par Price et al., puis principalement par Pinder (1973), consistent (cf. Neuman
et Witherspoon (1873)) & remplacer les équations aux dérivées partielles par
deux systémes d'équations intégrales approchées. Les fonctions potentiel hydrau-
lique et concentration sont alors décomposées sur un systéme de fonctions
orthogonales relatives & chague élément qui résulte de la discrétisation du
domaine. Ces fonctions sont déterminées par la géométrie des éléments, le
degré de précision désiré et les conditions aux limites. Les &léments couram-
ment utilisés sont triangulaires (Pickens et Lennox, 1976) ou des quadrilatéres .
curvilignes dits éléments isoparamétriques (Pinder, 1973 ; Segol et al., 1875).

Mais, 13 aussi, la méthode est complexe, et on a des difficultés 3
éliminer la dispersion numérique sans créer d'instabilité, quand le coefficient
de dispersion devient faible.

Conclusions sur ces méthodes

Les deux dernleres méthodes citées fournlssent des résultats satisfaisants
quand le nombre -de Peclet n'est pas trop élevé, mais au prix d'une programmation
complexe et d'un code généré volumineux.

L'analyse de la dispersion numérique dans le cas d'une formulation par
différences finies montre la voie d'une méthode de résolution simple et parfai-
tement adaptée aux simulations prenant en compte les valeurs de dispersivité
usuellement rencontrées dans les aquiféres superficiels.

LA DISPERSION NUMERIQUE

La discrétisation de 1l'éguation (4) par différences finies 3 pas d'espace
Ar et de temps At constants s'écrit

n+l n e ¥ 4 ° - © °
C; T -Cy afa] C;_ ;- 2C+Coy A (1-3) €y +(2x-1) CimA Cy
At T Ar? r Ar
avec
c,” = C(iAr, nAt)
T, = (1-8y) ¢;" + 8y cin.+1
¢, = (1-8,) C;® + 8y CyP*HL o
9, = coefficient de ponderatlon implicite- exp11c1te pour le terme dispersif
056 £.1
6o -=~coeff1c1ent de ponderatlon lmpllc1te explicite pour le.terme-convectif
~ $ 8y 1 B . )
A = coefficient de pondération amont—aval pour le terme convectif

0gAxsg1l



Si 1'on développe les divers Cin en séries de Taylor limitées au second
ordre, puis si l'on remplace les dérivéeS secondes par rapport a t en dérivées par
rapport d r (selon les méthodes de Lantz (1971)on fait apparaitre, pour les nom-
bres de Péclet suffisamment élevés, le terme suivant en facteur de .

ar

i

Ar A At] 32C
{oc + (2x-1) 5 ;'—2'] 32

A la dispersion physique E%, s'ajoute donc un terme parasite

A Ar A At
= [(2%—1) s Bl 2—-]
Par ailleurs, un autre terme parasite apparait en dérivée croisée
A 32C
- At 2
b2 ot r 9rat

On peut en tirer la stratégie suivante

-a- 8; n'intervient pas dans ces termes parasites. On peut retenir la valeur 8; = 1
pour répondre 3 des crit@res de stabilité : le terme dispersif est alors
implicite.

2

-b- Pour supprimer le facteur de %;%;, on choisit 65 = 0 ; donc terme convectif
explicite,

-c~ Pour éliminer la premiére partie de laAdiE?ersion parasite, on pourrait

choisir A = 1, mais le second terme -——5 ne pourrait etre éludé.
2 2.
~d- Par contre, si 1'on choisit un découpage tel que At = r(2r-1) Ar, les deux

. A
termes se détruisent.

-e- Pour perme;tX% un pas de temps At aussi grand .que possible, on a retenu A = 1
d'ol At = %

-f- Le pas de temps est imposé par le maillage spatial,
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DISCRETISATION RETENUE

Le découpage spatial n'est plus uniforme :

(s) ar = a AE
T . E LAV
On définit N mail- ' Fi4
les indicées par i, avec : t-u redror 4 l——
Q : 2° ' 2
i=1 : maille centrée sur la P——Z '="l'—|‘_‘_""4
4 . ” L3 - r
périphérie du puits cen- A .2.__1
tral de rayon ry=r . n 2 | J DR -
min 1 . -

. . . J -Figure 1
i=N : maille centrée sur le = p~2-1 {1t} mmEme=me= .

piézométre satellite
d la distance ry=rpax
de 1l'axe du puits '
central ' =
)

La condition (5) ‘ 1 Lx
peut s'écrire : ;’\1 |
I
|
|
|
|

M (t)

Tigl ngiﬁ% + 2 A At

2 2 ) #
On prend la méme loi |
de découpage pour les centres

des mailles : \ M\
Yol

ri= i_1-1-2AA‘c ) : L,,._

En faisant jouer la formule de récurrence sur les N-1 intervalles
séparant les N mailles :

- ) -
Tk Yo min T 2 (N-1)A At

N.B. : Avec ce découpage, dans le cas de la convection pure (absence de
dispersion), chaque maille est exactement remplie au cours d'un
pas de temps par le contenu de la maille située immédiatement en
amont ; en effet, le volume d'eau contenu dans une maille est :

V = mohir? 1 - v2, 1
it i-5
V=21rmhrAr=-KrAr
et d'aprés (5)
V = Q At

Cect explique alors 1l'élimination de la dispersion numérique due
au remplissage partiel de certaines mailles.
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PRECISION DES CALCULS

La discrétisation, choisie p :r un calcul exact du terme de convection,
conduit 3 utiliser des mailles de plus en plus étroites vers la périphérie. On
peut s'attendre 3 des difficultés en provenance de l'intégration au terme dis-
persif.

Il est difficile de définir un critére de convergence, c'est pour-
quoi on se réferre au pas de temps de stabilité de la méthode explicite
Ar2 _ p Ap?

At 75~ = 753

D'aprés (5), ceci peut &tre réécrit :

Ats%At

_A.E.Z 2
o
Ce critére laisse prévoir des difficultés de convergence aux faibles

nombres de Péclet (forte dispersivité), d'abord pour les mailles périphériques
(plus faible Ar), et ce d'autant plus qu'on utilise un grand nombre de mailles
car bien sUr Ar décroit corrélativement. Toutefois, la précision a été vérifiée
empiriquement en faisant varier la dimension des pas d'espace et de temps, et
elle s'est trouvé satisfaisante tant que P 2 1 {(ce qui est le cas dans la pratique).

