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RESUME

Ce rapport présente les notes de cours prises lors du Séminaire
sur 1l'emploi de la Méthode des Eléments Finis en Hydrogéologie, qui s'est
tenu & Orléans-La Source du 4 au 15 septembre 1972, organisé conjointement

par le BRGM, 1l'Ecole des Mines de Paris et le Volcani Center (Israg&l).

L'enseignement a été donné en anglais par :

. le Professeur P.A. WITHERSPOON, Professeur de Géologie de 1'Ingénieur

& 1'Université de Californie,

. et par le Docteur S.P. NEUMAN, Senior Scientist au Volcani Center d'Israél.

Le texte, constitué de notes directement rédigées en langue anglaise
pendant les cours du séminaire n'a pas encore été revu par les conférenciers,
et nous présentons nos excuses pour les erreurs qui peuvent s'y trouver.

Nous remercions d'avance les lecteurs pour les remarques et corrections

gu'ils pourraient nous signaler.

Une nouvelle version de ce document, traduit en frangais et corrigs,
paraitra au début de 1973 dans le bulletin du Bureau de Recherches Géologiques

et Miniéres, section III.



Introduction

This document is a first draft of notes taken during the SEMINARS
ON FINITE ELEMENT METHODS IN HYDROGEOLOGY, which were held in Orleans from
September 4th to September 15th 1872. It has been directly written in
English during the lectures delivered by Pr. P.A. WITHERSPOON (University
of California) and Dr. S.P. NEUMAN (Volcani Center).

This copy has not yet been corrected by the lecturers and we
apologize for the errors that might be encountered. Any remark and correc-

tion will be gladly met.

The completion of this paper needed a lot of work for which we
are much indebted to Mr. G. ASSENS, J.-L. DESSENNE, E. LEDOUX, G. de MARSILY
and M. VANDENBEUSCH.

We especially aknowledge the work of Mrs. G. PAQUIN who typed

very efficiently the manuscript with soc many mathematic symbols.
A corrected version of this document translated into French will

be issued next Spring in "Bulletin du Bureau de Recherches Géologiques et

Minieres”.

J n—P- SAUTY )
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CHAPTER 1

INTRODUCTION : DEFINITION OF THE PROBLEM

The problem of groundwater flow in a region R is to determine the head

h and the velocity vy at any point x, in R, given

i
- boundary conditions, which may be of 2 types
« prescribed head on A1

. prescribed flux on A2
- permeability in R, which may be heterogeneous and anisotropic, with different
anisotropies in each point.

In 2 dimensions, this permeability is represented by a tensor, noted

K11 Ki2

K,
ij K21 Kz2

- storage coefficient, SS or S

- thickness of aquifer in the case of

horizontal plane flow Az

APV III I
- pumpage from wells . A P

‘y R \d-c A
AZ%ZZ%Z%Z?ZZZZZZ&Z&Q
2

- areal recharge or discharge.

EQUATIONS : in steady state

N
avl
equation of continuity Y 0 (1)
1 r on R
’ = -— ——ah
Darcy’'s law vy = KiJ 5 (2)
J
>
Prescribed head on A1 h(xi] = H(xi) on A1 (3)

Prescribed flux on A v (x,}ondx.,) =V (x,) onA (4)
2 i1 A i 2



Equations (1) + (2) give

? ah )
. [Kij Bx.] =0 on R (5)
1 J

h and vi are unknown functions defined on R

Repeated indeces indicate summation over 1i,j = 1,2,3. -

VARIATIONAL PRINCIPLES

A functional § of a function h is a real number Q(h) associated

with any function h defined on the region R.

Different functions h1 and h2 defined on R will give generally
different numbers Q(h1) and Q(hy). If an appropriate functional Q is defined
for the problem stated by equations (1) to (5), the unique solution h of the
problem of flow in R is the one that minimizes the value of §(h).

.

In a schematic representation :

(k)

A
/\?o/ofion
FUNCTIONAL FDOR STEADY STATE
It is, in terms of head :
1 oh dh dh
Qlh) = JEKij PRETS dR J[h H) Kij N ni dA + JVhdA
J 1 J
R A1 A2

We will see later how this can be derived.

Those integrals are definite integrals.



PRINCIPLE OF FIRST VARIATION

The first variation of Q(h) is defined by

. _d v
§(h) = == |@ (h + khE]A=U

dA
N N
where h is any admissible function satisfying h=0 on A1
ah
n =0 on A2

where n is the normal at A2'

Property : the functional Q(h) 1s appropriate to solve the problem if and
only if é&Q(h) = 0.

VERIFICATION OF THE VALIDITY OF THE GIVEN FUNCTIONAL FOR STEADY STATE

Let us apply the principle of first variation

-

3(h + AR) 3(h + AM)

- 1
sath) = 5 7 K45 T ax 5% dR
i 1
R
(
n 3(h+AR) n
— | th+ah-m g, 20*AR) oga + | v + AR dA
ij 9x i
J
Ay A, A= O
Since KiJ = Kji'
3h  3h - Y ah n
sQ(h) = Kij5§3'3§; dR - Eh—H)Kiﬁ;T + R Kijs;; n,dA + | Vhda



n
Let us apply Green's first identity to the functionSKij 3;E and h ;
we can write :

n
(RO PO 11 DR Ly R e PLl PP 1 :LLY RS
axi ij ij ij ij axi ‘ i

Substituting this identity in 6Q(h) and after some manipulations we

obtain :
N3 3h ah 3h n
8Q(h) = = |h—K,, =— dR - |(h-H) K,, —— n.dA + K., =—Nn;:+V{ h dA
axi ij ij ij axJ i ij ij 1
R —— A1L'Y\I Azw
o 8 Y

B

Then, §2(h) 1s an appropriate functional for the resolution of our problem

described by equation (1) to (5).

y = 0.

For arbitrary ﬁ, this 1s equal to zero if and only if a

SUFFICIENT CONDITION

If 62(h) = OVﬁ.ﬁ must vanish : so the therms o, B and y are all
equal to zero. These terms represent the governing equation (5) in R, and the

boundary conditiors (3) and (4) which are then satisfied.

NECESSARY CONDITION

If equations (3), (4) and (5) are satisfied, the corresponding
integralsare equal to zere and then 8Q(h) = O,
The given functional Q(h) is consequently an appropriate one, and the solution

h of our problem is the function that minimises £{h).



ANOTHER FUNCTIONAL FOR STEADY STATE

If we want solutions in terms of head and velocity simultaneously, another
functional must be defined. For instance, the study of dispersion leads to use

a functional in terms of h and v, :

i
Qh,v,) = v an + ﬁ-v K_1 v drR - (h-H) v, n, dA + |V h dA
i i Bxi 2 1 ik 'k i i

R | A1 A2

this functional gives a solution to equation (1) to (4). It is possible with it
to have better approximation of the velocity thahfgﬁs%”ﬁsgﬁg°253%%igx (2) when
the head is known (less discontinuity). In this case, the solution of the problem
can be shown to be given by the scalar function h and the vector function Vi that

minimise simultaneously the value of Q.

FUNCTIONAL FOR NON-STEADY STATE

SS will be the specific storage. The equation of continuity becomes

v,
—2 = -5 ah on R (6)
axi s 3

3 oh _ 9h
3;; [Kij 3;3} = Ss 5T on R (7)

Boundary conditions are defined again by equation (3) and (4). It is necessary

to give initial conditions
hix,) = h on R (8)
i 0

Using GURTIN's approach, it is possible to introduce the initial conditions (8)
into equation (8).

Let us apply the Laplace transform to equation (6), using equation (B)

(x = F'pt x dt)

(o]

and noting x the Laplace transform of x :
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Using the following property of Laplace transform :
——
Xey = J x(z)y(t - 2) dz = (x*y) ( # = convolution)
A .

and coming back to the real functions we obtain

1 % — = - SS(h - hO) which combines equation (B8) + (8)

Our system of equatiomscan now be written

.
1% 2 K, 20 . S (h-h) on R
IX, ij ox s o}
i J
< h =H on A1
3h _
K1J axj n, = Vv on A2

An appropriate functional 1s :

a(h) = J -;-* Ky § aaTh*a—:D + SS(-;—h *h - h* hol]- dR
L. J i
R
[ ah
-l e (h-HYxK,, = dA + | 4xVxh dA
) ij axj i
A A

1 2



We can also calculate the first variation of this functional, using

Green's first identity :

_ ) dh v
sQ(h) = “Ja—— |[K,,=—| +S_ (h-h){ » hdR
axi ij axj s o

R
ah oh N

-] 1w [hH x Km0 dA | 1w |K == n, + V|xh dA

ij ax i ij oax i
J J
A, A,

Again, 89(h) = 0 if and only if the functional @ is appropriate to solve
the non steady state problem, and this can be shown here. We also have the

functionals :

11 _ ’ v, avk . 1 3vk
Qlv.,) = K, (= v, =v_ Jxv, + = x dR ~{(h -H)*v *n dA -|=—* (v ,n_-V) % — dA
i (n] u] i i S

A ik'2 'k i 25S axi 3xk A AC ii Bxk
1 2
ath,v,) = [l1av =20 Loy wkCl v - s hx( heh ) |dR - [1%(h-H)xv,*n dA +|1xVxhdA
i i9xy 2714k 'k s ‘2 0 i i
R Ay A,

METHOOS OF MINIMISATION OF FUNCTIONAL §

There are several methods : RITZ, COURANT, KANTOROVITCH, steepest descent...

RITZ's Method is the most common and will be presented.

RITZ'S METHOD

Oefinition of an operator

The governing equation of flow in R can be writtenmore simply :

Ah(x,,t) = f(x.,t)
1 1



9
A is an operator [%.g. H I : %E = Ah‘] and ¥ is a given function (e.g.
rechargel.
n
The boundary conditions can also be written :
T

Gn h(xi,t] = gn(xi,tl on Fn ™

Gn is alsc an operator, and gn a given function.

dh _ . - 39
Exemple : Kij % N T Vv Gn = Klj I N
J J
gn‘:'—V

Definition of the inner product

For 2 functions u,v defined on a region R, the inner product is defined by :

<u, v> = j quR
R

The inner product with convolution is
<uxv> =j u*xv dR

R

Self adjoint operators (symmetric operators)

<Au,v> <u,Av> when A is differential

<Auxv> = <uxAv> when A involves convolution,

for any pair of sufficiently smooth function u and v satisfying the equivalent

homogeneous boundary conditions of a given problem.

Basic assumptions of RITZ'Method

with the equations

Ah-=+fF on R
h = gn on T



the equivalent variational principle is to find the minimum of the functional

Q(h). Using RITZ’' method, we will make the following assumptionsl

a) Operator A is self adjoint and positive bounded below

b) Operator A is linear : this is not strictly necessary with RITZ'method, but
will be assumed here

c) One can use as an approximation of the true function h a finite serie hN of
the form :

N _ ‘ . . -
h (xi,t] -_an (t) En (xi) {summation : n 1, 2 «e..N)

an(t) are called the RITZ coefficients. They are constant in steady state.

En(xi] are called coordinate functions, or generalised coordinates. They are
linearly independent. They form a basis for an N-dimensional subspace

of a Hilbert space.

As h belongs to a Hilbert space, an infinite series would be necessary in orde
have an exact expression of h in this way. The quality of the approximation is

governed by the magnitude of N.

for any given N, the best approximation of the true function h by the function
hN can be shown to be the one that minimizes the functional Q :
For example, if we can have a sufficient approximation of the true solution with

N =1 (h1 =a, Ei], it will be obtained by minimizing Q(h1]. This can be done by

writing :
89(a1£1)
—— = 0 ; a, = constant.
da 1
1
With N = 2, we obtain the best estimate h2 = a1£1 + a2£2 of the true function h
by minimizing Q(hz), that is to say
}9) (a,lg1 + a2£2] i
=0 3 a, = constant
831 1
<
o (a,f, + a E.)
171 272 =0 3 a., = constant
d9a 2
. 2 -
N

and so on for h .
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FOUR MAJOR PROBLEMS

al

b}

cl

d)

FINITE

What is the best way for choosing g[xi] in the region R ?

As in an aguifer there exist 2 kinds of boundary conditions, how to have

the gn(xil satisfy these boundary conditions for every shape of those boundary ?

ex. 51 = sin(x) , &2 = sin2[xJ will not fit a given boundary

condition (h = H for instance) on any shape of the limit.

How to write with mathematical expressions the functions f on R, and gn. H,

V on T, and how to treat these expressions ?

