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RESUME

Ce rapport présente les notes de cours prises lors du Séminaire

sur l'emploi de la néthode des Eléments Finis en Hydrogéologie, qui s'est

tenu à Orléans-La Source du 4 au 15 septembre 1972, organisé conjointement

par le BRGM, l'Ecole des Mines de Paris et le Volcani Center (Israël).

L'enseignement a été donné en anglais par :

. le Professeur P. A. WITHERSPOON, Professeur de Géologie de l'Ingénieur

à l'Université de Californie,

. et par le Docteur S. P. NEUMAN, Senior Scientist au Volcani Center d'Israël.

Le texte, constitué de notes directement rédigées en langue anglaise

pendant les cours du séminaire n'a pas encore été revu par les conférenciers,

et nous présentons nos excuses pour les erreurs qui peuvent s'y trouver.

Nous remercions d'avance les lecteurs pour les remarques et corrections

qu'ils pourraient nous signaler.

Une nouvelle version de ce document, traduit en français et corrigé,

paraîtra au début de 1973 dans le bulletin du Bureau de Recherches Géologiques

et Minières, section III.



Introduction

This document is a first draft of notes taken during the SEMINARS

ON FINITE ELEMENT METHODS IN HYDROGEOLOGY, which were held in Orleans from

September 4th to September 15th 1972. It has been directly written in

English during the lectures delivered by Pr. P. A. WITHERSPOON [University

of California] and Dr. S.P. NEUMAN CVolcani Center].

This copy has not yet been corrected by the lecturers and we

apologize for the errors that might be encountered. Any remark and correc¬

tion will be gladly met.

The completion of this paper needed a lot of work for which we

are much indebted to Mr. G. ASSENS, J.-L. DESSENNE, E. LEDOUX, G. de MARSILY

and M. VANDENBEUSCH.

We especially aknowledge the work of Mrs. G. PAQUIN who typed

very efficiently the manuscript with so many mathematic symbols.

A corrected version of this document translated into French will

be issued next Spring in "Bulletin du Bureau de Recherches Géologiques et

Minières".

J.-P. SAUTY
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CHAPTER 1

INTRODUCTION : DEFINITION OF THE PROBLEM

The problem of groundwater flow in a region R is to determine the head

h and the velocity v. at any point x. in R, given

- boundary conditions, which may be of 2 types

. prescribed head on A

. prescribed flux on A

permeability in R, which may be heterogeneous and anisotropic, with different

anisotropies in each point.

In 2 dimensions, this permeability is represented by a tensor, noted

iJ

K 11

K21

K12

K22

- storage coefficient, S or S
s y

- thickness of aquifer in the case of

horizontal plane flow

- pumpage from wells

- areal recharge or discharge.

V//////////////////////A

Al

y///////////////////////////y
At

EQUATIONS : in steady state

equation of continuity

Darcy's law

Prescribed head on A,

Prescribed flux on A..

3v.
	I

9x,
= 0

\

- K
8h

^ on R

ij 8x.

h(xj = HCxJ on A^
i i 1

V. Cx^ ] .n.Cx. ] = V (x.] on A^
1 i 1 1 1 2

(1)

(2)

C3]

C4]



Equations (1] + (2] give

3

3x.
= 0 on R C5]

h and v. are unknown functions defined on R
1

Repeated indeces indicate summation over i,j = 1,2,3.

VARIATIONAL PRINCIPLES

A functional fi of a function h is a real number fiCh] associated

with any function h defined on the region R.

Different functions h and h defined on R will give generally

different numbers fiCh.] and fiCh2]. If an appropriate functional fi is defined

for the problem stated by equations (1] to C5], the unique solution h of the

problem of flow in R is the one that minimizes the value of fi(h).

In a schematic representation :

fl(>»)

^o/»//e
A

FUNCTIONAL FOR STEADY STATE

It is, in terms of head

fiCh]
8h 9h

2 ij 3x 3x.
dR (h H] K,, 1^ n, dA +

ij 3xj i
VhdA

A-,

We will see later how this can be derived.

Those integrals are definite integrals.



PRINCIPLE OF FIRST VARIATION

The first variation of fiCh] is defined by

6fi(h]
dX

^ Ch . X??7|^^o

'Kl

where h is any admissible function satisfying h

3h

3n

= 0 on A,

0 on A,

where n is the normal at A

Property : the functional fi(h] is appropriate to solve the problem if and

only if 6fiCh] = 0.

VERIFICATION OF THE VALIDITY OF THE GIVEN FUNCTIONAL FOR STEADY STATE

Let us apply the principle of first variation

6fi(h] =
d_

dX

1 ^ 3[h * Xh] 3(h + \h .
2 hj 37j 3iq "^^

(h . X?i - H] K..ÍIÍÍ^n.dA ^
ij 3Xj

V(h + Xh) dA

'X= 0

Since K = K ,

6fi(h) K, .^^ dR
ij3x 3x.

Fh-H)K.,-^.?ÍK,.^
1_ ij3x ij3Xj

n dA + VhdA

1



Let us apply Green's first identity to the functions K -r and h ;
. j_ i J oX .

we can write : j

h-i-
3x.

3h

I iJ 3XjJ
+ K

'\j

3h 3h

ij 3x 3x^1
dR =

[ iJ 9XjJ
n dA +

'^ 3h
n dA

obtain

Substituting this identity in 6fi[h) and after some manipulations we

6fi(h)
'V' 3 3h
hr^- K. . -r^ dR

3x. ij 3x.
Ch-H) K, , -^ n.dA +

ij 3xj i

For arbitrary h, this is equal to zero if and only if a = g = y

Then, fi(h) is an appropriate functional for the resolution of our problem

described by equation CD to (5).

0.

SUFFICIENT CONDITION

If 6fi(h) = 0 Vh, h must vanish : so the therms a, B and y are all

equal to zero. These terms represent the governing equation (5) in R, and the

boundary conditions C3) and (4) which are then satisfied.

NECESSARY CONDITION

If equations (3), (4) and [5) are satisfied, the corresponding

integrals are equal to zere and then ôfiCh) = 0.

The given functional fiCh) is consequently an appropriate one, and the solution

h of our problem is the function that minimises fi(h).



ANOTHER FUNCTIONAL FOR STEADY STATE

If we want solutions in terms of head and velocity simultaneously, another

functional must be defined. For instance, the study of dispersion leads to use

a functional in terms of h and v :

fi(h,v )
r 3h 1 ^-1 n .
V. -r + V. K, . V. dR

[^ 1 3x 2 1 ik k
Ch-H) v^ n dA + V h dA

this functional gives a solution to equation CD to (4). It is possible with it

a . , , \the one vye obtain by , ,
to have better approximation of the velocity thanXjust using equation C2j when

the head is known Cless discontinuity). In this case, the solution of the problem

can be shown to be given by the scalar function h and the vector function v. that

minimise simultaneously the value of fi.

FUNCTIONAL FDR NON-STEADY STATE

S will be the specific storage. The equation' of continuity becomes

-J. = - S |h ^^^

3x s 3t
C6)

associated with Darcy's law C2) it gives

3h3

3x,
. . ^ I = S 15- on R
ij 3xJ s 3t

(7)

Boundary conditions are defined again by equation C3) and [4). It is necessary

to give initial conditions

hCx.) = h
i o

on R C8)

Using GURTIN's approach, it is possible to introduce the initial conditions C8)

into equation C6).

Let us apply the Laplace transform to equation C6), using equation C8)

and noting x the Laplace transform of x

(7 =
-pt

e ^ X dt)



3v,

-S 1^ - - S
3x^ s 3t

-pt 3h ,.
S <

s
h e * p I ^ -]

3x,
S Cph - h )

s "^ o

P 3x. ' s
h -

Pj

x.y =

J

Using the following property of Laplace transform :

xCz)yCt - z) dz = Cx*y) C*= convolution)

and coming back to the real functions we obtain

9v.

1 * -r = - S Ch - h ) which combines equation C6) + C8)
dXj s 0

Our system of equations can now be written

1 *
3x.

1

3h

ij 3x
jJ

= S Ch - h )
s o

on R

h = H

K.,^n.
ij 3Xj 1

on A
1

- V on A,

An appropriate functional is

¡Ch) = í [l* K., T^*^ + S C4h *h - h*h )1
J L 2 ij 3x 3x s 2 0 J

D j ^

dR

1 * Ch-H)* K., -r^ n^ dA +
ij 3x i

'1 * V * h dA

1
A,



We can also calculate the first variation of this functional, using

Green's first identity :

ôfiCh) '¡[-A 3h

ij 3XjJ
+ S Ch

s

- h^)l * h dR

3h' * [^-"] * ^j 377 ^ d^ '\'* [hj 3^7 "i ^ ^] * i^
A^

dA

Again, ôfiCh) = 0 if and only if the functional fi is appropriate to solve

the non steady state problem, and this can be shown here. We also have the

functionals :

fiCv.) =
1

r -1 1 1 ^''i ^"ki f f 1 ^"k
'*^..i,i'T V. -V )»v.+ - xv *-r dR - Ch -H)*v.*n.dA - * Cv.n.-V) * -r
ik 2 k o 1 2S 3x. 3x, o i i S i i 3x,

"- s i k-J i i s k

dA

fiCh,v. )
r 3h 1 ^-1
1_ i 3x. 2 1 ik k

- S h*[^ h-h ] dR -
i '^2 o-'J

1*Ch-H)*v.*n.dA +
i 1

1*V*hdA

METHODS OF MINIMISATION OF FUNCTIONAL fi

There are several methods : RITZ, COURANT, K.ANTOROVITCH, steepest descent..

RITZ's Method is the most common and will be presented.

RITZ 'S METHOD

Definition of an operator

The governing equation of flow in R can be written more simply

AhCx.,t) = fCx.,t)
1 1



r 3 3h 1
A is an operator e.g. : -^ : -r- = Ah and f is a given function Ce. g.

recharge) .

The boundary conditions can also be written :

G hCx^ ,t) = g Cx. ,t) on T
ni "ni n

G is also an operator, and g a given function,
n n

Exemple : K, . 1^ n . - V
ij 3xj i

K.. J T n .
ij 3x i

g H - V

Definition of the inner product

For 2 functions u,v defined on a region R, the inner product is defined by

<u, v> uvdR

The inner product with convolution is

<u*v> = u * V dR

R

Self adjoint operators Csymmetric operators)

<Au,v> = <u,Av> when A is differential

<Au*v> = <u*Av> when A involves convolution,

for any pair of sufficiently smooth function u and v satisfying the equivalent

homogeneous boundary conditions of a given problem.

Basic assumptions of RITZ 'Method

with the equations

A h = f on R

G h = g on r
n n



the equivalent variational principle is to find the minimum of the functional

fiCh). Using RITZ' method, we will make the following assumptions!

a) Operator A is self adjoint and positive bounded below

b) Operator A is linear : this is not strictly necessary with RITZ 'method, but

will be assumed here

N
c) One can use as an approximation of the true function h a finite serie h of

the form

h Cx, ,t) = a Ct) Ç Cx. ) Csummation : n = 1, 2 ....N)
i n n i

a Ct) are called the RITZ coefficients. They are constant in steady state.

E Cx.) are called coordinate functions, or generalised coordinates. They are
n 1 ^

linearly independent. They form a basis for an N-dimensional subspace

of a Hilbert space.

As h belongs to a Hilbert space, an infinite series would be necessary in orde:

to have an exact expression of h in this way. The quality of the approximation is

governed by the magnitude of N.

For any given N, the best approximation of 'the true function h by the function

be shown to be the one that minimizes the functional fi :

For example, if we can have a sufficient approximation of the true solution with

N = 1 Ct-

writing

N
h can be shown to be the one that minimizes the functional fi

nple, if we can have a sufficient approximation of

1 1
N = 1 Ch = a Ç.), it will be obtained by minimizing fiCh ). This can be done by

3fiCa^Ç,)
1 1

	r	 = 0 ; 3,1 = constant.
o a ^ 1

1

2
With N = 2, we obtain the best estimate h = a r + a Ç of the true function h

2
by minimizing fiCh ), that is to say

VI 2^2

and so on for h

3fi Ca^Ç^ + 32^2^

	5	 =0 ; a = constant
da, 1

3fi Ca^Ç^ + a^Ç^l

	 =0 ; a = constant
3a 2

N
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FOUR MAJOR PROBLEMS

a) What is the best way for choosing ÇCx.) in the region R ?

b) As in an aquifer there exist 2 kinds of boundary conditions, how to have

the Ç Cx.) satisfy these boundary conditions for every shape of those boundary ?

2
ex. : Ç = sinCx) , Ç = sin Cx) will not fit a given boundary

condition Ch = H for instance) on any shape of the limit.

c) How to write with mathematical expressions the functions f on R, and g , H,

V on r, and how to treat these expressions ?

d) If the transmissivity varies in R, how to choose the Ç. to fullfill this

obligation

FINITE ELEMENT RESPONSE TO THESE PROBLEMS

We take a finite number of finite elements and try to solve the problem

independently in each of these elements, and then to combine together the

different solutions.