Contrairement aux méthodes classiques précédemment citées, cette mé-
thode conduit 3 une simulation d'autant meilleure que le nombre de Péclet est
élevé, Pour les valeurs de ce nombre les plus usuellement rencontrées dans les

~

nappes (ordre de 10 3 100), les résultats sont excellents.

PROGRAMMATION ET CONTROLE DES RESULTATS

- e e . et e e S e w— e Gme Gt e e - e w—

Un programme a donc été b3ati autour de la méthode décrite ci-dessus
et que l'on pourrait appeler méthode des différences finles synchrones puisque
le découpage de l'espace est choisl pour s'adapter exactement au déplacement
convectif d'un front non dispersif.

Avec cette méthode, les centres des mailles sont répartis suivant une
loi en /;-; le terme dispersif est implicite, le terme convectif est explicite et
spatialement centré 3 1'amont.

Le programme RAMSES (simulation RAdiale de la Migration d'un Soluté
dans les Eaux Souterraines) permet de simuler les écoulements radiaux conver-
gent ou divergent, avec une loi quelcongue d'injection d'un soluté 3 1l'amont.

Il a été utilisé pour dresser des abaques de réponse 3 des injections
continues ou ponctuelles dans le temps, pour les deux sens d'écoulement. Aupa-
ravant, le programme a été testé par quelques calculs simples.
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Transfert d'un créneau

La figure 2 présente le transfert d'un créneau avec et sans dispersion.
Dans le second cas, on constate 1'absence de toute dispersion parasite.

12
! AFhsOs  M—y—
) .
(33 )
J‘?
. o %
[H ’ \
° % » 4 1 jours)
° 1 .

tig.2
PROGRAHNE RAMSES = TEST NO 1 aCRENEAUMNON DISPERSE (ALFA=0)sDISPERSE {ALFA=1)x

Variation du nombre de mailles

Cing simulations ont été réalisées successivement avec les mémes para-
métres physiques, mais en prenant des découpages différents : 64, 32, 16, 8 et 4.
mailles (figure 3). Les résultats pour 32 et 64 mailles sont quasiment confon-
dus. Avec 4 mailles seulement, les résultats sont encore extremement bons.

¢ {jowrs)
18

tis3

RANMSES+ s+« «PRECISION DES RESULTATS EN FONCTION DU NOMBRE DE MAILLES(64.,32,16.8.,4)
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Comparaison aux solutions approchées de Raimondi et de Lau

Quelques tests ont montré 1l'excellente concordance avec ces solutions
analytiques approchées dans leur domaine d'application. Une étude systématique
(figures 5 et 6) en donne une vue synthétique.

On verra que, moyennant le choix de variables adimensionnelles conve-
nables, il est possible d'établir un abaque universel donnant la courbe de res-
titution au point de prélévement pour des conditions simples d'injection du
traceur. Quatre abaques ont pu €tre tracés qui correspondent & la combinaison
des deux types d'écoulement (convergent et divergent) et des deux méthodes
classiques d'introduction du traceur (continue et impulsion).

I1 est montré gque, malgré l'absence de solution analytique exacte,
on peut mettre en évidence des formules analytiques approchées qui, dans cha-
cun des quatre cas, restituent les courbes avec une bonne précision tant que
le nombre de Péclet reste suffisamment élevé.

CHOIX DES VARITABLES ADIMENSTONNELLES

L'examen de 1'équation différentielle (4) met en évidence la dépen-
dance de la concentration C vis-a-vis des deux variables indépendantes r et
t, et des trois paramétres a, A et e (ainsi que des conditions aux limites
notées Cy,) A= Q
2 thw
sgn(Q) € = +1 : divergent

€ = -1 : convergent

C = C(r,t,a,A,e,C,) avec

Cr(t) = concentration sur la limite amont

Distance réduite

. . r . . . . . . .
On choisit rg = E-oﬁ o, coefficient de dispersivité, a la dimension
d'une longueur.

Temps réduit

La durée de référence a été prise égale au temps t, de transfert du
point d'injection & la distance r considérée, par convection pure
w Trlh 2
't S ee—t—— = —
C Q 2A
D'ol l'expression du temps réduit
t 2 At

R 7T TR

Equation aux variables réduites

Le remplacement dans (4) de r et de t en fonction de r
a4 1'équation aux dérivées partielles suivante
32¢c aC tR  82C 2

R
(6) =0 - g - 4= + ==+ et —1]
drp? . Torg TR dTR TR TR | TR R

R et tR conduit

3C_, ,RZ 3%

o
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Donc
LTS

C = C(PR,tR,E,CL)

Seul subsiste le paramétre € qui caractérise le sens de l'écoulement,
ainsi, bien slr, que les conditions d'injection.

N.B. : Traditionnellement, (Ogata, Rdfﬁ%;ﬁ%, Lau +..), te temps réduit tp
est remplacé par la variable T :
- lol + _Jal £ _1

_ 1 2
2 Thw ¢ a2 2 R (?R)

Ce choix conduilt & une équation aux variables réduites plus simple
que (6) et plus propre & l'intégration analytique. Elle a cependant
1'inconvénient de recourir d une échelle de temps qui dépend d la
fois de w et de o. Les abaques que 1'on obtiendrait de cette fagon
seratent impropres & un ajustement manuel des paramétres. D'autre
part, le temps réduit tp a une signification analogue 4 celui que
1'on utilise dans les modéles linéaires : =t

Courbe de restitution

Lorsqu'on s'intéresse aux courbes de restitution, la position spatiale
du point de prélévement est fixée, et le rayon a prendre en compte est r
distance entre points d'injection et d'observation.

max’

r
max

Donc, rg = devient paramétre, et la seule variable indépendante

est tR.

Nombre de Péclet

T ur
La distance réduite rp = :ax = Dmax est alors le nombre de Péclet P

défini au paragraphe 2.

Concentration réduite

L'amplitude des courbes est déterminée

- par la concentration imposée en amont dans le cas d'une injection continue,

- par la masse injectée instantanément dans le cas d'une impulsion bréve (pic de
Dirac).

Daps le premier cas, le recours d la concentration réduite

s'impose.

-C .
CRFE 7T

max

Dans le second cas, on pourrait normer les courbes de telle sorte que
leur aire soit unitaire (réponse impulsionnelle) :

_ C
CR*=
j c(t)dt

(o]
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Cependant, l'utilisation de cette norme est mal commode pour 1'em-
ploi des abaques, et peut rendre difficile 1'interprétation de la courbe
en effet

H

~ il faut alors commencer par planimétrer la courbe expérimentale avant de la
tracer en coordonnées réduites. En effet, la masse restituée est toujours
inférieure 3 la masse injectée car il ¥ @ un minimum 4d'échanges, et ce dans
des proportions trés variables.