If the transmissivity varies in R, how to choase the éi to fullfill this
cbligation ?

ELEMENT RESPONSE TO THESE PROBLEMS

.-

We take a finite number of finite elements and try to soclve the problem

independently in each of these elements, and then to combine together the

different solufions.

A grid is thus introduced in RITZ'method. But in finite element, we will

calculate an integraloverthe surface of the element, while in finite differences-

we

have a partial differential equation that is applied at a point of each element

CONVERGENCE

Problems come with the convergence of hN towards h when N increases.

~ Uniform convergence is IhN -h|l —0 iné R

- convergence in the mean is J[hN - h]2 dR - 0O
R

N-——)oo

N &> o
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In uniform convergence, hN -+ h for any X, .
With convergence in the mean, it is possible that hN be very different

of h in some points :

hl
1
:
]
,f"' 2= 'f ==
]
v

Uniform convergence always implies convergence in the mean, but not vice-versa ;
convergence in the mean is faster than uniform convergence, because uniform
convergence must be exact at each point of R. Faster means here that the number

N of terms need not be so high.

Finite elements methods insure only convergence in the mean. Therefore,

we are not sure to get good solution everywhere.

(cf. MIKHLIN,arussian scientist, 3 books translated into English. Base of

-

variational principle).

OETERMINATION OF THE &p

Problem : find hN represented by a sequence angn

N

ho = angn
We associate with each node n, whose gldbal coordinates are Xz, a region Rn
including all the neighboring elements, and a global coordinate function En(Xi)

defined by :

1
Q

En[X?) = (Kronecker 9)

nm

"
o

n
£_(X,) in € R

gn varies linearly inside R"

En is called the pyramidal or "chapeau” function



Consequences :

1) hN = hngﬁ (Lagrange interpolation scheme) X2 ///

The "RITZ coefficients” are equal to the //,//

value of hN at each node.

/N
N
|

[

2) One deals only with linear functions

3) It is easy to satisfy boundary conditions — X1

where h is prescribed : some”"Ritz coeffi-

cients”are thus determined "a priori”.
4) The matrix contains a great number of zeros which makes the resolution easier.
5) One can treat each element separately and assemble them later. This will be

shown below.

LOCAL BEHAVIOUR

In each element, Re, one defines local coordinate functions

5: linear on the element and satisfying:
n

2 S L I
e _ e
g2 (x) =0 Wi, &R

Each local coordinate function is a face of the pyramid which represents the

global coordinate function. This can be written :

£ (X)) =U Ee[X.] U = unions, which means
n i e n i :
_ e e
En(xi] = En[Xi], xiéF?

n, _ ,e..n,. n
g (X]) = E2(X]) Ve cr



Example : one-dimensional problem

¢
g;
VA
local & g? %
— X
! 2 3
e/t el’?
E;
global £
E2
- X
] 2 3
One can write
N .
h™ = hngn global coordinates

or hY=h U £® 1local coordinates
n n

LOCAL COORDINATES IN A TRIANGLE

They can be expressed by the natural coordinates

An(xi]
(bn[)(i] = R

¢n is a linear function having the same

13

=gl y g2
€2 62 52

properties as gi
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i = = = B s o = = =
If Xi is on point 1 A1 A A2 A3 0 ¢1 1 ¢2 ¢3 0

RELATIONS BETWEEN £- AND X; (see annexe paper p. 8)

1 1 1 1 £5
x| = | x! x2 x3 £y
Y vyl vz y3 £3

VALUES OF INTEGRALS OF E? OVER A TRIANGLE

An interesting property of the local coordinate functions is that their
integrals over a triangle depend only on the area of the triangle and not on its
shape.

Example : I dr

1]
o

Changing the variables to compute dR = dxdy we get

_ox _dx
Y3 dE
1 2
dx dy = d€1 d€2 = 2A d€1 dgz
8y _dy :
3, %€,
1 1-E N1
2 1-5 A
1=2A”g dg  dg =2AJdg £ dg =-2A{-——752] = 3
1 1 2 1 1
A o 0

For other integrals of this kind see tables of FELIPPA.

MINIMIZATION OF THE FUNCTIONAL

Qh) = 1-K.. ED_._éﬂ.dR - (h-H) K. _oh n. dA + | vh dA
2 ij ox, 9x ij ox. i
j o1 J
R A1 A2
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This may be considered as the total energy in R which we will minimize. In fact
the functional that we shall minimize will not contain the integral over A1 :
in the finite element method it is possible to impose very simply this boundary

condition by preseribing h = H on the nodes of A1.

_ [ 3h _dh
a(h) = J AT e, dR + J VhdA
R 3 A,

Elements

R is divided generally into quadrilaterals or triangles ; but each quadri-
lateral is divided into four triangles, so that the basic element is always a

triangle

Assumption : the head h is a linear function of the coordinates in the triangle:

h=a+ bX + cY

a, b, c are calculated by writing this equation at the three nodes of the triangle

h1 = a + bx1 + cy1
h2 = a + bX2 + cY2
h3 = a + bx3 + cY3

This gives the formula

21
h = 5A [}61 * b1X + C1Y]h1 + [82 + b2X + CZY]h2 + [a3 + b3X + CBY]hS:]
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with a1 = x2Y3 - X3Y2 b1 = Y2 - Y3 c1 = X3 - X2
a2 = X3Y1 - X1Y3 b2 = Y3 - Y1 c:2 = X1 - X3
a3 = X1Y2 - X2Y1 b3 = Y1 - Y2 c3 = X2 - X1

h is thus approximated by hN = hn U Ei 3 it can be verified that the En are
e

coordinate functions as those defined earlier.

For this_hN the functional can be written

N, _ e, _ e - e
2(h") = ath U ED é ath £°) é a (h)

because the integrals over the whole region R can be takenseparately aver each

element :
e e
3E 3
®h) =+ K. " h —h ar®+ |veSh an®
2 ij ax, m 9x n n n
e J i e
R A

and minimizing this expression we get :

e e
e 90f = 9k
a2y~ (h) = K. n m h dRe . v ge d Ae = 0
dh ij Ix, X, m n
n e J i e
R A2
Let us define the matrix :
e e
e I agn agm d R®
nm 1j- 8XJ Sxi



Then for the entire system it comes

a(h) e e e _
S - D R T J Ve dA = 0
n e A8
2
CALCULATION OF THE MATRIX Ai
e e
e agl'l agm e
AL = — — dR
nm ij BxJ Bxl
Re
age age age Bge . age BEB age age
AB K n m n m + m n + n m dx dy
nm XX 9X ax Xy ox oy yX 9X y yy 9y oy
A
e _ 1
gn Y (a + bnx + cny]
e 1
A = — [ (K b b +* K e b + K b ec + K ¢ c ) dxdy
nm XX N m Xy nom yx n m y m
4A
A
A = (Kb b+ K. oc
nm 4A XX n m

With axisymmetricproblems AA:m is multiplied by 2




CALCULATION OF [

e
Ay
e e e e 1+0 e 1 e
A = V = = -
\ En d En dA V > A 5 Qn
e
e A
A2 2
L @
Qn
Z3
%at

Let us define the global matrix for the entire system

A= ] A°
nm nm
e
- 10
Qn z 2 Qn
e
Anm m - Qn

The solution of this set of linear equations gives the value of the

head hm at each node of the grid.

18
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- CHAPTER 2 -

OTHER FUNCTIONALS

We can resume the different expressions of @ when this term is expressed
in fonction of h (head) or/and vy {(velocity) in steady state and non-

steady state.

1) Steady state - © in terms of h

ath) =f 3 kig & BMar -l (h-Hy ki 2D on, oda e V.h.dA
2 ij Bxi M ox. i A

1 J 2

2) Steady state - € in terms of h and Vs

ath, v.) = [ v, &1 Yy IR - (h=H) v.n,dA + V.h.dA
i i x, 2 i ik K ii
R i A1 A

2

3) Non-steady state - © in terms of h

1 dh dh 1
= —_ % {1 —_— —_— 4 X (— -
2(h) f > Kij ax."‘ 5% Ssh [2 h ho) dR
R - J i
.. oh
- 1 % (h-H) * Kij — n, dA + 1 %V x h,dA
ax, 1
A J Ay

4) Non steady state - Q in terms of vy

) 1 1 v, Avk
2lv,] /( Kik GV " Yk Vi T35 X ke M | R
R s i k.

- (h -H) % v x n.dA*[ lx(v,n, - V) x..a_v_l& dA
s] i 1 S ii oX
M A, s k

5) Non steady state - @ in terms of h and vy

dh 1 -1 1
Q(h, vi] !RExvin axi+ EivixKik vS Sshnzthho)] drR

- J 1 % (h - H) x vy X nidA + j 1 x V x hdA

A Ay
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For unsteady state, Q@ may be written

1 oh ah h
Q[h]_J[-foij—a_quxi +Ss[-2—xh hxho]]dR

R @
ah
- 1% (h - H) xK,, =— n, dA + (1 ®x V x h) dA
ij axj i
A1 A2

@ ©

For steady state, we don't take care of term(:)expressed along A,, because

1
the head is fixed and this term does not change.

For one element e, the functional becomes, using h = Nnhn l N =g

e 1 aNn aNm 1
Q (h) = =X K,. ™ h x——h +S |{=Nh xNh -Nh xNh dR
2 ij 8x, n 9x, m s{2 nn m m nn n om
Re J 1
+ J (1« v xNh)dA
nn

e
A2

So the first variation is :

v aNm aNm e e
8Q(h) = 1T wK, , x———h +1xSNN (h-h_ JIdR™ + {1 x v x N )dA
ij 9x, 9%, m s nm m om n
Re J 1 AB
2
We can put out the convolution inside the different terms.
~ aN_ aN .
§Q(h) = J 1 %xK,, = —2 h_ +SNN (h -h_ ) dr® + J (1 x UN _JdA™ |x1=
ij ox., ox, m snm m om n
R J i e
e A2

The term on left hand side of the convolution must be equal to zero, so

3N N
0= K., —r —2 xh +SNN (h -h )| dr® + (1 x UN_) dA®
ij ox, ox, m snm m om n
Re J i e

A2

The expression of the matrix AAim is
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. e
We introduce a new term Dnm

Dsm = SS /{; NndeRe For the value of these terms, we may use the
R table of local integrals over triangles

With the table of values, we can get immediately the value of Dim. This

value is defined by the geometry

l.a.

e _ SS A 3 (n # m)
nm 2
SS A ‘1—2' (n m)
We can evaluate
VN dA® =L g®
e n 2 n
A2 _

For the entire region, we obtain all the terms for integral calculus.

AA =% AA°
nm e nm

= e

Qn - é Qn

D =y Dp°
nm e hm

The integral becomes now

D (h - h_ ) + AA % h -1 xQ =20
nm n om nm m n

t
1% h i’ h (t) drt with the assumptions that h varies linearly with

M Jt-at
xi and with . time :
At
1 % hm = E— hm (t) + hm (t At;]

a
At must be gppropriatelysmall time increment.

Another assumption is that @ has linear variations with time

At
2

1x0Q = (Q (t) + Q_(t-at))= At @

Hence these two expressions permit to eliminate the convoluticons in the

integral

hm (t-At) = hom is the original head used in this time step.
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After the different simplifications, the expression becomes :

D |:h (t) - h [t—At]:[ + an L AL I:h (t) + h [t—Atﬂ = At T
nm m m nm 2 m m n
D Ew (t) + h_(t-At) - 2h [t—At]:[ YN N T R (t—AtJ] = At §_
nm m m m nm 2 m m n
1T At ] . At — 2
'5 |-hm(t] + hm(t At]] [Dnm + AAnm-‘—z-:[ = 5 Qn + -é- Dnm.hm(t At)
Anm will be definedas the term :
A =D + AA At for unsteady state (for steady state AA__ only)
nm - nm nm 2 nm

1

using Bn Dnm hm(t - At) + A%'ﬁg

and X

1 [h (t) + h (t - At):l
m 2 m m

for steady state we had AA h =1Q
nm ' m n

for non steady state AA X =B
nm m n

It will be provedlater that Dnm can be changedihtoa vector for better results,
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DISCUSSION OF THE EQUATION FOR NON-STEADY STATE ANO EVALUATION OF BOUNOARY
CONDITIONS

We reduce the number of equations from N to N-K where K is the number

of nodes where the head is known.

For example, one advantage of this method appears in considering a

partially-penetrating well with some constant pumping rate Qp.