A grid is thus introduced in RITZ'method. But in finite element, we will

calculate an integral overthe surface of the element, while in finite differences

we have a partial differential equation that is applied at a point of each element

CONVERGENCE

N
Problems come with the convergence of h towards h when N increases,

- Uniform convergence is |h - h| 	* 0 Vx, R

N > "

convergence in the mean is
N 2

Ch - h) dR -» 0

N -> «>
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In uniform convergence, h -> h for any x

With convergence in the mean, it is possible that h be very different

of h in some points :

-^-oc

Uniform convergence always implies convergence in the mean, but not vice-versa ;

convergence in the mean is faster than uniform convergence, because uniform

convergence must be exact at each point of R. Faster means here that the number

N of terms need not be so high.

Finite elements methods insure only convergence in the mean. Therefore,

we are not sure to get good solution everywhere.

Ccf. MIKHLIN,arussian scientist, 3 books translated into English. Base of

variational principle).

DETERMINATION OF THE Kn

Problem : find h represented by a sequence a Ç

h = a Ç
n n

We associate with each node n, whose global coordinates are X., a region R

including all the neighboring elements, and a global coordinate function Ç CX.)
n 1

defined by

Ç cx"!^)
n 1

3 CKronecker 3)
nm

E. cxj =0 Vx. e r'^
ni 1

Ç varies linearly inside R
n ^

Ç is called the pyramidal or "chapeau" function



x'

12

Consequences

D h = h Ç CLagrange interpolation scheme)
n n

The "RITZ coefficients" are equal to the

N
value of h at each node.

2) One deals only with linear functions

3) It is easy to satisfy boundary conditions

where h is prescribed : some "Ritz coeffi¬

cients "are thus determined "a priori".

4) The matrix contains a great number of zeros which makes the resolution easier.

5) One can treat each element separately and assemble them later. This will be

shown below.

LOCAL BEHAVIOUR

In each element, R , one defines local coordinate functions

Ç linear on the element and satisfying:

X^
1 nm

n ' i-* \^'

Each local coordinate function is a face of the pyramid which represents the

global coordinate function. This can be written :

Ç CX.) = U CIX.)
n 1 n 1

U = unions, which means

Ç CX.) = Ç^CXJ, X.êR^
ni ni i

Ç CXJ) = Ç^CXJ)- VeCR'^
ni ni



Example : one-dimensional problem

13

local Ç

global Ç 52 = Ç^ ^ ç'
2 2

One can write

h = h £ global coordinates
n n

N e
or h = h li C local coordinates

n V n

LOCAL COORDINATES IN A TRIANGLE

They can be expressed by the natural coordinates

*n^^i^
A (x.)

n 1

* is a linear function having the same
n

properties as Ç

A = A^ + A + A = triangle area
12 3
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If X is on point 1 A = A A = A = 0 *, = 1 *2 = *3 = °

RELATIONS BETWEEN Çp AND Xi Csee annexe paper p. 8)

" 1 "

X

Y

=

~1

xl

Yl

1

X2

Y^

1

X3

Y3_

'çf

Ú

VU

VALUES DF INTEGRALS OF E± OVER A TRIANGLE

An interesting property of the local coordinate functions is that their

integrals over a triangle depend only on the area of the triangle and not on its

shape.

Example Ç^ dR
1

Changing the variables to compute dR = dxdy we get

3x 3x

dx dy =

3Ç, 3^2

3y 3y

35. 35.

dÇ, dÇ2 2A dÇ^ dÇ2

I = 2A 5 dÇ dÇ = 2A
1 1 2

dÇ
2 J

r 2
ç dç = -

1 1
1

2A
.1 ?

6

T
A^

3

For other integrals of this kind see tables of FELIPPA.

OF THE FUNCTIONAL

fiCh) 1 K..|il-^dR
2 ij 3x 3x

Ch-H) K.
3h

ij 3x. i
n. dA + Vh dA
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This may be considered as the total energy in R which we will minimize. In fact

the functional that we shall minimize will not contain the integral over A :

in the finite element method it is possible to impose very simply this boundary

condition by prescribing h = H on the nodes of A . .

fiCh) =
1 K 3h 3h
2 ij 3x, 3x.

dR 1" h dA

Elements

R is divided generally into quadrilaterals or triangles ; but each quadri¬

lateral is divided into four triangles, so that the basic element is always a

triangle

y

5

-^-x

Assumption : the head h is a linear function of the coordinates in the triangle;

h = a + bX + cY

a, b, c are calculated by writing this equation at the three nodes of the triangle

h^ = a + bx,, + cY^

h2 = a + bX2 + CY2

hg = a . bXg - CY3

This giV9s the formula

1 hh = - |Ca^ * b^X . c^Y)h^ . Ca2 ^ b2X . C2Y)h2 ^ ie^ * b3X . C3Y)h3 ]
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with : ^ = ^2^3 - V2 ^1 = ^2 - '3 ^1 = ^3 - h

^2 - h'^ - ^^3 ^2 = ^3 - ^ ^2 = ^1 - ^3

^3 = ^^2 - Vl ^3 = ^ - '2 ^3 - h - ^

2A = C2b^ - c^b2

We define the local coordinate functions Ç

Ç^ = -^ [a + b X + c Y)
n 2A n n n

N e
h is thus approximated by h = h U Ç ; it can be verified that the Ç are

n g n n

coordinate functions as those defined earlier.

For this h the functional can be written

fiCh'^) = fiCh U Ç®) = y fiCh Ç^) = y fi^ Ch)
n o n " n n ' .n e n n n

because the integrals over the whole region R can be takai separately over each

element :

fi^Ch) = -1
3?^ H^

K, . v^ h ^ h dR^ .
ij 3x. m 3x. n

V Ç^ h dA^
n n

and minimizing this expression we get :

3fi^Ch)
3h

K. .
ij

3Ç^ 35^
n ^m . .^e

:; h dR +
3x 3x m

V Ç^ d A^
n

a;

Let us define the matrix

nm
K. .
ij 3x. 3x, d ^

, J i
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Then for the entire system it comes :

3fiCh)

3 h
AA^ h +

nm m

V Ç^ d A^
n

e

CALCULATION OF THE MATRIX A
nm

nm

H^ 3Ç^
K.. ^ ^ dR"
ij 3x. 3x.

J 1

nm

r 3Ç" 3Ç" 3Ç" 3Ç" 3Ç" 3ç" 3Ç^ 3ç"

^xx 3x 3x xy 3x 3y yx 3x 3y yy 3y 3y
dx dy

e 1
Ç =7rT-(a+bx + cy)

n 2A n n n

A
nm

4A

CK bb +K cb +K bc +K cc)dxdy
XX n m xy n m yx n m yy n m

nm

-^ÎK bb +K cb +K bc +K ce]
4A ^ XX n m xy n m yx n m yy n m-^

With axisymmetricproblems AA is multiplied by 2ti

r + r + r
1 2 3



CALCULATION OF /
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V K^ dA^
n

= V e dA"
n

1 + 0 1 O"
2 ^n

Let us define' the global matrix for the entire system

A = y a"
nm ^ nm

0 = y^Q^
n ^ 2 n

A h = Q
nm m n

The solution of this set of linear equations gives the value of the

head h at each node of the grid,
m
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- CHAPTER 2

OTHER FUNCTIONALS fi

We can resume the different expressions of fi when this term is expressed

in fonction c

steady state.

in fonction of h Chead) or/and v. Cvelocity) in steady state and non-

1 ) Steady state - fi in terms of h

fiC

R J 1 A^ J '^A

dA + \ V.h.dA

2

2) Steady state - fi in terms of h and v.

fi Ch, V.) = f V. + 4" V. K?!^ V, dR - ( Ch-H) v. n.dA + 1 V.h
}rL^ X. 2 1 Ik kj )^ 11 )^

3) Non-steady state - fi in terms of h

fiC

R '- J 1

dR

1 X V x h.dA

[h) = J

- I IX Ch-H) X Kij 1^ n. dA +
\ '^j ^ ^2

4) Non steady state - fi in terms of v.

ficv.) = Í [k:; ci V - V ) « v. . -1- . i^ x|^
1 / ik 2 k ko 1 2S 3x. 3x,

K l_ S 1 K

- I Ch -H) X v.!^ n.dA - | ^ xCv.n. - V) * -^
Ja^ ° ^ " ;a2 ^ ' ' "^

5) Non steady state - fi in terms of h and v.

h, V ) A

dR

dA

fiC IKV. X ^ + -Ixv. xK.]* V -S hx-J- Ch-h )
1 3x. 2 1 ik s s 2 o

1

.dA

dR

1 iK Ch - H) 3K V. 3K n.dA +
1 1

1 SK V iK hdA

A.



UNSTEADY STATE
20

For unsteady state, fi may be written

fiCh)
1 ^ 3h 3h ^

J 12 '^ ij 3^ "^ "3^ s
R ^ ^ ^

x h - h iK h^ dR

1 ¡K Ch - H) iK K. . -r n. dA +
ij 3x. 1

CI iK V ÎK h) dA

1 2

(D (D
For steady state, we don't take care of term(^ expressed along A , because

the head is fixed and this term does not change.

For one element e, the functional becomes, using h = N h
n n

N = e
n n

fi"Ch)
3N 3N

n . m ,
h ¡K -r h + S

2 IJ 3x. n 3x. m s
J 1

5KNh -Nh SKNh
2nn mm nn n omj

dR

CI iK V x N h ) dA
n n

So the first variation is :

3N 3N
'\i I I

6fi Ch) = 1 iK K. . X ^T-^ h + 1 )K S N N Ch-h ) dR^ +
j [_ ij 3x. dx. m s n m m om j

RB J ^ A

dR + Cl X V X N )dA
n

^2

We can put out the convolution inside the different terms,

6fiCh)

R}
e

3N 3N

1 X K. . -r-^ -r-^ h + S N N Ch - h ) dP" +
ij 3x. 3x. m s n m m om

J 1

C1 X VN )dA
n

jk1 =

The term on left hand side of the convolution must be equal to zero, so

0 =

3N 3N

K. . -T-2- - 3K h + S N N Ch - h ) I dR^ + I Cl x VN ) dA^
ij 3x. 3x. msnmmom I n] -° * 1

The expression of the matrix AA is
nm

AA = K. .
nm ij j

R

f 3N 3N

T^ ^ dR"
3x. 3x.

e J 1



We introduce a new term D
nm
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e

ele
D ES) N N dR For the value of these terms, we may use the

nm s y_e nm 4.1,1 j--, -, j i. -, j. -,
-^R table of local integrals over triangles

With the table of values, we can get immediately the value of D . This
nm

value is defined by the geometry

^e J^s'^ 12 ^"'^^^
nm 1 _ . 2 , _-,

S A r- Cn = m)
s 12

We can evaluate

V N dA^ =-4- O"
/A^ , " 2 "

For the entire region, we obtain all the terms for integral calculus.

AA =
nm

^n =

D E
nm

Y.

e

e

e

aa"
nm

n

D^
nm

The integral becomes now

D Ch-h)+AA xh -lxQ=o
nm n om nm m n

X h = h

"^ A-At
Ct) dT with the assumptions that h varies linearly with

m "^

X. and with time
1

1 X h == |i 1 h Ct) + h Ct-At)
m 2 m m[

an
At must be appropriately small time increment.

Another assumption is that Q has linear variations with time

1 X Q = AÍ. (g (t] + Q Ct-At))= At 'Ô~
n 2 n n n

Hence these two expressions permit to eliminate the convolutions in the

integral

h Ct-At) w h is the original head used in this time step,
m om ^
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After the different simplifications, the expression becomes

D h
nm L

Ct) - h Ct-At)
m m

+ AA
At_

nm ' 2 b Ct) + h Ct-At
m m î] = At O

hD h et) + h Ct-At) - 2h Ct-At)
nm m m m

+ AA l^
nm 2

h et) + h Ct-At) = At 0
m m n']

2
h et) + h Ct-At)

m m

D + AA -4
nm nm 2

. Q + I D .h Ct-At)
2 n 2 nm m

A will be defined as the term :
nm

A ED + AA for unsteady state Cfor steady state AA only)
nm nm nm 2 nm

using B ED h Ct - At) + -^ 0
n nm m 2 n

and X
m K^h Ct) + h Ct - At)

m m

for steady state we had

for non steady state

AA
nm

h
m

= 0
n

AA
nm

X
m

= B
n

It will be proved later that D can be changediitPa vector for better results.
^ nm '^
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DISCUSSION OF THE EQUATION FOR NON-STEADY STATE AND EVALUATION OF BOUNDARY

CONDITIONS

We reduce the number of equations from N to N-K where K is the number

of nodes where the head is known.

For example, one advantage of this method appears in considering a

partially-penetrating well with some constant pumping rate Op.

Op

A 1

2.

3.

well

In the well-bore h = fCt)

At any instant of time, we have

h2 = h3 = h^ = ?