~ la valeur de 1'aire calculée est fortement influencée par la gueue de 1la
courbe que 1'on ne peut mesurer que partiellement (colt d'une longue mani-
pulation) et qui généralement refldte des bhénoménes tout autres que la
dispersion (échanges notamment),

Les courbes ainsi normées permettront donc difficilement d'identifier
la dispersivité ; c'est pourquoi, dans le cas d'une impulsion, on a aussi rete-
nu la norme de l'amplitude du maximum observé :

Un abaque a &té tracé pour chacun des quatre cas cités avec injection
d'un échelon ou d'un pic de Dirac, dans un écoulement convergent ou divergent,

L'évolution de la concentration réduite en fonction du temps réduit
(de 0 & 2,5) a été reportée pour différentes valeurs du nombre de Péclet : 1000,
300, 100, 30, 10, 3 et 1.

——-——-—.——_——————_-———————_—

Le puits central est soumis 3 une injection & débit et concentration
constants. La figure 4 présente les courbes de restitution & différentes dis-
tances réduites 5 du puits central.

tig. 4

RAMSES ] ABAQUE POUR UNE INJECTION CONTINUE DANS UN ECOULEMENT DIVERGENT
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Comparaison & la solution approchée de Raimondi

Cette solution, publide par Raimondi et al, (1959) et citée au para-
graphe 2, peut €tre transcrite en variables réduites sous la forme

(7) Cg = 0,5 Erfe /3P _i-tp
I tR0975

L'approximation de Raimondi (Bear, 1972) obtenue.en négligeant 1l%in-
fluence de la dispersion en un point comparée 3 1l'effet cumulé de celle qu'il
a subie auparavant n'est valable que pour les nombres de Péclet élevés.

DISPERSION EN ECOULEMENT RADIAL

1.0 T T = -
\‘\

Raimondi

————— Progromme Romses

.',"/// g
77 AN v
Q”\//‘/ '1‘/‘ I! UI - iy
'? ‘H‘)"I"’O »\O‘P
g 3 . . .
% 0.5 10 15 20 25

. n
Fig.5- Injection continue en écoulement divergent
{ Approximotion de Raimondi)

Les différences entre les courbes de restitution calculées par la
solution de Raimondi et 1l'abaque de la figure 4 sont mises en évidence sur
la figure 5 pour des nombres de Péclet de 1 & 1000.

On remarquera que les courbes de Raimoﬁdi passent toutes par le
peint central Cg = 0,5 pour tg = 1.

L'erreur trés faible pour P > 100 est encore tolérable pour P = 30,
mais devient trés forte gquand P < 10,
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Comparaison & la solution approchée de Lau
Cette solution, publiée par Lau et al.{1859) et citée au paragraphe 2

peut €tre transcrite en variables réduites sous la forme
0s25

/a_P'l-&]

0,5 Erfc [
n'est

(8) Cgp = 0,
2 tR
Cette approximation obtenue (Bear 1872)en supposant que le traceur a
une distribution normale, somme de deux effets indépendants et linéairement ad-
9

ditifs (dispersion longitudinale et divergence des lignes de courant)

valable que pour les nombres de Péclet élevés,

DISPERSION EN -ECOULEMENT RADIAL

10

Lau
O
Programme Ramses 8
E / - 3 ~
, L .
/‘/bZ/;—‘/‘/Jj

20 5
e

‘ivergem

Injection continue en écoulement
( approximation de Lau)

Fig.6 -

Les différences entre les courbes de restitution calculées par la
solution de Lau et 1l'abaque de la figure 4 sont mises en évidence sur la fi-
3 1000.

gure 6 pour des nombres de Péclet de 1
On remarque que la aussl toutes les courbes passent par le point
1'erreur faible pour

central CR = 0,5 pour tR =1
De méme que pour la solution de Raimondi

P 2 100 n'est plus acceptable pour P < 10
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La solution de Lau conduit & des &carts légérement plus accentués

< .

pour tR 1
Par contre, aux valeurs de t_ > 1, la solution de Lau est meilleure

que celle de Raimondi. R

INJECTION CONTINUE DANS UN ECOULEMENT CONVERGENT

Le puits central est le siége d'un pompage & débit constant. Le traceur
est injecté 3 débit massique constant dans le piézométre satellite avec une sur-
charge suffisamment faible pour ne pas perturber la symétrie radjale de 1l'écoule-
ment.

La figure 7 présente les courbes de restitugion au puits central
pour des injections & différentes distances réduites =

L3

ad

or

i
1.9 2.0 2.3

fig.7

RANSES n ABAQUE POUR UNE INJECTIDN CONTINUE DANS UN ECOULEMENT CONVERGENT
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Comparaison entre &chelons en &coulement convergent et divergent

La figure 8 met en évidence les &écarts entre les courbes de réponse
d une injection continue en écoulement divergent d'une part, et en écoulement
convergent d'autre part pour des nombres de Péclet de 1000 3 10, Les écarts

ne sont pas donnés pour P = 3 et 1 car leur amplitude devient telle que les
zones Sse recouvrent.

DISPERSION EN ECOULEMENT RADIAL

C. B
1,0 — T -
R ,"?0 A /”ZSO <
Divergent g < 4 iy =N
e 0
----- Convergent & e o
(1 |
o5t S, 1
<& S50, \o Sg
R Je .
% 0,5 1,0 1,5 20 25

Fig.8 = Injection continue en écoulements convergent et divergent

On constate que la montée en concentration est systématiquement plus
rapide en écoulement convergent qu'en écoulement divergent. En particulier,
pour tg = 1, (Cp > 0,5 en écoulement convergent

Cgr < 0,5 en écoulement divergent.

Si les courbes sont confondues pour P 3 300, elles sont nettement
démarquées pour des valeurs inférieures.

Comparaison entre &chelon convergent et monodimensionnel uniforme

Les écarts entre la restitution d'une injection continue en écoulement
radial convergent et en écoulement monodimensionnel uniforme (champ de vitesse

uniforme et absence de dispersion transversale) sont mis en évidence par la
figure 9.

La courbe de restitution a pour équation dans ce dernier cas (Ogata
et Banks, 1861} : .

(9) CR = 0,5 Erfe ﬁ;(—J-:-..tR_). + EXP(P) . Erfc ﬁ(l'ftR)
2 @ 2 ,/{;
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DISPERSION EN ECOULEMENT RADIAL

Cr
10 : - ———— —
e s
Convergent Sk % ﬂo g —
. . ANy e ]

——===— Monodimensionne! 4 7 52 o
05+ )

. . .