Qp
In the well-bore h = f(t).
A\ 1
! 2} At any instant of time, we have
| 3
Lt 4 = = = = ?
| . h1 h2 h3 h4
= e ]
|4 The term X includes h (t) et h (t-At)
I 3 which are constant at any instant of time
g
} ‘ Ya)
well A11h1+A12h2+A13h3+A14h4+.......= B1
A21h1+...........+A24h4+.......= 82
A31h1+...........+A34h4+.......= 83
A41h1+...........+A44h4+.......= B4
A51h1+...........+.....+.......=....

Aij depends an geometry and different hi are equal in the equations :

the 4 first equations may be reduced to one equation

(A11+A12+A13+A14]h1+A15h5+..... = B1
[A51+A52+A53+A54]h1+A55h5+..... = B5
(A81+"f' +A84]h1+"" = B8

3 + 04 at any instant of time

We guess 01 - then we must calculate Q2' Qa and 04

But Qp = 01 + Q2 + Q

The result Qca1= Q1 + Q2 + Qa + Q4 is generally not equal to Qp

Hence the value of head cén be defined by
Q

h (t) = B x h (t)

m Q calculated
calculated

only for the first time step
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EXTENSION FOR SEVERAL TIME STEPS

Q total
At the end of the first time step ac’
% AQ 0
Q,,; is generally not equal to Qp ! S0, we ON —_—— P
adjust h_. At the end of the second time L
_ : ! I
step, equal to the first time step A¢, IA£z|
At2 = At1, the flow may be also different : |
D"F Q 0 1 | f/'[n.e'_
p &
At point m (node), we have : {(cal = calculated)
AQ
0 9 Q
= P - c P -
(h2] T [W[t2 0)] + 7T [W[t2 t1))
cal
ooe-y o e-y SS !‘2
with W(t2 - 0) = J —;—-dy - J 5 dy with u = 4Kt2
u o]
As At2 = At1, the value of t2-t1 is t2 -~ t1 = t,I -0
The value of (h,) is, in this case :
2 cal '
Q Q -0 Q
= B - - cC_p - P
(h2]ca1 7T W[t2 t1) + W(t1 0]) * T W(t1 0) Qp
W(t1 - 0)
where Qp° I has been calculated at first time step
0. -0
= - L
[hz)cal [h2 h1]correct ¥ (h’l)cor‘rec:t'+ Qp ' (h1)c0rrect
Q. -Q
= L P
(h2)correct * Q ' (h1) correct

The value of h, in the right hand side has been obtained after the first time

/I
step.

Finally :

= ..c B
[hzjcorrect (h2)cal Qp ' (h1]correct

For the third time step, we use

At3 = At2 + At1 ees @Nnd SO ON 44
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STEADY STATE - FREE SURFACE

We introduce 2 new boundaries

- seepage face
~ - free surface face

so we have 4 kinds of boundaries.

IR il
i .

h=H on A1 (2}

Kij %% n; = -V on A2 (3]

Such are conditions for confined flow.
For the seepage face, if we know the geometry of this face,

h = X3 on S (4)

If there is no infiltration, the free surface has a steady position.
h= n on F.S5. (5)

Kij g: n = In_ on F.S. (B) Infiltration is positive downward.

i 3
J
The determination of the intersection of the free surface with the

seepage face is the main problem.

Determination of a fonctional

1 dh .. oh
Q (h,n) -dﬁ 0l 5— . drR 4£. (h-H) Kij Bx ny dA
i
1
S

wlm
X |

@

{h- X ) Kij gﬂ-n dA  + V h.dA - J/[h -n) Kij —b-n dA
J : F J

@ ©

-InIn dA
2 3
©

Hence, terms of this fonctional are similar to those of the fonctional

for steady state in a confined aguifer.
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Let us introduce a perturbation in the value of h and n and

take the derivative of  at point (h, n)

A
d_ ¢ [h+xg, )] = 8Qlh + AR, n o+ Xn]| -
dX A=0 A=0
. A, n, A"
Q(h+ AR, n+AR) = 1 ggsthean) 3(hAn) o A ok 2 0EAN) g
2 X, X, 9X, i
_ R J i A1 J
n , m
-I(h+xﬁ-x TSR LA LILD AT +J/ V(h+AN)dA -J((h+xﬁ—n-xﬁ3Kijéifﬁﬁbl-n. dA
3 X, i - X i
S J A2 F J
;ffn+xﬁ] In, dA
3
F .
N n .
The first variation 8Q(h+Ah,n+An) &t A = o is :
) j ah  3h J oh 3h
ET‘= Kij X, "é—;.dR - {h-H)Kij x. + h Kij 3%, n, dA
h =R o J 1 A1 J J
ah 3h n
=V th-X_0Kij =2 + K Kij=— | n, dA +} V h dA
3 X, ax i
g J J /\2
f on von, dh v o
- Eh—n] Kij ™ + (h-n) Kij 3x | M dA -\n I ng dA
F -J J £
Using GREEN's first identity, with the two terms Kij %% and ﬁ, we
replace the first integral by
j 3h ah noD oh n 5h
Kij Ix. 3x. dR = -)h x. Kij . dR +}h Kij Ix . ni dA
R J 1 Al J
ffﬁ Kig 2B naa + ) Bkig P nda <K kiz & aa
ax, i ax, 1 ox, 1
S J A J F J
We substitute this value of the integral in df
dA A=0
Some terms disappear, the result being
after simplification
A"
v 2 s o e kg 2B
8Q (h,nl) = Rh axi Kij 3 . dR Zf[h H) Kij ax. i dA
@ % M ;

a
fthx ) kig D onda s [ kig 2 on s v B oaA
3 ij i A ij i
€ ° €
n
- (h-n) Kij L n, dA +} (Kij Cli) n, - In)) ﬁ dA
E axj i ij i 3

€& ]
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This represents the first variation of @ : the two conditions IF and
ONLY IF are :

» IF conditions (1) to (B) are satisfied AQ(h,n) =0
condition (1) satisfies member E, of the equation
" (2) " " E " )
" (3) " " E
" (4] " " E
" (5] " " E
" (6) "’ ” E

so 8Q(h,n) = 0O

o U W AN -
L A S N

+ and_ONLY IF these conditions are satisfied 8Q(h,n) = 0 for every value of ﬁ,

so all conditions (1) to (6) are satisfied.

Minimization :

With the basic assumption

h=a+ bx + ¢cZ

the problem is similar to the precedent | x -

ones.

We have 2 variables h and n :

we cannot solve the problem directly ; so we proceed as follows

step (1) - we take into account the prescribed head boundary conditions
on F and S
step (2) - we take into acecount only the prescribed flux boundary condi-

tions on F and S

and so on.

Example :

We fix the free surface:;conditions (4) and (5) are satisfied )
conditions (2) and (3) are easily satis-; for
fied )

IJstep(1)

we ignore condition (6)



28

T6 is ignored for step (1)

( T2 drops for step (1) and (2) (cf. see expression of the functional
E T3 " " (1) for the notations of the different

( 75 " " (1) terms)

( ,

(

We get a system AAnm hm = Dn

In step (1), flux is calculated along the free surface and the seepage
face : we get values of flux Q, along the free surface [QF) and the seepage
face (QS]. We set QF equal to the prescribed infiltration and maintain QS for

step (2],

In second step, we have now flux along the free surface and the seepage
face and can solve for head on F and S. F is then shifted to a new position

if necessary (if h # n on FJ.

The equation used im first step is :

ath) = | 2k, 23 o L] v.h.dA
2 ij ox,. axi
R J A,

. he .
The equation used in second step is

Qlh) = 1-K.. LUl dR + heV <dA + VehedA - h In, dA
2 1ij ox, Bxi s 3
R J S A F
2

In these two steps, we keep the same shapes for the free surface and
seepage faces.

Suppose that after step 2, we get a new calculation of values of head
along the 2 faces
- on the free surface, the head must be equal to n (which is the vertical

coordinate). We modify as shown below
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New posifion 9’"00&5
Q /5- 279 sfepp

After step (2), we must move the free surface. But the change of
positions of the different nodes must be done along the different directions
AA', BB', ...

This condition is required by :
- the fact that different materials can be situated on either side of the
directrice-1line (as AA', BB', ...J.
- the impossibility to move the free surface vertically if this surface

becomes almost vertical.

So the new position of nodes adopted after the second step is at the
intersection of the theoretical new surface (dashed 1line) with the lines

in directions AA', BB', ...
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UNSTEADY FLOW WITH A FREE SURFACE : PROGRAM FREESURF II

First approach :

- Dupuit assumption

- Dupuit assumes that:

1) There is no seepage face, the

free. surface is racorded to the level of the

water.

2) The direction of the Flow is everywherehorizontal.
3) The flow is proportional to the gradient of the free surface.

This gives rise to the Boussinesc equation :

9 9h ah

— ., — =S = i i = i
3%, (h K1J axj) y 3 Sy Specific yield effegtlve

~— porosity
T,., variable with h
ij

or :

3«  8n%, Sy an?
X, ij ax, h ot

1 J

This equation being non linear and difficult to solve, it is not

always advantageous to use the Dupuit assumption.

Furthermore, it is not very good near a well, and simply would not

work for the lowering of the water in a dam :

X3=loy

xollf VZ
7




Ky

In this case, the flux accross the free surface will not be zero

or equal to the infiltration : it is a new kind o¢f boundary condition.

Second approach :

We will use the equation

5 oh | _ 3h
8%, [Kij _a';j] " 7s ot

Ss is the specific storage due to compressibility of the porous
medium. It can be included in the computation, but is more or less.negligea-
ble, and is not included in FREESURF II. Therefore we will write.:

(1) = (k,, &

axi ij axj

] =0
This is a continuity equation for steady state.

(2) h [xi. o) = h0 [xi)
} initial conditions

(3) n [x1, X o) = ng (x

1 x2]
n is the elevation of the free surface at the point of coordina-

tes x1. x2.

If Ss = 0 in equation (1), as in Freesurf II, it is not necessary
to provide the initial condition (2) : the condition (3) provides the boun-
dary of the flow region, where equation (1) would permit to determine in each

point the flow and the head. Butthis calculation will even not be necessary.

Boundary conditions
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A, : h(xi.t] = H(xi.t)

1
ah o
A2 H Kij 3—)(3- ni = V(Xkat]

ny is the unit outer normal vector across the boundary

n(x,l, X t) = h[x1, X5 s t)
F :
doh _ L
1§ 3x; ng = (I =S, 3¢ Nyl

n, is the vertical component of ni

3

S : h[xi, t) = X3

Development of the equation of the free surface

ny

Suppose that we have a rising free ni //’4
surface.
Vi is the usual velocity vector

of Darcy.

The small element of surface dA rises

between time t and t + dt ; its displacement 3, verfical

dL is measured along the direction of the
unit vector n, s assumed to be orthogonal to * Zz

dA both at time t and t + dt.

The vertical component of dL is %%—dt . Let Ny be the component of

ni in the vertical direction Xge

The amount of water stored in the three dimensional element of

surface dA and thickness dL during the time increment dt is :

. an
s, dAdl = S dAgpdtng

\_’—\/—‘/
dL
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The amount of water entering into the element from below and from

above is
{v. n, + In_) dA dt
i i 3

The product vi ni is the component of Darcy's specific flux perpendi-
cular to the surface dA ; the other component parallel to dA does not parti-
cipate to the movement of the free surface.

I is the rate of infiltration, which is a vertical flow.

Identifying those 2 terms, we obtain the second equation of the

boundary condition on F.

It is this equation which introduces the non steady phenomenon intothe

steady state equation.

Third approach

Another way of solving the non steady flow is to use a succession of

steady states.

1/ For a given position of the free surface, the corresponding steady state

flow is computed.

2/ The Darcy velocity is computed at the free surface using this steady state.
This velocity is not zero because the position of the free surface is not

in a state of equilibrium.

3/ The free surface is moved for a given step At according to the in 2/

computed velocity :

displacement = %-dt ¢ = effective porosity.

See - Herbert, 1968, in the journal "Groundwater”. He used a RC network

{electric analog).

- Szabo & Mc Craig, 1968, Bulletin of Water Research Association. They

used a finite difference method.
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-~ Parekh, 1967, with finite elements.
- Taylor, 1971, with finite elements, in the Journal of irrigation and

drainage.
In this method, the previous free surface is used as the initial
condition for each time step, i.e. the formulation is explicit, which brings
stability problems : the free surface oscillates more and more as time

increases, unless the time step is very small.