The term X includes h Ct) et h Ct-At)
n mm

which are constant at any instant of time

so

^1^*^2V^3V^4V	= ^i

^^^'	^^24V	= ^2

A^^h +	+A^^h, +	= B
31 1 34 4 3

A^^h^ +	+A^^h^ +	= B
41 1 44 4 4

Ar-.h +,
51 1

A. . depends on geometry and different h. are equal in the equations

the 4 first equations may be reduced to one equation

= B.^1*^2*^3^^4^^^^5V

^\l^N2^N3^^4^^^^5V'

1

= B,

^^^'^ +Ag^)h^+....

But 0 = 0. + 0 + Q + 0, at any instant of time
P 1 ^ O T"

We guess Q - then we must calculate Q , Q and 0

The result 0 ," Q^ + Q^ + Qo * Q/i is generally not equal to Q
cal 12 3 4 p

Hence the value of head can be defined by

0

h Ct) « -E- X h
m

0.
m

calculated

calculated

only for the first time s^^p
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At the end of the first time step

0 is generally not equal to Q : so, we
cal p

adjust h . At the end of the second time
m

step, equal to the first time step

At = At , the flow may be also different

of 0 .
P

Q io/ol

Qc

At, all

t,

.£1
Qp

tim^

At point m Cnode), we have

0

Ccal = calculated)

AQ

Ch2)

cal

with wet - 0)

4nT
wet2 - 0)

_£	P

4nT
wet2 - t^)

dy

fOO -w

e ^

y
dy with u

S r
s

4Kt,

As At = At., the value of t is : t_ - t^ = t^ - 0
2 1 2 1 2 11

The value of Ch_) , is, in this case :
2 cal

eh .
2 cal

0

4nT
wet2 - t^) + wct^ - 0) H- -^ wet^ 0)

wet^ - 0)

where Q 	rT-= has been calculated at first time step
p 4n I

eh ,
2 cal

(h^ - hj + ChJ
c	p

2 1 correct 1 correct 0
(hJ

1 correct

Ch^)
2' correct 0 ' 1 correct

The value of h. in the right hand side has been obtained after the first time
1

step.

Finally

eh
2 correct

Ch^)
2 cal 0

On " Or.
	^ . ChJ

1 correct

For the third time step, we use

At = At + At, . . . and so on ...
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We introduce 2 new boundaries

- seepage face

- free surface face

so we have 4 kinds of boundaries.

Ix. '^' =° '''
1 J

/////////^y////A^/////A

h = H on A^ C2)

Kij 1^ n. = -V on A CS)
9x . 1 2

J

Such are conditions for confined flow.

For the seepage face, if we know the geometry of this face.

h = X on S C4)

If there is no infiltration, the free surface has a steady position.

h n on F.S. C5)

Kij -r^ n. " In on F.S. (6) Infiltration is positive downward.
dx , i 3

J

The determination of the intersection of the free surface with the

seepage face is the main problem.

Determination of a fonctional

fi Ch,n) =
1 ^. . 3h 3h ,p

2 ^^J 37. 37. ^^^
J 1.

i Ch-H) Kij 1^ n, dA
oX , 1

©

itD

) eh-X3) Kij |^_n. dA . ) V, h.dA - ) Ch-n) Kij 1^ n. dA
oX ,

J

© ©

-)n I n dA
F "^

Hence, terms of this fonctional are similar to those of the functional

for steady state in a confined aquifer.



26

Let us introduce a perturbation in the value of h and n ^i^d

take the derivative of fi at point Ch, n)

4r iî Ch+Xh, n+nH = "SfiCh + Xh, n + Xn)
^^ . 'x=o X=o

fiCh+Xh,ri + Xn)
I 1 ^. .3ChH-Xh) 3Ch+Xh) ^^ ( r. ^,îî uw -ICh+Xh) ,.
I 2 ^^J-37^	37 ^f' - 1 Ch.Xh-H)Kij-^^^ n. dA

fK^-kîi ^'^^l^ -3 Ch+Xh) .
lh + Xh-n-XTi)Kij r	 n. dA

t 3x. 1
-J Ch+Xh-X^)Kij^^^ n. dA + ( VCh+Xh)dA - /
4 3 -^ 3x. 1 )^ J^

iCn+Xn) In dA

The first variation ôfiCh+Xh.n+Xn) at X = o is

dfi

dX

L. . 3h 3h
V/^J 37. 37. ^R

-/

'\j

fu UII/ 3h , î" ,/ . . 3h
Ch-H)Kij g^ ^ h Kij g^

J j.

n. dA
1

fi_ v/ M/.. 3h '\i .... 3h
(h-X3)Kij - . h Kij -

- J JJ

fu 1 ;/ . 3?) ^ f?i' '^i ^,. . 3h
Ch-n) Kij + Ch-n) Kij

J J-i

n. dA ^\ V h dA

^A,
Tl

n . dA -\ n I n dA

3h '^
Using GREEN'S first identity, with the two terms Kij -r and h, we

oX ,

replace the first integral by ^

L. . 3h 3h .
r^J 37. 37. ^^ '
R J 1

>^37/^j|7/^^)^^^^l7_. ^^'^
'Ai

k Kij f n dA ^ Í ÍÍ Kij 1^ n dA .
'S ^^j ^ A2 J

?i Kij |^_ n.dA

We substitute this value of the integral in d_fi_

Some terms disappear, the result being
X=0

after simplification

6fi Ch,n) dA

'V

CKij -r^ n. + V) h dA
dx , 1

-/ Ch-n) Kij 1^ n. dA + ( CKij |^ n. - In^) n dA
L 3x. 1 I 3x. 1 3

'^F
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This represents the first variation of fi : the two conditions IF and

ONLY IF are :

-> IF conditions CD to C6) are satisfied AfiCh,n) = 0

condition CD satisfies member E of the equation

C2)

C3)

C4)

C5)

C6)

so 6fiCh,n) = 0

and ONLY IF these conditions are satisfied ÔfiCh, n) = 0 for every value of h,

so all conditions CD to C6) are satisfied.

_Mij2Ínii¿ajt^io_n :

With the basic assumption

h = a + bx + cZ

the problem is similar to the precedent

ones.

g

We have 2 variables h and n :

we cannot solve the problem directly j so we proceed as follows :

step CD - we take into account the prescribed head boundary conditions

on F and S

step C2) - we take into account only the prescribed flux boundary condi¬

tions on F and S

and so on.

Example

We fix the free surface; conditions C4) and C5) are satisfied )

conditions C2) and C3) are easily satis-
) for

)

fied

we ignore condition C6)

)

)stepCD
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T2 drops for step CD and C2)

T3 " "CD

T5 " "CD

TB is ignored for step CD

Ccf. see expression of the functional

for the notations of the different

terms)

We get a system AA h = 0
nm m n

In step CD, flux is calculated along the free surface and the seepage

face : we get values of flux Q, along the free surface CQp) and the seepage

face CQ We set Qp equal to the prescribed infiltration and maintain Q for

step C2) .

.

'.

^"^

1

F

/'.S.'

/ rr

In second step, we have now flux along the free surface and the seepage

face and can solve for head on F and S. F is then shifted to a new position

if necessary Cif h ?^ n on F) .

sthe
The equation used in- first step is :

fiCh) =
1 K 3h .3h
2 ij 3x.*3x.

J 1

dR + V.h.dA

The equation used irh second step is
he

fiCh)
3h 3h

2 ij 3x. 3x.
J 1

dR + h*V «dA +
s

V«h«dA h I n3 dA

In these two steps, we keep the same shapes for the free surface and

seepage faces.

Suppose that after step 2, we get a new calculation of values of head

along the 2 faces

- on the free surface, the head must be equal to n Cwhich is the vertical

coordinate) . We modify as shown below :
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/re» sor/cree Co/cuJo/ei/ o//*r e"

After step C2), we must move the free surface. But the change of

positions of the different nodes must be done along the different directions

AA', BB', ...

This condition is required by :

- the fact that different materials can be situated on either side of the

directrice-line Cas AA', BB', ...).

- the impossibility to move the free surface vertically if this surface

becomes almost vertical.

So the new position of nodes adopted after the second step is at the

intersection of the theoretical new surface Cdashed line) with the lines

in directions AA', BB', ...
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UNSTEADY FLOW WITH A FREE SURFACE : PROGRAM FREESURF II

First approach :

- Dupuit assumption

- Dupuit assumes that;

1) There is no seepage face, the

free surface is racorded to the level of the

water.

I f.s _ --:

2) The direction of the Flow is everywherehorizontal,

3) The flow is proportional to the gradient of the free surface,

This gives rise to the Boussinesc equation

1 fh K l!l 1 - q 111
3x. ^^ ^ij 3x.^ y 3t

T. ., variable with h

S = Specific yield = effective

porosity

or

3 ,^ Ih^. _ ^ ^
3x. ij 3x. h 3t

1 J

This equation being non linear and difficult to solve, it is not

always advantageous to use the Dupuit assumption.

Furthermore, it is not very good near a well, and simply would not

work for the lowering of the water in a dam :
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In this case, the flux accross the free surface will not be zero

or equal to the infiltration : it is a new kind Of boundary condition.

Second approach :

We will use the equation

/-(K..-|tl) =S 1^
3x. ij 3x. s 3t

1 J

S is the specific storage due to compressibility of the porous

medium. It can be included in the computation, but is more or less négligea¬

ble, and is not included in FREESURF II. Therefore we will write. :

"' A 'hi %' " °

This is a continuity equation for steady state.

C2) h Cx., o) = h Cx.)
1 o i

C3) n Cx,, x^, o) % tx>,' X2^

I initial conditions

n is the elevation of the free surface at the point of coordina

tes X,, X2.

If S = o in equation CD, as in Freesurf II, it is not necessary
s

to provide the initial condition C2) : the condition C3) provides the boun¬

dary of the flow region, where equation CD would permit to determine in each

point the flow and the head. Butthis calculation will even not be necessary.

Boundary conditions
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A, : hCx.,t) = HCx,,t)
1 1 i

A K ^'^2 hj 3x, "in. = - VCx^,t)
k

n. is the unit outer normal vector across the boundary
1

nCx , X , t) = hCx , X , n, t)

K.,li^ .ti-s^|a
^ ij 3x. i

n is the vertical component of n.
3 ^1

S : hCx., t) = X.^
1 3

Development of the equation of the free surface

Suppose that we have a rising free

surface.

V. is the usual velocity vector
1

of Darcy.

The small element of surface dA rises

between time t and t + dt j its displacement

dL is measured along the direction of the

unit vector n., assumed to be orthogonal to

dA both at time t and t + dt.

3n
The vertical component of dL is -rr dt . Let n be the component of

d t -J

n in the vertical direction x

The amount of water stored in the three dimensional element of

surface dA and thickness dL during the time increment dt is :

S dA dL
y

s dA -Ij dt n^
y 3t 3

dL
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The amount of water entering into the element from below and from

above is

Cv. n. + In.,) dA dt
11 3

The product v. n. is the component of Darcy's specific flux perpendi¬

cular to the surface dA ; the other component parallel to dA does not parti¬

cipate to the movement of the free surface.

I is the rate of infiltration, which is a vertical flow.

Identifying those 2 terms, we obtain the second equation of the

boundary condition on F.

It is this equation which introduces the non steady phenomenon intothe

steady state equation.

Third approach

Another way of solving the non steady flow is to use a succession of

steady states.

1/ For a given position of the free surface, the corresponding steady state

flow is computed.

2/ The Darcy velocity is computed at the free surface using this steady state.

This velocity is not zero because the position of the free surface is not

in a state of equilibrium.

3/ The free surface is moved for a given step At according to the in 2/

computed velocity :

displacement = -r dt d) = effective porosity.

See - Herbert, 1968, in the journal "Groundwater". He used a RC network

Celectric analog) .

- Szabo & Mc Craig, 1966, Bulletin of Water Research Association. They

used a finite difference method.
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- Parekh, 1967, with finite elements.

- Taylor, 1971, with finite elements, in the Journal of irrigation and

drainage.

In this method, the previous free surface is used as the initial

condition for each time step, i.e. the formulation is explicit, which brings

stability problems : the free surface oscillates more and more as time

increases, unless the time step is very small.

On the contrary, our 2nd approach is entirely implicit.

Variational principle for the second approach

fi
fK 1 Í 1 .^ 3h 3h
^"'-^^ = 2 '^ij 377 -377

b ^ J 1

dR - Ch - H) K. . -^ n.dA
ij 3x 1

3h
Ch - X K. . ...

3 ij 3x. i
n.dA

J

VhdA

J

Ch - n) K. . 1^ n.dA
ij 3x. 1

nCI- S^l^) n3dA

As the finite element method directly satisfies the conditions

"1 A and h = X on S,

expression of the functional,

h = H on A and h = X on S, the integrals on A and S disappear in the

The main problem is that at a given time, we must have a fixed mesh in

order to apply the finite element method : it is therefore not possible to insure

directly the condition h = n on F, and our variational principle is not

applicable.