0 15 20 2,5

Fig.9 — Injection continue en écoulement convergent comparaison
ovec écoulement monodimensionnel

On observe une trés bonne concordance tant que P 2 3. L'équation (9)
donne une meilleure approximation de la réponse & 1'échelon en écoulement con-
vergent que les équations (7) Raimondi et (8) Lau pour le cas divergent.

IMPULSTON DANS UN ECOULEMENT DIVERGENT

Le puits central est le siége d'une injection & débit constant. A 1'ins-
tant t = 0, on y introduit une masse m de traceur, solubilisé dans l'eau d'in-
jection. La durée d'introduction du traceur doit €tre bréve comparée au temps
de transit de la substance jusqu'au piézométre de prélévement. Cette condition
initiale d'injection instantanée peut alors €tre représentée par une fonction
de Dirac.,

L'abaque de la f%gure 10 fournit les courbes de restitution & diffé-
rentes distances réduites < du puits central,

Pour les raisons exposées précédemment (concentrations réduites), les
courbes sont normées par l'amplitude du piec.

RN !
0y .\‘\\ {
1]
-~ P2
‘C
os 2. 2
3 - %
. ®, $ v ¥ \a
Y o 8 Y4 Lk B
o4 'y o Py E 3
02 4
0 / v\ ta
[} [ 2% a0 1.8 2.0 2.3

lig.10

RAMSES = ABAQUE POUR UNE INJECTION INSTANTANEE DANS UN ECOULEMENT DIVERGENT
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Comparaison entre Dirac divergent et monodimensionnel uniforme

Les écarts entre les restitutions d'une injection instantanée en

écoulement radial divergent et en écoulement monodimensionnel uniforme sont
mis en évidence par la figure 11.

La courbe de restitution a pour équation dans ce dernier cas :

_ K P
(10) CR = 7:E_E exp[- W (l—tR)Z]

I e P - 2
X = TR . e XD ['-I-_'t-_ (1 tRmax) ]
Rmax

DISPERSION EN ECOULEMENT RADIAL

Cr
o i; | r
/ £ Y / ZTS A Divergent
/ 4 5 N7, Monodimensionnel |
A / [ \ “ \(,////
S d SN
I L LRS- ‘//
A 78N :

“Z
| & 77
ost ‘ E 1 :‘ of .." . R . /

O &y
é Sns R\ Fry
7B E T WS 2. A
v P 3 *
7 y 518 W& o ‘o
; // ] o %o o 3
© w >
2 \ >
7 G - ) R e
e, /A i ¢ -t 2%
/ o’ 7 d A O oo
& Z £ LY, o,
0 ’ ‘ 5 : =
o] 0,5 1,0 15 20 2,5

tr
Fig. 11 - Impulsion breve en écoulement divergent comparaison ovec
ecoulement monodimensionnel

On observe une excellente concordance tant que P > 1,
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IMPULSTION DANS UN ECOULEMENT CONVERGENT

Le puits central est soumis & un pompage continu d débit constant.
On introduit une masse m de traceur ¢ans le piézométre satellite. Cette masse passe

rapidement dans 1'écoulement qui ne doit pas &tre sensiblement perturbé par la
surcharge nécessaire & l'injection du traceur.

La figure 12 présente les courbes de restitgtion au puits central
pour des injections & différentes distances réduites e

" Vi
[ 77%%

-~
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o R o N
< N s v x
g & ¥y kb ,
o &3 - > s
[ % -\ - ‘_’ ;
.°

O 02 10 1.8 2.0

fig.t2

RAMSES = ABAQGUE POUR UNE INJECTINN INSTANTANEE DANS UN ECNULEMENT CONUERGENT

Comparaison entre Dirac divergent et convergent

La figure 13 indique les écarts entre les courbes de restitution &
une impulsion bréve obtenues dans les deux types d'écoulement : divergent et

convergent.
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DISPERSION EN ECOULEMENT RADIAL

Cr
1,0 T 7T T T
. " Y, ‘l{-
— / B
/ ‘\‘._'9‘ Convergent
__ 7 F \'-’,- ————— Divergent
= ) %V>
: // q ! ) \,—
o5t £ : \ X2 :
A‘ et ""? g f g f g ‘\ ""’,
— < A A %2,
[~ l o q”. E X A Py ,, .
: ) ’% “O / (=)
. V74 5 % 2 -
- s N ,I
/5 Z 5 Q 22, =
. A 7 > T —]
e o ol 1 - L T
% 05 7.0 15 20 25

Fig. 13 = Impulsion bréve en écoulements convergent et divergent

On observe une quasi-identité des courbes pour P > 100, Pour P g 100,
les différences deviennent trés importantes.

Dans tous les cas, les courbes de restitution en écoulement convergent
montent plus tSt qu'en divergent, avec un pic décalé en avant dans le temps.

Comparaison entre Dirac convergent et dérivée de la réponse & un échelon
en écoulement monodimensionnel uniforme

Les écarts entre la courbe de restitution 3 une injection bréve en
écoulement radial convergent et la dérivée de la réponse 3 une injection continue
dans un écoulement monodimensionnel & vitesse uniforme sont rapportés figure 1u,

La courbe de restitution s'obtient par dérivation de 1l'équation (9)
par rapport a t

R H
' 3
(11) Cp = —=— exp |- — (1-tp)2
t 125 4t
R R
avec : ; p 5
t _ o+l ———— -
K' = tz2>  exp [ut (1—¢Rmax)
Rmax
_ 312 3
ou tRmax = vyl + 7 5

Une formulation équivalente a été proposée pan Lenda et Zuber (197973
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N.B. : Il est courant de confondre dérivée de la réponse & 1'échelon et réponse
d une impulsion de Dirac, parce que l'impulsion de Dirac est la dérivée
de l'échelon unité. Or, les deux fometions (10) et (11) ne correspondent
pas auxr mémes conditions aux limites. Pour (10), i1 s'agit de la migra-
tion d'une masse constante de Traceur, alors que powr l'équation (11),
qui constitue le cas limite d'un eréneau de surface domnée, dont l'éear-
tement tendrait vers zéro, une concentration nulle est imposée en x = 0
dés que tp > 0, et la masse n'est plus conservatrice.