On the contrary, our 2nd approach is entirely implicit.

Variational principle for the second approach

athom) = |+, 3 e -k, naa- ] h-x K, 2P A
2 ij ij X, ij ox, 1 3 ij axj i
R 1 A J 5
1
+ J VhdA J (h - n) Ky g nydA J NI - s gE) ngdA
A F J F

As the finite element method directly satisfies the conditions
h = H on A1 and h = X3 on S, the integrals on A1 and S disappear in the
expression of the functional.

The main problem is that at a given time, we must have a fixed mesh in
order to apply the finite element method : it is therefore not possible to insure
directly the condition h = n on F, and our variational principle is not

applicable.

We cannot use convolution in our expressions, because it requires

the region R to be constant.

is
‘The procedure that we will uééhto assume initially that %%-is known,

and to iterate.
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Let us calculate the first variation of Q

8§2(h,n) --dij- Q(h + AR, n + x?{)‘
X =0

n N
Substituting h and n by h + Ah, n + An, but not for the term %E

which is assumed to be known, and applying Green's first identity, we obtain

- -9 3h 11y - ah 9h v
8Q(h,n) = J [ %, [Kij axjH J [h - H) Ky 5 . n dA + “}ij—ﬁ?iﬂ] hdA
R

A1 A2
3h oh on v
”JE\'T]] KianidA +J|:Kij-a—x—.-ni—u_syﬁl nsjﬂdl\

F N F j

Y

ah N
J[h XS:I Ky 5% Mg 9R = O
5

This method of not perturbing the term %? of the first variation
enables us to derive a variational principle. Otherwise, the operator is not
self adjoint and there does not exist a variational principle. With our
assumption of %€ known, we obtain an implicit expression that can be solved

having been computed, we reiterate the computation : on is

il d, —
easily an 5t

an
ot
considered as a known source term.

Furthermore, it is possible to use the Galerkin method instead of
the Ritz method to solve this problem and the same result is obtained without

any preblem with the functional.

We can see on this first variation that our functional is correct,
v v
because, n and h being arbitrary, it is necessary for all the equations

written earlier, to be satisfied if we want 8Q to be zero.

For a given position of the free surface F, our mesh will be fixed

and we can very easily assure with finite element the boundary conditions:
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h = H on A1
h = X3 on S
h=nontF
. an _ dh
Furthermore, as h = n on F, we can write 3% 3t on F and the func-
tional 1s reduced to :
Lo 1 3h dh dh
Qlh) = J [2 Kij axj Bxi] dR + J VhdA J h [I Sy at] nSdA
R A F

2

Two-steps'itlerative procedure

1/ On F and S, prescribed heads are given. Using the steady state equation,

the flux ¢ is computed on F and S : we only need it on S.

2/ On S, the flux ¢ computed in step 1 is prescribed.

On F, a special boundary condition is given using the balance in the element.

The head is then determined.

Finite element equation

Substituting hN = hngn and minimizing Q@ with respect to hn gives
B -
Anm P ) Je & Sy 3¢ "z 9A = O+ C
F

where

Evaluation of Cn

a/ 2-dimensional problem

On the free surface Fe of an element e we have :
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AA

- e - a
C_ = In3 f En dA In3 >

FB
if AA is the length of the side along F of element e, as

n. = cos B

&>

>

3
It

e
AX1

e
C. =3 g I AX;
Y,

and

IA

F becomes a surface and we integrate over the surface F :

e e _
C = In3 Jegn dA = In

1
n E-AA
F

3

If one calculates directly the projection of the

circular surface AA over the horizontal plane, one gets

it
N
=]
P
>
Bl

where R1 andR0 are the radii of the nodal points of the element, and Xf

the average value of theseradii. Thus

e _ 1 e e
C. =3 g IAX, x2IX

These two forms can be written

1 2-D problems

o]
1

-1 e
Cn © 3 z a I AX1 where

Q
n

2HX? axi-symmetric problems
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Calculation of the displacement of the nodal points

The variation of the free surface with time, on (or Eﬁ-herel re-

ot at
fers to the vertical movement of the points; in order to have the actual
displacement of a8 node along a traqfverse line that may not be vertical,
x
a correction must be made. |

The nodal point m will move to m'
along line AA'. This movement
does not represent at all the one

of a fluid particle. Along the free
surface, the head h = n is a function

of time and X1 only.

Xt

(X;)n le)m
———
4 x5
The displacement of m to m’ along AA’' induces a variation of head
during the time step dt that can be calculated using the total derivative
%%. To get the partial derivative 3h along the vertical (X1 constant) we

ot
can write :

dh _3n 1 an

dt BX1 dt 3

As each segment of the free surface is a straight line and re-

d
mains a straight line from t to t + dt, it is possible to calculate E%i
as a function of this expression itself taken only at the nodeson .the

free surface 3 using the coordinate functions Ee:

dXy dX
dt p dt p

1
vy
~—
~—

The same thing can be done -For--qﬂ t

dt
dh _ .e dh
dt gm (dtJm
We then calculate 3h :
ot
8h _ Ee (Eﬁ) _ oh Ee (dx1)
ot m dt'm 3X1 m dt 'm
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Within element e, we can easily get E%D
1
3h_ _ An°
%, AXE
1
and
ixi = ﬁ’l— i’. = .d_rl Cot B
dat an dt dt & P
m m m
We finelly get
oh e [dh AR®
3 - En {EE) [1 - —5 cotg B J
m AX1

Introducing this expression into the finite element equation :

e 3h -
Anm hm ' X J E;rn Sy ot nSdA ) Qn * I:n
e ge

we obtain

e e |dh AR®
Aom Pm ¥ ! J & Sy & [E%J [1 - —geote Bm] ngdA =0, + €
€ e m AX1

We can take [g%} out of the integral as is it is a constant in aryelement
m

and we obtain, after calculation :

dh ~
Anm nm[a_f] "0t G
m
where

e e

Em 9g
A =} K,, = = dR

nm ij ox. 9x,

e J i
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o e e _
3 S,(AX] - Bh” cotg B) , n=m
e
D =
nm o e e
g 5 sy(ax1 - Ah” cotg B) . n#m
e
o = - g Jv g, dA
e
A
1 planar flow
c,oo- oz LI . a-
e II[(X,])n + (X1)m:l axi-symmetric

Dnm and Cn are equal to zero everywhere except on the free surface.

Integration of this equation with respect to time

k+1 Kk .
Let At =t -t k = number of time step

We have 3 possibilities of approximating the derivative of h with respect

to time :

a) Forward difference

This is not stable for any At. Note that this method could be called

"explicit” only if Dnm was a diagonal matrix.

b} Backward difference

hk+1 _ hk
Ak+1 hk+1 . DK+1 m m - Qk+1 R Ck+1
nm m nm At n n

This expression is stable. It can be called "implicit”.
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c) Centred difference, or Crank - Nicholson formulation

k k+1 Dk Dk+1
k+1 nm nm k+1 _ Kk k+1 k+1 K _ “nm _ “nm k
Anm At At hm B Qn * Qn eyt Cn nm At At hm

This equation is programmed in Freesurf II.

Subscript k indicates that A, D, h... are taken at time tk.

These gquantities are known and remain constant troughout the time step At.

Subscript k + 1 indicates valueSat time tK+1 : as they are
ignored at the beginning of the resolution, an initial value will be esti-
mated for the calculation of A, D and C and an iterative processus will be

generated :
. J J
. D D . , D D
J nm nm J+1 j J nm nm
A —— F — = - - —— = —
{_nm * At At } hm Qn ¥ Qn * Cn * Cn Anm At At hm

In this notation, subscript j indicates the number of iteration
applied to the evaluation of quantities at time k + 1. No subscript indicates

known guantities at time K.

This iterative procedure has two steps, denoted j + % and J + 1.

First step

Prescribed heads on boundaries F and S :

hJ”/2 = nj on F
m m

R 3

hm = [XSJm on S

one uses the equation written above to compute hi+1/2

instead of

hd*1
m

At the first iteration, an initial guess is made for the position

of F and the length of S at time t + At.
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When hi+1/2 is computed, it is possible to determine the flow

coming in or out of the systemﬁunqyth%oundaries F and S :

RIZ: L3172
n m

AJ
nm

Second step

Prescribed Flux on boundaries F and S :

Q%+1/2 is set equal to the value computed at the first step on S.
j*1/2 . X s o .
QF is set equal to zero if there is no infiltration, or equal to the
flow brought by infiltration, if there ié any, on F.
h%+1 is given by :

J J
. D D . . D D
J nm nm({ ., j+1 _ j+1/2 J _ _ _nm _ ni
{Anm * At * At}hm Qn ¥ t:‘}rl * Cn ¥ l:n Anm At At hm

An error is then computed

AN hJ
E = Max m m
SR T AR
m m
IfE>E , one shifts the free surface in order to achieve
tolerable

h =non F ; the intersection of F and S 1s determined in Freesurf II by
extrapolating the direction of F towards S using the two adjacent nodes of F

close to S.
Faft+dt

point 3 is extrapolated

linearly from points 1 & 2

Moving the free surface modifies the matrices Dim R Cg, Aim

and the processus continues.
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Problems that can be solved by Free surf II

1) Dams.

The level of water in the dam is supposed to be lowered, and not
risen, otherwise the Free surface could be too tortuous and could intersect

several times a transverse line, which, is not possible with this program :

\\

' /
-
\
/

\ VJ
—T
//// \\\\

Q .
,oroc'oc/t'on‘ tu 6”’9 .
( (a.s'my Inids E
Ve v m/la/ condifions

— - — —

-

- -
. — —
- Fr — —— —
- - -
Lo - -
- -
-
¢ | ¥ - -
d - ;\’
- -
- /’-
tz ¥ -
-

ts v

A ;’ (bovndory condifion A, aof fime Cs)
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At prescribed production rate

Freesurf II takes into account the effect of the capacity of the
well, using the inside diameter of the casing and the outside diameter of

the tubing.

We can write :

Q production = Q withdrawn from the well + QA S
1

(capacity effect) (withdrawn from aquifer)

We can assume that during time step At, there is a linear variation

of QS :
k k+1
Q.+ Q
Q production = B > P
" k k+1
Qw + Qw
Q well effect = >
k k+1
Q, + 0
. A A
Q aguifer = 5

If we define the volume produced during time step At (V = QAt) we

can write :

o, = AL 1 m"”:l - A [ok SN o"”]

_
av, = 22 ot 0"”] - A l:a'; ' QK+1:|

AVw = AL.H.(ri - ri] where AL is the lowering of the water level

in the well.

From this we get :

AL - At B I SRS
21 [r2 - r2] P p A A
c t S~ ~—~—

known unknown
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It is necessary to know AL in order to fix the water level in the

well and the prescribed head condition on A,. Therefore the resolution of

.
this equation is introduced in the iterative procedure. If j 1is the number

of iteration :

AL = O +Q -Q, -Q
ol (I‘2 _ FZ) p p A A
o] t

and R . :
LJ+1 =L - ALJ L being the level a time t in the well.

This permits to solve the problem of production in wells of large

diameter (cf. Water Resources Research, june 71, p. 618).

Freesurf II can also solve the problem of prescribed head imposed in

the well, instead of prescribed production rate.



- CHAPTER 4 - 26

VARIATIONAL PRINCIPLE

GENERAL PROBLEM

Let solve over a given domain the equation :

Ah = f

where A is an operator symmetrical and positive definite, f is a known

function and h is an unknown function defined in the same domain.

We will prove that there is only one solution and that finding

this solution is equivalent to determining the minimizing function of the

functional :
Q(h) = <Ah,h> - 2 <f,h>
UNTIQUENESS THEOREM
Assuming that : h1 #=h2
we should have two solutions : Ah1 = Ah2 = f
let : Ah = h1 - h2

Then : A(Ah) = f - £ = 0o
A being a linear partial differential operator, the last equation

implies

Ah = o or h, = h

VARIATIONAL PRINCIPLE THEOREM

We will demonstrate now that h is a solution if and only if h

minimizes the linear functional
Q(h) = <Ah,h> - 2 <f,h>

We assume that A is real, positive definite, linear and self-adjoint.