We cannot use convolution in our expressions, because it requires

the region R to be constant.

The procedure that we will uses to assume initially that -r is known,
dt

and to iterate.
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Let us calculate the first variation of fi

ÔfiCh, n) = -¡^ fiCh + Xh, n + Xn)
dX

X = 0

r^, % 3n
Substituting h and n by h + Xh, n "* Xn, but not for the term -rr-

dt

which is assumed to be known, and applying Green's first identity, we obtain

ÔfiCh, n)
3x.

1

3h

I ij 3XjJJ

'h

hdR fh - h1 K. . -^ n.dA + K. .|^.+V hdA
^ -I ij 3x 1 j l_.ij3x 1 J

fh - ^] K. . 1^ n.dA . [ [k. . |h- n. - CI - S |j) r^'^ n dA
1- - ij 3x. 1 J j_ij 3x. 1 y 3t 3]

[h - X3] ^
'\j

3h

ij 3x,
n. dA

1

This method of not perturbing the term -- of the first variation
dt

enables us to derive a variational principle. Otherwise, the operator is not

self adjoint and there does not exist a variational principle. With our

3n
assumption of -r-- known, we obtain an implicit expression that can be solved

3n 3n
easily and, having been computed, we reiterate the computation : -r is

dt dt

considered as a known source term.

Furthermore, it is possible to use the Galerkin method instead of

the Ritz method to solve this problem and the same result is obtained without

any problem with the functional.

We can see on this first variation that our functional is correct,

because, n and h being arbitrary, it is necessary for all the equations

written earlier, to be satisfied if we want ôfi to be zero.

For a given position of the free surface F, our mesh will be fixed

and we can very easily assure with finite element the boundary conditions :
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h = H on A

h = X on S

h = n on F

Furthermore, as h = n on F, we can write -r = -rrr on F and the func-
àZ dt

tional is reduced to

fiCh)
1 K 3h 3h

2 ij 3x. 3x.
dR + VhdA -

3_h

y 3tJ
ngdA

Two-steps 'iterative procedure

1/ On F and S, prescribed heads are given. Using the steady state equation,

the flux (¡) is computed on F and S : we only need it on S.

2/ On S, the flux <^ computed in step 1 is prescribed.

On F, a special boundary condition is given using the balance in the element,

The head is then determined.

Finite element equation

Substituting h = h £ and minimizing fi with respect to h gives :
n n n

A h + y
nm m ^

ç" S 1^ n^ dA = Q + C
n y 3t 3 n n

where

n ^

Evaluation of C

C In dA
n 3

a/ 2-dimensional problem

On the free surface F of an element e we have



c" = In,
n 3

ç" dA = In ^ AA
n 3 ¿

if AA is the length of the side along F of element e, as

n = cos B

AAn, = Ax"
3 1

F becomes a surface and we integrate over the surface F

n 5
ç" dA = In \ AA

n 3 2

If one calculates directly the projection of the

circular surface AA over the horizontal plane, one gets

n AA = n R, - R 2n

R^ + R
1 o

37

and

c I î I '<
n 2

^^ ?xi-symmetric problem

V-~r 7T
^ i

-»^r_	J

^^',

= 2n x" ax"
1 1

where R. and R are the radii of the nodal points of the element, and X^
1 o 1

the average value of theseradii. Thus

,e 1

n = 7 l^ ^\ X 2n X
1

These two forms can be written

C =4- y a I AX
n 9 'Jn 2

where

a = 1 2-D problems

a = 2IIX axi-symmetric problems
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Calculation of the displacement of the nodal points

3 Tl ^h

The variation of the free surface with time, Cor -r here) re¬
st 3t

fers to the vertical movement of the points; in order to have the actual

displacement of a node along a transverse line that mav not be vertical,

a correction must be made.

The nodal point m will move to m'

along line AA'. This movement

does not represent at all the one

of a fluid particle. Along the free

surface, the head h = n is a function

of time and X. only. , ,
1 I	J£	3	 I	«^ Xf

./>/

t	.\	_^

yf

r^^/^
m'J

A'/

Av /ft»

A

r" t

( 9A
Í 0¿

I- tt</¿

	^tm.

(X,)n_ Mm

The displacement of m to m' along AA' induce a variation of head

during the- time step dt that can be calculated using the total derivative

. To get the partial derivative along the vertical CX. constant) we

can write :

tíh ^ 3h_^ ^ ih
dt "^ 3X, dt * 9t

As each segment of the free surface is a straight line and re

mains a straight line from t to t + dt, it is possible to calculate
dXi

dt

as a function of this expression itself taken only at the nodeson the

free surface ; using the coordinate functions Ç :

dX-, dX^

1 = ç" C 1 )
dt ^p dt p

dh
The same thing can be done for

dh _ ^ei ^dh.

dt m dt m

We then calculate 111
3t

ill _ jr^ fJËlLi ill- r^ r^^1^
3t " ^m dt m ' 3X^ ^m dt m
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Within element e, we can easily get
3h

3X^

_3h_

3X

Ah

1 Ax!

and

dX.

dt
jm

dX.

dh

dh_

dt
m

dh

dt
cotg e

m

We finell/ get

3h_ ^ e

3t ^m
dh

dt
m

1 _ .^h_ ^^^ g

Ax"

Introducing this expression into the finite element equation :

A h + y ç" S 15- n^dA = 0 + C
nmm ''|ny3t3 n n

e ¿.e

we obtain

A hállese
nm m ^ j n y m

^dh^
dtj

1 - AlLcotg B
m ^ Ax! ^^

n^dA = Q + C
3 n n

We can take
^dh^

l_dt;
out of the integral as is it is a constant in ary element

m

and we obtain, after calculation

A h + D
nm m nm

dh

l^dt;
m

= 0 + C
n n

where

f 3Ç" 3Ç"
A = ^ K.. T-^^ dR

nm _ ; ij 3x. 3x.

R^
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D = <
nm ^

y ^ S CAX" - Ah" cotg 3 ) , n =
^ 3 y 1 m

y ^ S CAx" - Ah" cotg 3 ) , n 7^
^ 6 y 1 '^ m
e

m

m

m

0 - I V ç" dA
n

^^

C = -1 y a I AX
n 9 tJ

1 planar flow

a =

.]+ CX^) axi-symmetric
1m

D and C are equal to zero everywhere except on the free surface,
nm n ^

Integration of this equation with respect to time

k+ 1 k
Let At = t - t k = number of time step

We have 3 possibilities of approximating the derivative of h with respect

to time :

a) Forward difference

,-1^ r.^
A h + D

nm m nm

h - h
m m

At
Q^.C^

n n

This is not stable for any At. Note that this method could be called

"explicit" only if D was a diagonal matrix.
nm

b) Backward difference

^k+1 _,k+1
A h + D

nm m nm

h^^^ - h^
m	m

At

kM ^ ^k.1

n n

This expression is stable. It can be called "implicit".
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c) Centred ^if_fer£n_c_e_^ £r_Cr_ari_k_-_N^c_h^o2_s^n_f£rrnu_l_at_Í£n

D^ D^*^ 1 r D^ D*^'^ )
^k.1 , ^ , _QïL l h^^^ = Q^ . Q^*^ . c*^ . c^'^ - J a' _ -M - _nE_ c h'

nm At At J m n n n n A nm At At \ m

This equation is programmed in Freesurf II.

Subscript k indicates that A, D, h... are taken at time t .

These quantities are known and remain constant troughout the time step At.

k+1
Subscript k+1 indicates valueSat time t : as they are

ignored at the beginning of the resolution, an initial value will be esti¬

mated for the calculation of A, D and C and an iterative processus will be

generated :

iJ 'l - D D'^ "^
P . .^ . .^ i hJ-^^ = Q + qJ + C H. cJ - Ía
1 nm At At j m ^n n n n <

nm nm ( ,
h

nm At At r m

In this notation, subscript j indicates the number of iteration

applied to the evaluation of quantities at time K + 1 . No subscript indicates

known quantities at time k.

1

This iterative procedure has two steps, denoted j + and J + 1.

First step

Prescribed heads on boundaries F and S :

hJ^^/2 = n^ on F
m m

hJ^''/2 __ 3 ,, s

m 3 m

1+1/2 i+1
one uses the equation written above to compute h instead of h

^ m m

At the first iteration, an initial guess is made for the position

of F and the length of S at time t + At.
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When h is computed, it is possible to determine the flow
m

coming in or out of the systemthrou^ boundaries F and S :

o;
J + V2 _ aJ L.J + 1/2

A^ h^
nm m

Second step

Prescribed Flux on boundaries F and S :

j + 1/2
Q is set equal to the value computed at the first step on S.

j + 1/2
Qp is set equal to zero if there is no infiltration, or equal to the

flow brought by infiltration, if there is any, on F.

J + 1
h is given by

m ^

{ nm At At C m
3 + oJ^^/2 , c + cJ - /a -^-^Ih
n n n n i nm At At j m

An error is then computed

Max
hJ^^ - hJ

m m

i + 1h-^ - h
m m

If E > E. T . , » one shifts the free surface in order to achieve
tolerable

h = n on F ; the intersection of F and S is determined in Freesurf II by

extrapolating the direction of F towards S using the two adjacent nodes of F

close to S.

point 3 is extrapolated

linearly from points 1 & 2

Moving the free surface modifies the matrices O'^ , C , A
nm n nm

and the processus continues.
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Problems that can be solved by Free surf II

1) Dams.

The level of water in the dam is supposed to be lowered, and not

risen, otherwise the Free surface could be too tortuous and could intersect

several times a transverse line, which, is not possible with this program :

2) Infiltration mounds.

"t

	 V VJT

3) Wells in free surface condition.

prodoc/'on1

t,

t2

ts

V

V

V

1
foitng

y ^ _ Ini/io/ Cortdi/ionj

M* í¿00»</or/ conc/;//on As ^o//,m*¿j)
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At prescribed production rate

Freesurf II takes into account the effect of the capacity of the

well, using the inside diameter of the casing and the outside diameter of

the tubing.

We can write :

Q production = Q withdrawn from the well + Q. ^
A +b

of 0 :
s

Ccapacity effect) Cwithdrawn from aquifer)

We can assume that during time step At, there is a linear variation

Op * 0
Q production = ^ tt-^

Q^ ^ Q^^^
Q well effect = -^ ~

0 <*""
Q aquifer = 	:=	

If we define the volume produced during time step At CV = QAt) we

can write :

At n,k ^k+il At r_k
AV = -r: 0 + Q = -:7 0. + Q + Q + Q

p 2l_p pJ 2|_A A w wj

At r,k At Tk ^k+f
^^w = - L'^p * «^p J ~ - K ^ "^A _

2 2
AV = AL.n.Cr - r^) where AL is the lowering of the water level
wet

in the well.

From this we get

., 	At Tk ^k+1 ^k+fl
AL =	~ Q^ + Q^ - 0» - Oa

9ÏÏ fr2 - r^2 i_p p A A J
2n Cr - rn

c t

known unknown
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It is necessary to know AL in order to fix the water level in the

well and the prescribed head condition on A . Therefore the resolution of

this equation is introduced in the iterative procedure. If j is the number

of iteration :

^l' = T^^-T k ' ^i - «A - oil
2n (r^ - r^ Lp P A A_l

i + 1 i
L = L - AL L being the level a time t in the well.

and

This permits to solve the problem of production in wells of large

diameter Ccf. Water Resources Research, june 71, p. 618).

Freesurf II can also solve the problem of prescribed head imposed in

the well, instead of prescribed production rate.



CHAPTER 4 - ^g

VARIATIONAL PRINCIPLE

GENERAL PROBLEM

Let solve over a given domain the equation :

Ah = f

where A is an operator symmetrical and positive definite, f is a known

function and h is an unknown function defined in the same domain.

We will prove that there is only one solution and that finding

this solution is equivalent to determining the minimizing function of the

functional :

fiCh) = <Ah,h> - 2 <f,h>

UNIQUENESS THEOREM

Assuming that : h. ?*= h

we should have two solutions : Ah. = Ah = f

let : Ah = h^ - h

Then : ACAh) = f - f = o

implies

A being a linear partial differential operator, the last equation

Ah = o or ^1 " ^2

VARIATIONAL PRINCIPLE THEOREM

We will demonstrate now that h is a solution if and only if h

minimizes the linear functional :

fiCh) = <Ah,h> - 2 <f,h>

We assume that A is real, positive definite, linear and self-adjoint.
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1 . For the first part of the proof we assume that h is the solution of the

equation :

Ah = f

We now introduce some arbitrary function h having the same mathematical

properties as h and satisfying the boundaries conditions. We replace h by

h + h in the functional :

fiCh + h) = <ACh + h), h + h> - 2 <f , h + h>

fi and A being linear we can write :

fiCh + h) = <Ah,h> + <Ah,h> + <Ah,h> + <Ah,h> - 2<f,h> - 2 <f,h>

= fiCh) + <Ah,h> + <Ah,h> + <Ah,h> - 2 <f,h>

'X, -v

Because of the self-adjointness of A : <Ah,h> = <Ah,h>

Then :

fiCh + h) = fiCh) + <Ah,h> + 2 <Ah - f, h>

The last term of the right hand side of the equation vanishes because

Ah - f = o.