DISPERSION EN ECOULEMENT RADIAL

T —

Convergent
—=——= Dérivée échelon monodimensionns! 1

Fig. 14 - Impuision bréve en écoulement convergent comporpison.ovec lo dérivée
de lo réponse ¢ [ écheion en écoulement monodimensionnel

On observe une trés bonne concordance +ant Que P > 3,

CONCLUSTON CONCERNANT LES FORMULES APPROCHEES
Dans les quatre cas &tudiés, il a été montré que des Formules analyti-
ques pouvaient fournir une solution approchée 3 condition Que le nombre de Péclet
P soit suffisamment élevé. Les résultats sont synthétisés par la table II.

La figure 15 permet la comparzison des réponses 3 une impulsion dans

les deux types d'écoulement et leurs solutions approchées, pour un nombre de
Péclet égal 3 dix.

" DISPERSION EN ECOULEMENT RADIAL

10

0.5

Fig. 15 — Comparaison entre écoulements divergent convergent
Diroc monodimensionnel et dérivée de l'echelon monodimensionnel
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5. - INTERPRETATION DES_COURBES DE RESTITUTION

L'interprétation des courbes de restitution dans 1l'hypothése d'un
schéma convectif-dispersif (ou encore Piston-Diffusion) consiste & ajuster les
paramétres w, porosité cinématique et o, dispersivité, de fagon 3 ce que la
courbe théorique correspondante soit aussi voisine que possible de la courbe
observée,

CONDITIONS D'APPLICATION DES ABAQUES

— i e — . — — — —— G — e S m—— — S m—

Les abaques ont &té construits dans 1'hypothése d'un transfert pure-
ment hydrodispersif dans un aquifére homogéne. En réalité, les courbes de res-
titution mesurées présentent une trainée ou gueue plus ou moins accentuée
(cf. figures 17 & 25) ; celle-ci peut &tre due aux phénoménes suivants

- Echanges par adsorption-désorption avec la phase solide et réactions chimi-
ques. Ces phénomeénes peuvent etre pratiquement é&liminés par le choix d'un
bon traceur (Gaillard et al., 1976 - Molinari et al., 1977).

- Echanges entre l'eau en mouvement et une phase d'eau immobile (Gaudet et
Vachaud, 1977). L'effet de cette phase immobile est semblable a celui d'une
mince couche paralléle dont la vitesse d'écoulement serait quasiment nulle
(Brissaud et 2l1l., 1976).

- Aquifére de structure multistrate : si les échanges entre les différentes
couches restent faibles, chacune conduit & une courbe de restitution de type
piston-diffusion. La courbe observée dans l'ouvrage de prélévement en cons-
titue une combinaison fonction du flux capté dans chacune des couches.

Si les vitesses des différentes couches sont suffisamment différen-
ciées, la premiére partie de la courbe (montée, pic et éventuellement début de
descente) permet d'identifier les paramétres de la strate la plus rapide.

Le reliquat non expliqué par cette premiére interprétation pourra
tre interprété comme provenant de couches & vitesse moins rapide, véhiculant
une fraction de 1'écoulement radial trés variable suivant les cas. L'exemple
n® 1 met en évidence une structure bicouche bien caractérisée.

Effets de 1'écoulement régional

~

L'interprétation en écoulement & symétrie cylindrique n'est valable
que si le piézométre satellite est suffisamment proche du puits central pour
que l'influence de 1'écoulement naturel de la nappe n'y perturbe pas sensible-
ment la symétrie.

La dissymétrie créée par 1l'écoulement régional peut Stre calculée
d'aprés Bear et Jacob (1965) ou Sauty et Thiery (1975) : le temps de transfert
entre le forage central et deux points situés & la méme distance r de part et
d'autre de ce forage et sur l'axe.de l'écoulement régional est :

Twhr? [1 +‘2£ h Vo

= 5 T 0 r pour le point en amont
t = E%EE_ (1 - %1 hQVé r pour le point en aval,

avec v, vitesse de Darcy de l'écoulement naturel.
N.B, : Ce résultat obtenu par développement limité n'est valable qu'au voisinage
du puits lorsque 9 '

<
T % Zhvg
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INTERPRETATION AUTOMATIQUE

La méthode la plus usuelle pour interpréter les courbes en écoulement
uniforme consiste & ajuster automatiquement les paramétres o et w par minimisation
d'une norme d'écart entre les points de mesure et la courbe théorique définie
par son expression analytigque exacte.

En fait, en écoulement radial, on ne dispose pas de telle expression
analytique. On a le choix entre :

- interpréter 3 l'aide de la solution analytique approchée. Le résultat ne sera
suffisamment précis que si le nombre de Péclet est au moins égal a 10.

- ou bien calculer les courbes théoriques pour des couples o et w-obtenus par
interpolation dans un réseau de courbes calculées par voie numérique et stoc-
kées sur ordinateur sous forme discréte.

INTERPRETATION MANUELLE

Une autre méthode d'interprétation consiste 3 ajuster manuellement
en reportant la courbe mesurée sur un abaque.

La difficulté matérielle provient de la nécessité d'ajuster simulta-
nément deux paramétres. En fait, le réseau de courbes est tel que 1l'on ne ren-
contre pas d'ambiguité quant & 1l'ajustement d'un couple de paramétres ; de plus,
1'indétermination sur les résultats reste de l'ordre de 10%. Ceci est nettement
suffisant, compte tenu de la nature imprécise des phénoménes etudles et des pré-
cautions 3 prendre peur -en- extrapoler les résultats., -

L'interprétation manuelle a été appliquée 3 quelques tragages en &cou-
lement radial convergent par injection breve.

Interprétation en coordonnées semi-— logarlthmlques

La méthode adoptee est la suivante :

- les concentrations mesurées sont normées par l'amplitude du pic :
Cr = C/Cmax

- les points de mesures (Cr, t) sont alors reportés sur un papier semi-
logarithmique transparent (échelle logarithmique des temps).

- la courbe ainsi obtenue est comparée aux courbes de l'abague de la figure
12bis (injection instantanée dans un écoulement convergent), qui est une
transposition en coordonnées semi-logarithmiques de la figure 12.

- on obtient aprés translation suivant l'axe des temps, la colncidence entre
la courbe normée (ou au moins partie de celle-ci) et une des courbes de
1'abagque.
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ABAQUE POUR UNE INJECTION [INSTANTANEE
DANS UN ECOULEMENT CONVERGENT

-9 1 2. 25
R

figure 12 bis

—

- le nombre de Péclet est celul de la courbe théorique en coincidence.

- le temps de transfert par convection est le temps réel de la courbe mesurée,
en correspondance avec le temps réduit tr = 1 sur la courbe théorique.