47

1. For the first part of the proof we assume that h is the solution of the
equation :

Ah = £

"
We now introduce some arbitrary function h having the same mathematical
properties as h and satisfying the boundaries conditions. We replace h by

h + ﬁ in the functional :
", n
QCh + h) = <ACh + R), h + h> -2 <f, h+ h>
2 and A being linear we can write :

QCh + B) = <Ah,h> + <Ah,P> + <AN,h> + <AR,B> - 2<f,h> - 2 <f,>

Qlh) + <Ah,B> + <Af,h> + <AR, N> - 2 <f,B>

Because of the self-adjointness of A : <Aﬁ,h> = <Ah,ﬁ>
Then : '
non .
Q(h + N) = Q(h) + <Ah,h> + 2 <Ah - £, B>

The last term of the right hand side of the equation vanishes because
Ah - f = o. '
So that :
" noA
@(h + h) = Q(h) + <Ah,h>

-

o A
A is positive definite, then if h is non zero, the quantity <Aﬁ.h> is

positive and we can write : -

Qth + B) > Q(h)

If h is a solution of the differential equation Ah = f, the funcfional
v

of h + h is always greater than the functional of h. Then h minimizes

Qlh).

2. For the second part of the proof we suppose that h minimizes Q(h) so that :
Qth + MR - a(h) 3 o

where AA is a very small positive number.

By replacing h by (h + AA%] in our definition of the linear functional we get
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. N n, ", n N
<Alh + MBI Zh + AAD> - 2<f, h + AAR> - Q(h) = <Ah,h> + <Ah,AAR> + <ABAR,h>
+ <AMAR.AAR> - 2 <f,h> - 2 <f,AAR> - Q(h)

In this expression the terms 1, 5 and 7 vanish, so that by using the self-

adjointness of A we finally get :

a(h + MB) - (h) = (AA)Z <AR.B> + 2(AA) <Ah - ,h>

The first term of the right-hand side of this expression is always positive.
",
AX and h being arbitrary, the only way for this expression to be positive or

equal to zero is to have :
<Ah - f, R> =0
This implies the following equation

Ah - f =0

So if h minimizes the functional Q(h), then h is a solution of the diffe-

rential equation :

Ah = f

- Why can we use the 1St variation test ?

We determine the first variation of Q(h) through :

sa(h) = > qQ(h + Aﬁ)’
N .
A=0

By definition this is the following limit :

§Q(h) = 1lim

AX > 0

2 [h + (+AR] - 2(h+aR)
EX )

=0

Q (h + AAR) - QCh)
3\

lim
AX>o
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Using the second paert of the previous theorem we can get the value of the
limit
n
8§Q(h) = 2 <Ah - f,h>

This is the proof that we can use this test. In clear :

1/ if h satisfies the partial differential equation then 6Q(h) = o
v
2/ if 62(h) = o V'K, then Ah = f

EXISTENCE THEOREM

We have assumed that Q(h) has a minimum and only one, if the ope-
rator A is positive bounded below. This means that for each h there exists

some real number y such that the inner product

2
<Ah,h> > y? [|n]]

2
where ||h|l is the norm defined as follows
2
||h|| = <h,h> in a Hilbert's space
This is a necessary condition but not sufficient.

Let us take a more general situation. What happens if :

Ah(xi,t] = F(xi,t] in our domein R
with non-homogeneous boundary conditions
G hi(x,,t) = g (x.,t) on T
n i n i

A can be an integrodifferential operator, that is differential with respect

to X4 but integral with respect to t (convolution).

Because of the convolution and of the non-homogeneous boundary conditions the
functional is given by

Q(h) = <Ah ®x h> - <f x h> + L I
n T

n

1
2
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The surface integral I , due to the non-homogeneous boundary condition, has

r
. n
two requirements :

a -~ 6&¢h) =o
b~ Gh-=g all over T
n n n

The principle of the calculus is

1/ take Q{h)
2/ get §Q(h)

3/ search for Ir {(not easy)
n

4/ verify that Gnh =8

~ Simple non-steady flow in a confined region

3 dh
T xoa K5 s
i 3

} = S (h-nhl]
s o]

with the boundary conditions
- prescribed head on A1 h =H

- prescribed flux per unit area Ki' —n, = -V
on A2 J

The problem is completely defined by this set of equations.
From the first differential equation we can get :

an operator Ah = 1 x — (K CLL

X, 1j ox, i Ssh
1 J

a function f =-S8h
Let us check the self-adjointness of A. We will take any two functions u, v,

satisfying zero boundary conditions. The question is

?
<Auxv> = <Avxu>
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Using the operator A as defined above we have on the domain R :

<Aumv> = J]}*——a—(K,.EU—-]mv—Suxv]dR
ax ij ox, s
R 1 J

Using now Green's first identity and remembering that the permeability tensor

K,. is symmetric everywhere in R, this identity becomes

ij
<Auxv> = JEIKK..iU—néL—Su*vJ dR
1j ox, axi S
R J

Kij and Ss,being not function of time,can be moved outside of the convolution
so that :

<Auxv> = 1x—a—-(K..§V—)xu—vau dR
axi ij ij S

The right hand side of this equality is equal to <Av x u> . This is the

proof of the self-adjointness of A in our example.

We can now write the actual funétional :

an) = - | 2wk, D x k- s [h-h|xhreT, +I
2 ijox, X s {2 0 Aq Aoy
J i
R R
We have to set : K; . CL n, = -V on A, and the surface integral
ij ox, 1 2
J
I has to be equal to :
A2
IA = - J 1%V x h dA
2 A
2
And for I
A1 oh
I, =+ 1 x (h-H) xK,.-—n, dA
A ) ij ox, i
1 A j

1



52

- Variational principle in terms of head and velocity together.

In the region R the flow can be characterized by the following set of

equations :
oV
- continuity equation (combined with initial condition) 1 x Eyviie Ss(h - hol
3h ' *
- Darcy's law v, = - K,, —
i ij ox,
J
- Boundary conditions h = H on A1
v

We will solve the continuity equation for h, assuming the velocity v as
known, and the Darcy's law for v, assuming the head h as known. The problem

is how to compute the functional Q in terms of h.and v, together.

i

Looking for Q(h), let us write the first differential equation
A1h = f

1
assuming that : A1h = - Ssh
avi
1c1 =1 x ox. Ssho

In terms of head the functional becomes

dv,
Qm]=-IE(L1—h)xh*-1x—ixh]cm+1
s 2 0 1

Bxi
R

Looking now for Q(vi]. let us write the second differential equation :

Avy = %2
assuming that-: A2Vi =T vy
oh
fa = 45 5%

3

In terms of velocity the functional becomes :

_ J_ oh
Q[vi] = J[; vy v, Kij B;E-x vé] dR + I2
R
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The question is how to combine Q(h) and Q(vi]. For that we must somehow get

vy 3h
1 % —~ x h looking as Kys =7 % v,
Bxi ij axj i

Green's first identity leads to :

v,

i .- oh
1 x Yo X h = 1 x vi X %
i i

Using K;E defined by : K.. K. = 6. where 6,

51 Kik jk ik is Kronecker delta,and

1. K.. disappears and we get in Q7(v,) a similar
K ij i

expression to the above one got by applying Green's first identity on
Q(h). |

multiplying Q(vi] by 1 x K;

By doing the union of §(h) and 9'(viJ we obtain the functional :
Q (h,v,) = @MIUQ (v,)
i i

or @

3 3h , 1 e, R
Q(h,vi] = J[} X V. X o + T XV, X Kik Vi Ss(§h hD] X ﬁ] dR + I
R

where I is a surface integral, very hard to find.

MATRIX SOLUTION OF THE PROBLEM (by G. GAMBOLATI)

It is possible to find the functional Q[h,vi] by using a matrix

formulation of the basic equations :

Continuity equation : 1 ¥ —— = Ss[h - hD]
on R

Darcy's law :ov, = ~-K
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This set of equations can be written :

avi
-Ssh+1¥5-x—;=-85ho
v, + K., oh_ =0
i ij Bxi

9
—SS 1*3‘; h ShD
i
-3— - KTT v 0
IX, ij i
L 1 - - - -

The matrix (D corresponds to the operator A, the matrix (:) to the vector
P and the matrix <) to the function f. From that formulation we can compute

the following inner products :

v '

1 1 dh -1

> J[(- Sgh + 1 x _axi] X h + [———axi K13 vi] X vi] dR
R

]

-;—<A1p X P>

<f % P> S_h_x h dR
50

1"
1
De—

The functional Q(h,vilhthen given by :

Q(h,vi) = Qly) = %-<Aw X w>'- <f w P>
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GALERKIN METHOD

The Galerkin method is applicable to both linear and non-linear
problems, but it has the disadvantage that the boundary conditions cannot
be embedded in the variaticnal statement of the problém. We start with the

following general set of equations :
Ah(x,,t) = f(x,,t) on R
i i
G hix,,t) = g (x,,t) on T
n i n i _ n
A is here just a differential operator. In general A is non linear and
non self-adjoint. Some restrictions on the shape of A have been found by

the previous researchers. But we use it now with no restriction and it

works. We assume that :

~ 1N - :
h = h"=nh(t) £ (x})

where hn[t) is the Galerkin coefficient and En(xi) the coordinate function.

The Galerkin criterion is based on the principle that the inner product

of two orthogonal functions is equal to zero.

The problem is then to find the function h such that :

<AhN - f, £n> =0

In this equation each one of AhN and f must be orthogonal to the coordinate

function gn. And finally we must have the following criterion :

<Ahm Em P £n> - <f, €n> =0

Remark :
If we go back to the Ritz' method, we remember that

Qlh) = <Ah,h> - <f,h>

1
2
Then according to this equation :

N, _ 1 _
Q(h) - Q[h ) = 2 <Ahm Em 2 hn €n> <'Fl hn €n>
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And the first variation of Q(h) will be equal to :

N
Gn Qlh) = <Ahm gm s gn> <f , £n>

This first variation must be equal to zero. This result is exactly identical
to the Galerkin’'s criterion. The only difference is that the Galerkin's
method does not require the variational principle. We do not introduce the
boundary conditions. This is hard in theory but easy in practice. The

Galerkin's method is very convenient for Finite Element Method.
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APPLICATION TO THE TRANSPORT OF SOLIDS

1. Treated by the Galerkin's method

- We will assume that we use an ideal tracer (some salt for instance), i.e.

the specific weight of the water will be the same with or without salt.

- We assume steady flow conditions. The continuity equation will be :

The velocity vy is constant with time but can change from place to place.

Then, let us take the following classical equation :

] D ac . ac =0 ac
ax1 ij axj i ax ot

in which Oij is a tensor,called dispersion coefficient

%%— is the concentration gradient

¢  is the effective porosity

The boundary conditions will be :

C (x,,0) =C_ (x.) on R
i 0 i

where Cy is a given function for starting.

c = C given on A1
D dc = - V(x,,t) known on A
1j 3% N3 i’ n 2

where ny is the normal to the boundary and V the flux due to dispersion

not to velocity.

We alsg assume that the dispersion coefficient D is symmetrical and

ij
positive :
= >
Dij Dji > 0

and that :

(w]
"

f (x,, v,)
1 1

iJ
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It is sometimes assumed that :
Dij = aij |v|

where aij is a constant value. But this assumption is not always true.

We cannot neglect anisotropy with respect to Dij

Vi

D
o, ‘

The figure above shows the longitudinal dispersion DL and the transverse

dispersion‘DT.

Applying the operator A to the concentration ¢ we may write :

_ 9 ac " dc ac
Ac = = 3%, [Dij 3% ] " Vi, e
i J i

This entire expression is not self-adjointed, so we cannct develop a

variational principle and then we use the Galerkin's method.

We can now go directly to the Finite Element Method by writing the approxi-

mation :

where gn is still the coordinate function.

The summationwithin' each element gives :

e e
13 13
9 m m e ac ,e
) J {ax. [Dij ax.] °n fn T Vi ax, %m0 T P aE gn] oR
e i J i

Re

a]

and this expression must be equal to zero.

We let intact %% because we want to define at nodal point n

ac e
ZBJ ® =% £, R
[ac RE




Then we can write :

where :

b, - ) J G
e Re
= - e
Q ) J VE dA
e Ae
2

In these expressions vy and Dij are taken constant inside each element.