So that :

fiCh + h) = fiCh) + <Ah,h>

A is positive definite, then if h is non zero, the quantity <Ah,h> is

positive and we can write :

fiCh + h) > fiCh)

If h is a solution of the differential equation Ah = f, the functional

of h + h is always greater than the functional of h. Then h minimizes

fiCh).

2. For the second part of the proof we suppose that h minimizes fiCh) so that :

fiCh + AXh) - fiCh) ^ o

where AX is a very small positive number.

By replacing h by Ch + AXh) in our definition of the linear functional we get
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<ACh + AXh) ;h + AXh> - 2<f, h + AXh> - fiCh) = <Ah,h> + <Ah,AXh> + <AAXh,h>

+ <AAXh,AXh> - 2 <f,h> - 2 <f,AXh> - fiCh)

In this expression the terms 1, 5 and 7 vanish, so that by using the self-

adjointness of A we finally get :

fiCh + AXh) - fiCh) = CAX)^ <Ah,h> + 2CAX) <Ah - f,h>

The first term of the right-hand side of this expression is always positive.

AX and h being arbitrary, the only way for this expression to be positive or

equal to zero is to have :

<Ah - f, ?i> = o

This implies the following equation :

Ah - f = o

So if h minimizes the functional fiCh), then h is a solution of the diffe¬

rential equation :

Ah = f

st
Why can we use the 1 variation test ?

We determine the first variation of fiCh) through

ÔfiCh) = ~ fiCh + Xh)
O A

X = o

By definition this is the following limit

ÔfiCh)
, . fi Ph + CX + AX)tT] - fiCh+Xh)
lim 	 	rr	"^	

AX
AX -» 0 X = 0

'V'-

lim
fi Ch + AXh) - fiCh)

AX->-o
AX
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Using the second part of the previous theorem we can get the value of the

limit :

ÔfiCh) = 2 <Ah - f,h>

This is the proof that we can use this test. In clear :

1/ if h satisfies the partial differential equation then ôfiCh) = o

2/ if ÔfiCh) = o V h, then Ah = f

EXISTENCE THEOREM

We have assumed that fiCh) has a minimum and only one, if the ope¬

rator A is positive bounded below. This means that for each h there exists

some real number y such that the inner product :

2

<Ah,h> > Y^ ||h||

2

where ||h|| is the norm defined as follows :

2

||h|| E <h,h> in a Hubert's space

This is a necessary condition but not sufficient.

Let us take a more general situation. What happens if :

AhCx.,t) = fCx.,t) in our domain R
1 1

with non-homogeneous boundary conditions :

G hCx. ,t) = g Cx. ,t) on T
n 1 n 1 n

A can be an integrodifferential operator, that is differential with respect

to X., but integral with respect to t Cconvolution) .

Because of the convolution and of the non-homogeneous boundary conditions the

functional is given by :

fiCh) = -^ <Ah X h> - <f X h> + Z I^
2 n r

n
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The surface integral I , due to the non-homogeneous boundary condition, has

two requirements :

a - ÔfiCh) = o

b - G h = g ail over r
n '^n n

The principle of the calculus is :

1/ take fiCh)

2/ get ÔfiCh)

3/ search for I Cnot easy)

n

4/ verify that G h = g
n n

Exar[igle_1

- Simple non-steady flow in a confined region

1 X -r^ CK, . 1^ ) = S Ch - h )
3x. ij 3x. s o

1 J

with the boundary conditions :

- prescribed head on A h = H

- prescribed flux per unit area K. . -r n. = - V
A ij 3x. 1

on A ^ J

The problem is completely defined by this set of equations.

From the first differential equation we can get

an operator Ah = 1 ¥ -r CK. . t ) - S h
3x. ij 3x. s

a function f = - S h
s o

Let us check the self-adjointness of A. We will take any two functions u, v,

satisfying zero boundary conditions. The question is :

7

<Auxv> = <Avxu>
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Using the operator A as defined above we have on the domain R

<Auxv> = M * T^ tl^- T^ ) X V - S u ÎK V
j \_ 3x ij 3x s J

dR

Using now Green's first identity and remembering that the permeability tensor

K. . is symmetric everywhere in R, this identity becomes :

<Auxv>
-. 1/ 3u 3v

-1 X K. . -T	 iK -r	 S u * V
ij 3x. 3x, s

dR

K. . and S , being not function of time, can be moved outside of the convolution
ij s

so that :

<AUiKV > = Í M X - CK. . ~- ) X u - S^v * u|
J I 3x ij 3x s J
D -^ J

dR

The right hand side of this equality is equal to <Av x u>

proof of the self-adjointness of A in our example.

. This is the

We can now write the actual functional"

fiCh) TT X K. .-r X -r dR
J 2 ij3x. 3x.

R -^ R

T^ - h
.2 oj

X hdR + I +1.

We have to set : K . . -r n. = - V on A and the surface integral
ij 3x. i 2

I has to be equal to

^^2
1 X V X h dA

And for I,

^A = '*'^1
1 X Ch - H) * K. . -r^ n. dA

ij 3x. 1
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ExamQl|_2

- Variational principle in terms of head and velocity together.

In the region R the flow can be characterized by the following set of

equations :

3v.

- continuity equation Ccombined with initial condition) 1 ¡k -r = - S Ch - h )
dx . S O

3h ^
- Darcy's law v. = - K. . -r

ij 3x.

Boundary conditions h = H on A.

V. n. = V on A
11 2

We will solve the continuity equation for h, assuming the velocity v as

known, and the Darcy's law for v, assuming the head h as known. The problem

is how to compute the functional fi in terms of h vand v. together.

Looking for fiCh), let us write the first differential equation :

A,h = f,
1 1

assuming that : A. h = - S h
^ Is

3v.

f ^ = 1 X ^ - S h
1 3x. s o

In terms of head the functional becomes :

fiCh) =- Scin-h)iKh + 1x -r-^ x h dR + I^
JLs 2 0 3x J 1

R

Looking now for fiCv.), let us write the second differential equation

A2V. = f2

assuming that*: A^- "" ~ ^j

2 ij 3x^

In terms of velocity the functional becomes :

Of 1 in ,. 3h 1
fiCv, )=- ttV, iKV. + K.. -T	 XV.

i J L2 i 1 iJ 9x ij
D J

dR + I2
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The question is how to combine fiCh) and fiCv.). For that we must somehow get

3v.

1 * -r X h looking as K. . -r x v.
3x. ij 3x. 1

1 j

Green's first identity leads to

3v
i u .1 3h

1 X -r xh = -1xv. ÎK -
3x. i 3x.

1 i

-1 -1
Using K., defined by : K.. K., = ô., where ô., is Kronecker delta, and

Ik ^ Jl ik jk jk

-1

multiplying fiCv.) by 1 x K., , K. . disappears and we get in fi'Cv.) a similar
1 -^ ik ij 1

expression to the above one got by applying Green's first identity on

fiCh).

By doing the union of fiCh) and fi'Cv ) we obtain the functional

fi Ch,v.) = fiCh)Ufi'Cv.)
1 1

or

f r

fiCh,v.)
/I 3h 1 ,-1 ,1, , .
1 X V. X -r + TT X V, X K, , V, - S C-dn - h )

1 3x. 2 i ik k s 2 o
1

X h dR + I

where I is a surface integral, very hard to find.

MATRIX SOLUTION OF THE PROBLEM Cby G. GAMBOLATI)

It is possible to find the functional fiCh,v.) by using a matrix

formulation of the basic equations

Continuity equation : 1 x

Darcy's law

3v.

T-^ = S Ch - h )
3x. s o

3h

on R

: V. = - K. . .
1 ij 3x^
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This set of equations can be written

3v

- S h + 1 * ^-^ = - S h
s 3x. s o

1

3h
V. + K. . -r

1 ij 3x

or by matrix formulation

1 t
3x.

3

3x, ij

0 (D

S h
s o

©

The matrix ^) corresponds to the operator A, the matrix (2) to the vector-

\i) and the matrix (D to the function f. From that formulation we can compute

the following inner products :

^ <Ai|> X !(;> = ^ (- ^s^ ^ ^ * -3^h h M3^ ' ij "i] ' ''iJ dR

<f X \li> S h X h dR
s o

The functional fiCh,v.)Èthen given by

fiCh,v.) = fiCi|j) </K\¡) n ii)> - <f }n \¡i>
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GALERKIN METHOD

The Galerkin method is applicable to both linear and non-linear

problems, but it has the disadvantage that the boundary conditions cannot

be embedded in the variational statement of the problem. We start with the

following general set of equations :

AhCx. ,t) = f Cx. ,t) on R
1 1

G hCx.,t) = g Cx.,t) on T
n 1 n 1 . n

A is here just a differential operator. In general A is non linear and

non self-adjoint. Some restrictions on the shape of A have been found by

the previous researchers. But we use it now with no restriction and it

works. We assume that :

h - h'^ = h Ct) Ç Cx-. )
n n 1

where h Ct) is the Galerkin coefficient and £ Cx.) the coordinate function,
n n 1

The Galerkin criterion is based on the principle that the inner product

of two orthogonal functions is equal to zero.

The problem is then to find the function h such that :

<Ah'^ - f , Ç > =0
n

N
In this equation each one of Ah and f must be orthogonal to the coordinate

function E . And finally we must have the following criterion :
n

<Ah Ç ,Ç> - <f,Ç> =o
m m n n

Remark

If we go back to the Ritz' method, we remember that

fiCh) = -l <Ah,h> - <f,h>

Then according to this equation

nCh) = fiCh"^) =4- <Ah Ç .h Ç > - <f, h Ç >
2 m m n n n n
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And the first variation of fiCh) will be equal to

ô fiCh'^) = <Ah K , Ç > - <f , Ç >
n m m n n

This first variation must be equal to zero. This result is exactly identical

to the Galerkin's criterion. The only difference is that the Galerkin's

method does not require the variational principle. We do not introduce the

boundary conditions. This is hard in theory but easy in practice. The

Galerkin's method is very convenient for Finite Element Method.
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APPLICATION TO THE TRANSPORT OF SOLIDS

1 . Treated by the Galerkin's method

We will assume that we use an ideal tracer Csome salt for instance), i.e.

the specific weight of the water will be the same with or without salt.

We assume steady flow conditions. The continuity equation will be :

3v,

3x,

The velocity v. is constant with time but can change from place to place.

Then, let us take the following classical equation :

3x. I -3 3X.J

3c _ * i£

i 3x. " 3t
1

in which Dj . is a tensor, called dispersion coefficient
ij 	

3c

3x,
is the concentration gradient

^ is the effective porosity

The boundary conditions will be

C Cx.,o) = C Cx.)
1 o 1

on R

where Cq is a given function for starting

c = C given on A

3c
0 ... n. =-VCx.,t) known on A_
ij 3x. 11 2

where n. is the normal to the boundary and V the flux due to dispersion

not to velocity.

We also assume that the dispersion coefficient 0. . is symmetrical and

positive :

and that :

D., = f Cx., V.)
ij 11
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It is sometimes assumed that

D. . = a. . V
ij ij ' '

where a. . is a constant value. But this assumption is not always true.

We cannot neglect anisotropy with respect to D. . :

The figure above shows the longitudinal dispersion 0. and the transverse

dispersion D
T'

Applying the operator A to the concentration c we may write

Ac =
3 I _ 3c

3x. [ ij 3x

3c - 3c
+ V - + 0

i 3x, 3t
1

This entire expression is not self-adjointed, so we cannot develop a

variational principle and then we use the Galerkin's method.

We can now go directly to the Finite Element Method by writing the approxi¬

mation :

,N

n n

where í is still the coordinate function,
n

The summation wihln each element gives :

.e

e I- 1

3Ç
m

I ij 3X.J
c C"

m n

3Ç

- V
m _e

. o, c E
1 3x. m n

1

- $
3Ç el
3t ^nj

dR

and this expression must be equal to zero.

We let intact -rr because we want to define at nodal point n
3 1

3 c

3t

e ¿e
»lt<-«

$ ç" dR
n
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AA + B
nm nm^

C + D
m n

i£
3tl -n

n

where :

AA = y
nm ''

3Ç" 3Ç"
D.. ^ ^dR
ij 3x 3x

3 J 1

nm ^
e 4e

3?"
V. e-^ dR

1 n 3x.

dR

" A^

V ç" dA
n

In these expressions v. and D. . are taken constant inside each element.
1 ij

Remark :

, n, , . -, within , , j_ . i. _, n .^ .
If V. and D. . vary linearly . each element instead of being

1 ij

constant, we must change them into a linear approximation :

D.. = (D..)" ç"
ij ' ij-'m m

V. = (v.)" K
1 * i-'m

^e ^e

m

2. Treated by the Ritz' method

Using the operator A with respect to the concentration c we define

Ac = -
3x.