- connaissant le débit (Q), 1'épaisseur aquifére (h) et la distance puits-
piézométre (r), on déduit directement la dispersivité a & partir de P et la
porosité cinématique w & partir de t,.

Interprétation en cocordonnées cartésiennes

Cette identification peut aussi etre réalisée 3 1'aide de 1'abaque de
la figure 12, en conservant 1l'échelle cartésienne pour les temps. Dans ce cas,
il est nécessaire de transposer les temps en variables ré&duites : tg = t/tp. Le
paramétre t. (fonction de la porosité cinématique) étant a priori inconmu, il
convient de faire plusieurs estimations successives

- si la valeur essayée pour tp est trop faible, la montée de la courbe de res-
titution sera trop lente, comparée aux courbes voisines de l'abaque (fig. 16) ;

- si t, est trop élevé, la montée de la courbe de restitution sera trop pentue ;

- en quelques essais, on trouve une valeur de t; pour laquelle la courbe (au moins
en sa partie ascendante) s'accorde avec le réseau de 1l'abaque ;

- il suffit alors de lire la valeur correspondante du nombre de Péclet par inter-
polation entre les courbes voisines.

Cette dernidre méthode ayant 1'avantage de mieux mettre en évidence
la précision 3 attendre de 1'identification, c'est en axes cartésiens que seront
présentés les exemples d'application.
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EXEMPLE D'APPLICATION

On trouvera, ci-aprés, cinq exemples d'interprétation de courbes de
restitution. Le traceur retenu pour ces expérimentations a été 1l'iodure de sodium
pour lequel des études méthodologiques antérieures, réalisées dans des sols de
nature comparable (Gaillard et al, 1976 ou Molinari-et Peaudecerf,1977) ont mis
en évidence un comportement trés voisin du tritium, tout en étant d'un emploi
moins onéreux.

L'interprétation physique des résultats ainsi que la méthedologie
pratique de tragage sont décrites par ailleurs (Gaillard, Rousselot, Sauty, 1977).

On s'attachera ici & 1'ajustement de o et w sur la premiére partie
de la courbe, et qui correspond donc a la couche aquifére la plus conductrice.

Tracage n° |
La courbe de restitution a été reportée quatre fois en variables ré-
duites pour des valeurs de t, égales a 20 h, 12h, 11lh et 10h (figure 16).
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tig.16 . TRACAGE NtI! . COURBE DE RESTITUTION EN VARIABLES REDUITES

La courbe t, = 12h, proche de la courbe P = 20 en début de montée,
est trés proche de la courbe P = 10 en son sommet. Donc, te < 12,

De méme, la courbe to = 10h, trés proche de la courbe P = 20 & sa
base, est & mi-chemin entre P = 20 et P = 40 3 proximité du pic.
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11h s'insére trés bien dans les observa-
20. La valeur correspondante du nombre de

Par contre, la courbe t
tions de courbes, & proximité de &
Péclet est de l'ordre de 18,

"o

On peut ensuite calculer la porosité cinématique et la dispersivité :

- Q tc _ o =T _
w77y * 8,4% et o = BT 0,3 m.

La courbe P = 18, te = 1lh est ensuite reportée dans les axes réels,
avec la courbe de restitution observée et ses points de mesure (figure 17).

. soncontration mesaris
a—  SOSTDe sjestes (e oNh,PsiB)
——— COUTHE ODISTISS

700, son '

tig. 17 . Trocope &®) .. Cowrbs de restitution Interpritées

Ce premier exemple met en évidence une "explication” trés incompléte
par le modéle Piston-Diffusion sur une seule couche : écarts importants entre
courbe ajustée et courbe réelle sur la seconde partie.

En fait, une étude géologique plus approfondie (Gaillard et alj 1977)
présence de deux couches géologiques bien différenciées et continues depuis le
piézomdtre d'injection jusqu'd 1'ouvrage d'exhaure. Cet exemple sera repris a
la fin du présent paragraphe.
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De nombreuses autres expériences de tragage sur le terrain ont été in-

terprétées par cette méthode (cf.Sauty, 13877) :

- essais de plusieurs valeurs de t, pour choisir 1'échelle des temps puis inter-

polation du nombre de Péclet ;

- la courbe est ensuite reportée dans les axes aux dimensions réelles.

Les contraintes de publication nous limitent 3 en présenter un seul exem-
pPle. Le choix du tragage n°® 4 est intéressant car il montre un accord quasiment

parfait entre la mesure et le schéma théorique (fig.

-
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Fig. 19

Trogage n°4 . Caurke de restitution Interpréitée

I1 conduit & l'identification des paramétres suivants

te =18 h 3 w=14,5% 3 P=1,3 3 0 = 6,9 m.
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Réinterprétation du tragage n°l par un modéle bicouche

S1 1l'on compare sur la rigure 17 l'alre comprise entre les courbes
ajustée et mesurée el la droite C = C, = 10 ug/l, on trouve un rapport de 0,43.
Donc seuls 43% de la restitution sont expliqués par le modéle monocouche. En
fait, les coupes dressées pour les forages indiquent une couche priviligiée
de galets d'épaisseur 1m. Le restant de la couche aguifére en eau est consti-
tué de 4,9 m de formations glaciaires beaucoup moins conductrices.

La premiére partie de la courbe de restitution peut donc &tre attri-
buée & la couche de galets avec 43% du débit puisque le traceur a été soigneu-
sement homogénéisé sur toute la hauteur d'injection. La seconde partie, avec
57% du débit, conduit & l'ajustement de la courbe théorique P = 8, t¢ = 33h.

La figure 26 donne l'interprétation finale du tragage n°l avec indi-
vidualisation des transferts par chacune des couches supposées non communicantes
en premiére approximation, selon le schéma de BRISSAUD et al. (1976).

La connaissance du débit Q = 4 m3/h et de la distance puits-piézométre
r = 5,3 m permettent de calculer les caractéristiques des deux couches

couche de galets w]

21% 0]
formation glaciaire w,

18% 0o

cipe/t)

clpet}

restitation ¢o }s ime soucds

rastiiution glodele
18re + 2dms couchs

/2SN ==

rYy Ton *0n 40h son N TOM o

Fig, 20

== , = Trogoge | . Interpratotion por un modéls bicovehs.

==
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6. - CONCLUSIONS

Une méthode numérique a permis de calculer les courbes de restitution
de traceurs en écoulement radial convergent ou divergent suivant deux types
d'injection : continue ou breéve.

Des formules analytiques ont été comparées & ces résultats.