Remark :

If Vi and Dij vary linearlﬁwithl

each element instead of being
constant, we must change them into a linear approximation :

- e e
Dyy = (Dij)m ¢

m

v, = (v, &,

2. Treated by the Ritz' method

Using the operator A with respect to the concentration c we define
3 | ac
e = - 5 [Dij Bx.]
1 J

_ oc oc
Femyy 3%, 3t

and the function :

59
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This 1s one way to use the Ritz method. There is an other one used by

GUYMON described below. We had :

Ac = ©

Then we take a weight function g[xi] and we write :

9 dc _ _
1 x-g;z [g(xil Dij -é-;(-j—:] = g[xi] ¢ (c - cg)

By doing so we assume that there exists a function g. We also assume that :

D,,, v

13 #* ~F[xi]

i
Therefore, assuming a constant velocity wihineachelement and using :
g

- Dy; x, = eYy

we should get the same result as before.

To solve this equation we may write. :

= g PkXk
where bk are solutions of :
Dij bJ = vi i=1,2,3
If solved in 2-dimensionswe can see that bk are constant values :
ooV P2 " V2 P
1 Dqq Dy = Dyy Dy
. Vo Dyq 7 V4 Dy
2 D D

11 922 = Bt Oy

The transformed operator being self-adjoin
the functional Q(c) 1is given by :

- ||1X 3¢, 3¢ 1. - ~biXk
Q(c) ”:2 x Dij . X 3% T CX (‘5’3 'Co]:l e dR
R J *

ij 3?; i

- J 1% (c-C) xD 3¢ n o PkXk dAq + J 1 xV x ¢ e PkXk dA2
A1 Ao



Guymon usesan intermediate function given by :

1
N N PRk
n =20C e

61
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- CHAPTER 5 -

FRACTURE FLOW

In general, there is a complicated interaction in a fractured
rock mass between the forces exerted by the fluids and those exerted by

body forces and boundary loads.

- From the fluid flow standpoint, it is very important and more realistic
to consider individual fracture characteristics in analyzing flow through
jointed rocks. This consideration leads to various flow laws depending upon
the Reynolds Number and the relative roughness of the fracture (Louis, 1969).
It is necessary also to consider the deformability of the fracture due to
existing forces, i. e. forces due to both fluid pressure and rock stresses

and not only to fluid pressure.

- From the sténdpoint of structural analysis of engineering works, it is
possible now to take into account the behavior of the joints or the frac-
tures governing the stability of the rock masses (Goodman, Taylor and
Brekke, 1968 - Mahtab, 1969 - Dubois and Goodman, 1971). When water is
flowing through the fracture, forces due to water pressure must be coupled
to body forces and eventually to boundary loads (Noorishad, Witherspoon
and Brekke, 1971].

Fracture flow analysis is very important in a wide field of appli-
cation :
- underground openings
- dam foundations
- reservoir flow
- open pit-mines
- geothermal
- earthquake modification

- underground explosives.

The general scheme of a stability analysis is given by Louis (1872} :
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- General approach

The method used by Noorishad, Witherspoon and Brekke (1971) employs
two finite element technigues and a conversing iteration process. The program
is restricted to the two-dimensional case, but can be extended tghghree—dimen—

sional one. The procedure is shown in the form of a flow chart in figure 1.

First the Stress program is used to determine the effect of the

structure (dam, tunnel, etc...) on the rock mass. This analysis changes the

size distribution of the fracture apertures. Then the flow program is used

to determine a first approximation for pessure P_ at every point within the

1
fractures.

In a second step the stress analysis is repeated using both the

effects of the structure and the fluid pressure P_, giving a new modification

I
of the apertures.By making a second flow andlysis we get a second approximation

for pressure P

1T
If IPII - PI is unacceptable, then the process is repeated until
Pi - Pi—1| reaches a value less than some arbitrary chosen limit.

The rate of convergence to an acceptable solution was found to be

quite rapid in all of the particular cases that where studied (Fig. 2J}.

- Fluid flow analysis

In the following discussion only steady state flow will be considered.

A joint will be simulated by two parallel planes
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From the Finite Element point of view a joint is considered as a

line element : the nodal points I and L, or J and K, have the same coordinates.

Steady state flow of an incompressible fluid through @ single fracture

or joint is governed by the following differential equation :

] . oh| _
a1 [Kp ?1‘] =0
where Kp is called "area permeability” and is defined by :

k = (2b.1) K
p p

Kp being the fracture permeability depending upon the mass density of the fluid,
the viscosity of the fluid and the aperture of the fracture.

1 is a variable length along the fracture.

Solving the previous differential equation is a similar problem to
that of finding a function h that satisfies the boundary conditions and

minimizes the following functiognal :
2
2 oh
Qh) = > J kp [31) dl

For the entire system and in the general case where flow gquantities
have been prescribed at some boundary, the functional can be written

2 N
J K" [3'1] a1+ § @™ ("™

Lm p (31 m=1

M 1
Q(h) = Z >

where :M = number of elements

Lm

N

length of m-th segment in a network of Melements

number of boundary elements where g is prescribed.

It can be proved that this functional is minimized by a particular
function h for any joint element either inside the network or at the boundaries
where head or flow are prescribed. We need now to find the minimizing function
and for that purpose it is only necessa}y to demonstrate the procedure for

a typical element m.



First we compute :

Remember that we consider a line element, along which h varies linearly

68

m. th.
element

3™ (h)
dh
"y ) *
ahm 30 (h)
oh,
J
where :
32" (h) m {3n) 3 (on
3h, “p [STJ ah, [EEJ b *+ a4y
i i
Lm
h =c +dl
Since
an _|MNa Ml [ ) 1
dl ol 0l hj Lm Lm
where
1, -1 1, ~ 1
N = I - J
i 1j - 11 Lm
i 1l - 1i 1l - 1i
Ny 2717 ~ m
Iy i L
we can write :
kg /" - KM
2™ (h) _
ma m m m m
-k /L k- /L
p o]
or simply :
32" (h) foom oy m
——T_=[k.f:.] {rt} o« {a}
oh
over the entire domain we get :
M m
aQ(h) _ z 3q (h) _ 0

Bhi
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which can be written for all elements and nodal points

30(h) _ g

Shi n

Finally :

[Kf]{h} - {Q} =0
where [F%] is the flow conductivity matrix.

- Flow forces within fractures

Knowing the distribution of pressures at every point within fractures,
it is now possible to calculate the equivalent nodal point forces of these

fluid pressure, that will be used later in the stress analysis.

Two kinds of forces are involved :
- normal forces

- tangential forces.

The fluid pressure acting in a fracture is shown on figure 4. In
spite of the use of line element it is of course necessary to identify both
sides of the fracture with the four nodal points i, j, k and 1. The pressure

Pi will be the same at both points i and 1, and Pj at points j and k.

Normal forces :

From the laws of static equilibrium we can write :
( ) - -
F 2z, . Z..
ix Ji Jji
F 2%, . X, .
iz i) ij
F. z,., 2z, .
JX Ji Ji
< sz > 1 xij 2><ij P:L
Frex 6 “1k 22,
F X 2x Ps
kz kl kl
Fix 2z 21k
(P12 | 1 XK1 _

where Fix and FiZ are the components of the equivalent point load at nodal

point i and where : _
. zZ,, = Z, - 2Z.
ji J i

X = X, = X

1j i j
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NJECTION WELL

)
é

200

200°

FIG. 3 - MODEL OfF SQUARE FRACTURE SYSTEM




FIG. 4 - FLUID PRESSURE IN A FRACTURE
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They are usually so small that they can be neglected.

- Stress and strain analysis

This analysis is based on an energy approach. The principle of

minimum potential energy can give us a variational principle.
Let us write the total potential energy of our system :
W = 2 W - (RYT {6}
where Wm is the potential energy contained within the element m, {R} is the
potential energy of boundary loads at the nodes, and {8} is the displacement

of the nodal points.

For each element :

T T T
"] ™ - ™ ) - 6™ {f”‘}J av - | P™ (&M as

m

2
2
ym S

{e"} is the strain vector and is equal to : [B"] {6™} with [BT] =
element deformation matrix. '

Bﬂ is the elasticity matrix depending upon the elasticity modulus
E and the Poisson ratiou

{02} is the initial stress vector

{G™} are the distributed boundary loads
{f™ is the displacement vector within the elements and is equal
to :+ {£M} = [NT) (6™
with N"
Gm

{P™} is the boundary distributed force vector

a function of element coordinates

element nodal point displacement vector



73

Substituting values of {f"'} and {e"} we get

W =% ™' M7 €] B 6™ av
um
- [{am}T il {op} - 6™ WM {a‘“}] dv
ym
- ™ N (8™ ds
Sm

As for flow problem we are looking for a function, in this case {6},

minimizing the functional W :

- Ry} =0

The operation results in :

) "' ] [B" ™ av

m§1 j

Vv

n
. O,

o myT m myT m m,T m
- ) J[[BJ {o )} - {67 [N_]]dV-J{P} [N"] ds - {Rr,}
m=1 Vm Sm

or more simply :
i m m u m
} K] {sr- }J {FY= o0
c
m=1 m=1
where [kz] is the element stiffness matrix of the continuum and

[FTJ is the nodal force vector of the element including G, P and R.
Summed over the entire system this egquation can be written
[k.] {6} - {F} = o

This equation is called the equilibrium equation and is a set of
linear simultaneous algebraic equations that can be solved for nodal point

displacements {8}.

Before coupling flow and stress analysis, it is necessary to have
some knowledge of the joint behavior in the nature. This behavior may be

summarized as follows
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. @ joint has no resistance to tension in the normal direction
. a joint has resistance to compression in the normal direction

. at low normal pressures, the shear strength is mainly cohesional.
A hypothetical stress-displacement relationship is shown in Figure 5.

Let represent a joint as follows : (after Goodman, Taylor and
Brekke, 1968)

by 1
YI YK
v Uk
UK
X
7
-
1 1%

i/?

X and Y are the global coordinates and X' and Y' are the local coordinates.
U’K is the shear displacement in local coordinates
V’K is the normal displacement in local coordinates.
UK and VK are the nodal K displacements in global coordinates.

In the joint element of length L we have the following potential
energy :

1 IT ' 1]
‘z'{W} {F'} dXx

=
{]
Nl ——N

where {w'} is the relative displacement between the top (say L, K) and the
bottom (say I, J) sides of the joint, under the influence of an applied force

F' per unit length.

Let [k'j] be the joint element stiffness matrix in the local coordi-

nates : L

2
] = | © &yl 6o

L

2



FORCE PER UNIT LENGTH F'y,IL or F../L

STIFFNESSES

ky
k,- = tangential

» = normal

y k .- residual

DISPLACEMENT Wy,or W,

FIG. 5 - HYPOTHETICAL STRESS DISPLACEMENT RELATIONSHIP FOR A JOINT
(AFTER GOODMAN ET AL., 1968).

75
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where :

[0]

displacement function relating the relative displacement
{w'} to nodal point displacement {&'}

k ,- O
X

[Cj]

joint element moduli matrix =

0o k.,
y

kx' and ky' being the normal and the shear stiffness of the joint in local

coordinates.

The transformation from local to global coordinates gives us the

joint stiffness :
[, - H" & [

where Dﬂ is the transformation matrix.

Finally in the mathematical formulation used for the stress
analysis, the total stiffness matrix D{] of the system analyzed is the
proper combination of the continuum elements stiffness matrix [KC] and the

Joint elements stiffness matrix DKi] .

So the mechanical properties of both continuum and joint elements

can be properly represented by :

[K] {6} - (F} =0

- Stress - Flow analysis

The coupling between flow pressure and rock stresses must be sa-
tisfied by an iterative procedure that assures compatibility between rock

stresses and fluid pressures. The two basic equations we have derived earlier

are :
for Flow [ke] th} - @} = O
for Stress kK] {8} - {F} =0
or more explicitly
1 [Ke ()] (P} - {Q} =0 with K (8) | = O
§=0
kK] {8} - {F(M} =0 - with F(P) | =0
P=0
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KF(GJ indicates that flow conductivity is dependent on the joint deformations.
{P} is the egquivalent pressure of the net effective head at any point.
{F(P)} indicates that nodal force vector is dependent on flow pressure.

Then these two equations are coupled implicitly by {P} and {8} .
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- CHAPTER 6 -

UNSATURATED FLOW

Freesurf II cannot treat the problem
of the transient flow through a dam when the t
reservoir level is lowered : this is due to the

fact that the clay is draining very slowly and

induces an unsaturated zone.

The unsaturated zone must also be
taken into account if we consider the displa-

cement of the wetting front during the infil-

tration process from a ditch into the ground.

Wo/ler jab/e

—

As pollutants may migrate above the free surface as well as below,
the presence of an unsaturated zone cannot be neglected in some pollution

problems.