1

3c

l°ij 3X.J

and the function

3c ^ 3c

1



60

This is one way to use the Ritz method. There is an other one used by

GUYMON described below. We had :

Ac =? o

Then we take a weight function gCx ) and we write :

il7[s"<i'°ijfë^]- ^'"i'1 X -s I gCxJ D, , rr I = gCx, ) * Cc - c^)

By doing so we assume that there exists a function g. We also assume that

°ij' ^ ^ ^^\^

Therefore, assuming a constant velocity wthiheacii element and using

- °ij IÎ7 = ^^ .

we should get the same result as before.

To solve this equation we may write :

g = e'^KXk

where b, are solutions of :
k

°ii "^1 ° ^i ^ " ^.2,3

If solved in 2-dimensionswe can see that b are constant values
k

, ^ °22 - ^2 °12
b

' °11 °22 - °12 °21

. ^2 °11 - ^ °21

2 " °11 °22 - °12 °21

The transformed operator being self-adjoin

the functional fiCc) is given by :

e'^KXk dR
'¿ IJ dX. dX. ^¿. O'J

R~

- Í 1 X Cc-C) xD,,|^n. e"°K^l^ dA-, +
J iJ °x. 1 '

A-, ^ A2

1 X V iK c e"^"^^!^ dA,
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Guymon usesan intermediate function given by

N N "2^KXk
n = C e
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CHAPTER 5 -

FRACTURE FLOW

In general, there is a complicated interaction in a fractured

rock mass between the forces exerted by the fluids and those exerted by

body forces and boundary loads.

- From the fluid flow standpoint, it is very important and more realistic

to consider individual fracture characteristics in analyzing flow through

jointed rocks. This consideration leads to various flow laws depending upon

the Reynolds Number and the relative roughness of the fracture CLouis, 1969)

It is necessary also to consider the deformability of the fracture due to

existing forces, i. e. forces due to both fluid pressure and rock stresses

and not only to fluid pressure.

- From the standpoint of structural analysis of engineering works, it is

possible now to take into account the behavior of the joints or the frac¬

tures governing the stability of the rock masses CGoodman, Taylor and

Brekke, 1968 - Mahtab, 1969 - Dubois and Goodman, 1971). When water is

flowing through the fracture, forces due to water pressure must be coupled

to body forces and eventually to boundary loads CNoorishad, Witherspoon

and Brekke, 1971) .

Fracture flow analysis is very important in a wide field of appli¬

cation :

- underground openings

- dam foundations

- reservoir flow

- open pit-mines

- geothermal

- earthquake modification

- underground explosives.

The general scheme of a stability analysis is given by Louis C1972)
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Geology

Structural analysis

Anisotropy

Hydraulic anisotropy

Hydraulic testing in situ

(pumping test)

Preliminary model

Mechanical Investigation

on fractures

Definitive distribution

of water pressure

K,

K,

Stress distribution

STABILITY

ANALYSIS.

Design of drainage
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- General approach

The method used by Noorishad, Witherspoon and Brekke C197D employs

two finite element techniques and a conversing iteration process. The program

the
is restricted to the two-dimensional case, but can be extended to three-dimen¬

sional one. The procedure is shown in the form of a flow chart in figure 1.

First the Stress program is used to determine the effect of the

structure Cdam, tunnel, etc..) on the rock mass. This analysis changes the

size distribution of the fracture apertures. Then the flow program is used

to determine a first approximation for pressure P at every point within the

fractures .

In a second step the stress analysis is repeated using both the

effects of the structure and the fluid pressure P.J., giving a new modification

of the apertures .By making a second flow analysis we get a second approximation

for pressure P.p-r.

If |p - P I is unacceptable, then the process is repeated until

|p. - P._^| reaches a value less than some arbitrary chosen limit.

The rate of convergence to an acceptable solution was found to be

quite rapid in all of the particular cases that where studied CFig. 2).

Fluid flow analysis

In the following discussion only steady state flow will be considered,

A joint will be simulated by two parallel planes :
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S.P DEFORMED

ROCK MASS I

STRUCTURAL

CHANGES

í¡*5>

F. P

<5>

1
INITIAL
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F P = Flow Program FIG. 1 - FLOW CHART FOR ITERATION PROCESS
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FIG. 2 - CONVERGENCE CHARACTERISTICS FOR TEST PROBLEM.
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From the Finite Element point of view a joint is considered as a

line element : the nodal points I and L, or J and K, have the same coordinates.

Steady state flow of an incompressible fluid through a single fracture

or joint is governed by the following differential equation :

3

31

ill
V 31

where k is called "area permeability" and is defined by :

k = C2b.1) K
P P

K being the fracture permeability depending upon the mass density of the fluid,

the viscosity of the fluid and the aperture of the fracture.

1 is a variable length along the fracture.

Solving the previous differential equation is a similar problem to

that of finding a function h that satisfies the boundary conditions and

minimizes the following functional :

fiCh) = Mv(t) dl

For the entire system and in the general case where flow quantities

have been prescribed at some boundary, the functional can be written :

fiCh)

M

I ^
m=1

2

2

m

m

3h

31

N
m,T r, m.dl + I {q'"}' {h'"}

m=1

where M = number of elements

L = length of m-th segment in a network of M elements

N = number of boundary elements where q is prescribed.

It can be proved that this functional is minimized by a particular

function h for any joint element either inside the network or at the boundaries

where head or flow are prescribed. We need now to find the minimizing function

and for that purpose it is only necessary to demonstrate the' procedure for

a typical element m.
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First we compute :

3fi'^Ch)

where :

r ao^

3h
m

3fi Ch)

3h,

3fi'"ch)
3h,

3fi"^Ch)
3h.

m

;
Lm

3h

l3i; 3h.
1

3h ^,
31 ^^ ' \

m. ih.
element

Since

Remember that we consider a line element, along which h varies linearly

h = c + dl

where :

3h

31

N.
1

N.
J

=.

=

=

3N.
1

31

1. -
J

1. -
J

L -

L. -
J

3N.~
J

31

1

1.
1

1.
1

1.
1

W
1. - 1

J

^m

1- ^i

l"^

1 1

we can write

3fi'^Ch)

3h
m

^m / ^m

P

.^m / ^m

P

^m / ^m

P

^m / ^m

P

or simply

3fi"^Ch)
[K,] { h"^ } M q" î

over the entire domain we get :

3fiCh) ^ Ç 3fi"^Ch)
3h. ^, 3h.

1 m=1 1



69

which can be written for all elements and nodal points

M N
3fiCh)

3h, I ^ ;^\-. ^ ^ ^i = °
n=1 i = 1 ifTi

Finally :

Fk^I {h} - { Q } = 0

¡Kri is the flow conductivity matrix.where

Flow forces within fractures

Knowing the distribution of pressures at every point within fractures,

it is now possible to calculate the equivalent nodal point forces of these

fluid pressure, that will be used later in the stress analysis.

Two kinds of forces are involved :

- normal forces

- tangential forces.

The fluid pressure acting in a fracture is shown on figure 4. In

spite of the use of line element it is of course necessary to identify both

sides of the fracture with the four nodal points i, j, k and 1. The pressure

P. will be the same at both points i and 1, and P. at points j and k.

Normal forces :

From the laws of

^x

^z
F.
jx

^ ^x ^ '
^z

^x

^z

static equilibrium we can write

1

6

2z..
Jl

2x. .
ij

z. .

Jl

X. .

IJ

"ik

\l

z . .

Jl

X. .

IJ

2z..
Jl

2x. .
ij

2^1k

2\l
2z

2x

Ik

kl

"Ik

^kl

where F. and F. are the components of the equivalent point load at nodal
IX IZ H h-

fjoint i and where :
z. . = z .

jl J
z.

1

^ij
X.

1
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Tangent ial_forces

They are usually so small that they can be neglected.

- Stress and strain analysis

This analysis is based on an energy approach. The principle of

minimum potential energy can give us a variational principle.

Let us write the total potential energy of our system :

W = ¿ W"" - {R}""" {0}
m=1

,m
where W is the potential energy contained within the element m, {R} is the

potential energy of boundary loads at the nodes, and {ô} is the displacement

of the nodal points.

For each element

;

w"^ =

where :

ie ) LcJ {e } - ÍE } {a } - {G } if }
1 r miT

2
dV {P"^} {f"^} dS

m

{e } is the strain vector and is equal to : [b J {ô } with [b j =

element deformation matrix.

[cJ is the elasticity matrix depending upon the elasticity modulus

E and the Poisson ratio u

{a } is the initial stress vector
0

{G } are the distributed boundary loads

{f } is the displacement vector within the elements and is equal

to : {f"^} = [n"] {«"">

with N = a function of element coordinates

ô = element nodal point displacement vector

{P } is the boundary distributed force vector
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W

Substituting values of {f } and {e } we get

1 I {ô'^f [b^t [c] [bT {ô'"} dV

ym

- j {P"^}^ KJ {«""> dS

As for flow problem we are looking for a function, in this case {ô},

minimizing the functional W :

3W
M ...m

3{ô.} ¿, 3{ô.} '"i
1 m=1 1

The operation results in

t OT^ [c] KJ {ô"'} dv
m=1

ym

M

I
m=1

j ( KJ"^ {%} - íg'"}'^ Kj )dV - j {P"^f KJ dS
ym S^"u ym

{R.} = 0
1

or more simply :

M M

ï [k^] {6^} - I {f"^} = 0
m=1 m=1

where [K J is the element stiffness matrix of the continuum and

[F j is the nodal force vector of the element including G, P and R.

Summed over the entire system this equation can be written :

[kJ {0} - {f} = 0

This equation is called the equilibrium equation and is a set of

linear simultaneous algebraic equations that can be solved for nodal point

displacements {ô}.

Before coupling flow and stress analysis, it is necessary to have

some knowledge of the joint behavior in the nature. This behavior may be

summarized as follows :
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. a joint has no resistance to tension in the normal direction

. a joint has resistance to compression in the normal direction

. at low normal pressures, the shear strength is mainly cohesional.

A hypothetical stress-displacement relationship is shown in Figure 5.

Let represent a joint as follows : Cafter Goodman, Taylor and

Brekke, 1968)

X and Y are the global coordinates and X' and Y' are the local coordinates,

U' is the shear displacement in local coordinates
K

V is the normal displacement in local coordinates.
K

U and V are the nodal K displacements in global coordinates.
K K

In the joint element of length L we have the following potential

energy

2

W ^ {W}^ {F-} dX-

_J_

2

where {w'} is the relative displacement between the top Csay L, K) and the

bottom Csay I, J) sides of the joint, under the influence of an applied force

F' per unit length.

nates

Let [k' ."] be the joint element stiffness matrix in the local coordi-
^ L

(

[k'j] = J [d] [c.] [d] dX'

L
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where :

[dj = displacement function relating the relative displacement

{w'} to nodal point displacement {ô'}

[pí\ = joint element moduli matrix =
k , 0

X

y'

k , and k , being the normal and the shear stiffness of the joint in local
x' y ^ "^

coordinates.

The transformation from local to global coordinates gives us the

joint stiffness :

[KjJ = [Hj' [k:] [h]

where \h\ is the transformation matrix.

Finally in the mathematical formulation used for the stress

analysis, the total stiffness matrix [\(] of the system analyzed is the

proper combination of the continuum elements stiffness matrix [k^J and the

joint elements stiffness matrix [K . J .

So the mechanical properties of both continuum and joint elements

can be properly represented by :

[k] {0} - {F} = 0

- Stress - Flow analysis

The coupling between flow pressure and rock stresses must be sa¬

tisfied by an iterative procedure that assures compatibility between rock

stresses and fluid pressures. The two basic equations we have derived earlier

are :

for Flow [k^] {h} - {Q} = 0

for Stress [k] {ô} - {f} =0

or more explicitly :

1
[K. Co)] {P} - {Q} = 0

[k] {0} - {FCP)} = 0

with K^Cô)

with FCP)

= 0

0 = 0

= 0

P = 0
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K Co) indicates that flow conductivity is dependent on the joint deformations.

{P} is the equivalent pressure of the net effective head at any point.

{FCP)} indicates that nodal force vector is dependent on flow pressure.

Then these two equations are coupled implicitly by {P} and {ô} .
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CHAPTER 6

UNSATURATED FLOW

Freesurf II cannot treat the problem

of the transient flow through a dam when the

reservoir level is lowered : this is due to the

fact that the clay is draining very slowly and

induces an unsaturated zone.

The unsaturated zone must also be

taken into account if we consider the displa¬

cement of the wetting front during the infil¬

tration process from a ditch into the ground.
Wo/er /a¿/e

^«//'"3 /">"/

As pollutants may migrate above the free surface as well as below,

the presence of an unsaturated zone cannot be neglected in some pollution

problems.