Les courbes de restitution ont été assemblées sous forme d'abaques
construits pour les valeurs de paramétres adimensionnels rencontrées dans la pra-
tique. Une méthodologie d'interprétation manuelle a été mise en oceuvre pour ajus-
ter les paramétres de porosité cinématique et de dispersivité de la couche aqui-
fére la plus rapide sur des courbes de restitution obtenues sur le terrain.

I1 a aussi été montré que cette méthode manuelle permet d'identifier
les paramétres d'une formation bicouche lorsque les vitesses dans chaque couche

sont suffisamment distinctes.

Puisque la courbe de restitution d'un tracage radial peut etre simple-
ment interprétée, et que ce mode de tragage peut €tre réalisé économiquement sur
les puits munis de piézométres satellites (Gaillard et al., 1877), il serait
souhaitable d'entreprendre systématiquement ce type de mesure, notamment lors des
essals de débit des captages destinés 3 la consommation humaine.

On pourrait ainsi mieux définir au voisinage de captages 1l'extension
des périmétres 3a protéger contre un transfert de polluant dans le milieu saturé.

Par la méme occasion, on verserait au dossier de la dispersion dans les
nappes d'eau souterraine des mesures nombreuses réalisées in situ. Ces mesures,
nécessaires pour des études systématiques en fonction de la géologie des aquifeé-
res, ou en relation avec d'autres paramétres tels que la perméabilité ou la gra-
nulométrie, font actuellement défaut.



/1/

/2/

/3/

4/

/5/

/6/

/7/

/8/

/8/

/10/

/11/

/12/

/13/

/14/

J.

J.

F.

J.Jd

Bl

A.O

J.P

J.A.

L.F

R.B.

33

LISTE DES REFERENCES CITEES

BEAR, M. JACOBS .- On the movement of water bodies injected into aguifers .-
Journal of Hydrology, t.3, n°l, 1965, p. 37-57.

BEAR .- Dynamics of flulds in porous media .- New York, American El8evier,
1972,

BRISSAUD, Ph. COUCHAT, C. ESCANDE .- Une étude des propriétés dispersives

d'un milieu aquifére a l'échelle de 1'échantillon .- Journal of Hydrology
.30, n° 1-2,-1976; p. 113-126.

. FRIED, M.A. COMBARNQUS .- Dispersion in porous media .- In : Advances in
hydrosciences, New York, London : Academic Press, 1971, :Vol. 7, p. 169-282.

GAILLARD, J. GUIZERIX, J. MARGAT, R. MARGRITA, D, ROUSSELOT, J.P. SAUTY .-
Evaluation pratique par traceurs des caractéristiques de transfert de
1'eau, vecteur de polluants, dans la zone saturée des aquiféres .-
Vienne : A.I.E.A., 1976.

. GAILLARD .- Méthode de traceurs pour la détermination des paramétres de

transfert de substances en solution dans l'eau des aquiféres .- Thése,
Université scientifique et médicale de Grenoble, 1976.

. GAILLARD, J. GUIZERIX, J. MARGAT, J. MOLINARI, P, PEAUDECERF .- Etude

méthodologique des caractéristiques de transfert des substances chimiques
dans les nappes .- &6éme rapport, Résultats de la recherche ATP CNRS,
Paris 1976.

. GAILLARD, D. ROUSSELOT, J.P. SAUTY .- Applications d'une méthode économique

de détermination sur le terrain des paramétres de dispersion .-
Hydrodynamic diffusion and dispersion in porous media — Symposium AIRH Pavie,
1977 _

. GARDNER, D.W. PEACEMAN, A.L, POZZI .- Numerical calculation of multidimen-
sional miscible displacement by the method of characteristics .-
J. Soc. Petroleum Engrs., vol.4, n°l, 1964, p. 26-36.

. GAUDET, G. VACHAUD .- Simulation de 1l'infiltration en régime transitoire
d'eau et de soluté dans la zone non saturée .- Colloque national pour la
protection des eaux souterraines - Orléans, Mare 1977, BRGM, Service
Géologique National, vol.2, p. 203-212.

HOOPES, D.R.F. HARLEMAN .- Waste water recharge and dispersion in porous
media .- Hydrodynamics Laboratory, Massachussetts Institute of Technology,
Report n° 75, 1965.

. KONIKOW, J.D. BREDEHOEFT .- Modeling flow and chemical quality changes in
an irrigated steam-aquifer system .- Water Resources Research, vol.10,
n°3, 1974, p. 546-562.

LANTZ .- Quantitative Evaluation of Numerical Diffusion .- J. Soe. Pesroleum
Engrs., 1971, p. 315-320

L.XK. LAU, W.J. KAUFMAN, D.K. TOOD .- Dispersion of a water tracer in radial

laminar flow through homogeneous porous media .- Hydraulie Laboratory
and Sanitary Engineering Research Laboratory, University of California,
Berkeley, 1959.



/15/

/16/

/17/

/18/

/19/

/20/

/21/

/22/

/23/

/24/

/25/

/26/

/27/

/28/

34

A, LENDA, A, ZUBER .- Tracer dlspers1on in groundwater experiments .- Vienne,
A. I E.A. ETOceedings of a symposium, 9-13 march 1970.

J. MOLINARI, P. PEAUDECERF .- Essais con101nts en laborat01re et sur le ~“terrain
en vue d'une approche 51mpllf1ee de la prévision des propagations de sub-
stances miscibles dans les aquifdres réels .- Hydrodynamic diffusion and

dsterSton in porous media - Symposium AIRH, Pavie 1977.

S.P. NEUMAN, P.A. WITHERSPOON .- La méthode des éléments finis appliqués a 1'hydro-
géologie - Finite element methods in hydrogeology .- Bulletin du Bureau de
Recherches Géologiques et Miniéres, Section III, n° 4, 1973.

D.B. OAKES, K.J. EDWORTHY .- Field measurements of dispersion coefficients in
the United Kingdom .- Groundwater Quality Conference, Reading, 6-8 sep-
tembre 1976.

A. OGATA .- Dispersion in porous media .- Ph.D. Thesis - Northwestern University,
Illinois, 1958.

A. OGATA, R.B. BANKS .- A solution of the differential equation of longitudinal
dispersion in porous media .- U.S. Geological Survey, Professional paper
411-4, 1961.

H.O. PFANNKUCH .- Contribution a 1'étude des déplacements de fluides miscibles
dans un milieu poreux .- Revue de L'Institut Frangais du Pétrole, vol. 18.
n°2, 1963, p. 215-270.