The moisture in soils is characterized by the following parameters :

i-the water content 6 = %ﬂ , where Vw is the volume of water and
m

Vm the volume of the porous medium.
The maximum value of 8 is the porosity of the medium
v
ii~-the water saturation Sw = Vﬂ » where Vp is the volume of the
p

pores ; 0 <5§S < 1.

iii-the pressure head ¥, related to the piezometric head h and to

the elevation z according to the formula :

h =y + 2z

P, which is sometimes called suction or tension, is positive below

the water table and negative above.
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In the unsaturated zone, ¥ is a function

of 6 whose shape depends on the porous medium.

In a given porous medium however we

must take into account the hysterisis between

Y and 6 : the actual curve ¥ versus & is com-

prised between a drying curve and a wetting

curve according to the history of the flow.

The permeability K inside the unsa-
turated zone of an aquifer depends on the
water content 6 but the relationship between

K and 6 is extremely hard to measure.

K
Sa/ulq/ioq(

dimensional flow ——

When the soil is very dry the tension ¢ is very high and the

equations of flow in the unsaturated zone become extremely non linear.

According to the Buckingham-Darcy law and the definition of ¢ the

one dimensional continuity equation is

3 (Y + z) _ 96
'a'Z[K 57 :l’ 3t ()

where z is positive upward.

V and 6 being related, the usual approach in solving equation (1)
is to express one of these two variables in terms of the other ; hence the

two following possibilities :

i - express 0 in terms of ¢ : as Y is continuous everywhere this

approach fits for the solution of flow problems in both saturated and unsatu-
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rated zones ; the equation however remains non linear.

ii - express ¢ in terms of 6 : as 6 is constant within the saturated
zone and may be discontinuous across two layers within the unsaturated zone,
this approach enables us to solve only the flow in an unsaturated zone made
of only one material ; the equation however is more linear than in the previous

approach.

Let D =K %% be the diffusivity of the soil.

The 2nd approach leads to the equation :

3 30 36
.y -2 | (2)

Let v be the velocity of water

V:-KED—:—KM:—KH.—K:—DB—G._K
z 9z 9z 9z

Let us note that in case of an horizontal flow along axis x the

velocity would only have been

The initial and boundary conditions of the problem are defined as

follows

6(z,o] = eo(z) on R
®2.t) T ®z,t on A,
oh 20,

K3z = K+ D57ing = = Vi, oy on A,

As K and D are functions of 8 the problem is non linear and no

variational principle is rigorously applicable.
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As equation (2) involves 6 in a linear fashion however the problem

is quasi linear.

Let us apply Galerkin method ; we approximate © by a linear combi-

nation BN of a set of N coordinate functions En

tz
N
0" = 6.t Tt
. . e L
For any n, the function En is zero 2 2
everywhere except along elements e1 and e2
where it varies linearly with z from zero at - n
nodes n-1 and n+1 to 1 at node n.
e by
Let us express that the projection
of the residue of equation (2) along each
‘T n-1
coordinate function is zero : [
) 20 28 . '
[-3—2- (D —B_Z + KJ) '5‘{] En dR = 0 (3)

In order to solve this non linear problem by the finite elehent
method and to avoid obtaining negative values for en we must introduce the

scalar :

As 8 is assumed to vary linearly along each element, let us make

the same assumption for K and D :

e e e
K™ = Kn En
e e .e
D = Dn En



Let us

(D 38 + K)
0z

a
9z
R

apply Green's first identity :
13
90 n _
%n dR + J (D 5 + K) 37 dR =

R

Equation (3) can then be rewritten as follows

e

g

RB

m

e e
J[Dp o 37

Hence :

Where :

The in

out in an easy w

coordinate Zi 3
e, the two coord

zero along the e

nm

summation is to

e e e
dE JE (13
n e .e n 30 .e e e m e e e
3z em * Kp gp 3z * 9t Eé]vdR N é J (ngp 3z em+Kp€p]n3€n
e .e
A1+A2
96m  _
Anmem ¥ an 3t Qn Bn
e e
g 3¢
_ e . e m n
Anm - X J Dp gp dz 2dz dR
BRB .
e
_ z lE Dp -1 nm+ lng meaning X Ds
e 2Le P
tegration of gg can be carried
ay if we introduce the local 7 . =
L® being the length of element ? :2
0 L® —_—
inate functions which are non Ze
lement are : !
.5 e
and 52 ey where Zl =Z - 21
L
e
IS ) J g R
e ge
L®
§ )} == ., the parentheses around & _ indicate that no
nm o 2 nm

be made on n.

82
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The assumption made upon the integral of 39-1eads to a diagonal matrix

ot
nm
ge
_ _ e e e m e ,e e
Q = ) J Vong £ dA + ) J [Dp & 75z On * Ky gp} ngy £ dA
e e e e
Ay Aq

is the flux across the boundaries of the flow region ; it.is positive when directed

into the system.

5¢®
B =} [ k® g8 -2 gr
n g J P p 0z
R
1 S 1 e
=5 [Kn_1 + Kn} 7 [Kn + Kn+1) 2

In order to solve this system of non linear equations we linearize by

assuming that D and K remain constant within a given time step.

We use Rubin's method : we extrapoclate At K+
values of 6 from the previous time step through S K+1/2
the present time step toward the next

At k

ek+1/2 _ ek i ek _ ek—1 k-1

At /2 At
0 1

We use the extrapolated values ek+1/2 in~yhé’calcu1ation of D and K

for time step Ato. Hence the eguation

ok 4 gk*1 gkt _ gk

k+1/2 "m m k+1/2 "m m k+1/2 k+1/2
A —— + F —_— = 0 - B
nm 2 nm At n n

The solution 62+1 is then obtained without iteration.



84

The size of each time step is checked

&

by calculating the material balance at the end

of each time step.

This one dimensional scheme can be

applied to the infiltration of rain into a

very dry soil ; in the case of an infinite

NN

system, it comes to a translation of the wetting

front. 5

Two dimensional flows

They are ¢ based and cover the vertical plane flow, the vertical

radial flow and the horizontal plane flow.

As very little is known about anisotropy in the unsaturated zone,
we make the following assumption
s

K., (8) =K K. where o< K_ < 1 and K?. is the
ij r(e) ij r ij

permeability tensor in the saturated zone.

The pressure head ¢, which is continuous everywhere, is solution of

the following equation :

9 ,S Y 9 s _ oY
3x. [Kr K13 ox. ] * Ak, [Kr Kig] T (4)
i J i
Let us neglige hysterisis
90 _ oY _ 96 . .o ;
oyl C . vy where C = 0 is the specific moisture

capacity, an. highly non linear term.
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Although there is no basic difference between left hand sides of
equations (2) and (4), this y based method is no longer applicable to extre-

mely dry media : this is due to term C in the right hand side of equation (4).

Rubin suggested a transformation which brings us beck to the first

type of equation.

In order to keep equation (4) however, we will restrict the study

to non extremely dry soils.

Let us apply Galerkin's method :

Green's first identity :

. e
___3 K KS ""a—lk + _3_ K KS £ dR + K K? . —_ajb_,,.‘. K K? “n dR
ax, | r ijox, %, ( r i3)|°n rij ax, r-i3} ox.

R J 1 J 1

- ks, 2k kS | e nda
rij ij r i3 n i

A1+A2
Let us assume :
[ ow
C—¢E& dR
Fﬂq _ R at °n
), ch dr
R
Ke - K8 Ee
r r™m °n

9]
n
)
oY



86

Hence
e e e
z I:e s Ee E:m aE:n e s E;e aF’n c® EEE—EE‘J dR
o rp ij °p ij axi m rp i3 °p axi p ‘p ot
Re
e s e 352 e s e e
- g [ rp ij Ep ij m rp i3 E:p ni En dA
e_,e ‘
A +A2
i.e.
.
A ll) +F -—ir-n—z Q —B
nm m nm ot n n
where :
e
A=Y k% kS gei&fﬂfﬂdR=Z—°iK K. hb +& (b c+bec )+ &oc
nm o TP ij p axj axi o 4 T [1M1TTnm 13 "nm mn 33 0 m
Re
Kr1’ Kr2’ Kr3 being the values of Kr aﬁ nodes n+2

n, n+t1 and n+2 of triangle e:

- 1 )
Kp = 3 (Kr1 ¥ Kr2 ¥ Kr3]

1 for a plane flow n n+y

2 for a radial flow

e e e
F o= (8 ) ) f C, &, &y R
e Re
= § gé-(ZC + C + C )

nm p 12 n n+1 n+2
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_ oY e
Qn i z [ Kij %, KlB] N3 En dA

€le e Y

A +A2
e s e agi
Bn - z rp i3 J Ep X dR
e e i
R
= & T (kS s - .
z > _r[K13bn + KBBCn] [Bn o for an horizontal
n+3
plane flow problem).
ne2
For a quadrilateral element the values
of ¢ and K at the middle point are. reported on
the four summits and set equal to zero ; this
enables us to eliminate the middle points. n
By ahalogy with the general case : . net
an
an B [Gnm] g 20 [ch * Cn+1 ¥ Cn+2 ¥ Cn+3]

being assumed to vary linearly with time, we use Rubin’s method’
L] y

again
k#1/2 2 _k+1/2) | k#1 _ o kel k+1/2 k+1/2 2 _k+1/2) K
[Anm * %t Com ] Vo =20, 2 B, [Anm At Fnm ] Vm (3

A SS term could be easily incorporated into this equation.
As equation (5} is not strictly linear we have 3 paossibilities

i - jiterate without checking the material balance. By extrapolation

from the value of ¢ at time step k-1 through its value at time step k we

calculate ¢K+1/2 ; we then evaluate V2 ang Kk+1/2. then matrices Ak+1/2,
k+1/2 k+1/2 r k+1
F and B and we finally solve equation (5) for ¢ .
K k+1
+ 0

We correct the evaluation of matrices A, F and B using
and solve equation (5) again.

We iterate untill the difference between two successive evaluations

of ek+1 is less than a prescribed test vélue.
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This scheme insures an extremely rapid convergence.
ii - make only one iteration and then check the material balance :
if the discrepancy is larger than a prescribed test value we iterate as in i

and no more check the material balance.

1ii - check material balance after each time step : if the discrepancy

is too large, dump results on a tape

Calculation of the material balance

Let Ve be the change in storage in element e :

t+At

_ ‘38
Vg = =¢ dt dR

If we assume that 6 varies linearly with time :

We compute the difference between the two terms and compare it to

Zero.
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- CHAPTER 7 -

VARIOUS INTERPOLATION SCHEMES

Simplex element :

In the two dimensional case it can
be a triangle with 3 nodes ; the line joining
any two points on the boundary belongs to the

element : the triangle is a:-convex element.

In the three dimensional case it can

- be a tretraedral element with 4 nodes.

In general, the number N® of nodes
of a simplex element is related to the dimen-

sion K of the space according to the formula :

The coordinate functions associated with a simplex element are

defined by the relations :

)
e _ e
£ [xiJ = 1 inGR

E: can be expressed by a polynomial of degree 1 i.e. by a linear
function of coordinates xi :

e n n ,
(x,) =a + a, x, i
En i o 1

1 a sz k

The constant coefficients a are determined by identification at

the nodes
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In the two dimensional case for instance :
e _.n
En (xi] = a +a, x, + a, X

the three unknowns az. a: and a; are the solutions of the three linear

equations :

We can define simplex elements in curvilinear coordinates, on a

sphere for instance :

Complex element :

for such an element the relationship between the number of the
nodes and the dimension of the space is the
following :

NS > K+ 1

For instance, in a two dimensional

space, a triangle with 6 nodes is a complex

element.

Although this assumption is not necessary, we will restrict
ourselves to polynomial expressions. Let m be the degree of such a poly-

nomial. For the above triangular complex element m = 2 :

We will determine the coefficients by using the Lagrange interpola-

tion.
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To the 6 unknowns correspond 6 linear equations :

6o () o
The unicity of the solution is thus
insured. Curvilinear coordinates may also be
used.
The continuity of the unknown function
is insured accross the boundaries of any element.

ex. ! 2 parabolic expression along the boundary of a triangle is valid in

each adjacent triangle.