The moisture in soils is characterized by the following parameters

i-the water content 0 = .^ , where V is the volume of water and
V^ w

m

V the volume of the porous medium,
m ^

The maximum value of 9 is the porosity of the medium

V

ii-the water saturation S = 77- , where V is the volume of the
w V p

P

pores ; 0 < S < 1 .
w

iii-the pressure head i(j, related to the piêzométrie head h and to

the elevation z according to the formula :

h = 4* + z

i|), which is sometimes called suction or tension, is positive below

the water table and negative above.



In the unsaturated zone, i(> is a function

of 6 whose shape depends on the porous medium.

In a given porous medium however we

must take into account the hysterisis between

\¡) and 0 : the actual curve \\) versus 0 is com¬

prised between a drying curve and a wetting

curve according to the history of the flow.

The permeability K inside the unsa¬

turated zone of an aquifer depends on the

water content 0 but the relationship between

K and 0 is extremely hard to measure.
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-r

One dimensional flow

, a;
Safumitien.

When the soil is very dry the tension tJ; is very high and the

equations of flow in the unsaturated zone become extremely non linear.

According to the Buckingham-Darcy law and the definition of ^ the

one dimensional continuity equation is :

3_

3z

^.Hi^j il
3t

CD

where z is positive upward.

ijj and 6 being related, the usual approach in solving equation CD

is to express one of these two variables in terms of the other ; hence the

two following possibilities :

i - express 0 in terms of ij; : as iJ; is continuous everywhere this

approach fits for the solution of flow problems in both saturated and unsatu-
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rated zones ; the equation however remains non linear.

ii - express ^ in terms of 0 : as 0 is constant within the saturated

zone and may be discontinuous across two layers within the unsaturated zone,

this approach enables us to solve only the flow in an unsaturated zone made

of only one material ; the equation however is more linear than in the previous

approach.

Let D = K -T^ be the diffusivity of the soil.
36

The 2nd approach leads to the equation :

3z J 3t
D 1^ + K| = -^ C2)

oz

Let V be the velocity of water

= -.|5=..3Ç|^,.K|i-.= .p||-K

Let us note that in case of an horizontal flow along axis x the

velocity would only have been :

n 30
^ = - °- 37

follows :

The initial and boundary conditions of the problem are defined as

0, , = 0 , , on R
Cz,o) oCz)

Qf . -, = Of 4., on A
Cz,t) Cz,t) 1

K-|^ = CK + D^)n = - V, .- on A_
3z 3 3z 3 Cz,t) 2

As K and D are functions of 0 the problem is non linear and no

variational principle is rigorously applicable.
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As equation C2) involves 0 in a linear fashion however the problem

is quasi linear.

Let us apply Galerkin method ; we approximate 0 by a linear combi-

,N
nation 0 of a set of N coordinate functions Ç

0 = Q K
n n

For any n, the function Ç is zero

everywhere except along elements e and e

where it varies linearly with z from zero at

nodes n-1 and n+1 to 1 at node n.

Let us express that the projection

of the residue of equation C2) along each

coordinate function is zero :

f z

r n+1

- n

n-1

3 ,^ 30 ^. 30

^ ^° 37 ^ ^^ - "St ]^n dR = 0 C3)

In order to solve this non linear problem by the finite element

method and to avoid obtaining negative values for 0 we must introduce the

scalar :

3t

R

II- Ç dR
3t n

^7^

As 0 is assumed to vary linearly along each element, let us make

the same assumption for K and D :

K^ = k" e
n n

D^ = D^ e
n ^n



Let us apply Green's first identity :

3Ç
I- CD 1^ + K) Ç dR +
3z 3z n

CD |i + K) ^
3z 3z

dR
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CD -1^ + K) Ç .n_dA
3z n J

^'^

Equation C3) can then be rewritten as follows

^i[^
® pe

3Ç^ 3Ç^
e ^e m n e ,e ^n 30

fi + K F
p 3z 3z m p p 3z 3t

C dR = I

«e .e

A^M2

P^P 3z m p^p^
n il dA

3 n

Hence

A 0 . F lin = q _ B
nm m nm 3t n n

Where :

nm

Re

3C^ 3Ç^

p p 3z 3z

1 D"
y _2	P
^ e
e 2L

C-D

ô +1
nm

e v e
1 D meaning > D

P P ^ P

The integration of Ç can be carried
P

out in an easy way if we introduce the local

e e
coordinate Z ; L being the length of element

e, the two coordinate functions which are non

zero along the element are :

and where ^!- "i

F = Co ) y
nm nm ''

e

K^ dR
n

nm

V L^
=0 > , the parentheses around ô indicate that no

nm '^ 2 ""^
e

summation is to be made on n.
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36
The assumption made upon the integral of - leads to a diagonal matrix

ot

nm

Q = I - V n Ç^ dA + I
" s

«2

f 3Ç

. g P P 3z m p pJ
n Ç dA

3 n

A
1

is the flux across the boundaries of the flow region ; it is positive when directed

into the system.

ï Í K^ K^ -^ dR
n - J p p 3z

^ R

1 ^1^ CK + K ) ^
2 n-1 n

CK + K ,)^2
2 n n+1

In order to solve this system of non linear equations we linearize by

assuming that D and K remain constant within a given time step.

We use Rubin's method : we extrapolate

values of 0 from the previous time step through

the present time step toward the next :

At k+1

k+1/2

At,

,k+1/2 k-1

At /2
o

At,

k+1/2
We use the extrapolated values 0 in- Jihe calculation of D and K

for time step At . Hence the equation :

fi"" + fi'"*'' fi'"'''' fi""
.k+1/2 m m pk+1/2 jn	jn
A v^ + r rr

nm 2 nm At

k+1/2
y - D

n n

k+1
The solution 0 is then obtained without iteration,

m
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The size of each time step is checked

by calculating the material balance at the end

of each time step.

This one dimensional scheme can be

applied to the infiltration of rain into a

very dry soil ; in the case of an infinite

system, it comes to a translation of the wetting

front.

ZJ

H

y

^e

Two dimensional flows

They are ^ based and cover the vertical plane flow, the vertical

radial flow and the horizontal plane flow.

As very little is known about anisotropy in the unsaturated zone,

we make the following assumption :

K. . C0) = K . KT.
ij rC0) ij

where o < K < 1 and K. . is the
r ij

permeability tensor in the saturated zone.

The pressure head ijj, which is continuous everywhere, is solution of

the following equation :

3x,
K K^
r ij 3Xj J JX.

1

K K^^
r i3

= C
3t

C4)

Let us neglige hysterisis

li = C . ^ where C = -rr is the specific moisture
3t 3t aif*

capacity, an. highly non linear term.
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Although there is no basic difference between left hand sides of

equations C2) and C4), this \p based method is no longer applicable to extre¬

mely dry media : this is due to term C in the right hand side of equation C4)

Rubin suggested a transformation which brings us back to the first

type of equation.

In order to keep equation C4) however, we will restrict the study

to non extremely dry, soils.

Let us apply Galerkin's method :

^ = ^ = '^n ^n

f r_i_[K K^-^l +-^ Ík kÜ -C|i1 ç
J [-3x^ [ r ij 3x j 3x^ [ r i3j 3t J ^n

dR = 0

Green's first identity

I 3x.
¿, ^ 1

KK^
I r XJ3X.J 3x.

K K^.,
r i3

E dR +
n

3Ç.

r ij 9x. r i3] 3x.
J ^ 1

dR

Let us assume

KK^-^+ K K%
r ij 3x. r i3_

Ç n.dA
n 1

A^^A^

3i(;

L3t;

3t

3t n

C Ç dR
n

K = K^ e
rn n

c" e
n n



Hence

86

L^p ij

pe

3Ç^ 3Ç^ 3Ç^
_e m n . ^e ^s e n e e

S 377 ^ "'m ^ ^p ^3 S 37^ ' ^p S
El r^
3t ^nj

dR

3Ç"
K^ K^, e^^ - K^ K% Ç^
rp ij p dx , m rp i3 p

'>i

n. Ç dA
1 n

I.e.

where

3i|)

A li^+F -r^=Q-B
nm m nm 3t n n

nm

y K^ K^
e ''P ^J

3Ç" 3Ç"
ç^ pu n ^^

^p 3x. 3x.
J 1

I TT 1^ fc.b b +K^,.3Cb c +b c )+ k!,.^c cl
''4A rl_11nm 13 nm mn 33nrnJ

K ^, K ^, K ^ being the values of K at nodes
ri r2 r3 r

n, n+1 and n+2 of triangle e:

K =-^CK,+K + K
r 3 ri r2 r3

1} *z

for a plane flow I7*f

2W for a radial flow

F = Cô ) y C^ Ç Ç dR
nm nm '^ J p p n

^ RB

aA
ô y T^ (2c + c . + c _)

nm ^ 12 n n+1 n+2
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I K.,-r^+ K.,
[ ij 3x 13

n. K dA
1 n

B = y K^ k"
rp i3 _ e P ^^i

^ K CK^_b^ + K^
2 r 13 n 33 n

CB = o for an horizontal
n

plane flow problem) .

For a quadrilateral element the values

of c and K at the middle point are reported on

the four summits and set equal to zero ; this

enables us to eliminate the middle points.

By analogy with the general case :

rn-S

n*2

rm

aO
F = (<5 ) y iTf^ C2c + c ^ + c _ + c ^

nm nm '^ 20 n n+1 n+2 n+3

^ being assumed to vary linearly with time, we use Rubin's method

again

^k+1/2 ^ 2 ^k+1/2 . k+1 __ 2 k+1 _ 2 B^^1/2 _ Lk+1/2 _ 2 pk+1/2 k ^^^

nm At nm m n n nm At nm I m

A S term could be easily incorporated into this equation.

As equation C5) is not strictly linear we have 3 possibilities

i - iterate without checking the material balance. By extrapolation

from the value of ij^ at time step k-1 through its value at time step k we

, , ^ , k+1/2 ^, , ^ _, ^k+1/2 ^. ^ . flk+1/2
calculate ^ ; we then evaluate C and K , then matrices A ,

^k+1/2 ^ ok+1/2 ^ r. -,, n 4.. fc^ ^ ,'^*1
F and B and we finally solve equation C5) for «Jj

We correct the evaluation of matrices A, F and B using
0^ + 0^^^

and solve equation C5) again.

We iterate untill the difference between two successive evaluations

k+1
of 0 is less than a prescribed test value.
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This scheme insures an extremely rapid convergence.

ii - make only one iteration and then check the material balance :

if the discrepancy is larger than a prescribed test value we iterate as in i

and no more check the material balance.

iii - check material balance after each time step : if the discrepancy

is too large, dump results on a tape

Calculation of the material balance

Let V be the change in storage in element e

V

rt+At

IfdtdR

,e t

If we assume that 0 varies linearly with time

» <

{ 1
A >^^-6^)

The material balance is then

y V = At y 0
Li D L, r

We compute the difference between the two terms and compare it to

zero.



CHAPTER 7 -
89

VARÎOUS INTERPOLATION SCHEMES

Simplex element :

In the two dimensional case it can

be a triangle with 3 nodes ; the line joining

any two points on the boundary belongs to the

element : the triangle is arconvex element.

In the three dimensional case it can

be a tretraedral element with 4 nodes.

In general, the number N of nodes

of a simplex element is related to the dimen¬

sion' K of the space according to the formula :

N® = K + 1

The coordinate functions associated with a simplex element are

defined by the relations :

m
X.

nm

N^ r ">

n=1 ^ -*

E can be expressed by a polynomial of degree 1 i.e. by a linear

function of coordinates x :

e (X.) = a" + a" X.
n 1 oil

i = 1

The constant coefficients a are determined by identification at

the nodes

n n n .
a + a. X. =0

o il nm
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In the two dimensional case for instance

_e , , n n n

^n ^^i^ = ^o * ^ N ' ^2 ^2

the three unknowns a , a^ and a_ are the solutions of the three linear
Q 1 2

equations

Í ml

nm

We can define simplex elements in curvilinear coordinates, on a

sphere for instance :

Complex element :

For such an element the relationship between the number of the

nodes and the dimension of the space is the

following :

N^ > K + 1

For instance, in a two dimensional

space, a triangle with 6 nodes is a complex

element.

Although this assumption is not necessary, we will restrict

ourselves to polynomial expressions. Let m be the degree of such a poly¬

nomial. For the above triangular complex element m = 2 :

~B f ., n n n n,,2 n, , n-,2

^n ^^i^ = ^o -^ ^ N " ^2 ^2 " ^3 ^^^ * ^ ^^^2^ " ^ ^^2^

We will determine the coefficients by using the Lagrange interpola

tion.
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To the 6 unknowns correspond 6 linear equations

m

nm

The unicity of the solution is thus

insured. Curvilinear coordinates may also be

used.

The continuity of the unknown function

is insured accross the boundaries of any element.

ex. : a parabolic expression along the boundary of a triangle is valid in

each adjacent triangle.

Multiplex element

The boundaries of such an element are parallel to the coordinate

axes. ^X2

In a two dimensional space we use

a bilinear interpolation : the coordinate

function is assumed to vary linearly along

the boundaries of the element but not neces¬

sarily inside.