J.F. PICKENS, W.C., LENNOX .- Numerical simulation of Waste Movement in Steay
Groundwater Flow Systems .- Water Resources Research, vol.12, n°2, 1976
p.171-180.

G.F. PINDER, H.H. COOPER Jr. .- A numerical technique for calculating the
transient position of the saltwater front .- Water Resources Research
vol.6, n°3, 1970, p. 875-882.

G.F. PINDER..:drlﬁAGalefkin Finite Element Simulation of Groundwater Contamination
on Long Island, New York .- Water Resources Research, vol.9, n°6, 1973,
p. 1657-1689.

H.S. PRICE, J.C. CAVENDISH, R.S. VARGA ,- Numerical methods of higher order
accuracy for diffusion-convection equations .- J. Soc. Petroleum Engrs.,
vol.8, n°3, 1968, p. 293-303.

P. RAIMONDI, G.H.F. GARDNER, C.B. PETRICK .- Effect of pore structure and
molecular diffusion on the mixing of miscible liquids flowing in porous
media .- 4.I.Ch.E., Soec. Petrol. Eng., Joint Symp. "07l Recovery Methods",
San Francisco, Preprint 43, 1959.

J.P., SAUTY .- Computer simulation of pollution front movement .- In : Ground-
water in Europe, New York, Water Information Center, 1972, p. 69-86.

J.P. SAUTY .- Propagation de la pollution dans les nappes .- Conférence de
l'Association Nationale pour la Protection des Eaux, Paris, 1975, 7 p,



35

/29/ J.P. SAUTY, D. THIERY .- Utilisation d'abaques pour la détermination de périmétres
de protection . Note technique n® 6 aux géologues agréés en matiére d'hy-
giéne publique .~ BRGM, rapport inédit, 75 SGN 430 AME, 1975.

/30/ A.E. SCHEIDEGGER .- The Physics of Flow through Porous Media, 2éme ed. .-
Toronto, University fo Toronto Press, 1360.

/31/ G. SEGOL, G.F. PINDER, W.G. GRAY. J-lA’GélggkinV . Finite element technique for
calculating the transient solution of the saltwater front .- Water Resour-
ces Research - vol.11, n°2, 1975, p.343-347.

/32/ U.Y. SHAMIR, D.R.F. HARLEMAN ,- Numerical and analytical solutions of dispersion
problems in homogeneous and layered aquifers . - Hydrodynamics Laboratory,
Massachussetts Institute of Technology, Report n°89, 1966.

/33/ H.L. STONE, P.L.T. BRIAN ,- Numerical solution of convective transport problems
.- Journal 4. I.Ch.E., vol.9, n°5, 1963, p. 681-688.

/34/ J.P. SAUTY .- Contribution & 1l'identification des paramétres de dispersion dans
les aquiféres par l'interprétation des expériences de tragage .- Thése,
Université scientifique et médicale de Grenoble - Septembre 1977.



Symbole
A

c(r,6,t)
ou C

c

K'

3

Dimension

sans

L2 7t

T025

Tl2*5

sSans

L3 71

sans

36

TABLEAU I

TABLE DES SYMBOLES

Constante du calcul en écoulement radial A = Q/2rhuw

Concentration en masse par unité de volume

Concentration m%yenne sur un cercle de rayon r:
2

= _1
C=5 foc(r,e,t) . do

C/Cmax

avec Cmaxconcentration maximale de la courbe de restitution
Tenseur de dispersion

Concentration réduite CR =

Epaisseur aquifére en eau

Facteur de normation de la courbe de restitution d'un pic
de Dirac en écoulement monodimensionnel uniforme par une
concentration maximale unitaire

- +035 P _ 2
K= tp'> . exp [LL T (1 tRmax) ]

Rmax

Facteur de normation de la dérivée de la courbe de restitution

d'un échelon en écoulement monodimensionnel uniforme par une
concentration maximale unitaire

t = +1s5 P - - 2
K tapo. v €XP [4 . (1 tRmax) ]
Rmax

Nombre de Péclet de 1l'aquifére muni de son dispositif de
mesure
P:.__.urzz
D a
avec r : distance puits-piézométre
Débit injecté (Q > 0) ou pompé (Q < 0) dans le puits central

-~ Variable indépendante, distance 3 1l'axe des puits
- Plus particuliérement utilisée pour désigner la distance
puits-piézométre

Rayon du front convectif pur & l'instant t:

Ve At

T =

Rayon central de la maille d'indice i

PR =

efs

= P rayon réduit (distance réduite puits-piézométre)

Temps, vafiaﬁié_ihdépeﬁdénte.
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Symbole  Dimension

tc T Temps de transfert par convection pure du point de pré-
lévement au point d'injection

to * (w m2h)/Q = r?/2A
t sans Temps réduit t, = t/t. = 2 At/r?
R R C

tRmax sans Temps réduit correspondant au maximum de la courbe de
restitution

u L 17! Vitesse effective de pore 3 la distance r : u = Q/(2wrhw) = A/r

a, ap L Dispersivité longitudinale ou coefficient longitudinal
intrinséque de dispersion.

o L Dispersivité transversale

At T Pas de temps pour l'intégration numérigue

Ar L Pas d'espace pour l'intégration numérique

€ sans Facteur donnant le signe du débit

e = +1 Q>0 injection
e = -1 Q<O pompage

¢ sans Porosité totale

A sans Coefficient de pondération amont-aval du terme convectif
dans la méthode numérigue

8, sans Coefficient de pondération implicite-explicite du terme
dispersif dans la méthode numérique

0, sans Coefficient de pondération implicite-explicite du terme
convectif dans la méthode numérique

w sans Porosité cinématique
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TABLEAU II

Formules approchées représentatives des courbes de restitution

type type formule approchée domaine de

écoulement dinjection validité
RAIMONDI (7): Cp = 0,5 Erfc'(_'s’P E:EB__} P> 10
. . ) \4 .tR0=75
divergent continue =
LAU (8) : C, = 0,5 Erf [43£ 1= VIR P> 10
R 2 150025
Echelon vitesse uniforme (1 dimension);
_ (9) Cp = 0,5(Erf U-tR), P |
convergent continue 2 Yty ) P> 1
Erde YP(1+tR)
2 Yt
Impulsion vitesse uniforme (1 dimension)*
divergent impulsion (10) Cp = — . exp|- £ (1-tg)2 P> 1
VtR HtR
"Dérivée de (8)
convergent impulsion (11) Cg = expi- £ (1-'!:R)2 P> o3
t 123 4t !
R R