Multiplex element

The boundaries of such an element are parallel to the coordinate

_axes. : x2z

In a two dimensional space we use
a bilinear interpolation : the coordinate :
function is assﬁmed to vary linearly along
the boundaries of the element but not neces- Y,
sarily inside.

e n n n
£ (x,) =a_ +a, x, +a, X, +a_, X, X
n i o

JEN
N
N
N
w
JEN
N

In a'three dimensional space a trilinear
interpolation leads to the following coordinate

functions :

n anx + anx X + anx X + anx + nX XX
o = 1% 2%2 3%3 T 84%9%2 T 85%4%3 6°2%3 T 87%9%2%3

]
o)}
o+
o))
X
+
o))
X
+

e
En(xi]

Let X, =ra x; = *+b Xg = X € be the equations of the boundaries ; we

then define adimensional local coordinates as follows :

X X
- -2 = -3
a'a ’ 8 » Y o
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The interpolation leads to the following functions

S =2 (1ea) (1+8) (1+7) E5 =3 (1 +0a) (1-8) (1+7)
=2 (1-a) (1-8) (1+7) E5 =3 (1-0) (148) (1+7)
e =3 (1+0) (1+8) (1-7) 22 (1sa) (1-8) (1-7)
ES =2 (1-0a) (1-8) (1-7) S =3 (1-a) (1+8) (1-7)

In a two dimensional space a biquadratic interpolation can be
carried out with 8 nodes. : ' 2

Isoparametric elements :

They were introduced in 1968 by Ergatoudis, Irons and Zienkiewicz.

Definition :

The elements are choosen in a region R ;
in each of these elements the local coordinates

are parallel to the boundaries of the element.

We can make a transformation from
cartesian coordinates xi into local coordinates
ai and vice versa :

o, = a,(x,) Cx, = x, (a,)
i i i i i 71
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Biquadratic interpolation :

Let us number 8 nodes inside the element ; we assume the relation-

_ i i i 2 i i 2 i 2 i 2
X, =a_ +aa, +ao, *+ aa(a1] + a4(a1a2] + as(azl + as[un] o, + a7a1[a2]

i o] 11 272

Substitdting the coordinates of
the 8 nodes into the above expression leads #1
to 8 linear equations whose solutions are

the 8 unknowns a.

It is also possible to express

o in terms of x.

The interpolation functions are usually obtained by guessing

e _ 1 n ny _ _ 2 n, _ n _ 2 -
£n(ai] =2 [F1+a1a1](1+a2a2] (1 (a1] ](1+a2a2] (1+a1u1)(1 [azl i] n=1,2,3,4
e 21 _ 2 n -
En [ai)— 5 (1 [u1) } (1 0+ a2a2] n=25,7
e 1 2 n _
gn(ai] =3 (1 [a2] } (1 0+ a1a1] n=6,8
We can check that ge M = &
n i nm

Bicubic interpolation

N = 12 ; the relation between X4 and o, is obtained by analogy
with the quadratic interpolation.

_ i i i i 2 i i 2 i 2 i 2

X4 a  *taa, +a, t a3[a1) + a4(a1a2] + 35(a2] + aB[a1) a, * a7u1[a2]

i 3 i 3 i 3 i
+ aB[a1) + aga1[a2) + a10(a1] o, + a11(a2]
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5__..r___..__.L___

The coordinate functions then are :

gi[ui) ;2 v, M1+ YL M { [(u 17 + (o ):l - 10} n=1,2,3,4

n
~
-

e _ 8 n _ %] n i
g lay) =55 1+ o a) [1 - (@) (1 + 800,) n=5,6,7,8
ge(a)=9—(1+9au”][1—(a)2](1+aa"1 n = 9,10,11,12
n i 32 11 1 272 poEr e
)
Mixed interpolation : (//”—17\\\‘\\“_’_,//<;
1 ' el
, ! L
It is possible to use different o2 : t :,
¢
orders of interpolation along the bounda- | | !
l
ries of a given element. { : i 2,
*
1;7{__45/‘/5/
1 g e
order of the interpolation bn(a]
. 1
linear >
quadratic aan - %
cubic %{Q(alz-S]

Let us take, for instance, the following example :

. = linear interpolation at nodes n=1, 2, 3, 4



Ee {(a,) = (@) (b)) there is no summation here
n i n n —_—
where :
' 21 n n
a =3 1+ ay a1] (1 + @, a2)
bn = bn (a1] + bn (a2]

- quadratic interpolation @t node n = 5

e 22 _ 2 ) n
E’n (ai] =5 [1 (a,l)] [‘l + @, a2:|

- cubic interpolation @t nodes n = 6, 7

e . 98 _ 2 n n
E’n (ai) -y [ [a,]]] [1+ g a, 0.1] IEI+ az az]

Integration over an element

95

As the local coordinates vary only from -1 to +1, the integration

of the coordinate functions is simplified :

1 1
e _ e
j En [ai] doz1 da2 = J da1 J En (ai] da2
R® ST

In order to integrate derivatives of gi with respect to cartesian

coordinates we must introduce the Jacobian matrix J

i E)x,I 8x2 -
3a1 3a1
J =
3x1 8x2
8a2 8a2
- -
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— e - _ e -
3€n 3£n
ax1 Py 3a1

= J
e e
agn BEn
X oa
L2 ] L 2 ]

Numerical integration is necessary in order to evaluate the integral.

ax, .
An easy way to calculate the derivatives sai is to express xi
in terms of a linear combination of xg : J
e n
Xy = En (ai]. X4

' Such an expression is correct because gﬁ is an interpolation func-
tion and X4 is subposed to be a polynomial of the same order as the unknown

along the boundaries.

Hermite interpolation

Smooth Hermite interpolation

In the one dimensional case, the unknown h is approximated

by @ linear combination of two sets of N coordinate functions En and Cn :

N ' ahn
h=h = hn E +h'¢g wherg hn = L7SJ

The coordinate functions are defined according to the following

relations where prime means derivative with respect to xi:

This interpolation makes the derivative h' to.be continuous at the

nodes ( — smooth interpolation).



X
o being a local coordinate associated r L ) -
with a given element, a smooth cubic interpolation %1 X2
leads to the following coordinate functions : o ==x ~ X
L
e _ 2 3
g? -1 - 3a2 . 2a3 t, = L{a - 20" + a7)
&n
e _ .2 _ 3 e _ _ 2 _ 3
52 = 3a 20, ;2 = L(a a’)
gn
where L is the length of the elements % —

zn:\/" xnr

The shape of the two coordinate functions associated with a given

node n is shown on the above figure.

In general, using a polynamial of degree n + 2 insures that in

the one dimensional case derivatives of h until the nth order are continuous.

In the two dimensional case, when elements
are triangles, the centroid of each element is a node.
A mth order Hermite polynomial corresponds to poly-

nomials of degree 2m - 1.

Let E: ik be the coordinate function associated with node n and

corresponding to the derivative of h of order j with respect to X4 and of

order k with respect to x By using only one greek alphabetic character

2.
this notation generalizes the notation (using £ and z) defined in the one

dimensional case.

Unknown h is then approximated as a linear combination of a set

of N coordinate functions gi .

gk
J*k
~ N e 9 h n
h =h = n, jk gn,jk where hn,jktt) 3 (xi,tJ
3x1 sz

m - 1 is the maximum order of the derivatives of h that we want

to be continuous at each corner node

o0& j,kgm-1.
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The corresponding coordinate functions satisfy the following relation :

TR
9 E .
j n,Jjk nl _ R S
[ —_— [x;] Gnn ij 6kk
8xj 8xK
1 2

The number of coordinate functions associated with a corner node is

m(m+1)

-l - -

If the functlon itself only is to be set continuous, mu= 1 and we

define only one coordinate function En 00
»

o8-
En,oo [xiJ ~om

If we want the function together with its two first order derivatives

to be continuous, m = 2 and we define the following coordinate functions.

En 00 associated with the function itself
n, 0o )
ry T [xiJ B Gnn 6Dj Gok

50;10 associated with EY e

n,10 | {.a] _
- lXiJ - Gnn 6ﬁ3.50k
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E .~ associated with ah
n,o1 3x2
( ==
dtk ¢
n,ol n _
[xﬁ] = § — 6,
7. % i nn aj 1k
8x1 6x2

so that h might be approximated by hN as follows

. N 3h 3h
h=ht=h & oo * [3x1] fnt0 * [axz] 5,01
n n

The centroid

m - 2 is the maximum order of the derivativeslof h we want to be

continuous at each centroid :

The number of coordinate functions associated with such a node is

then Ei%:ll .

These coordinate functions have the same properties as those asso-

ciated with corner nodes.

The method leads to a N-dimensional subspace of the Hermit space.

For triangular elements, if NC and ND are the numbers of the corner

nodes and of the centrolds respectively

_ m{m+1) m{m-1)
N = Ng 2 *N TS

The function h is then approximated as.follows :

§-2 1
h . £ .
K=o n,jk(t) n,Jk[xi]
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Non smooth Hermit interpolation :

Let us suppose that, for a given element e,a smooth Hermit
interpolation has been defined ; this interpolation is extended by a set of coor-

dinate functions mei which are zero along the boundaries of the element.

This scheme does not change anything in the Lagrange interpolation :

. A
E,my = E,.mo+ T.oon. =8 as ¢, m, =0 .
Axi) Axi) [xi) nm [xi)
3
Let us consider a cubic interpolation
for a triangle :
_ e e e
Be‘l E'I £2 E3 ] 2

The unknown function h is interpolated

as follows :

h =°gqh, + Ehy + Ehy + B, a

) 3 e1 21 ° which is still a lLagrange scheme.

This non smooth interpolation is done in each triangle separatly

and not necessarily in all of them,

This scheme could be applied in an unsaturated flow problem when one
wants a better approximation of the unknown inside the elements close to the

wetting front.

A quintic interpolation for a triangle leads to the following coor-

dinate functions:

[
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For steady state flow or unsteady state using vector Dn instead of

matrix Dﬁm the interpolation leads to two sets of independent equations:



101

a =@ (2)

We first solve (1) for any node and then solve (2) for appropriated

elements.

This interpolation scheme has been used by Price, Cavendish and Varga

for one dimensional dispersion.
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APPENDICE 1 - MEANING OF X IN THE EXPRESSION DF

For the free surface, we calculate

satn) = = (@ (h + AR x
A=0 o

In calculus of variations, we have a relation between a fonctional @ and a

function R.

|

Let us consider in 2 dimensions a function f(x). ‘R?)

An extremum is obtained when :

df _
ax = 0 I
. [
with ~ {
- ) xf
%; - limite flx + Azi f(x)
Ax >+ 0

It appears the same relationship between the fonctional @ and the function h

and between the function f and the point x.

(pl <2 )U‘ ! OI/nrs

ht X Solufions Let us suppose that we have the solution

h of the variational principie.
s J‘o/a/lbn - )

|
If R is an arbitrary function which

|
| satisfies boundary conditions, we can
l obtain all the possible solutions.

' L e .
|2§Z?ﬁ3€¥3:;ﬁ;b Let us evaluate
Ifono’lfionu
h\
| - Lim  2lh + O+ AR - ath + AR
? 6 A0 Ax

This limit is called the first variation.

¥ book by FDMIN about variational' principle.
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APPENDICE 2 - UNSATURATED ZONE

In some studies, we may be obliged to take into account the unsaturated
zone. For the unsaturatdzone, we have the relation between the percentage
of water in the soil (0) and the distance above the free surface, as indicated

on the figure. i
o

un-sqﬁnv/kd’che

N - e g0
Safvrofed
xone
>e

So, we assume during the iterations that the potential at the free

surface boundary may be ¢ = -wc.

If there is no un-saturated zone, the value of ¥ on the boundary is

g boundory, boundety
L Pe 0. o

vn-safurafed

Xone

a) without un-saturated zone b) with saturated zone

free surface positions




104

APPENOICE 3 - METHODS FOR SOLVING LINEAR EQUATIONS

1) In direct methods, it is possible to obtain an algorithm for getting a
solution, but in such cases, we must consider the problem of roundoff

error.

2) In iterative methods, it exists explicit equationsfor head at each

node.

2.1.) Point Jacobi method

h?+1 = - (E}JJ h? ¢ 2 i= 1,2,
j=1 944 i1
%1

The number m indicate the number of the iteration.

2.2.) Point Gauss-Seidel method

i-1  a,. N oa., b
hT+1 = -1 LA (=) h? .
POV : ) .

2.3.) Point successive over relaxation method

T ey ™t - M
i i i

= (-w) B™ o+ w ™

1 1

if 0 <w <1 we have an under-relaxation method

" " the Gauss-Seidel relaxation

=
n
-

1 <w <2 " " an over relaxation method.