_e , , n n n n

^n ^^i^ = ^o * ^ N ^ "2 ^2 ' ^3 ^ ^2

In a' three dimensional space a trilinear

interpolation leads to the following coordinate

functions :

OCZ*b

n

^n^^i^ = ^o ' ^^ ' "2^2 ' Vs * ^N^2 ^ ^^1^3 ' ^6"2^3 ' ^/^Vs

Let X = _+_ a ^9 ~ .1 h ^q ~ i ^ be the equations of the boundaries ; we

then define adimensional local coordinates as follows :

a = e =



The interpolation leads to the following functions
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Ç^ = -g- CI + a) CI + B) CI + y) Ç^ = 1 (1 + a) CI - 8) C1 + y)

Ç^ = ^ CI - a) CI - 8) C1 + y) Ç^ = -g- C1 - a) CI + 8) CI + Y)

Ç^ = -5- Cl + a) CI + 8) CI - y) Ç^ = I C1 + a) CI - 8) CI - y)
b o

E,^ " i í^ - a) CI - 8) CI - y) Ç^ = ^ C1 - a) CI + 8) (1 - y)
o o

In a two dimensional space a biquadratic interpolation can be

carried out with 8 nodes. vxg

Isoparametric elements

They were introduced in 1968 by Ergatoudis, Irons and Zienkiewicz.

Definition

The elements are choosen in a region R ;

in each of these elements the local coordinates

are parallel to the boundaries of the element.

We can make a transformation from

Cartesian coordinates x. into local coordinates
1

a. and vice versa :

a. = a. Cx. ) X. = x. Ca. )
111 111
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Biquadratic interpolation

Let us number 8 nodes inside the element ; we assume the relation

ship

iii i, ,2 i, ir ,2 i, ,21 1 ^1 If-,-' If 1 Ifi-^ Iri^ If-»'
X. = a^ + a^a^ + a^c^ + a^Ccx^) + a^Ca^a^) - a^Ca^) + a^Ca^) a^ - a^a^Ca^)

Substituting the coordinates of

the 8 nodes into the above expression leads

to 8 linear equations whose solutions are

the 8 unknowns a.

It is also possible to express

a in terms of x.

The interpolation functions are usually obtained by guessing

Ç^Ccx.) = ^ |Cl+a,a")Cl+a^a") - Cl-Ca J^) Cl+a^a!^) - C1+a^a") (1-Ca1 n=1,2,3,4
ni4[_11 22 1 22 11 ^ J

^n ^°i^" 7 ^^ " ^"1^^^ ^^ * "2'^2^ n = 5, 7

Ç^CaJ = Y ^1 - Ca^)^) CI + a^a") n = 6,8

B rn
We can check that E Ca, ) = ô

n i nm

Bicubic interpolation

N = 12 ; the relation between x. and a. is obtained by analogy

with the quadratic interpolation.

\ = a^ - aja^ + a^a^ * a^(cx^) + a^Ca^a^) - a^ta^) + a^Ca^) «^ - a^a^Ca^)'

i, ,3 i . ,3 i , ,3 i - ,3
+ agCa^) + aga^Ca^) - a^^Ca^) cx^ + a^^Ca^)
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The coordinate functions then are

^n^V -h'' '^y<' ''' a^.a^) Í9 [ca^)^ + Ca^J^] 10> n = 1,2,3,4

Ç^Cct^3 = 1^ CI + a^ a!J) [1 - Cct^)^] CI + Sa^a'^) n = 5,6,7,8

^n^°i^ ^h ^^ ^ ^"l"l^ t"^ " ^''l^^J ^^ ^ V2^ n = 9,10,11,12

Mixed interpolation :

It is possible to use different

orders of interpolation along the bounda¬

ries of a given element.

order of the interpolation

linear

quadratic

cubic

b Ca)
n

_1_

2

n 1
aa -

9Ca) -5

Let us take, for instance, the following example

- linear interpolation at nodes n = 1, 2, 3, 4



95

C Ca, ) = Ca ) Cb )
ni n n

there is no summation here

where

a^ =^(1 + a^ a^) C1 + a^ a^)

b = b CaJ + b Ca
n n 1 n 2

quadratic interpolation at node n = 5

1

5 '»l' 2 [ - '°1''] [ * «2 "2]

cubic interpolation at nodes n = 6, 7

5ñ '°i' 32

Integration over an element :

As the local coordinates vary only from -1 to +1, the integration

of the coordinate functions is simplified :

E Ca, ) da . da
ni 12

da. r Cot.) da^
n 1 2

-1 -1

In order to integrate derivatives of E with respect to cartesian

coordinates we must introduce the Jacobian matrix J

3x^ 3X2

3a^ 3a^

3x^ 3X2

"30^ "sa"
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3Ç
I

37^

e -I
3Ç

I

e -I

,-1

5
3x.

5
3o,

Numerical integration is necessary in order to evaluate the integral,

3x.

An easy way to calculate the derivatives

in terms of a linear combination of x, :

is to express x.
3aj

X. = E Ca, ). X.
i n i 1

Such an expression is correct because Ç is an interpolation func¬

tion and X. is supposed to be a polynomial of the same order as the unknown

along the boundaries.

Hermite interpolation

Smooth Hermite interpolation

In the one dimensional case, the unknown h is approximated

by a linear combination of two sets of N coordinate functions E and ç :
n n

h = h = h E + h' ç
n n n n

where h'
n

3h/ ^

3x

The coordinate functions are defined according to the following

relations where prime means derivative with respect to x.:
1

m
= ô

nm

m

X.
1,

r ix"!^
n 1

m
= Ô

nm

This interpolation makes the derivative h' to. be continuous at the

nodes C > smooth interpolation).
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X

a being a local coordinate associated

with a given element, a smooth cubic interpolation 1 ^2

leads to the following coordinate functions : _ ^ '^l

Ç^ = 1 - 3a2 . 2a3 ^1 = ^^" " 2«' ^ "')

r^ - o 2 _ 3
Ç_ = 3a - 2a

where L is the length of the element* *^-	^^	^V m x.

The shape of the two coordinate functions associated with a given

node n is shown on the above figure.

In general, using a polynomial of degree n+2 insures that in

the one dimensional case derivatives of h until the n order are continuous.

In the two dimensional case, when elements

are triangles, the centrold of each element is a node,

A m order Hermite polyni

nomials of degree 2m - 1 .

A m order Hermite polynomial corresponds to poly

Let E ., be the coordinate function associated with node n and
n,jk

corresponding to the derivative of h of order j with respect to x and of

order k with respect to x . By using only one greek alphabetic character

this notation generalizes the notation Cusing E and ç) defined in the one

dimensional case.

Unknown h is then approximated a.s a linear combination of a set

e
of N coordinate functions E .,

n,jk

i + k
^, ~ ^,N , pB . , f4.i 3-^ h f n ^-
h = h =h .. E .. where h .. Ct) = 7	; Cx.,t)

n,jk ^n,jk n,jk ^ J ,^ 1^ 1
3x^ 3x

The oorner_nodes

m - 1 is the maximum orcjer of the derivatives of h that we want

to be continuous at each corner node :

oí j,k.$ m- 1
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The corresponding coordinate functions satisfy the following relation

3J^^Ç
n,jk

3xJ 3x^

= 6 - ô .-r Ô. -
nn jj kk

The number of coordinate functions associated with a corner node is

m C m+ 1)

Examples

If the function itself only is to be set continuous, m = 1 and we

define only one coordinate function E
n,oo

'n,oo [^ij nn

If we want the function together with its two first order derivatives

to be continuous, m = 2 and we define the following coordinate functions.

E associated with the function itself
n,oo

3J^^ E
n,oo

3xJ 3x5
i;

ô - ô -r ô T
nn OJ ok

E .. associated with -r
D,10 3x,

3J'^ E
n,10

3x:j 3X2

in
ô - 0,^ ô r-

nn 1j ok
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E '. ' . associated with
n,o1 3x

3h

1 + k

n,o1

3x^ 3x5
Ô - ô - ô,-

nn oj 1k

N
so that h might be approximated by h as follows

/ \

h =" h = h Ç +
n n,oo

3h

V.3X,.

r 3h'

[3Xo.E + .
n,1o I3x n,o1

The centroîd

m - 2 is the maximum order of the derivatives of h we want to be

continuous at each centroîd :

o .$ j,k ^ m - 2

then

The number of coordinate functions associated with such a node is

mCm-1)

These coordinate functions have the same properties as those asso¬

ciated with corner nodes.

In general

The method leads to a N-dimensional subspace of the Hermit space.

For triangular elements, if N and N are the numbers of the corner
CO

nodes and of the centroids respectively :

c 2 o 2

h = h

The function h is then approximated as follows

c m-1 m-1 o m- 2 m- 2

^ , 4 ? * . ? I ^n,jkCt) ^n,jkCx.)
n=1 j=o k=o n=1 j = o k=o "^ i
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Non smooth Hermit interpolation :

Let us suppose that, for a given element e ,a smooth Hermit

interpolation has been defined ; this interpolation is extended by a set of coor¬

dinate functions 0 . which are zero along the boundaries of the element.
ei "

This scheme does not change anything in the Lagrange interpolation :

^rixj) Ç, m, + Cf mi ~ ^
rfx:. ) Cx^") nm

as Cf m,
Cx. )

1

= 0 .

Let us consider a cubic interpolation

for a triangle :

3 = ç^ ç^ E^
el ^1 ^2 ^3

The unknown function h is interpolated

as follows :

h = 5,, h + Ç.,h + Co^o * 0 -1 a. , which is still a Lagrange scheme.
II c. ^ (^ O 6.1 I

This non smooth interpolation is done in each triangle separatly

and not necessarily in all of them.

This scheme could be applied in an unsaturated flow problem when one

wants a better approximation of the unknown inside the elements close to the

wetting front.

A quintic interpolation for a triangle leads to the following coor¬

dinate functions:

el

3 e e

^2 ^3 e2 (<)^ ' ^3 K3-^\ 3 ^e

e4 ^ N)^ «e5-5l Î2 e6
' E^

^2

For s.teady state flow or unsteady state using vector D instead of

matrix D- the interpolation leads to two sets of indepencjent equations:
nm
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A h = o CD
nm m n

A a = Q C2)
nm m n

We first solve CD for any node and then solve C2) for appropriated

elements.

This interpolation scheme has been used by Price, Cavendish and Varga

for one dimensional dispersion.
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APPENDICE 1 - MEANING OF X IN THE EXPRESSION DF fi

For the free surface, we calculate

ÔfiCh) = -T^ Cfi Ch + Xti))
dA

X = 0

In calculus of variations, we have a relation between a fonctional fi and a

function R.

Let us consider in 2 dimensions a function fCx).

An extremum is obtained when :

df

kx)

dx

with

df ^

dx
.limite

Ax -»- 0

fCx + Ax) - fCx)

Ax

:c

It appears the same relationship between the fonctional fi and the function h

and between the function f and the point x.

Of/>Cr .So/u/ion v^'ctt

Let us suppose that we have the solution

h of the variational principle.

If h is an arbitrary function which

satisfies boundary conditions, we can

obtain all the possible solutions.

Let us evaluate

lim

AX->0

fiCh + CX + AX)?i) - fiCh + xii)
AX

This limit is called the first variation.

X book by FDMIN about variational" principle.
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APPENDICE 2 - UNSATURATED ZONE

In some studies, we may be obliged to take into account the unsaturated

zone. For the unsaturated zone, we have the relation between the percentage

of water in the soil CO) and the distance above the free surface, as indicated

on the figure.

9c0

So, we assume during the iterations that the potential at the free

surface boundary may he \¡) = -Tp ,

If there is no un-saturated zone, the value of \i¡ on the boundary is

i|; = 0.

boune/ory

un- S o/uro/vç/

a) without un-saturated zone b) with saturated zone

free surface positions
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APPENDICE 3 - METHODS FOR SOLVING LINEAR EQUATIONS

1) In direct methods, it is possible to obtain an algorithm for getting a

solution, but in such cases, we must consider the problem of roundoff

error.

2) In iterative methods, it exists explicit equationsfor head at each

node.

2.1.) Point Jacobi method

N a, . b.

h-î-^l = -s: (JLi) h-; - -^ i" 1,2,...
j=1 ^i J ^i
j^i

The number m indicate the number of the iteration.

2.2.) Point Gauss-Seidel method

i-1 a. . . N a. . b,

h'?*^ = - E C-ii) h^'^ - Z i-^) h"! + -^
^ j=1 ^ii ^ i+1 ^ii J ^ii

2.3.) Point successive over relaxation method

.m+1 .m ^ fL,m+1 .m.
h. = h. + w Ch. - h^ )
Illi

f^ 1 i-"i ^ ,m+1
= Cl-w) h. + w h.

1 1

if 0 <w <1 we have an under-relaxation method

w =1 " " the Gauss-Seidel relaxation

1 <w <2 " " an over relaxation method.


